Yellow and Red Supergiants in the LMC

Yellow and Red Supergiants
in the Large Magellanic Cloud

Kathryn F. Neugent11affiliation: Visiting astronomer, Cerro Tololo Inter-American Observatory (CTIO), a division of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. , Philip Massey11affiliation: Visiting astronomer, Cerro Tololo Inter-American Observatory (CTIO), a division of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. and Brian Skiff Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001;
kneugent@lowell.edu; phil.massey@lowell.edu; bas@lowell.edu
Georges Meynet Geneva University, Geneva Observatory, CH-1290 Versoix, Switzerland; georges.meynet@unige.ch
Abstract

Due to their transitionary nature, yellow supergiants provide a critical challenge for evolutionary modeling. Previous studies within M31 and the SMC show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here we extend this study to the LMC while also investigating the galaxy’s red supergiant content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper motions and the LMC’s large systemic radial velocity (278 km s) to separate out these foreground dwarfs. After observing nearly 2,000 stars, we identified 317 probable yellow supergiants, 6 possible yellow supergiants and 505 probable red supergiants. Foreground contamination of our yellow supergiant sample was 80%, while that of the the red supergiant sample was only 3%. By placing the yellow supergiants on the H-R diagram and comparing them against the evolutionary tracks, we find that new Geneva evolutionary models do an exemplary job at predicting both the locations and the lifetimes of these transitory objects.

supergiants — stars: evolution — galaxies: stellar content — galaxies: individual (LMC) — Magellanic Clouds

1 Introduction

As a massive star reaches the end of its life, it eventually exhausts its hydrogen supply and begins burning helium, a phase that lasts for only 10% of the massive star’s lifetime. In many cases, it has now become a mid- to late-type supergiant. In this paper we focus on the cooler of these supergiants within the Large Magellanic Cloud (LMC): the yellow supergiants (YSGs) and the red supergiants (RSGs).

In comparison to the 3,000 un-evolved OB stars more massive than 20 in the Small Magellanic Cloud (SMC), Neugent et al. (2010) found only 176 YSGs, a number complete to a few percent. This rarity is due to the transitionary nature of YSGs: they represent a short phase within a massive star’s life as it passes from the blue side of the Hertzsprung-Russell diagram (HRD) to the red supergiant stage or from the red back to the blue. However, their rarity only boosts their importance when testing current stellar evolutionary theory since the evolutionary model’s ability to predict the locations and numbers of these short-lived stellar objects on the HRD provides a crucial test. Previous studies of YSGs in the SMC (Neugent et al. 2010) and in M31 (Drout et al. 2009) show that the Meynet & Maeder (2005) Geneva evolutionary models overestimate the lifetimes of YSGs by large factors. Reliable evolutionary tracks affect not only the studies of massive stars, but the usefulness of population synthesis codes such as STARBURST99 (Leitherer et al. 1999, Vazquez & Leitherer 2005), used to interpret the spectra of distant galaxies.

Testing the evolutionary models by identifying a complete sample of supergiants within the LMC is complicated by foreground dwarf contamination. While this issue is pertinent when identifying both yellow and red LMC supergiants, the number of foreground stars in the appropriate color and magnitude range is much greater for LMC YSGs than for RSGs. This is because a red dwarf would have to be very close by to be in the same magnitude range, and the majority of these near-by dwarfs can be eliminated using proper motion cut-offs. Figure 1 shows the expected LMC foreground contamination primarily by yellow and red disk dwarfs as predicted by the Besançon Milky Way models (Robin et al. 2003) using the same area, proper motion cutoff and magnitude and color criteria as we use when defining our sample (see §2). Since evolutionary considerations suggest we will find many more RSGs than YSGs within the LMC, the contamination of YSGs will be much greater. In fact, Massey & Olsen (2003) found their RSG foreground contamination (without a proper motion cut-off) to be 11% in the SMC, while Neugent et al. (2010) found a contamination closer to 65% when looking at SMC YSGs. We plan to circumvent this issue by determining the radial velocities of all of our observed supergiant candidates since there will be minimal overlap between the radial velocities of LMC and Milky Way members. Further details will be discussed in §3.

After identifying a complete sample of LMC YSGs, we will be able to test the Geneva evolutionary models observationally by comparing the relative numbers of supergiants as a function of luminosity. We’ve done this for the low metallicity SMC (log; Russell & Dopita 1990) and for the high metallicity M31 (log; Zaritsky et al. 1994) and here we extend this study to RSGs while investigating the LMC’s intermediate metallicity of log (Russell & Dopita 1990). In addition, we have at our disposal a new set of Geneva evolutionary models to test.

We begin this paper in §2 by describing our observation and reduction procedures. In §3 we discuss how we separated foreground stars from our LMC yellow and red supergiants and determined LMC membership. In §4 we examine both our contamination and completeness before, in §5, putting the stars on the HRD and testing the current Geneva evolutionary models. Finally, in §6 we summarize our findings and describe future goals.

2 Selections, Observations and Reductions

2.1 RSG and YSG Candidate Selections

The YSG and RSG LMC candidates were initially selected using the USNO CCD Astrograph Cagalogue Part 3 (UCAC3). We first chose stars within the LMC’s visible disk by including those within a radius centered at (J2000). We then attempted to weed out foreground stars by excluding those with absolute proper motion values greater than 15 mas year in or . Finally, we used the UCAC3 quality codes to remove possible galaxies, clusters and double stars.

To select a sample with appropriate magnitude and color ranges for both YSGs and RSGs, we relied on the stars’ 2MASS photometry (Skrutskie et al. 2006). To select YSGs, we followed the procedure described in Neugent et al. (2010) for the SMC. Our goal was to be complete down to after allowing for the different distance to the LMC. Using a range of K, we used the (older) Geneva evolutionary tracks (Maeder & Meynet 2001) and the colors of Kurucz’s (1992) ATLAS9 atmosphere models to define magnitude limits as a function of for a YSG. When selecting RSGs, we were concerned about potential contamination by intermediate-mass asymptotic giant branch stars since they overlap in luminosity with RSGs (see Brunish et al. 1986). Therefore, we weren’t complete down to as low a mass for the RSGs as we were for the YSGs and simply defined a flat magnitude cut-off. The color selection criteria of both the YSGs and RSGs candidates is shown in the color-magnitude (CMD) Figure 2. After this, we ended up with 2187 YSG candidates and 1949 RSG candidates.

2.2 Observations

All data were collected using the Cerro Tololo 4-meter telescope and Hydra, a 138 fiber multi-object spectrometer with a 2/3 field of view. Before observing, we matched the 2 diameter fibers to specific YSG and RSG candidates. Higher priority was given to the YSG candidates since foreground contamination is more likely within their magnitude and color ranges. Additionally, fields with the most new targets were assigned higher priorities so if (when) bad weather struck or a mechanical glitch occurred, it was clear which fields should be observed first.

Observations spanned over a clear eight night run covering (UT) 2011 January 18-25. (In addition, we used data collected in 2009 October described by Neugent et al. 2010). We used the KPGL-D grating and OG 515 blocking filter in order to observe the 7700-9200 Å region, centered on the Ca II triplet (), that we intended to use for radial velocities. The set up was the same as that used for the SMC YSG project (Neugent et al. 2010). This achieved a spectral resolution of 2.6 Å (3 binned pixels). Each field was observed for three consecutive exposures of five minutes each, followed by a short exposure of a HeNeAr lamp for wavelength calibration, and a projector lamp exposure obtained for flat fielding. We also obtained dome flat exposures during the late afternoons on some days with the fibers configured into “a great circle”. Additionally, a series of bias exposures were obtained each night. We observed five Geneva radial-velocity standard stars (HD115521 - M2III, HD42807 - G2V, HD6655 - F8V, HD83516 - K0III, HD84441 - G0III) for use as cross-correlation templates. These stars were observed on multiple occasions during the run, with at least several standards observed each night for a total of 24 exposures.

Overall, we observed 64 fields for a total of 1528 (70%) unique YSG candidates and 865 (44%) unique RSG candidates. Additionally, four fields were observed twice and a few stars were assigned to multiple fields providing us with 156 YSG candidates and 23 RSG candidates observed more than once. Figure 3 shows the locations of the observed fields and candidates.

2.3 Reductions

We overscan-subtracted and trimmed our data by first removing a scalar value determined from the overscan columns, and then trimming off the portion of the image containing the overscan columns. We additionally removed any left-over bias structure by subtracting an averaged bias. The IRAF111IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. task “dohydra” was then used to extract, flat-field, and wavelength calibrate the spectra. After some investigation we decided to use the dome flats as our flat-fields rather than the projector flats. Although either would remove the pixel-to-pixel variations, the dome flats did a better job of removing the fiber-to-fiber variations, as the illumination of the projector flats was much less uniform. Sky subtraction was provided by preselected “sky” fibers which were then averaged for each field after removing highly deviant results. Finally, the three spectra for each star were combined after rejecting bad pixels using IRAF’s “avsigclip” algorithm.

After examining the spectra, we found that 69 (4%) of the candidate YSGs and 343 (59%) of candidate RSGs we assigned to fibers yielded nothing but sky. While 4% is understandable (a few fibers had low transmission), 59% is much larger than expected. However, plotting the values of these 343 “invisible” candidate RSGs against immediately yielded the explanation. RSGs very rarely have a lower than 3500 K, which corresponds to . But a glance at Figure 2 shows that many of our candidate RSGs had values much larger than 1.2. We were gratified to discover that most of our “invisible” RSGs (93%) fell in this region of large values. These cannot simply be spurious sources, as they have both measured proper motions from the UCAC3 and 2MASS photometry. Indeed, as we discuss in §5.2, there are many stars in this region of the CMD for which we did obtain spectroscopy and confirm membership; these show strong evidence of being highly dusty objects, deserving future followup222Note that the fainter and more heavily reddened of these will indeed be undetectable in our exposures, which are basically in the band. Consider a RSG with K (typical of M0 I’s) and hence intrinsic colors of , , (Levesque et al. 2006), and . With the normal amount of LMC reddening, E(B-V)=0.13 (Massey et al. 1995), we expect the star to have , and an magnitude of about . However, if the star has a circumstellar dust shell resulting in , then and hence  mag, assuming the dust follows a normal reddening law (i.e., Table 6 of Schlegel et al. 1998). The star will be 3 mag (15 times) fainter at in the spectral region where we are observing than the normal stars for which we obtained good data, and be at the faint end () in Figure 2.. After removing these objects, only 3% of our RSG candidates yielded nothing but sky.

3 Determining LMC Membership

Armed with spectra of nearly 2000 stars, it was time to determine which ones are actual LMC supergiants. This question is most pertinent for the YSGs because of the large foreground contamination expected. In the following section we describe how we used the stars’ radial velocities to weed out the foreground dwarfs from the LMC supergiants.

3.1 Radial Velocities

As mentioned earlier, radial velocities are the key to separating foreground dwarfs from YSGs. The LMC has an average radial velocity of 278 km s (Richter et al. 1987) with a rotational velocity of a few 10s of km s superimposed upon that (Kunkel et al. 1997, Kim et al. 1998). Thus, stars in the LMC will have radial velocities centered around this value, while stars in our own Milky Way will have radial velocities centered around 0 km s with a spread that we don’t expect to overlap with the velocities of LMC stars. Further details will be discussed in §4.

To determine the radial velocities, we used the spectra of our observed radial velocity standards. Our wavelength range of Å included the Ca II triplet ( 8498, 8543, 8662) which is known to be strong over a large temperature regime (which conveniently includes the temperature regime of YSGs, yellow dwarfs, and RSGs). Before the velocity calculations, we normalized the spectra using a 9th order cubic spline and subtracted 1.0 to remove the continuum. All velocity calculations were done using IRAF’s cross-correlation package “fxcor.” Cross-correlating the radial velocity standards against each other using a wavelength range surrounding the Ca II triplet ( Å) resulted in small uncertainties of 1 km s. We were then able to cross-correlate our candidate spectra against the standards using the same wavelength range.

As Neugent et al. (2010) found with YSG candidates in the SMC, many of our observed LMC candidates were sufficiently early that the Ca II triplet was contaminated by Paschen Balmer lines (i.e., P16, P15 and P13 at 8502, 8545, and 8665, respectively). To rectify this, we instead used the Paschen hydrogen lines from P11 to P19 for cross-correlation of the stars that showed Paschen lines by visual inspection. For templates, we chose a few “exemplary” Paschen-lined spectra and measured their radial velocities by hand. For cross-correlation of these stars, we used a wavelength range surrounding Paschen lines P11 to P19 ( Å).

We next used three different methods to understand the errors of our radial velocities: the Tonry and Davis (1979) parameter, the internal errors from the fits, and the external errors from multiple observations of the same objects.

The parameter measures how well the cross-correlation worked where larger values indicate more reliable results. For example, the average parameter for Paschen lined stars after being cross-correlated against our Ca II triplet radial velocity standards was 20.3. However, the average parameter for these stars after being cross-correlated against Paschen-lined templates was 53.8. Overall, the average parameter for YSG candidates was 79.4 (comparable to the value of 75.7 found by Neugent et al. (2010) for SMC YSG candidates), while the average value for RSG candidates was 44.2. We believe that the average RSG parameter is lower than the average YSG parameter because given our color selection criteria, the RSG candidates are dimmer than the YSG candidates at our observed wavelength range. Still, even a parameter of 44 is impressive (for example, Tonry and Davis (1979) published single digit values when studying galaxies).

As expected, internal errors (errors due to uncertainties in the cross-correlation fits) were highly correlated with parameters. Stars with large parameters () had internal radial velocity errors () close to 1.5 km s while stars with average parameters () had errors around 3 km s. Stars with low parameters () had errors around 5 km s.

There were 179 stars observed twice, which allowed us to calculate an external error of 3 km s by determining the mean absolute difference between two observations. These errors most likely stem from our ability to fit the comparison lines and not any lack of signal to noise in our spectra.

Identifying LMC supergiants based on radial velocities proved to be quite trivial. As Figure 4 shows, there is a clear bimodal distribution among the stars’ radial velocities with foreground dwarfs clustered around 0 km s and LMC supergiants clustered around 278 km s. This figure further confirms that we were able to successfully identify LMC RSGs using color and proper motion criteria alone while radial velocities were necessary for LMC YSG confirmation. Our final radial velocity results, along with other identifying information about each supergiant candidate, are shown in Tables 1 (YSGs) and 2 (RSGs).

In their study of SMC YSGs, Neugent et al. (2010) found a small but significant subsample of stars that fell in between the stars that were clearly Milky Way or clearly SMC members. For the hotter of these, they used the OI line to help assign membership. Osmer (1972) had shown the OI line is sensitive to luminosity in Galactic F-type stars, a dependence that Przybilla et al. (2000) showed was due to non-LTE and sphericity effects. Drout et al. (2009) showed that this worked for even G-type stars in M31, a high metallicity environment. At the low metallicity of the SMC, Neugent et al. (2010) did not find as good a correlation between the OI line strength and luminosity for the cooler () stars in their sample. Fortunately, as we’ve seen previously, the radial velocities by themselves did a more than adequate job here thanks to the considerably larger systemic velocity of the LMC compared to the SMC (278 km s versus 158 km s). The use of the OI will be discussed further in a future paper.

3.2 Final Membership Assignments

Owing to the large radial velocity separation between the Milky Way and the LMC, membership determination proved to be straight forward. Based on a visual examination of Figure 4, we concluded that stars with radial velocities higher than 200 km s (317 YSG candidates and 505 RSG candidates) are probable LMC supergiants and were labeled “category 1.” Stars with radial velocities lower than 155 km s (1129 YSG candidates and 17 RSG candidates) are probable foreground dwarfs and were labeled “category 3.” The 6 candidates (all YSG candidates) between these two radial velocity cut-offs were then labeled “category 2” or possible, but not probable, LMC supergiants. The locations of the category 1 and category 2 YSGs and RSGs within the LMC are shown in Figure 5. Note the excellent spatial agreement between the YSGs and RSGs. Compare this to Figure 3, where the YSG candidates were heavily contaminated by foreground stars, and thus show a far more uniform spatial distribution.

A subset of our RSG candidates had previously been observed by Massey & Olsen (2003) and confirmed as LMC RSGs using radial velocities. These 43 stars are indicated in Table 2. A comparison of the radial velocities presented in this work versus the radial velocities presented by Massey & Olsen (2003) yields a average difference of 3.6 km s with a standard deviation of 4.3 km s, consistent with our own external radial velocity errors.

4 Contamination and Completeness

With LMC membership determined, we focused on understanding our contamination and completeness rates for both YSGs and RSGs.

4.1 Foreground Dwarfs

Before the observing proposal was even submitted, we estimated the foreground contamination for both YSGs and RSGs using control fields. The vast majority of these contaminants should be Milky Way disk dwarfs, which we knew we could separate from the LMC’s population of supergiants using radial velocities. Stars in these control fields were selected using the same criteria described in §2.1 and were positioned at degrees in Galactic longitude from the LMC’s center. Since these fields should be populated solely by foreground stars, they provide a direct contamination estimate.

As described in §2.1, we began with 2187 YSG candidates. The two control fields yielded 1471 and 1751 stars, respectively. Thus, we estimated our foreground dwarf contamination to be between 67% and 80%. After observing these candidates, we found a contamination of 78%, as expected.

We began this project quite confident that we could estimate the number of RSGs in the LMC based on color selection criteria and proper motion cut-offs alone, as discussed in §1. Thus, we expected the foreground dwarf contamination to be quite minimal. Out of the 522 observed RSG candidates, 505 turn out to be RSGs. This yields a contamination rate of 3%, as expected.

4.2 Halo Giants

While foreground dwarfs can be eliminated using their radial velocities, this is not the case with halo giants as their radial velocities may overlap with that of the LMC, as much of the LMC’s systemic velocity is actually the reflex motion of the sun (Courteau & van den Bergh 1999). We can estimate their relatively minimal contamination using the Besançon models (Robin et al. 2003). Figure 1 shows radial velocity histograms based on the model results for stars within the same color range as our YSG and RSG candidates.

Since we observed 70% of our YSG candidates, the models predict that 3 (50%) of our category 2 YSGs and 8 (3%) of our category 1 YSGs are halo giants. This suggests that while several of our category 2 yellow stars may actually be Milky Way members, it is very unlikely that any of our category 1 YSGs are Milky Way halo giants.

Similarly, for the red stars, the Besançon models predict only one red halo giant with a radial velocity larger than 155 km s. Thus, since we observed 44% of our RSG candidates, there is a low probability that our RSG sample is uncontaminated by more than one halo giant.

4.3 Known Supergiants Not Observed

To gain a greater understanding of our survey’s completeness, we conducted a literature search of previously known YSGs within the LMC that our survey did not find. The results are shown in Table 3333Evans et al. (2011) identify two LMC members of type G5/K3 that are not on our list, VFTS 289 and [P93] 2186. These are not included in Table 3 as they are likely cooler than the stars we consider here.. Of the eleven “known” LMC YSGs, nine were on our original observing list but weren’t observed and the remaining two never made it onto our list for the reasons explained in the table. While our original target list may not have included every LMC yellow supergiant, this literature reality check suggests that we’re only missing a few, rather than tens of stars.

Previous surveys for RSG members of the LMC are largely incomplete; see Massey & Olsen (2003). Objective prism surveys, such as the case study by Sanduleak & Phillip (1977), were used by Humphreys (1979), Elias et al. (1985), and Oestreicher & Schmidt-Kaler (1998) for follow-up studies, but the poor precision of the coordinates render them of limited use for all but the brightest stars. Massey & Olsen (2003) and Levesque et al. (2006) used the UBVRI survey of the LMC by Massey (2002) for follow-up RSG work, but this survey only covered part of the LMC. Massey & Olsen (2003) used radial velocities to confirm that the foreground contamination of RSGs was less than 10%, while here we find that the combination of 2MASS photometry and UCAC-3 proper motions reduces the contamination to . Regardless, given that the contamination is on the order of 10%, we can certainly estimate the number of RSGs in the LMC to a reasonably accurate value, about 1800, for . Cross-correlating this list against the literature (especially given the poor coordinates for the objective prism studies) is beyond the scope of the present paper.

5 Testing the Current Geneva Evolutionary Models

Here we describe how we used the stars’ colors to determine their temperatures and luminosities and how these results allow us to comment on the accuracy of the current Geneva evolutionary models.

5.1 Determining Temperatures and Luminosities

To place the stars on the H-R diagram, we need to determine the stars’ effective temperatures and bolometric luminosities. For the YSGs, Neugent et al. (2010) demonstrated that gave slightly better results than (say) . However, not all of the stars in our sample have good colors, but all do have good colors from 2MASS since this was part of our selection process. In addition, we would like to determine physical properties for the RSGs. For these, is preferable (see discussion in Drout et al. 2009) but again, we have colors only for a limited subset of our sample. For consistency, we used for the effective temperature determinations of all our stars, but checked for systematic issues using the other colors as follows.

The transformations for the YSGs are newly derived here, using the Kurucz (1992) ATLAS 9 atmospheres. For the RSGs, we adopt the transformations determined using the MARCS models as described by Levesque et al. (2006). For all stars, we first converted the 2MASS colors to the “Bessell & Brett (1988) Homogenized System” following Carpenter (2001):

We next de-reddened the photometry assuming that (Schlegel et al. 1998), and adopted a constant value (Massey et al. 1995); i.e., . Note that while this value is appropriate for early-type stars, the reddening is probably greater for RSGs; see discussion in Massey et al. (2005) and Levesque et al. (2005, 2006)444This is another advantage of using , as the answers we get are less sensitive to the assumptions of constant reddening..

When :

(1)

For cooler stars, the transformation obtained using the MARCS models is simple; note that there is no logarithm involved.

When :

(2)

Care has been taken to avoid a discontinuity; at Equation 1 and Equation 2 each yield a value of 4415 K.

We derived similar transformations for for the yellow stars555For stars with , . and adopted the Levesque (2006) transformations from for the cooler stars666. For the former, the comparison with the results for (Equation 1) yields an average difference of  dex in log effective temperature, or 175 K at 5000 K, an insignificant difference. (The standard deviation for the sample of 206 stars is 0.04 dex.) For the cooler stars, the comparison with the (Equation 2) is  dex for the sample of 295 stars, with a standard deviation of 0.02 dex. Thus, we do not feel the analysis is compromised by the lack of optical photometry for these stars.

The bolometric luminosity was computed using the value transformed from 2MASS again following Carpenter (2001): . It was then corrected for interstellar reddening by 0.05 mag, i.e., , following Schlegel et al. 1998. The bolometric correction at (BC) is positive, and transformations were computed using the ATLAS9 and MARCS colors as above.

For ,

(3)

For cooler stars, the relation is nearly linear with effective temperature, and not the logarithm of the temperature. Thus for K,

(4)

following Levesque et al. (2006). Again, care was taken to minimize any discontinuity, and both equations give a BC of 2.4-2.5 at , or =4000 K.

The computed effective temperatures and luminosities are shown for our category 1 and 2 LMC supergiants in Table 4. The typical uncertainty in the 2MASS photometry is 0.02 mag in and 0.03 in . This propagates to errors of 0.005 dex in and 0.05 dex in for the RSGs, and 0.015 dex in and 0.10 dex in for the YSGs.

5.2 Stars That Are Too Red

The previously discussed transformations are determined only for , corresponding to a MARCS model temperature of 3000 K, since the coolest RSGs identified in the LMC have effective temperatures of 3450 K (Levesque et al. 2006), corresponding to 1.25, or a 1.27. This 3450 K limit is consistent with the Hayashi limit, set by the demands of hydrostatic equilibrium (Hayashi & Hoshi 1961). The coolest of these are unusual variables (Levesque et al. 2007), exhibiting non-periodic large swings in effective temperature on the order of a year. The only known stars that are redder have high circumstellar extinction, such as the heavily enshrouded and unusually cool RSG WOH G64 (Levesque et al. 2009).

In Figure 2, we see there is a sharp break near 1.25. Yet, there are stars extending redwards beyond 2. When observing, we found occasional instances of blank sky where we expected legitimate sources; invariably these objects were in the “too red” region, as discussed in §2.3. For others, we have valid radial velocities that indicate LMC membership.

To understand the nature of these objects, we carefully checked VizieR for all of our objects with , and list what we found in Table 5. Many of these stars have some emission near the 10m Si peak, as indicated by a detection in the IRAS, MSX, or AKARI surveys (Moshir et al. 1989, Egan et al. 2003, and Ishihara et al. 2010, respectfully), indicating significant dust production. This would of course explain the much too red colors.

Most of the stars have an entry in the OGLE database (Soszyński et al. 2009). However, many of the periods appear to be incorrect since the light curves look very poor. We suspect that many of the nominal periods are just aliasing or noise in the data-taking cadence (Stothers & Leung 1971). Some of the stars are also listed as Mira variables by Soszyński et al. (2009). This is not impossible; although our survey is aimed at detected massive red supergiants, it is certainly true that AGBs and Miras could contaminate the faint end of our sample, even though we strove to eliminate these stars by not observing lower mass supergiants, as discussed in §2.1777Indeed, there are a few stars in the list that have been classified by Lundgren (1988) as having enhanced ZrO (“S-type”, i.e., M4S), indicative of their being AGB stars on their way from evolving from M-type to carbon-type.. But, amongst all the OGLE light curves (many more were examined than those listed in Table 5) we saw nothing that resembled an ordinary Mira. Typically Miras have periods longer than 150 days and large amplitudes, 2 mags or more. By contrast, our observed overly red stars luminous enough to be in the ASAS database are characterized by two sorts of light curves. There are the types whose light curves are called “Lc” in the GCVS (Samus et al. 2006) which have slow, irregular variations with cycle lengths of a few hundred days (like a typical RSG), and then there are the others which have much smaller, short-term variations (of order 100 days) and very long (thousands of days) cycles superposed on that of half a mag (or more) amplitudes. We have flagged these in Table 5.

We include in Table 5 the period in days; these are all from the OGLE catalogue except for two from the GCVS. We confirmed both of the latter using the ASAS-3 database (Pojmanski 1997). The OGLE periods are quoted only if the light curves are reasonably smooth.

In a few cases, the OGLE phased plot shows a very long cycle (1200 days) which additionally contains a much shorter period or periods. These stars are most likely semi-regulars that have very long overtone periods of 10-20 the fundamental period. In other cases we give notes indicating that the star is variable in an irregular manner, like one expects for the luminous M supergiants, or that it has a very long variation in the ASAS-3 series.

For the stars redder than the reddest RSGs, we would have underestimated the effective temperatures and bolometric luminosities888Note that not only are the bolometric corrections to the -band positive, but they also increase with decreasing effective temperature in this temperature regime. by simply extrapolating Equations 2 and 4 for larger values. This is particularly an issue for stars with 10m emission, and hence possibly substantial amounts of dust. Therefore, we did not include the 33 stars with in the HRD. We also refrain from listing their (extrapolated) physical properties in Table 4, as we expect the values would be misleadingly cool and under-luminous. These stars are worthy of spectroscopic follow-up, and we are beginning such efforts.

5.3 The H-R Diagram

We ultimately aim to compare the relative numbers of different kinds of massive stars (O-type main-sequence, and He-burning YSGs, RSGs, and WRs) as a function of mass throughout the Local Group galaxies forming stars. This will provide us with the observational database against which current and future models of stellar evolution models may be compared. Currently, data are too incomplete to accomplish this (see discussion in Massey 2010), but interesting tests can be conducted with what we have at hand. The two tests we make here are: (1) Do the evolutionary tracks extend to the appropriate effective temperatures and luminosities for the YSGs and RSGs? (2) Are the relative lifetimes predicted by the models as a function of luminosity correct? We can answer this second question only for the YSGs in our sample, as stars of the same mass overlap considerably in luminosity for the RSGs, as the evolutionary tracks become nearly vertical.

The HRD is shown in Figure 6. The latest Geneva evolutionary tracks, which follow massive star evolution all the way to the end of the core carbon burning phase (Chomienne et al. 2012, in prep), are shown in color, with the initial masses indicated999Identical Geneva evolutionary models at a higher metallicity () have been published with full details given by Ekström et al. (2012). The newer models discussed here were simply computed at a lower metallicity, with the appropriate scaling of mass-loss rates.. The solid curves denote the tracks computed assuming an initial rotation speed of 40% the critical (breakup) speed. The 40% value is consistent with zero-age solar-metallicity B-type stars; see discussion in §3 of Ekström et al. (2012). This value may be too high or too low for other mass ranges, but is suitable for the 12-30 range. Individual stars may have slower or faster rotation thus, these tracks represent an average behavior. The tracks computed with no rotation are shown by dashed lines for comparison. Note that all tracks were computed using the Asplund et al. (2009) lower solar abundance values, and thus the value for the LMC is lower than what we would have previously used ().

We show the location of our stars based upon the transformations described in §5.1 in Figure 6. Stars that are probable LMC members (category 1) are shown with solid points while the six less certain (category 2) stars are shown as open circles. As discussed in §5.1, the uncertainties in the placement of these points are small, comparable to the size of the points. At the low luminosity end, the distribution has been ended by the magnitude cutoff used when selecting our sample, which will extend to lower luminosities at cooler temperatures. The YSG realm is delineated by the two black vertical lines denoting the effective temperature range of 4800 - 7500 K. Stars to the left of this are blue supergiants, and our selection criteria was overly generous by including them to 10,000 K (). Stars to the right are red supergiants, and they pile up at the Hayashi limit, set by the coolest temperature and largest radius (for a given mass) for which a star can be in hydrostatic equilibrium (Hayashi & Hoshi 1961; see recent discussion in Levesque et al. 2007). This limit is a function of the metallicity, with the tracks shifting about 0.03 dex to higher temperatures as the metallicity lowers from solar to that of the LMC (see Figure 10 in Levesque et al. 2006 and Figure 1 of Drout et al. 2012).

The 32 track shown (in black) represent a kind of transition track. Stars with lower masses should remain in the RSG region, while those with higher masses evolve back to the blue side, becoming Wolf-Rayet stars. The loops are indicative of some unstable situation reflecting the fact that the model is “hesitating” between the red and the blue. Such unstable behavior is in fact known for some high luminosity YSGs, as discussed in §6. Note that the exact mass for such a transitional situation is dependent upon the assumed mass-loss rate during the RSG phase, which is still uncertain.

The agreement between the locations of the stars and evolutionary tracks in the HRD and the evolutionary tracks is nothing short of exceptional. First, we find that the tracks correctly reproduce the locus of the RSGs, not only in terms of the effective temperatures, but also in terms of the upper luminosity limit. Most RSGs have masses of 15, but a few are found at higher masses. The highest luminosity RSGs we find have , and this is also the limit where the tracks no longer extend to the RSG stage. We note that the 20 and the 25 tracks could extend to slightly cooler temperatures, but the agreement is otherwise excellent. The rotating 32 model predicts no RSGs should be seen, and indeed none are. The presence of two stars at cooler temperatures and slightly lower luminosities than the rotating 32 track are consistent with our expectation that tracks of slightly lower mass than the 32 would reach to cooler temperatures.

The locations of the YSGs are similarly consistent with the tracks. The highest luminosity in our sample is found at and , a good match to the 32. At this luminosity we don’t find any cooler YSGs, and indeed the 32 track does not extend to cooler temperatures. The higher luminosity tracks (120 and ) do not extend into the YSG regime, nor do we find any stars at the corresponding high luminosities. The presence of a single cooler YSG at is consistent with interpolating between the 25 and 32 (rotating) tracks, again recalling that the 32 is at a transition between subsequent blue-wards evolution and not.

We can now test the models quantitatively, using the lifetimes predicted by the models. As long as our sample is unbiased in luminosity, then the relative number of YSGs as a function of luminosity (mass) should scale as the lifetimes of the YSG phase with a small correction for the initial mass function:

where is the slope of the initial mass function (taken here to be following Salpeter 1955; see also Massey 1998), and is the average duration of the evolutionary phase for stars with masses between and .

We list the predicted lifetimes of the YSG phase in Table 6. Note that the times are given in terms of thousands of years; the YSG phase is indeed short-lived! We give the comparison between the model predictions and the observed number in Table 7, normalized to the 12-15 bin.

The relative lifetimes predicted by these newer models show excellent agreement with the observations, unlike what we found in M31 and the SMC (Drout et al. 2009, Neugent et al. 2010) using older versions of the Geneva models101010The differences between the older Geneva models and the newer ones presented here are described in Ekström et al. (2012). They can be summarized as follows: (1) The initial composition differs. In the newer models a mixture of heavy elements based on the solar abundances obtained by Asplund et al. (2005) is used. (2) The opacity tables differ due to the changed initial composition. (3) The nuclear reaction rates have been updated. (4) A different prescription for the mass loss rate during the RSG stage has been adopted. (5) A different prescription for the diffusion coefficient describing rotational mixing has been adopted.. The agreement with the “S4” (initial rotation 40% of the critical breakup speed) shows astonishingly good agreement. The physically unrealistic case of no rotation (“S0”) shows poorer agreement. The only area where the models may predict an overabundance of YSGs is for the 32 track, with its significantly longer lifetime, due to the many loops. Even so, the agreement for it is much better than what was found for M31 (Drout et al. 2009) and the SMC (Neugent et al. 2010).

In making the comparisons between the expected relative number of YSGs and the expected number of YSGs we have averaged the lifetimes of the models in order to compute the lifetime in a particular mass bin. However, we expect that the lifetime of the track is not representative of models of slightly lower or higher mass, since the is a transitionary model. Thus we also include in Table 7 the comparisons we obtain by ignoring the track. When we do so, we find that the agreement between observation and the models for the YSGs is excellent.

Note that the Geneva models follow the evolution to the end of core carbon burning. Thus, unless dramatic mass loss occurs at the very end, the tracks are complete as shown. If high mass loss occurs does occur at the very end, the star may indeed become blue again, crossing from the RSG position into the YSG region. However, the duration will be so short that it will not change the results.

An assumption in our calculation is that, averaged over the LMC as a whole, star formation has stayed essentially constant over the past 20 Myr, since the models predict that the highest mass YSGs came from stars that formed 3-5 Myr ago, while the lowest mass YSGs came from stars that formed 20 Myr ago. Harris & Zaritsky (2009) have investigated the star formation history of the LMC, and conclude that over the past 5 Gyr the star formation rate has stayed constant to within a factor of 2; in recent times, there was a “mini-burst” 12 Myr ago, but the present star formation rates are comparable to this today. This burst would correspond to the main sequence lifetime of a 15-20 star according to the models.

We can perform one other reality check. The relative lifetimes of the models appear to be solid for the YSG phase, but what about the absolute lifetimes? Drout et al. (2009) argue from an (admittedly highly uncertain) number of O stars in M31 that the average lifetime of the YSG phase should be 3,000 years, much shorter than what the models predict. Let us consider the case here for the LMC. Massey (2010) estimates there are 6,000 main-sequence stars in the LMC with masses . This number is probably no worse than a factor of 2 or 3. The average IMF-weighted main-sequence lifetime, according to the S4 models, is 6.5 Myr. We observed 11 YSGs with masses above 20 (Table 7), and we observed 70% of the candidates. Thus we might expect there to be 16 high mass YSGs in total. If true, then the average lifetime should be Myr , or 17 thousand years. This is a bit smaller than the ages listed in Table 6 for masses above 20, but we are well within the uncertainties of the number of O stars, in our opinion.

As we emphasized in earlier papers (e.g., Drout et al. 2009, Neugent et al. 2010), the numbers and location of YSGs are very sensitive to how convection and other mixing processes are treated, as well as uncertain mass-loss rates (Maeder & Meynet 2000), who quote Kippenhahn & Weigert (1990) that, “[The yellow supergiant] phase is a sort of magnifying glass, revealing relentlessly the faults of calculations of earlier phases.” In this case it appears that the models may be in great shape.

6 Summary and Future Work

After observing 1452 potential LMC YSG candidates (70% of those originally selected), we identified 317 category 1 probable YSGs and 6 category 2 possible YSGs. Similarly, after observing 522 potential RSG candidates (44% of those originally selected), we identified 505 category 1 probable RSGs.

Confident of our completion, we then placed the stars on the HRD. The new Geneva models of Chomienne et al. (2012, in prep) do an exemplary job of predicting the relative numbers and locations of different mass YSGs. In a complementary study in M33, Drout et al. (2012) found similarly good agreement. However, we have yet to test these models in M31 and the SMC where older models failed since new models are not yet available for such metallicities. But, when they are it will be of great interest to see if the problem with the YSG lifetimes has disappeared.

Besides allowing us to test the Geneva evolutionary models, this complete sample of LMC YSGs will be useful for many other purposes in the future. Some examples include comparisons with evolutionary tracks, lifetimes, and surface compositions. Additionally, this sample is particularly interesting because it appears YSGs could be core collapse supernova progenitors (see, for example, Maund et al. 2011 and Georgy 2012).

Another topic worthy of future study is that of variability. The stars we discuss here are typically more luminous than the classical Cepheids. Only one of the stars in our sample is known to be a Cepheid, J04542376-7054057 (aka as Sk 14, HV 873, and Radcliffe 60), first described by Feast et al. (1960), and the derived luminosity () listed in Table 4 is at the extreme lower end of our sample. High luminosity yellow supergiants in the Milky Way are not known for Cepheid-like behavior, although variability can be spectacular. For instance, Cas undergoes strong changes in effective temperature and absolute visual magnitude every 50 years or so (Lobel et al. 2003). Luminous Blue Variables (LBVs) may occasionally masquerade as F supergiants, developing a “pseudo photosphere”, as S Doradus did in 2000 (Massey 2000), but the connection between the LBV phenomenon remains speculative (Smith et al. 2004 and references therein). Thus, a variability study of a large population of YSGs would be of interest111111Some authors refer to the luminous yellow supergiants as “hypergiants”, a term we eschew as unnecessary hyperbole..

The yellow and red supergiants we’ve identified in the LMC represent a very young ( 20 Myr) population, and our study has produced very good radial velocities. These radial velocities could be used to further study the kinematics of the LMC, following Olsen & Massey (2007). Their study compared the radial velocities of RSGs to that of carbon stars and the HI gas to argue that we see tidal heating of the stellar disk. It would be of interest to expand this now using the larger data set we have produced here. Similarly, our results suggest a path to further studies of the SMC’s kinematics. Neugent et al. (2010) used their radial velocity data on the SMC YSGs to briefly comment on the complexity of the kinematics of that galaxy. Now that we have shown that a large sample of RSGs can be identified from the UCAC3, radial velocity studies of such a sample could provide an interesting complement to that of HI studies of the SMC’s kinematics.

Overall, we hope to provide a solid observational database against which evolutionary models may be compared. At this point, the LMC’s massive star population has been characterized for YSGs, RSGs and WRs (Massey et al. 2003). We are currently studying the unevolved LMC OB stars and once this is done, the LMC’s massive star population will have been characterized from one side of the HRD to the other.

We would like to acknowledge the generous allocation of observing time by the NOAO Time Allocation Committee, and the excellent support we received while observing with Hydra on the Blanco, particularly by Ricardo Venegas. Additionally we’d like to thank Nick Suntzeff for posing a question that improved our discussion. Finally, we would like to thank the anonymous referee who made comments and suggestions which improved the paper. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. It also made use of the VizieR catalogue access tool, CDS, Strasbourg, France. This work was supported by the National Science Foundation through AST-1008020. Facilities: Blanco

References

  • (1) Ardeberg, A., Brunet, J.P., Maurice, E., & Prevot, L. 1972, A&AS, 6, 249
  • (2) Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
  • (3) Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
  • (4) Blanco, V. M., & McCarthy, M. F. 1990, AJ, 100, 674
  • (5) Bohannan, B., & Walborn, N. R. 1989, PASP, 101, 520
  • (6) Bohm-Vitense, E., Proffitt, C., & Hodge, P. 1985, ApJ, 292, 130
  • (7) Bothun, G. D., & Thompson I. B. 1988, AJ, 96, 877
  • (8) Brunet, J. P., Prevot, L, Maurice, E., & Muratorio, G. 1973, A&AS, 9, 447
  • (9) Brunish, W. M., Gallagher, J. S., & Truran, J. W. 1986, AJ, 91, 598
  • (10) Cannon, A. J. 1925, Ann Anstron. Obs Harvard Coll., 100, 17
  • (11) Carpenter, J. M. 2001, AJ, 121, 2851
  • (12) Catchpole, R. M., Robertson, B. S. C., & Warren, P. R. 1977, MNRAS, 181, 391
  • (13) Conti, P. S., Dearborn, D., & Massey, P. 1981, MNRAS, 195, 165
  • (14) Courteau, S., & van den Bergh, S. 1999, AJ, 118, 337
  • (15) Cowley, A. P., Crampton, D., Hutchings, J. B., Helfand, D. J., Hamilton, T. T., Thorstensen, J. R., & Charles, P. A. 1984, ApJ, 286, 196
  • (16) Drout, M. R., Massey, P., & Meynet, G. 2012, ApJ, submitted
  • (17) Drout, M. R., Massey, P., Meynet, G., Tokarz, S. & Caldwell, N. 2009, ApJ, 703, 441
  • (18) Egan M. P. et al. 2003, The Midcourse Space Experiment Point Source Catalog v2.3, Air Force Research Laboratory Technical Report AFRL-VS-TR-2003-1589
  • (19) Ekström, S. et al. 2012, A&A, in press; arXiv1110.5049
  • (20) Elias, J. H., Frogel, J. A., & Humphreys, R. M. 1985, ApJS, 57, 91
  • (21) Evans, C. J., Lennon, D. J., Smartt, S. J., & Trundle, C. 2006, A&A, 456, 623
  • (22) Evans, C. J. et al. 2011, A&A, 530, 108
  • (23) Fariña, C., Bosch, G. L., Morrell, N. I., Barbá, R. H., & Walborn, N. R. 2009, AJ, 138, 510
  • (24) Feast, M. W. 1974, MNRAS, 169, 273
  • (25) Feast, M. W. 1979, MNRAS, 186, 831
  • (26) Feast, M. W., Thackeray, A. D., & Wesselink, A. J. 1960, MNRAS, 121, 337
  • (27) Fehrenbach, Ch., Jaschek, M., & Jaschek, C. 1977, A&A, 54, 367
  • (28) Fitzpatrick, E. L. 1988, ApJ, 335, 703
  • (29) Fitzpatrick, E. L. 1991, PASP, 103, 1123
  • (30) Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003, MNRAS, 338, 1025
  • (31) Georgy, C. 2012, A&A, in press; arXiv1111.7003
  • (32) Gochermann, J., Schmidt-Kaler, Th., & Goudfrooij, P. 1989, A&A, 213, 333
  • (33) Gray, R. O., & Garrison, R. F. 1989, ApJS, 70, 623
  • (34) Harris, J., & Zaritsky, D. 2009, AJ, 138, 1243
  • (35) Hayashi, C, & Hoshi, R. 1961, PASJ, 13, 552
  • (36) Henize, Karl G. 1956, ApJS, 2, 315
  • (37) Houk, N., & Cowley, A. P. 1975, University of Michigan Catalogue of two-dimensional spectral types for the HD stars. Volume I, by Houk, N.; Cowley, A. P., Ann Arbor, MI (USA): Department of Astronomy, University of Michigan, 19 + 452 p.
  • (38) Humphreys, R. M. 1974, ApJ, 190L, 133
  • (39) Humphreys, R. M. 1979, ApJS, 39, 389
  • (40) Humphreys, R. M., Kudritzki, R. P., & Groth, H. G. 1991, A&A, 245, 593
  • (41) Hyland, A. R., Thomas, J. A., & Robinson, G. 1978, AJ, 83, 20
  • (42) Ishihara D. et al. 2010, A&A, 514, 1
  • (43) Jaxon, E. G., Guerrero, M. A., Howk, J. C., Walborn, N. R., Chu, Y., & Wakker, B. P. 2001, PASP, 113, 1130
  • (44) Keenan, P. C., & McNeil, R. C. 1989, ApJS, 71, 245
  • (45) Kim, S., Chu, Y. -H., Staveley-Smith, L, & Smith, R. C. 1998, ApJ, 503, 729
  • (46) Kippenhahn, R., & Weigert, A. 1990, in Stellar Structure and Evolution (Berlin: Springer Verlag), p. 468
  • (47) Kunkel, W. E., Demers, S., Irwin, M. J., & Albert, L. 1997, ApJ, 488, L129
  • (48) Kurucz, R. L. 1992, in The Stellar Populations of Galaxies, IAU Symp 149, ed. B. Barbury & A. Renzini (Dodrecht: Kluwer), 225
  • (49) Leitherer, C. et al. 1999, ApJS, 123, 3
  • (50) Levesque, E. M., Massey, P., Olsen, K. A. G., & Plez, B. 2007, ApJ, 667, 202
  • (51) Levesque, E. M., Massey, P., Olsen, K. A. G., Plez, B., Josselin, E., Maeder, A., & Meynet, G. 2005, ApJ, 628, 973
  • (52) Levesque, E. M., Massey, P., Olsen, K. A. G., Plez, B., Meynet, G., & Maeder, A. 2006, ApJ, 645, 1102
  • (53) Levesque, E. M., Massey, P., Plez, B., & Olsen, K. A. G. 2009, AJ, 137, 4744
  • (54) Lobel, A. et al. 2003, ApJ, 583, 923
  • (55) Lundgren, K. 1988, A&A, 200, 85
  • (56) MacConnell, D. J., & Bidelman, W. P. 1976, AJ, 81, 225
  • (57) Maeder, A., & Meynet, G. 2000, ARA&A, 38, 143
  • (58) Maeder, A., & Meynet, G. 2001, A&A, 373, 555
  • (59) Massa, D., Fullerton, A. W., Sonneborn, G., & Hutchings, J. B. 2003, ApJ, 586, 996
  • (60) Massey, P. 1998, in The Stellar Initial Mass Function, 38th Herstmonceux Conference, ASP Conf. Ser. 142, ed. G. Gilmore & D. Howell (San Francisco: ASP), 17
  • (61) Massey, P. 2000, PASP, 112, 144
  • (62) Massey, P. 2002, ApJS, 141, 81
  • (63) Massey, P. 2010, in Hot and Cool: Bridging Gaps in Massive Star Evolution, ASP Conf. 425, ed. C. Leitherer, P. D. Bennett, P. W. Morris, & J. Th. Van Loon (San Francisco: ASP), 3
  • (64) Massey, P., & Olsen, K. A. G. 2003, AJ, 126, 2867
  • (65) Massey, P., Olsen, K. A. G., & Parker, J. Wm. 2003, AJ, 126, 2362
  • (66) Massey, P., Plez, B., Levesque, E. M., Olsen, K. A. G., Clayton, G. C., & Josselin, E. 2005, ApJ, 634, 1286
  • (67) Massey, P., Lang, C. C., DeGioia-Eastwood, K., & Garmany, C. D. 1995, ApJ, 438, 188
  • (68) Massey, P., Waterhouse, E., & DeGioia-Eastwood, K. 2000, AJ, 119, 2214
  • (69) Maund, J. R. 2011, ApJ, 739, L37
  • (70) Melnick, J. 1985, A&A, 153, 235
  • (71) Meynet, G., & Maeder, A. 2005, A&A, 429, 581
  • (72) Moffat, A. F. J., & Seggewiss, W. 1986, ApJ, 309, 714
  • (73) Moshir, M. et al. 1989, IRAS Faint Source Catalog, —b— ¿ 10 degrees, Version 2.0, Infrared Processing and Analysis Center
  • (74) Neugent, K. F., Massey, P., Skiff, B., Drout, M. R., Meynet, G., & Olsen, K. A. G. 2010, ApJ, 719, 1784
  • (75) Oestreicher, M. O., Schmidt-Kaler, Th. 1998, MNRAS, 299, 625
  • (76) Oestreicher, M. O., Schmidt-Kaler, Th., & Wargau, W. 1997, MNRAS, 289, 729
  • (77) Olsen, K. A. G., & Massey, P. 2007, ApJ, 656, L61
  • (78) Osmer, P. S. 1972, ApJS, 24, 247
  • (79) Parker, J. W. 1993, AJ, 106, 560
  • (80) Pojmanski, G., 1997, Acta Astronomica, 47, 467
  • (81) Przybilla, N., Butler, K., Becker, S. R., Kudritzki, R. P., & Venn, K. A. 2000, A&A, 359, 1085
  • (82) Reid, N., & Mould, J. 1985, ApJ, 299, 236
  • (83) Reid, N., Tinney, C., & Mould J. 1990, ApJ, 348, 98
  • (84) Richter, O. -G., Tammann G. A. & Huchtmeier, W. K. 1987, A&A, 171, 33
  • (85) Robin, A. C., Reylé, S., Derrière, & Picaud, S. 2003, A&A, 409, 523
  • (86) Rousseau, J., Martin, N., Prévot, L., Rebeirot, E., Robin, A., & Brunet, J. P. 1978, A&AS, 31, 243
  • (87) Russell, S. C., Dopita, M. A. 1990, ApJS, 84, 93
  • (88) Salpeter, E. E. 1955, ApJ, 121, 161
  • (89) Samus et al., 2006, AstL, 32, 263
  • (90) Sanduleak, N. 1970, Contrib., La Serena: Cerro Tololo, 89
  • (91) Sanduleak, N. 1972, A&A,17,326
  • (92) Sanduleak, N. & Pesch, P. 1975, ApJ, 201, 347
  • (93) Sanduleak, N., & Philip, A. G. D. 1968, AJ, 73, 566
  • (94) Sanduleak, N., & Philip, A. G. D. 1977, Publ. Warner and Swasey Obs., 2, 105
  • (95) Schild, H., & Testor, G. 1992, A&AS, 92, 729
  • (96) Schlegel, D. J., Finkbeiner, D. P, & Davis, M. 1998, ApJ, 500, 525
  • (97) Shore, S. N., & Sanduleak, N. 1984, ApJS, 55, 1
  • (98) Skrutskie, M. F. et al. 2006, AJ, 131, 1163
  • (99) Smith, N., Vink, J. S., & de Koter, A. 2004, ApJ, 615, 475
  • (100) Soszyński, I. et al. 2009, Acta Astron., 59, 239
  • (101) Stahl, O., Wolf, B., Klare, G., Juettner, A., & Cassatella, A. 1990, A&A, 228, 379
  • (102) Stahl, O., Wolf, B., Leitherer, C., & de Groot, M. 1985, A&AS, 61, 237
  • (103) Stock, J., Osborn, W., & Ibanez, M. 1976, A&AS, 24, 35
  • (104) Stothers, R. B. and Leung, K.-C., A&A, 10, 290, 1971
  • (105) Thompson, G. I., Nandy, K., Morgan, D. H., Willis, A. J., Wilson, R., & Houziaux, L. 1982, MNRAS, 200, 551
  • (106) Tonry, J. & Davis, M. 1979, AJ, 84, 1511
  • (107) Vazquez, G. A., & Leitherer, C. 2005, ApJ, 621, 695
  • (108) Walborn, N. R. 1977, ApJ, 215, 53
  • (109) Walborn, N. R., & Blades, J. C. 1997, ApJS, 112, 457
  • (110) Zaritsky, D., Kennicutt, R. C., Jr., Huchra, J. P. 1994, ApJ, 420, 87
Figure 1: Predicted LMC foreground contamination. Contamination for both YSGs (yellow) and RSGs (red) was estimated using the Besançon models. The models were run using the same color ranges and proper motion selection as our candidates and covering the same area of sky.
Figure 2: Color and magnitude selection criteria for the YSG and RSG candidates. The tiny black dots represent all possible targets before any selection based on color and magnitude. The YSG candidates (black filled circles) extend between when and when and extend redwards. The RSG candidates (red filled circles) pick up at when . We believe the reddest colors to be caused by high reddening and/or confusion and expect to find the majority of the RSGs within , or a range of K.
Figure 3: Locations of observed fields and candidates. The blue 2/3 circles represent the 64 fields observed while the yellow s represent the YSG candidates and the red s represent the RSG candidates observed. The background image was obtained using the “parking lot” camera (Bothun & Thompson 1988).
Figure 4: YSG and RSG candidate radial velocity histograms. The bimodal distribution shows the clean separation between the foreground stars (centered around 0 km s) and the LMC supergiants (centered around 278 km s and shown by the vertical line).
Figure 5: Locations of confirmed yellow and red supergiants. The yellow s represent our confirmed YSGs and the red s represent our confirmed RSGs. Note the good spatial agreement between the YSGs and RSGs; compare to Figure 3.
Figure 6: The H-R Diagram. The probable LMC members (category 1) are showed by solid points; the less certain members (category 2) by open circles. The typical errors are comparable to the point size. The Geneva evolutionary tracks (Chominne et al. 2012, in prep) are shown. The solid curves denote the models run with an initial rotation velocity 40% of the critical value, while the dashed curves denote the models with no initial rotation. The initial masses are indicated on the side. The two vertical lines delineate the YSG region while stars at the far right are the red supergiants.
<
2MASS (J2000) (J2000) [M2002] Vel ccTondry & Davis 1979 parameter. CategoryddCategory: 1 = LMC supergiant; 2 = possible LMC supergiant; 3 = foreground dwarf Class Ref.eeReferences for spectral classifications. 1 = Ardeberg et al. 1972; 2 = Bohannan & Walborn 1989; 3 = Bohm-Vitense et al. 1985; 4 = Brunet et al. 1973; 5 = Cannon 1925; 6 = Catchpole et al. 1977; 7 = Cowley et al. 1984; 8 = Evans et al. 2006; 9 = Fariña et al. 2009; 10 = Feast 1974; 11 = Fehrenbach et al. 1977; 12 = Fitzpatrick 1988; 13 = Fitzpatrick 1991; 14 = Foellmi et al. 2003; 15 = Gochermann et al. 1989; 16 = Gray & Garrison 1989; 17 = Houk & Cowley 1975; 18 = Humphreys 1974; 19 = Humphreys et al. 1991; 20 = Jaxon et al. 2001; 21 = Keenan & McNeil 1989; 22 = Levesque et al. 2006; 23 = MacConnell & Bidelman 1976; 24 = Massa et al. 2003; 25 = Massey & Olsen 2003; 26 = Massey et al. 2000; 27 = Melnick 1985; 28 = Moffat & Seggewiss 1986; 29 = Parker 1993; 30 = Rousseau et al. 1978; 31 = Sanduleak 1970; 32 = Sanduleak 1972; 33 = Sanduleak & Philip 1968; 34 = Shore & Sanduleak 1984; 35 = Stahl et al. 1985; 36 = Stahl et al. 1990; 37 = Stock et al. 1976; 38 = Thompson et al. 1982; 39 = Walborn 1977; 40 = Walborn & Blades 1997. Comments
(km s)
J04363664-6902399 04 36 36.65 -69 02 40.0 9.83 0.46 28.2 102.0 3
J04364564-6858373 04 36 45.64 -68 58 37.3 10.93 0.50 11.7 80.8 3
J04371920-6901016 04 37 19.20 -69 01 01.6 8.84 0.71 29.6 88.4 3 M0 5 HD 270584
J04380215-6904276 04 38 02.15 -69 04 27.6 9.98 0.70 25.6 140.5 3
J04380671-6907112 04 38 06.71 -69 07 11.3 9.82 0.61 31.4 109.1 3
J04384481-6858586 04 38 44.82 -68 58 58.7 11.24 0.35 -10.8 94.5 3
J04384847-6840267 04 38 48.48 -68 40 26.7 8.57 0.80 75.5 74.7 3 K7 5 HD 270599
J04394544-6852388 04 39 45.45 -68 52 38.9 10.56 0.55 17.3 73.0 3
J04401724-6915589 04 40 17.25 -69 15 58.9 8.77 0.85 81.8 82.4 3 K7 5 HD 270626
J04404585-6916432 04 40 45.85 -69 16 43.2 8.19 0.74 21.2 131.2 3 K5 5 HD 270634
J04410239-6843110 04 41 02.40 -68 43 11.1 8.00 0.68 36.2 75.0 3 K0 5 HD 270636
J04423048-6853431 04 42 30.49 -68 53 43.2 10.71 0.46 35.9 34.4 3
J04423607-6904419 04 42 36.07 -69 04 42.0 8.19 0.33 -1.3 95.7 3 F8/G0V 17 HD 30491
J04425491-6745060 04 42 54.92 -67 45 06.0 11.44 0.19 13.53 0.04 31.9 60.9 3
J04425553-6736411 04 42 55.54 -67 36 41.2 9.17 0.65 78.7 103.8 3 K7 5 HD 270671
J04425642-6905511 04 42 56.42 -69 05 51.1 10.37 0.69 30.8 31.1 3
J04430205-6741438 04 43 02.05 -67 41 43.9 8.12 0.63 56.7 127.7 3 K2 5 HD 270673
J04431499-7102362 04 43 14.99 -71 02 36.2 10.88 0.38 17.8 74.1 3
J04440090-6739517 04 44 00.90 -67 39 51.8 8.89 0.69 34.3 71.6 3 K7 5 HD 270691
J04440958-6749012 04 44 09.59 -67 49 01.3 8.30 0.72 48.2 98.7 3 K5 5 HD 270696
J04450446-6749220 04 45 04.46 -67 49 22.1 10.44 0.69 3.0 81.2 3
J04450582-7100046 04 45 05.82 -71 00 04.6 614 10.60 0.39 12.31 0.66 0.39 30.7 108.4 3
J04451583-7112329 04 45 15.83 -71 12 32.9 0.37 2.3 91.2 3 G0 5 HD 268649
J04451586-7059573 04 45 15.86 -70 59 57.4 8.53 0.24 13.20 0.13 1.1 48.1 3 F5 5 HD 268641
J04451823-6714396 04 45 18.23 -67 14 39.6 11.53 0.28 22.4 114.9 3
J04452255-6730464 04 45 22.55 -67 30 46.4 10.94 0.40 -2.2 117.8 3
J04452730-7051432 04 45 27.30 -70 51 43.2 934 10.66 0.33 12.23 0.57 0.35 33.1 67.4 3 K0 5 HD 268638
J04452798-7118190 04 45 27.98 -71 18 19.1 10.71 0.40 13.13 0.07 41.0 68.7 3
J04453680-7056425 04 45 36.80 -70 56 42.5 1072 11.29 0.29 12.75 0.60 0.36 7.6 60.7 3
J04454161-6853071 04 45 41.62 -68 53 07.2 1134 10.45 0.63 13.01 1.04 0.60 45.0 48.5 3
J04454868-7010540 04 45 48.69 -70 10 54.0 1250 9.30 0.66 11.87 1.05 0.53 19.7 93.4 3 K0 5 HD 268620
J04455469-6748293 04 45 54.70 -67 48 29.4 10.79 0.48 -3.2 141.4 3
J04460040-6722442 04 46 00.40 -67 22 44.3 10.05 0.26 2.1 78.0 3 G5 5 HD 270731
J04460043-6913211 04 46 00.44 -69 13 21.1 1413 9.80 0.42 11.54 0.66 0.42 26.9 55.3 3 K5 5 HD 270744
J04461853-7047262 04 46 18.54 -70 47 26.3 1691 11.00 0.19 12.07 0.38 0.24 10.8 29.0 3 F2 5 HD 268651
J04462288-6733237 04 46 22.88 -67 33 23.8 11.54 0.29 -1.1 62.4 3
J04462599-6950186 04 46 26.00 -69 50 18.7 1796 9.26 0.77 12.51 1.30 0.74 243.7 87.0 1
J04462794-6959219 04 46 27.94 -69 59 21.9 1824 10.69 0.33 12.24 0.58 0.35 21.6 110.3 3 G5 5 HD 268627
J04462818-7008399 04 46 28.18 -70 08 39.9 1829 10.88 0.39 12.50 0.62 0.38 29.0 64.8 3
J04463462-6704279 04 46 34.63 -67 04 28.0 9.70 0.58 188.1 71.1 2
J04463561-6742381 04 46 35.62 -67 42 38.1 7.00 0.80 7.5 75.8 3 K7 5 HD 270745
J04463654-6957137 04 46 36.55 -69 57 13.8 1973 11.29 0.31 13.01 0.66 0.40 15.9 41.0 3
J04465642-7114447 04 46 56.43 -71 14 44.8 9.47 0.88 24.4 95.8 3
J04465994-6848164 04 46 59.94 -68 48 16.4 2332 11.16 0.34 12.66 0.56 0.36 6.3 40.6 3
J04470444-6706530 04 47 04.45 -67 06 53.1 10.92 0.10 11.26 0.08 327.3 37.1 1 B1.5Ia 30 Sk-67 2
J04471083-6701447 04 47 10.84 -67 01 44.7 11.37 0.28 5.7 76.1 3
J04471263-6953519 04 47 12.63 -69 53 52.0 2536 11.34 0.26 12.76 0.55 0.35 0.7 82.1 3 F5 32 GV 12
J04471676-7113101 04 47 16.76 -71 13 10.2 9.85 0.67 88.9 113.0 3
J04471852-6918293 04 47 18.53 -69 18 29.4 2634 8.49 0.83 11.55 1.22 0.69 84.1 90.0 3 K5 5 HD 268606
J04472197-6734402 04 47 21.98 -67 34 40.2 10.51 0.36 22.1 155.5 3
J04473275-6920565 04 47 32.75 -69 20 56.6 2873 9.73 0.68 12.41 1.04 0.63 38.5 78.4 3
J04473323-6914328 04 47 33.23 -69 14 32.8 2885 11.64 0.16 12.53 0.18 0.20 255.1 60.7 1 A3I 30 HD 268612
J04473836-6949345 04 47 38.37 -69 49 34.5 2974 10.07 0.56 12.47 0.99 0.54 20.0 131.1 3
J04474037-6908087 04 47 40.37 -69 08 08.7 7.94 0.61 0.4 106.1 3 K0 5 HD 268609
J04474095-6751194 04 47 40.95 -67 51 19.4 10.20 0.60 9.5 89.6 3
J04474110-7008357 04 47 41.11 -70 08 35.7 7.29 0.61 10.3 87.0 3 G5 5 HD 268650
J04475346-6844482 04 47 53.47 -68 44 48.2 3235 9.70 0.87 12.93 1.27 0.71 123.9 85.2 3
J04475403-6910456 04 47 54.03 -69 10 45.6 3250 11.95 0.08 12.52 0.11 0.11 261.7 52.9 1 A0I 30 Sk-69 3
J04475856-7006503 04 47 58.57 -70 06 50.3 3342 11.29 0.35 12.93 0.66 0.38 13.7 79.3 3
J04480561-6710052 04 48 05.62 -67 10 05.2 9.03 0.24 27.6 51.4 3 F5 5 HD 270777
J04480561-6859506 04 48 05.61 -68 59 50.6 3496 8.98 0.71 11.69 1.09 0.61 -15.5 106.0 3 K5 5 HD 268614
J04480655-6845558 04 48 06.56 -68 45 55.8 9.42 0.24 14.3 70.0 3 G0 5 HD 268603
J04480804-6905402 04 48 08.04 -69 05 40.2 3541 10.29 0.67 12.90 1.04 0.61 30.6 96.3 3
J04480900-6739441 04 48 09.00 -67 39 44.2 10.22 0.35 -1.5 123.4 3 K0 5 HD 270783
J04481207-7117118 04 48 12.08 -71 17 11.9 10.47 0.68 18.9 42.7 3
J04481662-6957124 04 48 16.63 -69 57 12.4 3677 7.97 0.80 11.14 1.34 0.72 28.1 70.7 3 K7 5 HD 268656
J04482377-6710525 04 48 23.78 -67 10 52.6 12.04 0.04 13.11 0.24 17.3 19.0 3 A7 5 HD 270782
J04482396-7041325 04 48 23.96 -70 41 32.5 3818 10.57 0.63 13.13 1.02 0.55 -43.4 62.5 3
J04482951-7003135 04 48 29.52 -70 03 13.6 3928 11.00 0.44 12.85 0.78 0.42 31.5 95.8 3
J04482971-6907269 04 48 29.71 -69 07 26.9 3930 11.95 0.09 12.42 0.07 0.12 268.8 85.1 1 A0I 4 HD 268632
J04483027-6745261 04 48 30.28 -67 45 26.1 11.52 0.28 8.2 70.0 3
J04483530-7044521 04 48 35.30 -70 44 52.2 4048 11.26 0.37 12.99 0.76 0.42 20.7 67.1 3
J04483584-6724112aaThese stars were imaged twice and their results were averaged. 04 48 35.85 -67 24 11.3 11.18 0.31 21.7 122.1 3
J04483678-6946531 04 48 36.78 -69 46 53.1 8.05 0.65 5.3 86.8 3 K5 5 HD 268655
J04484249-7053577 04 48 42.49 -70 53 57.8 7.35 0.70 51.3 103.3 3 K0 5 HD 268702
J04484654-7043248 04 48 46.54 -70 43 24.8 8.97 0.48 2.0 104.4 3 K0 5 HD 268696
J04484825-6750410 04 48 48.26 -67 50 41.1 10.67 0.57 1.4 77.8 3
J04485209-6731038 04 48 52.10 -67 31 03.8 10.60 0.30 -14.3 117.6 3
J04485644-6736154 04 48 56.44 -67 36 15.4 11.31 0.35 14.9 108.8 3
J04485811-6910249 04 48 58.11 -69 10 25.0 4580 10.71 0.54 12.83 0.81 0.50 -25.0 69.1 3
J04490538-6716092 04 49 05.38 -67 16 09.2 9.10 0.71 49.9 97.2 3
J04490955-6843573 04 49 09.56 -68 43 57.4 4913 10.55 0.30 12.00 0.52 0.35 8.9 65.4 3 K2 5 HD 268630
J04491348-6947132 04 49 13.48 -69 47 13.2 5018 10.29 0.79 13.54 1.54 0.78 259.8 54.0 1
J04491403-6858116 04 49 14.04 -68 58 11.7 5030 11.16 0.28 12.48 0.43 0.31 225.3 35.0 1 F5I 30 GV 19
J04491981-6722076 04 49 19.82 -67 22 07.6 9.48 0.23 -5.1 65.8 3 F2 5 HD 270800
J04492221-6918398 04 49 22.21 -69 18 39.9 5285 11.92 0.14 12.77 0.31 0.20 10.9 22.6 3
J04492432-6843313 04 49 24.33 -68 43 31.3 5343 10.61 0.65 13.22 0.95 0.61 46.0 34.0 3
J04492541-6655386 04 49 25.41 -66 55 38.6 11.24 0.33 7.8 76.9 3
J04493251-6708462 04 49 32.52 -67 08 46.2 5612 10.22 0.75 13.19 1.21 0.61 66.4 78.0 3
J04493382-6658091 04 49 33.83 -66 58 09.2 10.30 0.31 -7.8 128.3 3 K0 5 HD 270803
J04494449-7104556 04 49 44.49 -71 04 55.7 8.47 0.76 -12.9 96.5 3 K5 5 HD 268739
J04494839-7002504 04 49 48.39 -70 02 50.5 6171 11.08 0.39 12.55 0.52 0.30 17.6 90.0 3
J04495720-7050472aaThese stars were imaged twice and their results were averaged. 04 49 57.20 -70 50 47.2 6525 10.41 0.67 12.98 1.02 0.55 53.2 69.3 3
J04500375-7047219aaThese stars were imaged twice and their results were averaged. 04 50 03.75 -70 47 22.0 6815 11.28 0.32 12.82 0.59 0.36 7.0 57.4 3
J04500555-6947541 04 50 05.55 -69 47 54.2 6876 8.81 0.71 11.60 1.16 0.61 5.3 83.6 3 M0 5 HD 268684
J04501237-6726098 04 50 12.37 -67 26 09.8 7179 10.64 0.22 11.83 0.39 0.33 18.2 110.4 3 F8 5 HD 270817
J04501909-6922538 04 50 19.10 -69 22 53.9 7472 11.22 0.39 12.89 0.64 0.40 -15.6 105.7 3
J04502944-7031222 04 50 29.45 -70 31 22.3 7944 11.11 0.39 12.76 0.67 0.37 -17.0 71.9 3
J04503840-6654332 04 50 38.40 -66 54 33.2 9.42 0.64 46.1 102.4 3 K7 5 HD 270821
J04504227-6945500 04 50 42.28 -69 45 50.0 8571 10.79 0.24 12.05 0.49 0.31 14.5 87.0 3
J04504493-6714244 04 50 44.94 -67 14 24.4 8713 10.86 0.25 12.12 0.44 0.30 32.6 73.8 3
J04504903-6702122 04 50 49.04 -67 02 12.2 10.45 0.65 8.9 53.5 3
J04505046-7132135 04 50 50.47 -71 32 13.6 10.26 0.37 54.2 110.1 3 CPD-71 290
J04505585-6925525 04 50 55.85 -69 25 52.6 9.36 0.33 10.65 0.47 209.9 38.3 1 F6Ia 1 HD 268687
J04510288-6947492 04 51 02.88 -69 47 49.3 8.32 0.56 -4.4 165.5 3 G5 5 HD 268709
J04510578-7035278 04 51 05.79 -70 35 27.9 9724 11.40 0.30 12.74 0.58 0.29 -5.8 86.2 3 F5 32 GV 33
J04510771-7016397 04 51 07.71 -70 16 39.7 9809 11.58 0.13 12.29 0.18 0.11 230.5 79.2 1 A3I 30 HD 268733
J04511159-7144315 04 51 11.59 -71 44 31.6 9.67 0.66 95.5 95.5 3
J04511357-6911410 04 51 13.57 -69 11 41.0 10076 11.98 0.15 12.74 0.16 0.14 242.2 59.7 1 A3I 30 GV 31
J04511610-6950175aaThese stars were imaged twice and their results were averaged. 04 51 16.11 -69 50 17.6 10196 10.04 0.72 12.94 1.25 0.67 38.7 64.8 3
J04511677-7033100 04 51 16.77 -70 33 10.1 10233 9.81 0.57 12.12 0.94 0.52 2.6 93.5 3
J04511787-7151181 04 51 17.87 -71 51 18.2 11.20 0.33 7.4 25.4 3
J04512478-7010432 04 51 24.79 -70 10 43.2 10614 9.84 0.61 12.25 0.96 0.53 30.7 116.9 3
J04512817-7139551 04 51 28.17 -71 39 55.1 9.61 0.43 19.6 110.4 3 F5 5 HD 270853
J04512981-7100449 04 51 29.81 -71 00 45.0 10838 10.81 0.35 12.40 0.61 0.35 3.6 78.9 3 K5 5 HD 268771
J04513384-7014393 04 51 33.84 -70 14 39.3 9.38 0.39 10.97 0.61 45.8 91.0 3 F5 5 HD 268742
J04514403-6711594 04 51 44.04 -67 11 59.4 11492 9.87 0.64 12.34 1.04 0.54 -18.3 103.7 3
J04514507-6930177 04 51 45.08 -69 30 17.8 11545 11.52 0.18 12.34 0.19 0.17 250.0 69.6 1 A7I 30 GV 41
J04514778-6650473 04 51 47.79 -66 50 47.4 9.75 0.45 19.5 115.1 3 K5 5 HD 268608
J04514948-6851343 04 51 49.49 -68 51 34.3 11778 9.21 0.64 11.76 0.94 0.56 20.6 42.1 3 K2 5 HD 268683
J04515270-6900216 04 51 52.70 -69 00 21.6 11936 10.51 0.67 13.12 1.02 0.58 15.4 59.4 3
J04515432-6901266 04 51 54.33 -69 01 26.7 12034 11.90 0.16 12.71 0.17 0.19 255.6 66.8 1 A5I 30 GV 43
J04515810-6925339 04 51 58.11 -69 25 33.9 9.63 0.38 10.71 0.24 279.3 49.4 1 B9Ieq 30 HD 268718
J04520207-6652462 04 52 02.08 -66 52 46.3 8.48 0.64 -30.6 100.9 3 K7 5 HD 268621
J04520603-6953561 04 52 06.04 -69 53 56.1 12609 9.42 0.61 11.96 1.04 0.57 23.3 160.6 3 K7 5 HD 268740
J04520692-7043524 04 52 06.92 -70 43 52.4 9.58 0.37 38.5 77.8 3 G0 5 HD 268773
J04520951-7030191 04 52 09.52 -70 30 19.1 12786 11.90 0.12 12.55 0.15 0.10 253.1 68.0 1 A4I 30 HD 268763
J04520970-7003551 04 52 09.70 -70 03 55.2 8.37 0.20 12.22 0.24 11.1 39.9 3 F0III 17 HD 31704
J04521129-7148341 04 52 11.30 -71 48 34.1 9.07 0.81 159.0 84.5 2
J04522418-6924142 04 52 24.18 -69 24 14.2 7.88 0.09 8.46 0.23 10.2 19.7 3 A3III 17 HD 31722
J04522695-6848514aaThese stars were imaged twice and their results were averaged. 04 52 26.95 -68 48 51.4 13654 10.82 0.34 12.43 0.59 0.40 17.8 72.1 3
J04524066-6949433 04 52 40.67 -69 49 43.4 14382 10.80 0.44 12.54 0.65 0.38 2.2 82.9 3
J04524416-6848135aaThese stars were imaged twice and their results were averaged. 04 52 44.16 -68 48 13.6 9.26 0.31 -6.1 43.1 3 F5 5 HD 268704
J04524521-7133220 04 52 45.21 -71 33 22.1 8.18 0.79 121.5 116.5 3 G8 32 [FD70] S 17
J04525337-6705425 04 52 53.37 -67 05 42.5 15084 11.82 0.18 12.62 0.13 0.14 266.3 86.6 1 A5I 30 Sk-67 9
J04525363-7048237 04 52 53.64 -70 48 23.8 15107 11.17 0.24 12.38 0.47 0.29 34.4 39.1 3 K0 5 HD 268789
J04530013-6711379 04 53 00.14 -67 11 38.0 15461 10.71 0.57 12.96 0.88 0.51 23.6 60.1 3
J04530230-6835411aaThese stars were imaged twice and their results were averaged. 04 53 02.30 -68 35 41.1 8.28 0.70 43.9 88.0 3 K0 5 HD 268701
J04530258-6834511aaThese stars were imaged twice and their results were averaged. 04 53 02.58 -68 34 51.1 15603 10.81 0.29 12.14 0.48 0.32 -12.7 67.9 3
J04530330-7004372 04 53 03.31 -70 04 37.3 15647 10.33 0.47 12.21 0.80 0.42 18.0 115.3 3
J04530398-6937285 04 53 03.99 -69 37 28.5 15684 0.76 12.94 1.21 0.69 372.9 45.4 1
J04530521-6831553aaThese stars were imaged twice and their results were averaged. 04 53 05.21 -68 31 55.4 9.72 0.27 7.2 59.6 3 G0 5 HD 268699
J04531726-6952043 04 53 17.27 -69 52 04.4 16487 10.74 0.48 12.77 0.69 0.44 185.3 79.3 2
J04532044-7006033 04 53 20.45 -70 06 03.3 16677 9.14 0.65 11.56 0.97 0.52 -13.7 114.1 3 K5 5 HD 268778
J04532533-6855003aaThese stars were imaged twice and their results were averaged. 04 53 25.34 -68 55 00.3 16940 10.20 0.74 13.30 1.49 0.76 264.0 51.1 1 SP77 30-1
J04533459-6704429 04 53 34.60 -67 04 43.0 11.69 0.11 12.08 0.10 282.8 95.5 1 A0Ia 1 Sk-67 11
J04533718-6943071 04 53 37.19 -69 43 07.1 17629 11.65 0.21 12.66 0.27 0.18 225.8 41.9 1 F2I 30 GV 62
J04533896-6840548aaThese stars were imaged twice and their results were averaged. 04 53 38.97 -68 40 54.9 8.56 0.68 34.0 101.1 3 K2 5 HD 268725
J04534623-6706179 04 53 46.24 -67 06 17.9 18173 10.85 0.38 12.43 0.61 0.38 -10.0 113.7 3
J04535946-6941519 04 53 59.47 -69 41 52.0 18963 10.29 0.68 12.90 0.95 0.58 49.9 76.8 3
J04535951-6922426 04 53 59.51 -69 22 42.6 18971 12.20 0.03 12.60 0.05 0.13 256.0 72.0 1 B9Ia 1 HD 268758
J04540105-7125065 04 54 01.06 -71 25 06.6 10.36 0.29 36.2 69.4 3 F2 5 HD 268834
J04540693-6849044aaThese stars were imaged twice and their results were averaged. 04 54 06.94 -68 49 04.4 19403 9.89 0.66 12.51 1.04 0.58 21.3 135.5 3
J04540940-6937189 04 54 09.41 -69 37 18.9 12.49 0.00 12.35 0.29 274.4 17.6 1 B1 30 HD 268774
J04541578-6929020 04 54 15.78 -69 29 02.1 8.33 0.67 -9.7 148.5 3 K2 5 HD 268770
J04541878-6705471 04 54 18.79 -67 05 47.2 20153 12.36 0.04 12.54 0.01 0.04 277.2 105.2 1 B8:I: 32 HD 268669
J04542376-7054057 04 54 23.77 -70 54 05.8 20503 10.84 0.47 12.44 0.53 0.28 232.3 44.1 1 F8:I 30 Sk-70 14; Cepheid
J04542646-7002023 04 54 26.47 -70 02 02.3 8.65 0.29 3.9 77.2 3 G0 5 HD 268793
J04543073-7120405 04 54 30.74 -71 20 40.5 11.09 0.40 37.7 69.4 3 G0 32 [FD70] S 21
J04543120-7019187 04 54 31.20 -70 19 18.8 21012 9.24 0.66 11.80 1.09 0.53 18.1 135.8 3 K7 5 HD 268811
J04543386-6717305 04 54 33.87 -67 17 30.6 21160 11.36 0.29 12.62 0.49 0.29 1.1 71.2 3
J04543501-7010408 04 54 35.02 -70 10 40.8 21247 11.22 0.36 12.86 0.62 0.39 35.7 84.5 3
J04543683-6920221 04 54 36.84 -69 20 22.1 21369 7.61 0.72 11.26 1.77 0.87 248.0 46.2 1 SP77 31-16
J04544146-6926117 04 54 41.47 -69 26 11.8 21661 11.83 0.16 12.54 0.12 0.16 257.4 81.7 1 B5I 30 Sk-69 31
J04544414-6714505 04 54 44.15 -67 14 50.5 11.61 0.02 11.64 0.01 284.4 110.3 1 B7Ia 1 HD 268690
J04544448-6641336 04 54 44.48 -66 41 33.7 12.04 0.06 276.2 95.4 1 A3I 30 Sk-66 9
J04544600-6857459 04 54 46.01 -68 57 46.0 11.96 0.09 12.26 0.11 270.4 96.2 1 B8I 30 HD 268760
J04544747-7039366 04 54 47.47 -70 39 36.6 22060 9.93 0.74 12.79 1.23 0.63 3.4 80.4 3
J04545013-6656221 04 54 50.13 -66 56 22.2 12.06 0.09 12.56 0.11 264.0 70.2 1 A7I 30 Sk-66 11
J04545038-7145110 04 54 50.39 -71 45 11.1 6.09 0.92 -10.4 78.5 3 K2 5 HD 270893
J04545184-6840055aaThese stars were imaged twice and their results were averaged. 04 54 51.84 -68 40 05.6 7.17 0.76 -3.8 150.8 3 K0 5 HD 268754
J04545509-6834507aaThese stars were imaged twice and their results were averaged. 04 54 55.10 -68 34 50.7 22561 9.02 0.64 11.53 1.10 0.59 112.0 69.3 3 K5 5 HD 268751
J04545710-6638491 04 54 57.10 -66 38 49.1 9.61 0.66 25.3 93.6 3
J04545735-6645088 04 54 57.36 -66 45 08.9 10.50 0.12 10.81 0.04 284.5 96.3 1
J04550188-7016504 04 55 01.88 -70 16 50.5 23020 10.42 0.68 12.93 1.02 0.55 16.9 117.8 3
J04550286-6715352 04 55 02.87 -67 15 35.3 23081 11.29 0.34 12.74 0.59 0.35 35.3 70.1 3
J04550689-6858315 04 55 06.89 -68 58 31.5 23368 11.01 0.45 12.89 0.72 0.42 -15.5 64.6 3
J04551006-6650426 04 55 10.06 -66 50 42.6 10.86 0.15 11.55 0.18 252.5 59.6 1 A7I 30 Sk-66 13
J04551106-6710104 04 55 11.07 -67 10 10.4 9.28 0.14 9.69 0.10 271.8 52.4 1 B9Iae 11 HD 32034
J04551461-7155566 04 55 14.62 -71 55 56.6 8.13 0.68 13.1 101.9 3 G5 5 HD 270899
J04552890-7014426 04 55 28.91 -70 14 42.7 8.63 0.39 30.2 139.6 3 G0 5 HD 268824
J04553222-6930392 04 55 32.23 -69 30 39.2 25136 10.75 0.38 12.26 0.56 0.36 5.7 82.0 3
J04553248-6957450 04 55 32.48 -69 57 45.1 8.83 0.33 10.08 0.50 203.3 33.6 1 F5Ia 23 HD 268819
J04553468-7002355 04 55 34.69 -70 02 35.5 25310 11.21 0.37 12.78 0.60 0.34 -5.8 108.0 3 F8: 32 GV 92
J04554043-6926408 04 55 40.44 -69 26 40.9 25715 11.81 0.06 12.34 0.11 0.10 248.7 83.2 1 A0I 30 Sk-69 39a
J04554911-7126168 04 55 49.12 -71 26 16.9 10.45 0.33 -21.7 72.9 3 F5 5 HD 268881
J04554975-7039369 04 55 49.75 -70 39 36.9 26384 11.13 0.37 12.74 0.69 0.39 30.8 64.8 3
J04555060-6837086aaThese stars were imaged twice and their results were averaged. 04 55 50.60 -68 37 08.7 10.46 0.30 4.8 66.1 3 F5 5 HD 268779
J04555085-7146158 04 55 50.86 -71 46 15.9 10.35 0.65 10.9 86.6 3
J04555280-6942224 04 55 52.81 -69 42 22.5 26581 12.15 0.11 12.42 0.15 0.11 245.8 79.7 1 A2I: 32 GV 94
J04555283-7054113 04 55 52.84 -70 54 11.4 26575 8.60 0.83 11.75 1.27 0.68 -20.3 72.9 3 K5 5 HD 268861
J04561603-7042358 04 56 16.03 -70 42 35.9 10.26 0.28 -7.2 61.4 3 F5 5 HD 268862
J04561655-7213562 04 56 16.55 -72 13 56.3 10.60 0.34 14.0 88.6 3
J04561802-7120440 04 56 18.03 -71 20 44.1 9.31 0.64 20.4 117.0 3 G5 5 HD 268890
J04562391-7015274 04 56 23.91 -70 15 27.5 10.19 0.25 17.8 110.3 3 F8 5 HD 268844
J04562741-6756006 04 56 27.42 -67 56 00.6 29093 11.51 0.21 12.49 0.26 0.19 256.3 53.2 1 A9I 30 GV 102
J04562749-6922466 04 56 27.50 -69 22 46.6 29101 11.20 0.33 12.87 0.71 0.41 247.9 65.6 1
J04563637-6933273 04 56 36.38 -69 33 27.3 29849 11.87 0.14 12.68 0.17 0.16 229.2 58.0 1 A2III: 32 GV 110
J04563646-7016292 04 56 36.46 -70 16 29.2 29858 10.96 0.36 12.59 0.65 0.38 10.3 85.9 3
J04563991-6644367 04 56 39.91 -66 44 36.7 11.25 0.07 11.59 0.08 290.1 88.3 1 A0Ia 32 HD 268727
J04564000-6941562 04 56 40.00 -69 41 56.3 30155 9.97 0.43 11.84 0.82 0.45 257.7 50.5 1 K5 5 HD 268828
J04564820-6750157 04 56 48.20 -67 50 15.8 30822 10.90 0.31 12.43 0.57 0.38 31.9 112.9 3
J04564941-6948314aaThese stars were imaged twice and their results were averaged. 04 56 49.41 -69 48 31.5 30929 8.96 0.74 12.06 1.64 0.73 247.8 53.9 1 RM 1-77
J04565520-7211568 04 56 55.20 -72 11 56.8 9.54 0.64 -42.6 126.5 3
J04565670-7146327 04 56 56.70 -71 46 32.8 7.85 0.91 11.15 1.35 98.5 78.4 3 K5 5 HD 270915
J04565762-6713184 04 56 57.63 -67 13 18.5 10.37 0.34 -8.1 125.6 3 K0 5 HD 268750
J04565833-7019439 04 56 58.34 -70 19 43.9 31639 10.65 0.34 12.05 0.49 0.32 11.8 71.3 3 F5 5 HD 268864
J04565839-6939100 04 56 58.40 -69 39 10.0 31635 10.09 0.92 13.62 1.55 0.82 252.8 51.7 1
J04570219-7226578 04 57 02.19 -72 26 57.8 11.17 0.27 17.0 84.2 3
J04570677-6754453 04 57 06.78 -67 54 45.4 32351 9.72 0.71 12.38 1.07 0.59 40.3 82.4 3
J04570711-6829383aaThese stars were imaged twice and their results were averaged. 04 57 07.12 -68 29 38.3 32376 7.99 0.87 11.19 1.30 0.67 36.1 84.8 3 M0 5 HD 268803
J04570805-6825123 04 57 08.06 -68 25 12.4 11.41 0.02 11.49 0.00 280.2 24.3 1 B2Ia 26 HD 268798
J04571326-6801330 04 57 13.27 -68 01 33.1 32895 8.67 0.66 11.16 1.06 0.56 19.6 114.1 3 K5 5 HD 268784
J04572133-6938495 04 57 21.33 -69 38 49.5 8.38 0.67 16.5 124.9 3 K2 5 HD 268841
J04572485-6850318aaThese stars were imaged twice and their results were averaged. 04 57 24.85 -68 50 31.9 6.49 0.81 20.0 73.9 3 K2III: 17 HD 32403
J04572621-6702468 04 57 26.21 -67 02 46.9 9.61 0.79 49.8 104.4 3
J04573042-6643220 04 57 30.43 -66 43 22.1 10.58 0.30 17.3 112.1 3
J04573094-6838039 04 57 30.95 -68 38 04.0 34322 10.97 0.23 12.14 0.42 0.29 12.9 62.8 3 F0 5 HD 268817
J04573486-7229102 04 57 34.87 -72 29 10.2 9.28 0.79 -12.6 129.2 3
J04573490-6755243 04 57 34.91 -67 55 24.4 34639 10.20 0.51 12.26 0.87 0.49 6.3 84.1 3
J04573549-7018407 04 57 35.49 -70 18 40.8 34696 9.64 0.63 12.11 1.02 0.54 -0.5 118.1 3
J04573855-7141340 04 57 38.56 -71 41 34.0 7.28 0.88 -16.7 85.5 3 K7 5 HD 270923
J04574025-6741353 04 57 40.25 -67 41 35.4 35042 10.47 0.58 12.74 0.98 0.52 9.4 42.4 3
J04574999-7133066 04 57 49.99 -71 33 06.6 10.40 0.40 24.6 112.4 3
J04575163-7206310 04 57 51.64 -72 06 31.0 10.57 0.26 15.6 74.7 3 F5 5 HD 270930
J04575367-7223568 04 57 53.67 -72 23 56.9 11.15 0.34 -6.8 113.1 3
J04575835-6700559 04 57 58.35 -67 00 55.9 10.35 0.26 17.0 79.2 3 G5 5 HD 268766
J04580717-7008572 04 58 07.18 -70 08 57.3 7.46 0.27 2.4 88.1 3 F7V 17 HD 32571
J04580751-6702465 04 58 07.51 -67 02 46.6 9.49 0.34 -0.3 105.0 3 F8 5 HD 268775
J04580802-6748423 04 58 08.02 -67 48 42.4 37269 10.98 0.31 12.32 0.49 0.34 -12.8 75.3 3
J04580912-6659260 04 58 09.13 -66 59 26.1 8.66 0.69 43.1 92.3 3
J04581080-6956589 04 58 10.80 -69 56 59.0 37518 10.64 0.61 13.02 0.81 0.45 283.0 57.0 1 K5 5 HD 268878
J04581344-7220375 04 58 13.44 -72 20 37.6 10.38 0.76 34.7 88.0 3
J04582055-7229172 04 58 20.55 -72 29 17.3 11.63 0.26 -19.5 57.6 3
J04582210-6948133 04 58 22.10 -69 48 13.4 38410 10.83 0.26 12.08 0.46 0.28 22.2 64.8 3 F2 5 HD 268876
J04582210-6954513 04 58 22.10 -69 54 51.4 38421 10.07 0.70 12.71 1.00 0.56 -30.0 109.6 3
J04582503-6837531aaThese stars were imaged twice and their results were averaged. 04 58 25.04 -68 37 53.2 38644 10.48 0.69 13.13 1.00 0.57 7.5 55.7 3
J04582541-7203255 04 58 25.41 -72 03 25.6 9.47 0.78 -29.6 96.3 3
J04582652-7023456 04 58 26.52 -70 23 45.7 38772 9.30 0.63 11.72 1.01 0.53 22.0 121.5 3 G5 32 HD 268902
J04583118-6827267 04 58 31.19 -68 27 26.7 7.84 0.72 7.6 71.6 3 K7 5 HD 268827
J04583373-7046024 04 58 33.74 -70 46 02.4 39355 9.68 0.77 12.49 1.12 0.61 -39.2 125.2 3
J04583409-6745140 04 58 34.10 -67 45 14.0 39376 10.65 0.30 12.00 0.54 0.32 13.2 100.5 3 K 5 HD 268812
J04583662-6850322 04 58 36.63 -68 50 32.2 39602 11.99 0.12 12.47 0.08 0.08 269.5 107.0 1 B8I 30 HD 268845
J04583733-7158485 04 58 37.33 -71 58 48.6 11.58 0.26 40.6 54.7 3
J04584553-7032367 04 58 45.53 -70 32 36.8 40284 8.16 0.80 11.14 1.28 0.69 -2.2 86.7 3 K7 5 HD 268914
J04584616-7023481 04 58 46.17 -70 23 48.2 40331 11.33 0.31 12.56 0.46 0.28 15.1 77.0 3
J04585759-7109439 04 58 57.59 -71 09 44.0 8.21 0.73 50.2 100.4 3 K2 5 HD 268938
J04590386-6900210 04 59 03.86 -69 00 21.1 41679 9.92 0.53 12.10 0.84 0.47 34.1 98.8 3 K7 5 HD 268866
J04590936-6749174 04 59 09.37 -67 49 17.4 42110 10.89 0.36 12.41 0.61 0.38 14.0 104.2 3
J04592077-7043078 04 59 20.78 -70 43 07.9 10.21 0.18 11.01 0.36 38.2 26.4 3 A7III 1 HD 268935
J04592312-7201208 04 59 23.13 -72 01 20.9 10.85 0.30 32.0 78.8 3 F5 5 HD 270950
J04592388-6853583 04 59 23.89 -68 53 58.4 43115 10.39 0.76 13.15 1.03 0.60 47.7 95.8 3
J04592576-6952298 04 59 25.76 -69 52 29.8 7.60 0.67 10.4 92.9 3 G5:III 1 HD 268909
J04592712-7222428 04 59 27.13 -72 22 42.8 10.35 0.74 127.4 72.8 3
J04593334-7224419 04 59 33.35 -72 24 42.0 8.82 0.74 -20.6 83.0 3
J04593632-6908004 04 59 36.33 -69 08 00.4 43952 11.25 0.34 12.73 0.62 0.34 51.5 76.7 3
J04593688-7051308 04 59 36.88 -70 51 30.9 9.07 0.15 19.0 26.1 3 A8IV 17 HD 32824
J04594195-7022144 04 59 41.95 -70 22 14.4 9.88 0.32 2.8 90.1 3 G0 5 HD 268930
J04594309-7006390 04 59 43.09 -70 06 39.0 7.92 0.54 4.8 87.5 3 K0 5 HD 268923
J04594353-6831228 04 59 43.53 -68 31 22.8 44436 9.81 0.42 11.46 0.71 0.41 287.3 42.0 1 K0 5 HD 268865
J04594362-6826049 04 59 43.63 -68 26 05.0 44439 10.39 0.69 13.02 1.02 0.59 40.5 75.0 3
J04594625-7126334 04 59 46.25 -71 26 33.5 10.01 0.62 14.9 78.9 3
J04594720-6713273 04 59 47.21 -67 13 27.4 44693 11.24 0.33 12.61 0.48 0.31 39.0 64.4 3
J04594824-7221460 04 59 48.25 -72 21 46.0 10.40 0.37 8.7 74.0 3
J05000225-6839181 05 00 02.26 -68 39 18.1 45746 10.70 0.50 12.61 0.81 0.46 10.0 80.4 3
J05000447-6859267 05 00 04.48 -68 59 26.8 45879 10.00 0.61 12.34 0.99 0.55 -0.4 79.8 3
J05000756-6826599 05 00 07.57 -68 26 60.0 46080 9.43 0.60 12.23 1.04 0.57 330.9 41.1 1 G0Ia 10 RMC 69
J05001358-6758004 05 00 13.58 -67 58 00.4 46469 9.34 0.78 12.15 1.16 0.63 62.9 80.0 3
J05001815-7118039 05 00 18.15 -71 18 04.0 10.71 0.58 37.1 86.7 3
J05001831-6718308 05 00 18.31 -67 18 30.8 46776 10.99 0.36 12.41 0.59 0.31 10.7 83.6 3
J05002064-7101499 05 00 20.64 -71 01 49.9 46921 11.08 0.28 12.43 0.52 0.32 20.9 81.0 3 F5 5 HD 268958
J05002106-6812333 05 00 21.06 -68 12 33.3 9.44 0.32 61.6 116.6 3 K0 5 HD 268871
J05002812-6914557 05 00 28.13 -69 14 55.7 47442 10.82 0.56 13.06 0.93 0.51 28.7 65.9 3
J05003092-7018500 05 00 30.92 -70 18 50.1 47622 11.58 0.27 12.78 0.43 0.25 4.3 23.7 3
J05003258-7041569 05 00 32.58 -70 41 56.9 6.56 0.67 -20.4 87.2 3 G5 5 HD 268953
J05003613-7123124 05 00 36.13 -71 23 12.4 9.95 0.64 83.7 109.7 3
J05003747-6724005 05 00 37.48 -67 24 00.6 48063 10.09 0.69 12.73 1.16 0.62 24.3 76.3 3
J05004467-7031412 05 00 44.68 -70 31 41.3 7.66 0.80 53.9 116.3 3 K5 5 HD 268951
J05004782-6837461 05 00 47.83 -68 37 46.1 48787 12.22 0.07 12.61 0.08 0.11 280.1 108.5 1 B8I 30 Sk-68 24
J05004798-7227017 05 00 47.99 -72 27 01.8 10.74 0.48 -0.4 95.8 3
J05004810-6620417 05 00 48.11 -66 20 41.7 9.29 0.22 12.7 43.7 3 F5 5 HD 268821
J05005381-7133455 05 00 53.81 -71 33 45.5 9.57 0.61 23.2 130.7 3 K5 5 HD 268986
J05005481-7129233 05 00 54.81 -71 29 23.4 9.41 0.60 -11.5 118.1 3 K2 5 HD 268983
J05005516-6638143 05 00 55.17 -66 38 14.4 11.36 0.25 275.5 67.0 1
J05005628-6729245 05 00 56.29 -67 29 24.6 49377 10.96 0.34 12.27 0.52 0.32 6.3 79.6 3 F8 32 [FD70] S 27
J05010050-6724087 05 01 00.50 -67 24 08.8 49668 9.71 0.68 12.20 1.04 0.55 57.5 129.0 3
J05010186-7014032 05 01 01.87 -70 14 03.2 49764 11.35 0.26 12.57 0.46 0.27 14.1 67.4 3
J05010315-7112551 05 01 03.15 -71 12 55.1 9.02 0.75 53.6 125.3 3 K5 5 HD 268977
J05010907-6625568 05 01 09.07 -66 25 56.9 9.75 0.75 9.9 71.6 3
J05011092-6640032 05 01 10.93 -66 40 03.3 8.67 0.81 -0.7 123.8 3
J05011482-7107478 05 01 14.82 -71 07 47.8 8.05 0.75 -17.3 78.9 3 K2 5 HD 268979
J05011649-6721038 05 01 16.50 -67 21 03.9 50766 11.04 0.35 12.48 0.57 0.33 62.6 99.4 3
J05011887-7037492 05 01 18.87 -70 37 49.2 11.81 0.05 12.00 -0.01 231.8 88.9 1 B8I 30 HD 268964
J05012485-6642274 05 01 24.86 -66 42 27.4 11.06 0.33 13.7 108.9 3 M0 5 HD 268842
J05012703-7040256 05 01 27.04 -70 40 25.6 7.48 0.74 24.1 69.4 3 K7 5 HD 268968
J05012723-6706191 05 01 27.23 -67 06 19.2 7.45 0.79 22.3 104.8 3 K2 5 HD 268860
J05012946-6617322 05 01 29.46 -66 17 32.2 11.13 0.40 1.9 103.2 3
J05013007-6636331 05 01 30.07 -66 36 33.1 10.28 0.29 20.9 145.9 3 K0 5 HD 268838
J05013223-6810430 05 01 32.24 -68 10 43.1 11.25 0.09 11.67 0.13 276.0 42.0 1 BC2Ia 13 Sk-68 26
J05013273-6813144 05 01 32.73 -68 13 14.5 51871 11.98 0.14 12.55 0.15 0.13 303.5 43.4 1 B6I 30 Sk-68 27
J05013336-7023026 05 01 33.37 -70 23 02.7 51922 10.62 0.66 13.06 0.95 0.51 90.5 145.4 3
J05013419-6612519 05 01 34.20 -66 12 51.9 10.05 0.89 303.1 49.3 1
J05013589-6806393 05 01 35.90 -68 06 39.4 52093 10.67 0.31 12.04 0.53 0.33 18.6 108.3 3
J05014071-7054588 05 01 40.71 -70 54 58.8 52385 10.17 0.92 13.76 1.67 0.83 244.4 62.0 1
J05014091-6614300 05 01 40.92 -66 14 30.1 10.07 0.61 96.5 92.8 3
J05014221-7024050 05 01 42.22 -70 24 05.0 10.05 0.33 13.3 105.4 3 G5 5 HD 268965
J05014519-7035523 05 01 45.20 -70 35 52.3 11.44 0.04 11.64 0.02 238.7 109.0 1 B6I 30 HD 268971
J05014900-6755249 05 01 49.00 -67 55 24.9 52950 10.60 0.37 12.21 0.61 0.36 70.2 80.3 3
J05014961-7110106 05 01 49.62 -71 10 10.7 10.59 0.37 -11.5 76.7 3 G0 5 HD 268994
J05015118-6703032 05 01 51.18 -67 03 03.2 10.46 0.76 0.1 72.0 3
J05015175-6620208 05 01 51.76 -66 20 20.9 9.35 0.65 17.5 106.7 3 K5 5 HD 268843
J05020842-7043361 05 02 08.43 -70 43 36.1 54291 9.18 0.65 11.83 1.10 0.60 -2.6 134.0 3
J05021137-7059469 05 02 11.37 -70 59 47.0 54469 11.24 0.32 12.71 0.79 0.29 -2.1 93.1 3
J05021293-6615496 05 02 12.93 -66 15 49.7 10.16 0.59 -8.2 146.8 3 K5 5 HD 268857
J05021705-6844374 05 02 17.06 -68 44 37.4 54858 11.36 0.26 12.68 0.49 0.32 7.5 58.0 3
J05022209-7140228 05 02 22.09 -71 40 22.8 9.79 0.69 23.4 111.8 3
J05022433-6643026 05 02 24.33 -66 43 02.7 8.42 0.20 11.5 47.5 3 F0VSr 17 HD 33043
J05022488-6707204 05 02 24.89 -67 07 20.5 55389 9.23 0.68 11.66 0.98 0.52 -25.8 87.7 3 K7 5 HD 268889
J05022521-6728470 05 02 25.21 -67 28 47.0 55416 10.09 0.63 12.47 0.95 0.53 -5.1 151.5 3
J05022543-6920035 05 02 25.43 -69 20 03.6 9.30 0.31 20.9 122.6 3 G0 5 HD 268952
J05022819-7121405 05 02 28.20 -71 21 40.6 11.22 0.36 52.6 95.8 3
J05022839-7209032 05 02 28.40 -72 09 03.3 9.94 0.79 222.1 79.0 1
J05022973-7135251 05 02 29.73 -71 35 25.2 11.14 0.31 5.3 67.0 3
J05023255-7213566 05 02 32.55 -72 13 56.6 11.01 0.31 41.5 72.4 3 G 5 HD 270985
J05023574-6731535 05 02 35.74 -67 31 53.5 56146 11.12 0.38 12.62 0.54 0.35 19.8 129.3 3
J05023745-6609260 05 02 37.45 -66 09 26.0 11.43 0.30 -0.2 78.2 3
J05024046-7203254 05 02 40.46 -72 03 25.4 10.15 0.51 -20.9 84.8 3
J05024114-6858437 05 02 41.14 -68 58 43.8 56506 10.25 0.72 13.03 1.19 0.58 38.9 66.8 3
J05024183-6750352aaThese stars were imaged twice and their results were averaged. 05 02 41.83 -67 50 35.2 6.09 0.55 8.26 0.97 1.8 96.7 3 G8/K0III 17 HD 33117
J05024954-6615488 05 02 49.55 -66 15 48.9 9.65 0.86 100.5 72.3 3
J05025036-7019420 05 02 50.36 -70 19 42.0 57161 11.72 0.24 12.94 0.48 0.30 15.4 46.4 3
J05025062-7230371 05 02 50.63 -72 30 37.2 11.03 0.32 -3.5 128.9 3
J05025663-6901376 05 02 56.64 -69 01 37.6 57617 10.62 0.30 12.02 0.56 0.34 10.4 81.4 3 K5 5 HD 268955
J05025851-6617116 05 02 58.52 -66 17 11.6 8.54 0.59 -3.4 147.6 3 K 5 HD 268875
J05030138-6627392 05 03 01.38 -66 27 39.2 12.06 0.04 12.33 0.03 300.2 100.6 1 A0I 30 Sk-66 49
J05030447-6811146 05 03 04.48 -68 11 14.7 58119 10.46 0.66 13.07 1.10 0.56 53.1 86.1 3
J05030619-7125286 05 03 06.20 -71 25 28.6 10.96 0.38 9.1 70.4 3
J05030897-6626555 05 03 08.97 -66 26 55.5 11.56 0.23 303.3 42.2 1 F2I: 30 GV 518
J05031088-6756129 05 03 10.88 -67 56 13.0 7.37 0.81 65.0 73.0 3 K7 5 HD 268936
J05031360-6833353 05 03 13.60 -68 33 35.4 11.47 0.06 11.76 0.07 250.6 78.2 1 A0/2Ia 19 HD 268949
J05031364-7025569 05 03 13.64 -70 25 57.0 7.64 0.61 11.5 90.1 3 K0 5 HD 269004
J05031381-7100168aaThese stars were imaged twice and their results were averaged. 05 03 13.82 -71 00 16.8 58725 10.80 0.28 12.16 0.53 0.34 31.9 79.1 3 G0 5 HD 269022
J05031592-6637298 05 03 15.92 -66 37 29.8 11.60 0.23 267.5 45.7 1 F0I: 30 GV 520
J05031821-6659502 05 03 18.22 -66 59 50.3 10.03 0.70 30.5 75.3 3
J05032156-7108148 05 03 21.57 -71 08 14.8 11.49 0.28 -4.3 73.6 3
J05032232-6622112 05 03 22.32 -66 22 11.2 11.04 0.37 306.8 51.6 1
J05032398-6855320 05 03 23.98 -68 55 32.1 59384 11.93 0.14 12.50 0.12 0.10 248.3 93.8 1 A3I 30 Sk-68 29a
J05032538-6732526 05 03 25.39 -67 32 52.6 9.77 0.30 14.3 110.6 3 G5 5 HD 268929
J05032877-6843147 05 03 28.77 -68 43 14.8 59662 11.11 0.43 12.94 0.77 0.40 41.0 69.5 3
J05033432-6641420 05 03 34.33 -66 41 42.0 9.18 0.66 59.4 111.6 3
J05033671-6925355 05 03 36.71 -69 25 35.5 10.68 0.20 11.71 0.43 36.1 50.1 3 F4V 1 HD 268980
J05034119-6702321 05 03 41.20 -67 02 32.1 10.20 0.56 -4.6 112.5 3
J05034147-6914453 05 03 41.47 -69 14 45.3 60492 9.05 0.71 11.72 1.16 0.59 73.4 67.8 3 K5 5 HD 268975
J05034329-6814270 05 03 43.30 -68 14 27.1 60606 11.38 0.30 12.83 0.54 0.39 1.7 67.5 3
J05034470-6906016 05 03 44.70 -69 06 01.7 60701 12.18 0.10 12.53 0.05 0.09 299.8 48.0 1 OB 31 Sk-69 61
J05035608-6954242 05 03 56.09 -69 54 24.3 8.16 0.77 26.9 115.9 3 K5 5 HD 269001
J05035614-7136183 05 03 56.15 -71 36 18.4 11.31 0.27 5.2 59.1 3 G 5 HD 269055
J05035658-6641567 05 03 56.59 -66 41 56.8 9.83 0.72 53.9 65.6 3
J05040131-6921564 05 04 01.31 -69 21 56.4 61849 10.10 0.76 13.09 1.21 0.64 22.6 92.9 3
J05040504-6616065 05 04 05.05 -66 16 06.5 11.83 0.16 -12.1 44.5 3
J05040816-6917238 05 04 08.16 -69 17 23.8 62255 10.44 0.64 12.97 1.08 0.54 -2.4 94.4 3
J05040868-7040487 05 04 08.69 -70 40 48.8 6.68 0.76 9.57 1.23 14.5 84.0 3 K0 5 HD 269028
J05040943-6901221 05 04 09.44 -69 01 22.2 62318 10.17 0.59 12.54 0.97 0.52 -20.5 83.8 3
J05041039-6713193 05 04 10.39 -67 13 19.3 9.15 0.80 -30.8 101.7 3
J05041112-6707002 05 04 11.13 -67 07 00.2 8.94 0.66 31.4 82.1 3
J05041356-6625585 05 04 13.56 -66 25 58.5 10.34 0.78 312.9 30.4 1 HD 33294
J05041389-7209320 05 04 13.90 -72 09 32.0 11.07 0.34 -57.1 81.6 3
J05041492-6715052 05 04 14.92 -67 15 05.2 10.36 0.25 10.98 0.09 239.9 46.1 1 Beq 35 HD 268939
J05041540-7054331 05 04 15.40 -70 54 33.1 62623 10.59 0.68 13.24 1.13 0.60 63.8 84.0 3
J05041613-6707257 05 04 16.13 -67 07 25.7 12.50 0.01 12.61 -0.03 310.9 87.1 1 B7:I 30 Sk-67 42
J05041858-7041189 05 04 18.58 -70 41 18.9 62789 12.25 0.07 12.65 0.08 0.09 228.3 76.8 1 B9Ib 37 SOI 765
J05042141-6626050 05 04 21.42 -66 26 05.0 12.13 0.04 12.53 0.10 286.7 68.1 1 A2I 30 Sk-66 55
J05042167-7027267 05 04 21.68 -70 27 26.7 62961 10.78 0.58 13.16 0.94 0.58 4.0 77.5 3
J05042347-6856249 05 04 23.48 -68 56 25.0 63073 9.46 0.68 12.20 1.12 0.59 35.1 96.2 3
J05042355-7124111 05 04 23.55 -71 24 11.2 10.60 0.50 37.9 79.9 3
J05042494-7105446 05 04 24.94 -71 05 44.7 63162 11.39 0.30 12.83 0.55 0.32 1.7 58.5 3
J05042677-6717427 05 04 26.78 -67 17 42.8 10.68 0.02 10.88 0.05 238.0 14.2 1 A0V 1 HD 268943
J05042886-7032447 05 04 28.86 -70 32 44.8 63384 10.85 0.39 12.53 0.63 0.40 71.3 44.3 3
J05043034-7159150 05 04 30.34 -71 59 15.0 10.91 0.30 30.1 30.3 3 G0 32 HD 271005
J05043664-7036190 05 04 36.65 -70 36 19.1 7.21 0.65 30.6 110.7 3 K0 5 HD 269041
J05044445-6614500 05 04 44.46 -66 14 50.1 11.29 0.33 61.6 109.5 3
J05044779-6611317 05 04 47.80 -66 11 31.7 9.94 0.40 52.1 146.8 3 K0 5 HD 268926
J05045017-6807523 05 04 50.17 -68 07 52.4 11.97 0.08 12.01 -0.02 243.2 39.8 1 B2.5Ia 13 Sk-68 39
J05045155-7053188 05 04 51.56 -70 53 18.9 64556 11.14 0.33 12.63 0.63 0.33 15.4 56.2 3
J05045214-6903464 05 04 52.15 -69 03 46.4 64596 11.06 0.39 12.73 0.65 0.36 272.6 41.6 1
J05045266-7055185 05 04 52.66 -70 55 18.6 64622 10.80 0.28 12.19 0.53 0.33 -13.2 101.5 3 G5 5 HD 269056
J05045348-6910078 05 04 53.49 -69 10 07.9 7.12 0.56 -29.3 108.1 3 K0V 17 HD 33487
J05045385-7156108 05 04 53.86 -71 56 10.8 10.33 0.62 58.8 46.5 3
J05045408-6850110 05 04 54.09 -68 50 11.1 64705 10.58 0.29 12.06 0.56 0.37 12.2 58.2 3
J05045414-6841068 05 04 54.14 -68 41 06.8 10.16 0.21 1.6 43.7 3 F2 5 HD 268989
J05045570-6644232 05 04 55.70 -66 44 23.2 10.77 0.57 -4.9 98.0 3
J05051047-7041149 05 05 10.48 -70 41 15.0 65578 9.98 0.59 12.36 0.94 0.54 122.2 126.5 3
J05051222-6644126 05 05 12.23 -66 44 12.6 9.96 0.07 10.29 0.09 288.8 88.0 1 A0Ia 12 HD 268946
J05051239-6839070 05 05 12.39 -68 39 07.0 65675 11.44 0.26 12.81 0.54 0.31 19.0 122.4 3
J05051357-7025466 05 05 13.57 -70 25 46.6 65727 10.90 0.26 12.19 0.52 0.30 21.8 123.9 3
J05051496-6639164 05 05 14.97 -66 39 16.5 10.26 0.63 42.1 88.9 3
J05051746-7202553 05 05 17.46 -72 02 55.4 9.99 0.32 16.7 48.4 3 G5 5 HD 271017
J05051847-7205244 05 05 18.48 -72 05 24.4 10.60 0.44 27.8 92.3 3
J05051863-7030379 05 05 18.64 -70 30 38.0 65975 10.96 0.31 12.42 0.55 0.31 48.5 99.1 3
J05052014-6635104 05 05 20.14 -66 35 10.4 9.96 0.63 8.9 56.6 3
J05052070-7044306 05 05 20.71 -70 44 30.7 11.06 0.11 11.40 0.04 248.8 52.4 1 B2.5 30 HD 269062
J05052195-6707148 05 05 21.96 -67 07 14.8 11.62 0.20 12.50 0.26 255.3 50.6 1 A9I 30 GV 193
J05052610-6844325 05 05 26.11 -68 44 32.6 66378 9.89 0.69 12.57 1.18 0.59 27.6 90.4 3
J05052697-6743135 05 05 26.97 -67 43 13.6 8.36 0.70 39.4 34.5 3 K2 5 HD 268974
J05053047-6815217 05 05 30.47 -68 15 21.8 9.05 0.29 23.6 116.9 3 G0 5 HD 268992
J05053431-7206214 05 05 34.32 -72 06 21.4 6.67 0.63 44.4 90.6 3 G8III 17 HD 33746
J05054179-6817016 05 05 41.80 -68 17 01.6 11.10 0.23 31.1 37.6 3
J05054362-6732065 05 05 43.62 -67 32 06.6 9.85 0.74 -10.5 95.5 3
J05054558-6939251 05 05 45.59 -69 39 25.2 67416 10.32 0.53 12.50 0.93 0.47 32.4 119.4 3 K7 5 HD 269040
J05055011-6636405 05 05 50.12 -66 36 40.5 10.74 0.20 22.4 76.0 3 A7 5 HD 268956
J05055012-6818272 05 05 50.12 -68 18 27.3 9.34 0.79 42.4 45.6 3
J05055203-7113026 05 05 52.04 -71 13 02.6 10.14 0.22 -0.6 41.6 3 F2 5 HD 269086
J05055231-6835363 05 05 52.32 -68 35 36.4 67763 10.75 0.45 12.70 0.88 0.49 44.1 83.1 3
J05055395-6810505 05 05 53.96 -68 10 50.5 11.39 0.27 11.95 -0.04 326.9 24.9 1 B3Ie 30 Sk-68 42
J05055405-6840171 05 05 54.06 -68 40 17.1 67857 12.43 0.00 12.66 0.07 0.03 255.5 70.9 1 A2:I 30 Sk-68 44
J05055551-6753108 05 05 55.51 -67 53 10.8 8.50 0.18 9.13 0.19 229.0 44.9 1 A2Ia+ 37 HD 33579
J05055813-7032056 05 05 58.13 -70 32 05.6 9.13 0.43 263.0 47.3 1 K5 5 HD 269070
J05060049-6713152 05 06 00.50 -67 13 15.2 11.56 0.27 21.1 37.1 3
J05060233-6614001 05 06 02.34 -66 14 00.2 8.70 0.55 15.0 126.0 3 K2 5 HD 268954
J05060351-7039362 05 06 03.51 -70 39 36.3 68322 11.02 0.30 12.36 0.49 0.32 29.8 86.7 3
J05060887-7115260 05 06 08.88 -71 15 26.1 10.64 0.61 12.26 0.57 250.1 44.5 1 HV 2338
J05060899-7003221 05 06 09.00 -70 03 22.1 68606 10.40 0.63 12.74 0.94 0.52 23.5 84.1 3
J05061164-7036052 05 06 11.65 -70 36 05.3 6.94 0.71 21.6 105.7 3 K0/2 17 HD 33745
J05061392-6755506 05 06 13.93 -67 55 50.7 10.28 0.68 55.6 160.3 3
J05061481-6640459 05 06 14.81 -66 40 45.9 10.86 0.28 12.15 0.51 282.1 58.5 1 F5:I 10 RMC 77
J05061651-6822068 05 06 16.52 -68 22 06.8 10.29 0.84 288.5 47.8 1
J05061866-6723011 05 06 18.66 -67 23 01.1 9.60 0.13 -14.1 16.2 3 A2IV 17 HD 33631
J05061885-6956532 05 06 18.85 -69 56 53.2 69094 11.33 0.32 12.98 0.68 0.38 35.7 78.8 3
J05061955-6956053 05 06 19.55 -69 56 05.4 8.56 0.60 -40.8 140.5 3 K0 5 HD 269063
J05062125-7210234 05 06 21.26 -72 10 23.5 9.28 0.35 2.6 87.6 3 G0 5 HD 271030a
J05062380-6903000 05 06 23.81 -69 03 00.0 8.14 0.64 -10.8 108.0 3 K0 5 HD 269036
J05062578-6823166 05 06 25.79 -68 23 16.7 9.66 0.62 20.0 143.1 3
J05062723-7210490 05 06 27.24 -72 10 49.0 10.91 0.30 39.8 63.3 3
J05062746-6830403 05 06 27.46 -68 30 40.4 69520 10.67 0.35 11.95 0.25 0.20 376.1 23.2 1 B8Ie 30 Sk-68 48
J05062830-6635225 05 06 28.30 -66 35 22.5 10.67 0.30 15.5 80.3 3 G0 5 HD 268970
J05063379-6724552 05 06 33.80 -67 24 55.2 10.97 0.30 -2.7 57.4 3
J05063826-6829129 05 06 38.27 -68 29 12.9 9.50 0.64 37.1 87.7 3
J05064465-6931208 05 06 44.65 -69 31 20.9 70338 8.51 0.70 11.21 1.15 0.60 6.1 78.3 3 K5 5 HD 269060
J05064540-6824388 05 06 45.40 -68 24 38.9 10.55 0.31 7.7 84.5 3 G2Ia 37 SOI 349
J05064587-7005563 05 06 45.88 -70 05 56.4 6.88 0.71 9.65 1.24 29.6 70.6 3 K0III 1 HD 269076
J05064761-6803209 05 06 47.62 -68 03 21.0 11.16 0.41 29.7 78.9 3
J05064796-7002134 05 06 47.97 -70 02 13.4 70514 10.52 0.52 12.48 0.82 0.43 254.9 62.1 1 M 5 HD 269075
J05064867-6944313 05 06 48.67 -69 44 31.3 70561 9.47 0.80 12.57 1.30 0.68 -18.1 91.5 3
J05070045-6828344 05 07 00.46 -68 28 34.4 7.93 0.61 -5.9 158.2 3 K0 5 HD 269035
J05070247-7146381 05 07 02.48 -71 46 38.2 10.79 0.47 0.7 88.2 3
J05070968-6755033 05 07 09.69 -67 55 03.4 8.47 0.61 83.4 109.5 3 G0 5 HD 269026
J05071143-6957469 05 07 11.44 -69 57 47.0 71662 11.24 0.31 12.68 0.59 0.36 -11.7 88.4 3
J05071597-6853006 05 07 15.98 -68 53 00.6 71882 10.22 0.43 12.06 0.78 0.39 274.5 60.4 1
J05071706-6850335 05 07 17.06 -68 50 33.5 71935 11.12 0.30 12.46 0.48 0.30 1.9 74.4 3
J05071891-6825376 05 07 18.91 -68 25 37.6 11.95 0.16 12.79 0.28 250.4 61.5 1 F0I 30 SOI 351
J05072009-7027152 05 07 20.10 -70 27 15.3 72088 11.41 0.25 13.65 1.05 0.57 261.6 63.6 1
J05072232-7129213 05 07 22.33 -71 29 21.3 8.36 0.70 13.7 80.1 3 K5 5 HD 269124
J05072622-6755328 05 07 26.23 -67 55 32.9 10.63 0.23 17.3 45.7 3 F5 5 HD 269031
J05073141-6821243 05 07 31.41 -68 21 24.4 10.45 0.28 -4.8 92.3 3 F5 5 HD 269049
J05073459-6947287 05 07 34.59 -69 47 28.7 72847 11.58 0.27 12.91 0.55 0.30 25.9 102.6 3
J05073584-6902371 05 07 35.84 -69 02 37.2 72899 10.48 0.68 13.12 1.08 0.58 37.3 79.7 3
J05073688-6935579 05 07 36.89 -69 35 57.9 72967 11.30 0.35 12.75 0.53 0.34 23.8 100.8 3
J05074534-6909446 05 07 45.35 -69 09 44.7 73369 10.02 0.86 13.44 1.49 0.76 245.1 56.5 1
J05074546-6939324 05 07 45.47 -69 39 32.4 73377 9.74 0.73 12.54 1.14 0.61 -22.8 80.0 3
J05075327-7129315 05 07 53.28 -71 29 31.6 11.22 0.21 19.9 72.3 3
J05075638-7121489 05 07 56.38 -71 21 49.0 10.29 0.46 -23.9 85.7 3 K0 5 HD 269136
J05080173-7111511 05 08 01.73 -71 11 51.1 10.37 0.67 -0.8 105.2 3
J05080536-6946046 05 08 05.37 -69 46 04.7 74395 10.65 0.58 12.82 0.91 0.46 37.3 29.5 3
J05080620-6913427 05 08 06.20 -69 13 42.8 9.80 0.32 6.1 83.3 3 G5 5 HD 269084
J05081113-6909484 05 08 11.13 -69 09 48.4 74723 11.33 0.35 12.94 0.67 0.39 -10.4 72.7 3
J05081485-7029291 05 08 14.85 -70 29 29.2 74900 9.85 0.67 12.46 1.05 0.57 72.9 79.1 3
J05081558-7028385 05 08 15.59 -70 28 38.5 74940 11.41 0.29 12.72 0.49 0.30 -4.7 49.4 3
J05081817-7014578 05 08 18.17 -70 14 57.8 75076 10.38 0.33 11.82 0.56 0.33 41.7 80.7 3 F8 5 HD 269103
J05081997-7137575aaThese stars were imaged twice and their results were averaged. 05 08 19.98 -71 37 57.6 11.30 0.22 -2.9 64.9 3
J05082121-6901178 05 08 21.21 -69 01 17.8 75242 10.73 0.47 12.64 0.78 0.41 -36.7 134.3 3
J05082421-6828344 05 08 24.21 -68 28 34.4 8.55 0.22 16.1 42.5 3 F0V 17 HD 33970
J05082876-7153401 05 08 28.76 -71 53 40.2 11.23 0.34 33.5 44.2 3
J05083220-6832493 05 08 32.21 -68 32 49.3 8.28 0.69 12.6 89.2 3 K7 5 HD 269079
J05083388-7018189 05 08 33.89 -70 18 18.9 76023 10.34 0.71 13.08 1.11 0.60 87.1 102.1 3
J05084174-6816359 05 08 41.74 -68 16 36.0 10.58 0.50 22.1 117.2 3
J05085559-6916215 05 08 55.60 -69 16 21.6 77487 11.61 0.15 12.43 0.23 0.17 223.2 52.4 1 F0I 30 HD 269096
J05085992-7039001 05 08 59.92 -70 39 00.2 77772 9.60 0.67 12.21 1.10 0.59 33.7 82.0 3
J05090395-7012117 05 09 03.96 -70 12 11.7 78057 9.91 0.59 12.24 0.91 0.48 -26.8 89.6 3
J05090481-7037021 05 09 04.82 -70 37 02.2 8.55 0.69 -10.7 129.7 3 K7 5 HD 269141
J05090637-6907314 05 09 06.38 -69 07 31.4 78230 10.23 0.57 12.53 0.96 0.50 14.9 99.0 3 G8IV(e?) 7
J05090871-6859074 05 09 08.72 -68 59 07.5 78383 10.77 0.36 12.35 0.67 0.35 274.2 46.2 1
J05091058-6936121 05 09 10.58 -69 36 12.2 8.91 0.41 10.75 0.90 247.3 45.2 1 G0:Ia 1 HD 269110
J05091941-6906286 05 09 19.42 -69 06 28.6 79077 10.94 0.41 12.62 0.70 0.37 11.4 76.5 3
J05092015-7027269 05 09 20.15 -70 27 27.0 79117 10.71 0.51 12.67 0.65 0.34 226.7 65.8 1 HV 909
J05092049-6832077 05 09 20.50 -68 32 07.7 10.23 0.31 6.6 86.0 3 K2 5 HD 269090
J05092399-7226205 05 09 24.00 -72 26 20.5 9.69 0.67 -5.3 139.9 3
J05092628-6909340 05 09 26.28 -69 09 34.0 8.81 0.10 9.36 0.20 43.6 15.6 3 A3:V 1 HD 34144
J05093397-6824413 05 09 33.97 -68 24 41.3 12.28 0.01 12.54 0.02 258.2 89.5 1 B8I 30 Sk-68 56
J05093538-6914591 05 09 35.38 -69 14 59.2 80111 9.00 0.67 11.47 1.02 0.53 32.0 116.3 3 G5 5 HD 269115
J05093856-6918373 05 09 38.56 -69 18 37.4 11.70 0.13 245.8 81.3 1 A2I 30 Sk-69 67
J05094118-7120287 05 09 41.19 -71 20 28.8 11.00 0.42 0.3 120.9 3
J05094284-6826107 05 09 42.84 -68 26 10.7 8.46 0.66 18.4 85.9 3 K7 5 HD 269095
J05094518-6846099 05 09 45.19 -68 46 09.9 12.05 0.02 12.03 -0.03 297.5 40.5 1 B3Iab 13 HD 269101
J05094594-7137462 05 09 45.95 -71 37 46.3 10.93 0.40 8.9 27.0 3
J05094715-7033072 05 09 47.16 -70 33 07.3 7.20 0.69 -10.6 129.6 3 G5 5 HD 269152
J05094866-6752064 05 09 48.66 -67 52 06.5 8.64 0.32 31.1 108.0 3 G2/3V 17 HD 34143
J05094966-6919394 05 09 49.67 -69 19 39.5 81015 11.11 0.31 12.60 0.59 0.37 34.1 92.2 3
J05095033-7029260 05 09 50.33 -70 29 26.1 81052 10.61 0.39 12.13 0.56 0.33 22.6 79.9 3
J05095304-6855380 05 09 53.05 -68 55 38.0 11.74 0.07 12.07 -0.05 262.0 36.6 1 B0.7Ia+ 13 HD 269116
J05095880-6907018 05 09 58.81 -69 07 01.9 81591 12.53 0.02 12.56 0.02 0.08 227.9 22.4 1 B1II 20 Sk-69 68
J05095925-7025001 05 09 59.26 -70 25 00.1 81614 8.85 0.80 11.96 1.38 0.71 51.6 57.3 3
J05100098-6854089 05 10 00.99 -68 54 08.9 81748 11.30 0.22 12.37 0.36 0.24 209.3 37.2 1 F2I 26
J05100666-7027076 05 10 06.67 -70 27 07.7 6.67 0.83 40.8 72.8 3 K5 5 HD 269162
J05100803-7158003 05 10 08.03 -71 58 00.4 11.22 0.31 14.1 59.3 3 F2 32 HD 271075
J05101368-7019158 05 10 13.68 -70 19 15.9 82588 10.61 0.38 12.14 0.62 0.35 22.9 112.9 3 F8 5 HD 269159
J05101592-6823529 05 10 15.92 -68 23 52.9 10.76 0.31 -20.2 86.1 3
J05101900-6832326 05 10 19.01 -68 32 32.7 82980 9.10 0.73 11.85 1.09 0.57 31.3 75.7 3 K7 5 HD 269119
J05102138-6825171 05 10 21.38 -68 25 17.2 11.65 0.01 11.77 -0.01 308.5 113.0 1 B6I 30 HD 269117
J05102183-6727134 05 10 21.83 -67 27 13.4 10.80 0.32 -1.1 24.3 3
J05102248-6941497 05 10 22.49 -69 41 49.7 83219 11.14 0.30 12.47 0.51 0.30 -2.2 76.7 3
J05102280-6846238 05 10 22.81 -68 46 23.9 10.09 0.16 10.49 0.00 231.6 64.8 1 B1.5eq 34 HD 269128
J05102367-7208450 05 10 23.68 -72 08 45.1 10.76 0.23 16.2 71.0 3 F5 5 HD 271077
J05102739-6909117 05 10 27.39 -69 09 11.7 10.67 0.16 11.42 0.22 237.8 69.5 1 B8Ia 30 HD 269139
J05103390-6900258 05 10 33.91 -69 00 25.9 83987 10.38 0.72 13.13 1.20 0.61 34.8 66.5 3
J05103493-6710167 05 10 34.94 -67 10 16.7 9.59 0.77 132.7 67.5 3
J05104453-6827487 05 10 44.54 -68 27 48.7 10.19 0.18 -4.8 55.0 3 G5 5 HD 269130
J05104762-7230268 05 10 47.62 -72 30 26.8 11.28 0.28 -3.2 52.3 3
J05105032-7214010 05 10 50.33 -72 14 01.0 7.87 0.67 73.7 73.7 3 K2 5 HD 271083
J05105397-6743370 05 10 53.98 -67 43 37.0 12.03 0.10 12.6 19.1 3 A 5 HD 269109
J05105590-6832525 05 10 55.91 -68 32 52.5 85530 10.06 0.61 12.45 0.90 0.50 90.8 132.2 3
J05105602-7034246 05 10 56.02 -70 34 24.7 85531 10.10 0.76 13.19 1.26 0.67 119.1 60.2 3
J05110212-6757239 05 11 02.13 -67 57 24.0 9.44 0.68 7.9 83.0 3
J05110303-6807493 05 11 03.03 -68 07 49.3 11.07 0.29 4.2 85.9 3
J05110476-7203463 05 11 04.77 -72 03 46.4 9.54 0.82 -23.8 72.1 3
J05110487-7014366 05 11 04.87 -70 14 36.6 86143 11.02 0.42 12.95 0.80 0.43 251.8 50.7 1
J05110628-7110006 05 11 06.29 -71 10 00.7 7.11 0.75 -20.8 78.1 3 K0 5 HD 269198
J05110695-6811161 05 11 06.96 -68 11 16.1 10.61 0.55 114.0 71.9 3
J05110702-7126138 05 11 07.02 -71 26 13.9 10.32 0.25 6.5 62.2 3 F8 5 HD 269207
J05111006-7132242 05 11 10.07 -71 32 24.3 11.07 0.33 49.9 102.3 3
J05111057-6903577 05 11 10.57 -69 03 57.8 86490 10.68 0.39 12.26 0.62 0.35 -11.7 135.4 3 K7 5 HD 269151
J05111398-7124072 05 11 13.98 -71 24 07.2 10.80 0.48 11.4 93.1 3
J05111817-6930090 05 11 18.18 -69 30 09.0 86970 8.99 0.81 12.08 1.27 0.67 70.9 73.0 3
J05112076-6942443 05 11 20.77 -69 42 44.3 9.41 0.25 15.4 61.8 3 F0 5 HD 269173
J05112511-6944006 05 11 25.11 -69 44 00.7 87357 11.03 0.25 12.28 0.49 0.29 15.8 81.7 3
J05113055-7229141 05 11 30.56 -72 29 14.2 9.39 0.67 -6.5 139.9 3 G5 5 HD 271091
J05113119-7126227 05 11 31.19 -71 26 22.8 10.66 0.59 13.4 94.9 3
J05113254-7107163 05 11 32.55 -71 07 16.4 87749 11.68 0.22 12.95 0.49 0.28 -10.9 91.8 3
J05113529-7018482 05 11 35.30 -70 18 48.3 9.54 0.46 -18.4 95.2 3 G0 5 HD 269185
J05114244-7201387 05 11 42.45 -72 01 38.8 12.41 0.06 12.97 0.26 129.2 20.1 3 A2 32 HD 271093
J05114760-7152422 05 11 47.60 -71 52 42.2 9.52 0.77 43.7 71.3 3
J05114771-6852535 05 11 47.71 -68 52 53.5 88615 8.46 0.78 11.40 1.20 0.62 74.5 79.6 3
J05114886-6719420 05 11 48.87 -67 19 42.0 8.01 0.60 -4.8 131.4 3 M0 5 HD 269168
J05115059-7041360 05 11 50.59 -70 41 36.0 88756 10.11 0.59 12.55 1.02 0.54 32.3 67.7 3 K2 5 HD 269135
J05115205-6709577 05 11 52.06 -67 09 57.8 10.06 0.69 12.29 0.34 315.5 50.8 1 B2III 20 Sk-67 57
J05115511-6627244 05 11 55.12 -66 27 24.4 9.37 0.62 -14.0 107.2 3 K2 5 HD 269108
J05115943-6701541 05 11 59.44 -67 01 54.1 10.44 0.55 109.2 83.7 3
J05120155-7235128 05 12 01.56 -72 35 12.9 10.64 0.61 67.5 70.7 3
J05120388-6803432 05 12 03.88 -68 03 43.3 9.72 0.23 2.6 81.6 3 G0 5 HD 269153
J05120405-6620391 05 12 04.06 -66 20 39.2 8.61 0.86 49.0 74.9 3
J05120849-6712187 05 12 08.49 -67 12 18.8 11.64 0.19 22.5 62.8 3 B9Ib 37 SOI 166
J05121113-7152184 05 12 11.13 -71 52 18.5 10.01 0.57 -14.9 84.9 3
J05121356-6709092 05 12 13.57 -67 09 09.2 9.22 0.60 -6.5 165.2 3
J05121611-6720533 05 12 16.12 -67 20 53.3 8.82 0.72 23.2 73.6 3
J05121668-6723575 05 12 16.69 -67 23 57.6 10.04 0.57 7.2 79.4 3
J05121707-6719262 05 12 17.08 -67 19 26.3 11.13 0.01 11.34 0.00 311.7 59.9 1 B5Ia 13 HD 269145
J05121735-6717544 05 12 17.36 -67 17 54.5 9.08 0.78 12.34bbReference for colors and magnitudes = Oestreicher et al. 1997 1.66bbReference for colors and magnitudes = Oestreicher et al. 1997 305.0 46.6 1 SP77 37-19
J05121801-6705415 05 12 18.02 -67 05 41.6 6.93 0.62 20.3 111.5 3 K0III 17 HD 34461
J05122144-6636540 05 12 21.45 -66 36 54.1 10.59 0.24 3.5 73.0 3 F8 5 HD 269134
J05122388-6756520 05 12 23.89 -67 56 52.1 6.17 0.81 50.4 68.8 3 K2/3III 17 HD 34489
J05123428-7206016 05 12 34.28 -72 06 01.7 10.64 0.37 47.3 101.8 3 F5 5 HD 271107
J05123463-6800212 05 12 34.63 -68 00 21.2 7.39 0.74 56.5 78.5 3 K2 5 HD 269169
J05123641-6612083 05 12 36.42 -66 12 08.4 8.22 0.76 -6.4 132.1 3 K7 5 HD 269132
J05124266-6917491 05 12 42.66 -69 17 49.2 91316 10.58 0.34 12.12 0.59 0.36 1.0 80.8 3
J05125331-6744362 05 12 53.31 -67 44 36.3 9.29 0.16 19.6 19.3 3 A3IV 17 HD 34555
J05125346-6718332 05 12 53.46 -67 18 33.3 10.06 0.35 38.7 78.2 3 K0 5 HD 269164
J05125819-6730201 05 12 58.20 -67 30 20.2 10.20 0.87 6.4 61.4 3
J05125827-6740238 05 12 58.27 -67 40 23.9 10.42 0.33 9.7 87.1 3
J05130415-6801277 05 13 04.15 -68 01 27.8 10.95 0.33 26.2 129.8 3
J05130849-7008223 05 13 08.49 -70 08 22.4 92553 9.52 0.89 12.99 1.77 0.79 254.9 25.9 1 SP77 39-16
J05131152-7035506 05 13 11.53 -70 35 50.6 92708 11.10 0.30 12.42 0.53 0.32 25.9 35.6 3 G5 5 HD 269230
J05131599-6717472 05 13 16.00 -67 17 47.3 11.12 0.13 11.76 0.14 284.5 83.7 1 A2I 30 HD 269171
J05132457-6616429 05 13 24.58 -66 16 43.0 10.15 0.64 11.6 57.3 3
J05132962-6815075 05 13 29.62 -68 15 07.5 10.69 0.33 12.15 0.45 40.4 32.5 3 F0 37 SOI 371
J05132975-7114032 05 13 29.76 -71 14 03.3 11.18 0.36 -13.8 113.8 3
J05133908-6612413 05 13 39.09 -66 12 41.4 8.23 0.69 57.8 130.0 3 K7 5 HD 269163
J05134017-7240013 05 13 40.17 -72 40 01.4 9.71 0.65 6.7 81.9 3
J05134162-6811381 05 13 41.62 -68 11 38.1 8.01 0.73 6.2 60.9 3 K7 5 HD 269201
J05134336-6900202 05 13 43.37 -69 00 20.3 6.79 0.78 -2.8 120.6 3 K7 5 HD 269213
J05134863-6727312 05 13 48.63 -67 27 31.2 10.28 0.63 11.5 84.5 3
J05135275-7240360 05 13 52.76 -72 40 36.0 11.11 0.40 24.9 121.3 3
J05135366-6703486 05 13 53.67 -67 03 48.6 10.26 0.53 12.21 0.67 325.2 48.4 1 F5?I? 10 RMC 83
J05135895-6642194 05 13 58.95 -66 42 19.5 9.66 0.24 19.0 78.5 3 F8 5 HD 269176
J05140037-6911372 05 14 00.37 -69 11 37.3 9.66 0.38 29.6 120.3 3 G0 5 HD 269224
J05140191-6727069 05 14 01.92 -67 27 07.0 10.92 0.08 11.34 0.10 298.9 100.4 1 B8Ia 37 HD 269195
J05140376-6859320 05 14 03.77 -68 59 32.1 95319 10.93 0.45 12.89 0.80 0.47 44.5 48.7 3
J05140442-6715506 05 14 04.42 -67 15 50.6 10.63 0.17 11.49 0.25 280.7 45.0 1 A9Ia 1 HD 269187
J05140543-6712347 05 14 05.43 -67 12 34.7 7.96 0.72 9.5 68.8 3 K 5 HD 269186
J05140600-6920334 05 14 06.00 -69 20 33.5 95436 12.41 0.02 12.61 0.02 0.09 246.7 78.4 1
J05140696-7133017 05 14 06.96 -71 33 01.8 10.29 0.67 42.7 81.7 3
J05141307-6731006 05 14 13.08 -67 31 00.7 11.61 0.27 2.9 66.5 3
J05141572-7223326 05 14 15.73 -72 23 32.7 10.10 0.66 34.5 88.2 3
J05141885-6715493 05 14 18.86 -67 15 49.3 8.93 0.81 12.21bbReference for colors and magnitudes = Oestreicher et al. 1997 1.61bbReference for colors and magnitudes = Oestreicher et al. 1997 296.2 46.1 1 SP77 37-33
J05142228-7031529 05 14 22.28 -70 31 53.0 96287 10.50 0.42 12.27 0.73 0.39 11.2 43.1 3
J05143281-7035058 05 14 32.82 -70 35 05.9 8.06 0.16 8.88 0.34 -3.1 45.5 3 F0IV 17 HD 34900
J05143646-6635270 05 14 36.46 -66 35 27.0 10.87 0.41 53.6 133.6 3
J05143684-6625495 05 14 36.85 -66 25 49.5 11.35 0.33 13.9 94.0 3
J05144430-7126087 05 14 44.30 -71 26 08.7 10.75 0.36 -15.0 90.5 3 G0 5 HD 269283
J05144450-6637023 05 14 44.50 -66 37 02.3 9.27 0.64 15.7 119.7 3 K7 5 HD 269197
J05144598-7240351 05 14 45.98 -72 40 35.1 8.85 0.65 82.5 106.5 3 K5 5 HD 271133
J05144707-6812435 05 14 47.08 -68 12 43.6 9.00 0.34 8.2 81.4 3 G0 5 HD 269226
J05144725-6715014 05 14 47.26 -67 15 01.4 11.03 0.33 12.6 76.5 3
J05145222-6702364 05 14 52.22 -67 02 36.4 10.51 0.42 11.8 48.2 3
J05145413-7017055 05 14 54.13 -70 17 05.5 6.78 0.73 16.7 74.8 3 K0/1III 17 HD 34944
J05145855-6625182 05 14 58.56 -66 25 18.3 11.54 0.28 0.9 63.1 3
J05145960-7119558 05 14 59.60 -71 19 55.8 11.12 0.29 34.9 100.3 3
J05150227-7136020 05 15 02.27 -71 36 02.1 8.75 0.55 -13.4 112.4 3 G5 5 HD 269293
J05150326-7211454 05 15 03.27 -72 11 45.4 11.24 0.31 10.3 70.1 3
J05150627-6806331 05 15 06.28 -68 06 33.2 9.78 0.68 2.4 82.7 3
J05151061-6716332 05 15 10.62 -67 16 33.2 10.52 0.11 10.44 0.25 99.4 15.4 3 A3V 1 HD 269218
J05151669-6729266 05 15 16.69 -67 29 26.7 9.89 0.71 13.2 77.8 3
J05151793-7119545 05 15 17.93 -71 19 54.5 10.67 0.53 3.6 91.0 3
J05152026-7127000 05 15 20.26 -71 27 00.1 10.04 0.33 3.8 80.3 3 F8 5 HD 269296
J05152374-6706164 05 15 23.74 -67 06 16.4 9.30 0.66 6.4 66.1 3
J05152408-7117039 05 15 24.08 -71 17 04.0 11.25 0.36 23.9 110.9 3
J05152907-7223536 05 15 29.07 -72 23 53.6 6.03 0.65 -21.0 82.0 3 K0III 17 HD 35107
J05153087-6739249 05 15 30.88 -67 39 25.0 11.18 0.39 17.1 124.8 3
J05153794-7244061 05 15 37.95 -72 44 06.1 11.11 0.41 -41.4 111.0 3
J05153858-6722395 05 15 38.58 -67 22 39.5 8.95 0.70 34.9 83.7 3
J05154069-6745447 05 15 40.69 -67 45 44.8 9.24 0.68 16.6 68.0 3 K5 5 HD 269243
J05154271-6803105aaThese stars were imaged twice and their results were averaged. 05 15 42.71 -68 03 10.6 9.81 0.72 68.0 61.1 3
J05154743-7242321 05 15 47.44 -72 42 32.1 9.15 0.63 -10.6 115.7 3 K0 5 HD 271149
J05154964-7122505 05 15 49.64 -71 22 50.5 9.03 0.65 1.8 110.8 3 K7 5 HD 269307
J05155427-6817223 05 15 54.27 -68 17 22.4 10.72 0.33 38.9 76.5 3 K5 5 HD 269259
J05155800-6952403 05 15 58.01 -69 52 40.3 101751 9.17 0.77 12.01 1.15 0.60 121.3 17.2 3
J05160578-6745469 05 16 05.78 -67 45 46.9 11.11 0.34 1.3 102.2 3
J05160594-6633541 05 16 05.94 -66 33 54.2 7.49 0.66 21.2 131.5 3 G0 5 HD 269233
J05160610-6629537 05 16 06.10 -66 29 53.7 11.15 0.32 19.2 126.2 3
J05160743-7235588 05 16 07.44 -72 35 58.8 9.12 0.51 -24.8 96.2 3 K0 5 HD 271152
J05161495-6808002aaThese stars were imaged twice and their results were averaged. 05 16 14.95 -68 08 00.3 8.12 0.16 8.86 0.26 26.9 23.3 3 A7IV-V 16 HD 35026
J05161496-6627513 05 16 14.96 -66 27 51.3 11.17 0.26 12.45 0.47 28.4 84.7 3 F4 37 SOI 41
J05161688-7140402 05 16 16.88 -71 40 40.2 11.23 0.28 12.7 88.4 3 G 5 HD 269318
J05161932-6715161 05 16 19.33 -67 15 16.2 7.64 0.87 -1.7 66.0 3 K2 5 HD 269252
J05162185-6948298 05 16 21.85 -69 48 29.8 9.72 0.21 14.0 44.0 3 G0 5 HD 269294
J05162204-6608116 05 16 22.04 -66 08 11.6 10.20 0.63 35.4 79.8 3
J05162382-6831579 05 16 23.82 -68 31 58.0 9.05 0.70 50.6 88.3 3
J05162999-7135349 05 16 29.99 -71 35 34.9 9.94 0.66 -25.6 81.9 3
J05163116-6807229 05 16 31.16 -68 07 23.0 10.42 0.20 11.45 0.40 4.9 59.5 3 F0/5 33 HD 269271
J05163764-6632255 05 16 37.64 -66 32 25.6 10.42 0.75 99.4 78.4 3
J05164382-6811142 05 16 43.82 -68 11 14.3 8.55 0.13 9.08 0.20 19.5 20.3 3 A5III-IV 16 HD 35094
J05164489-6607270 05 16 44.89 -66 07 27.0 0.70 120.0 127.1 3
J05164557-6852598 05 16 45.58 -68 52 59.8 104739 10.54 0.27 11.82 0.52 0.29 3.0 76.4 3
J05165673-6940267 05 16 56.73 -69 40 26.7 105426 8.59 0.86 11.61 1.35 0.64 54.3 27.8 3 K7 5 HD 269305
J05165830-6819018 05 16 58.30 -68 19 01.8 11.33 0.30 -2.0 95.4 3
J05165896-6809512 05 16 58.97 -68 09 51.3 9.58 0.21 10.56 0.37 5.4 52.8 3 F2 33 HD 269280
J05165901-6806548 05 16 59.01 -68 06 54.8 11.13 0.37 24.9 115.2 3
J05170018-7213009 05 17 00.19 -72 13 00.9 0.51 -5.9 143.0 3
J05171022-6808046 05 17 10.23 -68 08 04.7 9.24 0.13 9.73 0.19 21.2 17.8 3 A2III 17 HD 35140
J05171113-6750144 05 17 11.13 -67 50 14.4 10.77 0.47 -9.9 140.6 3
J05171118-6746240 05 17 11.19 -67 46 24.1 10.02 0.34 20.8 112.5 3 F5 5 HD 269277
J05172303-6828190 05 17 23.04 -68 28 19.1 8.75 0.08 9.16 0.14 22.4 18.1 3 A5IV 16 HD 35183
J05172733-6902538 05 17 27.34 -69 02 53.9 107304 9.88 0.92 13.23 1.38 0.76 162.7 67.3 2
J05172791-6849214 05 17 27.92 -68 49 21.5 107323 10.38 0.58 12.75 1.01 0.50 35.6 77.9 3
J05173186-6625175 05 17 31.87 -66 25 17.6 10.22 0.57 22.8 135.7 3
J05173217-7141412 05 17 32.18 -71 41 41.3 9.41 0.86 132.9 80.8 3
J05173283-6945074 05 17 32.83 -69 45 07.5 107631 11.29 0.09 11.84 0.14 0.11 261.0 19.8 1 A1Ia 1 HD 269316
J05173580-6821472 05 17 35.80 -68 21 47.2 10.06 0.16 10.89 0.32 16.5 33.1 3 F0 33 HD 269301
J05173852-6747360 05 17 38.53 -67 47 36.0 10.89 0.39 -12.2 121.7 3
J05174636-6950571 05 17 46.37 -69 50 57.2 10.59 0.13 10.74 -0.03 230.7 47.2 1 B0: 30 HD 269327
J05174805-7144027 05 17 48.05 -71 44 02.8 10.26 0.34 38.2 74.5 3
J05174845-6845594 05 17 48.45 -68 45 59.5 108605 9.65 0.68 12.24 1.09 0.58 49.0 104.8 3 F8 5 HD 271167
J05175264-6813241 05 17 52.65 -68 13 24.1 10.17 0.61 -1.7 137.2 3
J05175495-6630015 05 17 54.96 -66 30 01.6 9.89 0.60 37.4 72.8 3
J05175916-6831277 05 17 59.16 -68 31 27.7 9.79 0.11 10.46 0.26 13.8 25.1 3 A7V 1 HD 269310
J05175981-6916146 05 17 59.81 -69 16 14.6 11.91 0.05 274.9 67.3 1 A2I 26
J05180182-6933377 05 18 01.83 -69 33 37.8 9.20 0.27 10.31 0.25 196.9 31.0 2 A5Ia0 1 HD 269331
J05180208-6821195 05 18 02.08 -68 21 19.6 8.79 0.10 9.25 0.20 27.8 14.3 3 kA1mA8 17 HD 35293
J05180327-6827567 05 18 03.27 -68 27 56.7 6.45 0.53 1.8 102.0 3 G1/3IV: 17 HD 35294
J05180355-6951272 05 18 03.55 -69 51 27.2 109566 10.86 0.37 12.44 0.67 0.39 -1.7 42.8 3 G0 32
J05180393-6737520 05 18 03.94 -67 37 52.1 10.52 0.33 33.1 92.9 3 F 5 HD 269304
J05180403-7220378 05 18 04.04 -72 20 37.9 10.10 0.74 22.2 113.5 3
J05180585-6629000 05 18 05.86 -66 29 00.1 10.44 0.35 -2.7 151.0 3
J05181198-6825363 05 18 11.98 -68 25 36.4 9.74 0.13 15.6 25.7 3 A5 33 HD 269312
J05181496-7121151 05 18 14.96 -71 21 15.1 11.06 0.29 30.0 102.4 3
J05181917-6826251 05 18 19.17 -68 26 25.2 11.20 0.33 1.3 79.0 3
J05181920-6911406 05 18 19.21 -69 11 40.6 11.30 0.04 11.24 -0.09 276.2 37.5 1 WN+BI 14 HD 269333
J05182248-6828015 05 18 22.49 -68 28 01.6 9.66 0.11 10.23 0.23 14.6 20.0 3 A3 33 HD 269319
J05182449-6945465 05 18 24.49 -69 45 46.5 110907 10.46 0.35 12.02 0.61 0.37 -1.7 84.9 3
J05183017-6913140 05 18 30.17 -69 13 14.0 11.57 0.02 11.83 0.04 264.2 73.2 1 A0I 26 Sk-69 99
J05183052-6752351 05 18 30.52 -67 52 35.1 10.22 0.30 -5.9 98.9 3 G0 5 HD 269313
J05183863-6945467 05 18 38.64 -69 45 46.8 9.96 0.32 11.23 0.45 276.9 27.8 1 F6Ia 30 HD 269355
J05183869-7229529 05 18 38.70 -72 29 53.0 10.36 0.76 57.6 131.8 3
J05184031-7241397 05 18 40.32 -72 41 39.8 6.28 0.90 -24.8 81.1 3 K2III: 17 HD 35581
J05184075-6802308 05 18 40.76 -68 02 30.8 11.11 0.41 62.2 111.6 3
J05184169-6822292 05 18 41.69 -68 22 29.2 9.95 0.59 8.7 79.8 3
J05184237-6802071 05 18 42.38 -68 02 07.2 9.83 0.11 19.3 23.1 3 A9V 17 HD 35360
J05184360-6807336aaThese stars were imaged twice and their results were averaged. 05 18 43.61 -68 07 33.7 11.86 0.05 12.25 0.08 295.1 62.3 1 B8I 30 Sk-68 68
J05184461-6739341 05 18 44.61 -67 39 34.1 9.81 0.18 15.2 19.0 3 kA1mF0 17 HD 35359
J05184872-6926379 05 18 48.72 -69 26 38.0 112387 9.20 0.84 12.33 1.30 0.66 22.5 56.2 3
J05185270-6832354 05 18 52.70 -68 32 35.5 11.02 0.36 17.8 81.9 3
J05185291-6834133 05 18 52.91 -68 34 13.3 9.84 0.08 10.24 0.23 10.2 26.0 3 A3/5 33 HD 269338
J05185943-6844179 05 18 59.44 -68 44 18.0 7.22 0.63 7.6 88.0 3 G8III 17 HD 35447
J05190060-6736403 05 19 00.60 -67 36 40.4 10.23 0.82 30.1 97.7 3
J05190484-6941055 05 19 04.85 -69 41 05.5 113490 12.26 0.01 12.46 0.01 0.06 248.1 30.1 1 B7I 30 GV 261
J05190521-6830457 05 19 05.22 -68 30 45.7 10.98 0.29 12.30 0.50 -0.8 97.7 3 F8: 33 NGC 1901 19
J05190742-7122159 05 19 07.42 -71 22 15.9 10.16 0.73 -0.6 93.6 3
J05191075-6834516 05 19 10.76 -68 34 51.7 9.25 0.15 9.88 0.26 13.0 20.4 3 A2III 17 HD 35462
J05191172-7236412 05 19 11.72 -72 36 41.3 11.02 0.39 35.4 94.3 3
J05191579-6856039 05 19 15.79 -68 56 03.9 114232 9.89 0.90 13.32 1.34 0.77 271.2 50.3 1
J05191778-6855160 05 19 17.78 -68 55 16.0 114357 11.68 0.26 13.02 0.48 0.30 31.3 79.1 3
J05191895-6918395 05 19 18.96 -69 18 39.5 114445 10.29 0.33 11.73 0.57 0.34 11.2 79.8 3 G0 32 HD 269369
J05191943-7237392 05 19 19.44 -72 37 39.2 10.55 0.59 4.2 72.0 3
J05192117-7231414 05 19 21.17 -72 31 41.4 9.08 0.67 9.1 81.4 3 K0 5 HD 271188
J05193050-6841096 05 19 30.51 -68 41 09.7 115273 9.76 0.61 12.13 1.24 0.59 295.5 42.6 1 G1Ia? 10 HD 269362
J05193188-6759454 05 19 31.89 -67 59 45.4 10.77 0.32 39.3 76.8 3
J05193250-6745285 05 19 32.50 -67 45 28.5 10.87 0.39 -2.5 107.1 3
J05193513-6741251 05 19 35.13 -67 41 25.2 10.41 0.39 17.0 131.9 3 K5 5 HD 269350
J05194249-7124434 05 19 42.49 -71 24 43.4 10.02 0.62 -6.4 97.0 3
J05194974-6807215 05 19 49.74 -68 07 21.6 9.49 0.39 7.4 84.1 3 G5 5 HD 269365
J05195179-6953084 05 19 51.80 -69 53 08.4 116798 11.36 0.17 12.12 0.24 0.18 256.2 44.5 1 B3I 30 HD 269392
J05195270-6944557 05 19 52.70 -69 44 55.7 116862 10.23 0.41 11.94 0.73 0.40 18.8 105.4 3
J05195673-6745528 05 19 56.73 -67 45 52.9 10.43 0.35 28.2 138.3 3 F8 5 HD 269359
J05195956-6739069 05 19 59.57 -67 39 07.0 8.72 0.58 -8.2 159.3 3 K0 5 HD 269360
J05200217-6803482 05 20 02.18 -68 03 48.2 9.85 0.51 294.2 45.3 1 M0 5 HD 269374
J05200240-6733308 05 20 02.40 -67 33 30.8 9.61 0.66 71.8 76.4 3
J05200423-6758306aaThese stars were imaged twice and their results were averaged. 05 20 04.23 -67 58 30.6 9.25 0.31 23.6 77.1 3 F8 5 HD 269375
J05200621-6930019 05 20 06.21 -69 30 02.0 117855 10.26 0.83 13.29 1.21 0.64 109.5 35.9 3
J05201136-6802262aaThese stars were imaged twice and their results were averaged. 05 20 11.36 -68 02 26.2 9.98 0.25 11.5 52.0 3 G0 5 HD 269381
J05201331-6850093 05 20 13.31 -68 50 09.3 118396 10.59 0.63 13.02 1.08 0.55 32.6 63.1 3
J05201613-6930040 05 20 16.14 -69 30 04.0 118613 9.32 0.56 11.48 0.88 0.48 -3.4 69.8 3 F5 5 HD 269395
J05202372-6802182 05 20 23.73 -68 02 18.2 9.31 0.68 93.2 120.0 3
J05202897-7111549 05 20 28.97 -71 11 54.9 7.82 0.68 -13.0 105.3 3 K2 5 HD 269413
J05203078-7219385 05 20 30.78 -72 19 38.6 11.29 0.35 67.7 83.2 3
J05203433-6859414 05 20 34.34 -68 59 41.5 120001 11.25 0.35 12.68 0.57 0.35 -1.2 101.9 3
J05204690-7147368 05 20 46.91 -71 47 36.8 11.34 0.33 8.1 79.5 3
J05204690-7247521 05 20 46.90 -72 47 52.1 11.23 0.34 7.5 83.9 3
J05205365-7241451 05 20 53.66 -72 41 45.2 11.11 0.29 2.9 92.6 3
J05205366-6915339 05 20 53.67 -69 15 34.0 7.45 0.59 13.1 96.5 3 K0 5 HD 269403
J05205830-7212135 05 20 58.30 -72 12 13.6 10.70 0.56 4.6 70.4 3
J05210110-7114545 05 21 01.11 -71 14 54.6 8.88 0.74 -15.4 104.8 3 K5 5 HD 269425
J05210161-7213410 05 21 01.62 -72 13 41.0 10.16 0.76 41.0 67.1 3
J05210196-6821151 05 21 01.97 -68 21 15.2 6.36 0.79 9.34 1.28 -2.4 86.2 3 K2III 17 HD 35704
J05210363-6802539aaThese stars were imaged twice and their results were averaged. 05 21 03.64 -68 02 54.0 11.79 0.19 12.50 0.15 298.9 74.7 1 B6I 30 Sk-68 71
J05210432-7114025 05 21 04.33 -71 14 02.5 10.84 0.23 46.2 59.9 3 G0 5 HD 269428
J05210664-7150169 05 21 06.64 -71 50 16.9 10.42 0.41 16.5 105.9 3 K0 5 HD 271209
J05210783-6757361 05 21 07.84 -67 57 36.2 10.19 0.69 126.3 103.4 3
J05211290-7243467 05 21 12.91 -72 43 46.7 10.91 0.28 13.7 70.0 3
J05211724-6733159 05 21 17.25 -67 33 15.9 10.96 0.31 -2.3 68.3 3 K 5 HD 269396
J05212298-6719509 05 21 22.98 -67 19 51.0 10.29 0.31 -3.9 82.3 3 F5 5 HD 269397
J05212400-7136241 05 21 24.00 -71 36 24.1 10.94 0.37 -3.0 130.9 3
J05212537-6717051 05 21 25.37 -67 17 05.2 10.18 0.50 1.6 93.7 3
J05212795-6810071aaThese stars were imaged twice and their results were averaged. 05 21 27.96 -68 10 07.2 123781 11.14 0.33 12.53 0.53 0.33 -1.0 90.6 3
J05213157-6827241 05 21 31.58 -68 27 24.2 124041 10.95 0.43 12.63 0.73 0.39 36.5 66.5 3
J05213756-6706141 05 21 37.56 -67 06 14.1 11.53 0.00 11.58 -0.01 324.9 72.4 1 B5Ia 12 HD 269400
J05213757-6926031 05 21 37.57 -69 26 03.2 124441 9.52 0.65 12.06 1.02 0.55 -9.4 24.3 3
J05213781-7134226 05 21 37.81 -71 34 22.7 10.31 0.81 86.5 62.8 3
J05214676-6756422 05 21 46.76 -67 56 42.2 9.79 0.57 10.7 86.8 3
J05214694-7119437 05 21 46.95 -71 19 43.8 8.05 0.82 243.4 40.9 1
J05215221-6910343 05 21 52.22 -69 10 34.4 125467 11.32 0.33 12.65 0.59 0.35 34.6 80.7 3
J05215346-7246458 05 21 53.47 -72 46 45.8 10.09 0.31 8.3 73.1 3 G0 5 HD 271228
J05215404-6754528 05 21 54.05 -67 54 52.9 11.83 0.06 11.95 0.00 307.6 34.3 1 B2.5 30 HD 269412
J05215672-6926543 05 21 56.72 -69 26 54.3 11.45 0.04 11.58 0.01 305.9 14.0 1 B8I 30 HD 269433
J05220160-6658533 05 22 01.60 -66 58 53.3 10.71 0.31 2.6 76.1 3
J05220168-6821349 05 22 01.69 -68 21 35.0 8.78 0.65 38.4 88.0 3 K2 5 HD 269416
J05220207-6930388 05 22 02.07 -69 30 38.8 126085 10.08 0.60 12.35 0.96 0.51 20.9 55.2 3
J05220428-6848504 05 22 04.28 -68 48 50.4 126251 10.77 0.59 13.15 0.89 0.53 45.5 82.0 3
J05220648-6851301 05 22 06.49 -68 51 30.2 126406 10.93 0.26 12.12 0.46 0.28 19.9 70.7 3 G5 5 HD 269427
J05220770-7147065 05 22 07.70 -71 47 06.5 11.09 0.37 39.0 66.1 3
J05220861-7231256 05 22 08.62 -72 31 25.6 0.59 11.2 86.1 3
J05221089-6917242 05 22 10.89 -69 17 24.3 126683 8.45 0.91 11.60 1.24 0.67 91.3 101.9 3 K2V 25
J05221259-7230290 05 22 12.59 -72 30 29.1 9.92 0.69 28.1 105.8 3
J05221281-7043393 05 22 12.82 -70 43 39.4 126817 10.13 0.68 12.73 1.07 0.54 18.6 115.4 3
J05221347-7156183 05 22 13.47 -71 56 18.4 10.10 0.15 -16.3 14.4 3 A3 5 HD 271227
J05221585-6951201 05 22 15.86 -69 51 20.1 127048 10.12 0.62 12.57 1.00 0.55 -8.9 108.8 3
J05221844-6654590 05 22 18.45 -66 54 59.0 10.80 0.33 12.26 0.49 301.3 33.0 1 F6:Ia 1 GV 274
J05222284-6722092 05 22 22.84 -67 22 09.3 10.60 0.12 27.2 27.2 3 F0 5 HD 269417
J05222447-7044023 05 22 24.48 -70 44 02.3 127641 10.71 0.36 12.19 0.54 0.33 24.4 117.2 3 F8 5 HD 269456
J05222767-6808518 05 22 27.67 -68 08 51.8 9.27 0.91 198.8 61.0 2
J05223096-7107116 05 22 30.96 -71 07 11.6 10.10 0.72 60.2 136.4 3
J05223105-6750592 05 22 31.05 -67 50 59.2 10.99 0.31 1.6 76.4 3
J05223197-6717241 05 22 31.98 -67 17 24.1 12.22 0.05 12.44 0.02 291.8 80.6 1 B6I 30 Sk-67 88
J05223630-6859524 05 22 36.30 -68 59 52.5 128500 9.53 0.74 12.38 1.16 0.62 25.1 122.3 3
J05223754-7052256 05 22 37.55 -70 52 25.7 128586 10.28 0.74 13.06 1.12 0.62 61.4 112.7 3
J05223813-6747431 05 22 38.13 -67 47 43.2 9.98 0.85 35.9 51.7 3
J05224569-6950516aaThese stars were imaged twice and their results were averaged. 05 22 45.69 -69 50 51.6 129186 9.77 0.49 11.82 0.95 0.48 254.4 51.6 1
J05224637-7245400 05 22 46.37 -72 45 40.0 11.39 0.32 -13.8 89.6 3
J05224709-6712227 05 22 47.10 -67 12 22.7 11.40 0.12 11.89 0.10 278.7 106.1 1 A1Ia 1 Sk-67 89
J05224995-6948546aaThese stars were imaged twice and their results were averaged. 05 22 49.96 -69 48 54.6 129519 9.20 0.83 12.27 1.24 0.63 26.1 100.0 3
J05225622-6711258 05 22 56.23 -67 11 25.9 9.20 0.28 -4.6 83.0 3 F5 5 HD 269438
J05225670-7147472 05 22 56.71 -71 47 47.3 10.48 0.43 35.9 101.9 3 G5 5 HD 271231
J05225858-7041014 05 22 58.59 -70 41 01.4 8.47 0.66 -1.3 155.1 3 K0 5 HD 269472
J05225979-6803512 05 22 59.80 -68 03 51.2 9.19 0.12 24.9 19.0 3 A2IV/V 17 HD 35978
J05230467-6807051aaThese stars were imaged twice and their results were averaged. 05 23 04.67 -68 07 05.2 10.61 0.18 -9.2 67.5 3 K5 5 HD 269447
J05230630-7125233 05 23 06.30 -71 25 23.4 11.02 0.37 43.5 88.9 3
J05231281-6722498 05 23 12.82 -67 22 49.8 10.01 0.71 19.3 112.8 3
J05231505-6754103 05 23 15.06 -67 54 10.3 7.61 0.72 19.4 77.3 3 K0 5 HD 269448
J05231641-6725147 05 23 16.42 -67 25 14.8 9.18 0.54 30.1 89.8 3
J05231686-7058264 05 23 16.87 -70 58 26.5 131299 11.09 0.32 12.56 0.57 0.33 6.6 81.4 3
J05232000-6817377 05 23 20.00 -68 17 37.8 10.32 0.18 4.8 55.0 3 F2 5 HD 269457
J05232178-6849151 05 23 21.78 -68 49 15.1 131489 10.58 0.25 11.89 0.48 0.30 28.1 36.2 3 K0 5 HD 269465
J05232209-6907001 05 23 22.10 -69 07 00.1 131499 11.48 0.28 12.90 0.55 0.34 64.5 70.6 3
J05232350-6939238 05 23 23.51 -69 39 23.8 11.91 0.16 277.1 13.7 1 A3Ib 37 SOI 605
J05232356-6831461 05 23 23.56 -68 31 46.2 131535 9.26 0.61 11.62 1.02 0.54 -7.6 101.3 3 K2 5 HD 269464
J05232368-6823208 05 23 23.68 -68 23 20.8 131537 10.84 0.19 11.97 0.45 0.29 3.6 75.5 3 G5 5 HD 269461
J05233620-6909497 05 23 36.20 -69 09 49.7 131777 10.53 0.66 13.18 1.08 0.58 22.5 102.6 3
J05233985-7120414 05 23 39.85 -71 20 41.5 11.07 0.44 -13.2 80.3 3
J05234389-6742436 05 23 43.90 -67 42 43.6 9.87 0.70 30.3 81.5 3
J05234659-6901038 05 23 46.60 -69 01 03.8 131963 9.50 0.80 12.65 1.30 0.70 71.9 74.2 3
J05235100-6745538 05 23 51.01 -67 45 53.9 10.12 0.31 13.3 79.0 3 K2 5 HD 269471
J05235230-6941270 05 23 52.30 -69 41 27.0 12.37 0.02 314.0 27.0 1 B2 30 Sk-69 118
J05235453-6659294 05 23 54.54 -66 59 29.5 10.65 0.46 -4.8 89.0 3
J05235715-7149267 05 23 57.15 -71 49 26.8 10.08 0.92 234.0 50.4 1
J05240060-7143547 05 24 00.61 -71 43 54.7 10.90 0.31 21.4 105.1 3 F5 5 HD 269494
J05240358-7238499 05 24 03.58 -72 38 49.9 10.05 0.31 -1.0 120.1 3 G0 5 HD 271258
J05241367-6623441 05 24 13.67 -66 23 44.1 10.73 0.26 41.4 80.3 3 A5 5 HD 269467
J05241374-6625290 05 24 13.74 -66 25 29.1 11.74 0.18 306.6 100.0 1 B8I 30 Sk-66 81
J05241617-6939310 05 24 16.18 -69 39 31.1 10.34 0.82 268.1 50.1 1
J05241889-6811305 05 24 18.90 -68 11 30.5 8.88 0.61 29.9 158.1 3 K7 5 HD 269480
J05241932-6716581 05 24 19.32 -67 16 58.2 11.56 0.25 34.7 67.3 3
J05242164-6808278 05 24 21.64 -68 08 27.8 10.85 0.30 2.6 72.6 3 F8 5 HD 269482
J05242316-6710137 05 24 23.17 -67 10 13.7 10.35 0.81 6.9 69.4 3
J05242366-6958353 05 24 23.67 -69 58 35.4 10.54 0.55 2.3 92.2 3
J05243241-6829546 05 24 32.41 -68 29 54.6 132820 9.82 0.82 13.00 1.58 0.72 271.4 50.3 1
J05243336-6730076 05 24 33.36 -67 30 07.7 11.14 0.39 85.4 114.8 3
J05243358-7008319 05 24 33.58 -70 08 31.9 10.68 0.63 -38.1 137.8 3
J05243931-6945547 05 24 39.32 -69 45 54.8 10.66 0.37 11.1 81.4 3
J05244191-6834506 05 24 41.92 -68 34 50.6 9.96 0.16 -2.9 16.8 3 A5 5 HD 269489
J05244394-6655146 05 24 43.95 -66 55 14.6 10.33 0.32 62.2 61.1 3
J05244436-6937483 05 24 44.36 -69 37 48.4 11.36 0.17 12.22 0.24 238.4 43.3 1 F0I: 32 GV 288
J05244614-7226112 05 24 46.15 -72 26 11.3 8.05 0.69 -12.5 100.7 3 G5 5 HD 271266
J05244944-6622187 05 24 49.45 -66 22 18.8 10.45 0.50 14.5 99.3 3
J05245203-6618300 05 24 52.04 -66 18 30.1 11.05 0.30 19.5 128.5 3
J05245231-6805419 05 24 52.32 -68 05 42.0 10.38 0.79 26.9 58.2 3
J05250021-6948412 05 25 00.21 -69 48 41.3 9.85 0.79 64.3 98.9 3
J05250024-7144275 05 25 00.25 -71 44 27.5 10.31 0.62 -46.5 93.3 3
J05250444-6729232 05 25 04.45 -67 29 23.3 9.19 0.62 6.9 82.2 3
J05250639-6724089 05 25 06.40 -67 24 09.0 9.29 0.17 19.8 41.1 3 F5 5 HD 269492
J05250683-7138491 05 25 06.84 -71 38 49.2 10.12 0.68 71.6 68.1 3
J05251435-6632489 05 25 14.36 -66 32 48.9 11.05 0.32 -4.5 106.0 3
J05251675-6812450 05 25 16.75 -68 12 45.0 133736 11.00 0.39 12.59 0.67 0.38 16.4 78.3 3 K0 5 HD 269500
J05251845-6714305 05 25 18.45 -67 14 30.6 7.52 0.81 47.4 82.6 3 K7 5 HD 269497
J05252587-7011351 05 25 25.88 -70 11 35.1 8.01 0.55 16.4 114.7 3 K0 5 HD 269520
J05252790-7057341 05 25 27.90 -70 57 34.1 8.64 0.79 -9.9 106.1 3 K5 5 HD 269524
J05252959-6702543 05 25 29.60 -67 02 54.4 11.05 0.41 4.4 57.6 3
J05253046-7117462 05 25 30.46 -71 17 46.2 8.01 0.66 -11.3 131.8 3 K0 5 HD 269530
J05253072-7130494 05 25 30.73 -71 30 49.4 11.08 0.28 35.5 56.8 3 F8 5 HD 269531
J05253462-7104336 05 25 34.62 -71 04 33.6 10.69 0.57 2.3 58.7 3
J05253505-6720596 05 25 35.05 -67 20 59.7 11.18 0.36 19.9 97.6 3
J05253819-7229361 05 25 38.20 -72 29 36.1 9.72 0.48 17.0 111.7 3 G0 5 HD 271280
J05254109-6830238 05 25 41.10 -68 30 23.8 134298 11.43 0.25 12.68 0.46 0.32 49.0 72.2 3 K5 5 HD 269514
J05254511-7005440 05 25 45.12 -70 05 44.0 10.36 0.29 24.4 114.9 3 F8 5 HD 269528
J05254633-7009547 05 25 46.33 -70 09 54.8 9.96 0.68 5.1 76.8 3
J05254785-6759164 05 25 47.86 -67 59 16.4 134447 10.47 0.56 12.83 0.95 0.00 4.8 36.8 3
J05254992-6640567 05 25 49.93 -66 40 56.8 9.26 0.79 -15.8 101.2 3
J05255260-6946080 05 25 52.60 -69 46 08.1 11.23 0.22 18.5 87.0 3
J05255400-7048421 05 25 54.00 -70 48 42.1 11.33 0.30 -27.5 62.6 3
J05255810-7011078 05 25 58.11 -70 11 07.8 9.03 0.68 41.1 38.6 3
J05260387-6707112 05 26 03.87 -67 07 11.3 134903 10.84 0.37 12.32 0.55 0.00 12.8 25.6 3
J05260430-6626496 05 26 04.30 -66 26 49.6 7.91 0.23 1.7 80.0 3 F5V 17 HD 36356
J05260936-7228371 05 26 09.36 -72 28 37.1 7.20 0.64 38.1 93.3 3 G8III 17 HD 36637
J05261181-7133407 05 26 11.82 -71 33 40.7 11.38 0.02 11.61 0.05 246.9 73.4 1 B5Ia 13 HD 269547
J05261447-6956166 05 26 14.48 -69 56 16.6 11.32 0.25 26.8 129.3 3
J05261498-6640023 05 26 14.98 -66 40 02.4 12.31 0.01 12.40 0.02 307.7 82.0 1 B8I 30 Sk-66 92
J05261601-7043248 05 26 16.02 -70 43 24.8 9.08 0.36 -19.3 89.0 3 G0 5 HD 269543
J05262376-7116494 05 26 23.77 -71 16 49.5 9.16 0.64 -5.2 123.2 3 K2 5 HD 269550
J05262598-6612114 05 26 25.98 -66 12 11.5 10.89 0.28 12.11 0.32 295.5 83.3 1 A2I 30 Sk-66 94
J05262674-7104474 05 26 26.74 -71 04 47.5 9.41 0.68 7.3 85.8 3
J05262864-6626438 05 26 28.64 -66 26 43.8 9.95 0.27 6.0 66.0 3 G0 5 HD 269527
J05263204-6956291 05 26 32.05 -69 56 29.2 11.30 0.34 10.7 75.7 3
J05263410-6806016 05 26 34.11 -68 06 01.7 9.42 0.21 8.3 66.5 3 F5 5 HD 269539
J05264079-7044186 05 26 40.79 -70 44 18.6 8.18 0.32 25.0 81.1 3 F6/7V 17 HD 36621
J05264660-6641588 05 26 46.60 -66 41 58.8 12.30 0.04 12.43 0.02 311.1 113.3 1 B8:I 30 Sk-66 95
J05264679-6640571 05 26 46.79 -66 40 57.1 7.77 0.78 29.4 66.7 3 K0 5 HD 269537
J05265200-7012553 05 26 52.01 -70 12 55.3 10.38 0.32 0.1 109.4 3 A5 5 HD 269558
J05265340-7135090 05 26 53.41 -71 35 09.1 9.86 0.27 -11.8 112.1 3 G0 5 HD 269565
J05265532-6853513 05 26 55.33 -68 53 51.3 136959 10.54 0.57 12.92 0.94 0.52 178.4 100.7 2
J05265737-6641020 05 26 57.37 -66 41 02.0 10.79 0.33 10.3 80.9 3
J05270061-6759398 05 27 00.62 -67 59 39.8 137194 10.44 0.38 12.02 0.54 0.37 60.3 34.8 3 K0 5 HD 269552
J05270354-7058131 05 27 03.55 -70 58 13.1 10.49 0.30 -8.4 99.9 3 F8 5 HD 269564
J05270561-6830090 05 27 05.62 -68 30 09.1 7.21 0.73 18.0 96.8 3 G5 5 HD 269556
J05271187-7123345 05 27 11.87 -71 23 34.5 10.84 0.32 -2.1 119.3 3
J05271653-7014006 05 27 16.54 -70 14 00.7 9.67 0.23 27.2 129.2 3 G0 5 HD 269570
J05272314-6849394 05 27 23.15 -68 49 39.4 138221 9.52 0.65 12.00 0.88 0.50 66.8 83.9 3
J05272461-6948041 05 27 24.61 -69 48 04.2 10.95 0.29 21.2 101.0 3
J05273468-7146311 05 27 34.68 -71 46 31.2 10.20 0.26 -11.7 93.2 3 G0 5 HD 271300
J05273699-6910370 05 27 36.99 -69 10 37.1 138903 12.37 0.03 12.67 0.04 0.08 270.3 98.2 1
J05273992-7031299 05 27 39.93 -70 31 29.9 9.73 0.09 10.12 0.14 63.2 12.5 3 A0III/IV 17 HD 36751
J05274215-6853394 05 27 42.15 -68 53 39.4 9.88 0.38 17.7 138.8 3
J05274291-6804271 05 27 42.91 -68 04 27.2 6.19 0.62 8.79 1.12 29.6 82.5 3 K0III 6 HD 36650
J05274440-6818074 05 27 44.40 -68 18 07.5 139279 8.80 0.71 11.54 1.16 0.61 39.5 64.0 3 K0 5 HD 269575
J05274627-6617346 05 27 46.28 -66 17 34.7 8.61 0.66 -13.3 116.7 3
J05274641-7057173 05 27 46.41 -70 57 17.3 11.35 0.20 2.7 50.4 3 F5 5 HD 269589
J05274856-7007266 05 27 48.56 -70 07 26.7 12.41 0.02 12.84 0.07 223.6 68.0 1 A2I 30 HD 269585
J05275120-6900553 05 27 51.20 -69 00 55.3 9.78 0.20 10.70 0.26 235.8 58.4 1 F2I 30 Sk-69 142
J05275361-6901584 05 27 53.62 -69 01 58.5 10.23 0.17 10.81 0.11 248.4 52.3 1 B5:I 30 Sk-69 143
J05275397-6632322 05 27 53.97 -66 32 32.3 11.02 0.45 -21.4 109.5 3
J05275455-6638278 05 27 54.55 -66 38 27.9 8.89 0.57 38.2 89.6 3 G0 5 HD 269573
J05275533-6906322 05 27 55.33 -69 06 32.3 139787 12.13 0.07 12.21 0.02 0.05 268.4 69.6 1
J05275906-6700485 05 27 59.06 -67 00 48.6 10.21 0.60 8.3 59.5 3
J05275939-6848400 05 27 59.40 -68 48 40.1 139973 11.25 0.30 12.51 0.41 0.29 295.4 29.0 1
J05280046-6818517 05 28 00.47 -68 18 51.8 140025 10.21 0.66 12.82 1.04 0.57 -35.5 119.5 3
J05280082-6946420 05 28 00.83 -69 46 42.1 11.15 0.15 24.6 56.4 3 F5 5 HD 269590
J05280399-6659471aaThese stars were imaged twice and their results were averaged. 05 28 04.00 -66 59 47.1 9.71 0.30 1.1 67.9 3 F2 5 HD 269580
J05280556-6934084 05 28 05.57 -69 34 08.4 10.93 0.35 -16.4 91.5 3
J05280658-7143408 05 28 06.58 -71 43 40.9 10.73 0.57 85.1 114.8 3
J05281364-7027516 05 28 13.64 -70 27 51.6 11.25 0.28 35.9 68.5 3 K0 5 HD 269600
J05281727-6845597 05 28 17.28 -68 45 59.7 140859 11.62 0.23 12.73 0.42 0.26 3.1 52.1 3
J05281778-6904185 05 28 17.79 -69 04 18.5 10.23 0.33 11.37 0.29 250.9 46.0 1 F0I 30 Sk-69 145
J05282004-6702194aaThese stars were imaged twice and their results were averaged. 05 28 20.04 -67 02 19.4 141010 11.59 0.12 12.22 0.07 0.12 288.4 81.0 1 A4I 30 HD 269591
J05282196-6859482 05 28 21.97 -68 59 48.2 10.24 0.27 11.45 0.39 229.3 40.4 1 F5Ia 30 Sk-69 147
J05282530-6957151 05 28 25.30 -69 57 15.2 10.82 0.54 17.3 83.7 3
J05282792-6912573 05 28 27.93 -69 12 57.3 141377 8.38 0.59 10.93 1.61 0.70 266.6 39.9 1 K0I 25 Sk-69 148
J05282884-7010569 05 28 28.85 -70 10 57.0 9.54 0.67 93.2 70.6 3
J05283065-6946185 05 28 30.66 -69 46 18.5 11.14 0.38 51.6 116.3 3
J05283132-7026346 05 28 31.33 -70 26 34.6 11.41 0.26 23.6 90.2 3
J05283137-6853557 05 28 31.38 -68 53 55.8 10.28 0.11 10.74 0.13 264.7 62.7 1 A1Ia0 1 HD 269604
J05283205-6912030 05 28 32.06 -69 12 03.1 141603 11.81 0.14 12.27 0.08 0.09 263.1 86.2 1 A0I 30 Sk-69 150
J05283412-6823365 05 28 34.12 -68 23 36.6 141685 10.96 0.43 12.80 0.80 0.44 27.1 89.3 3
J05283691-6636403 05 28 36.92 -66 36 40.3 10.42 0.62 27.8 72.1 3
J05283810-6647242 05 28 38.10 -66 47 24.2 11.06 0.26 2.1 76.4 3
J05284137-6849008 05 28 41.38 -68 49 00.9 9.45 0.29 10.67 0.60 36.5 81.4 3 G0 5 HD 269609
J05284273-6824022 05 28 42.73 -68 24 02.3 142083 10.34 0.61 12.78 1.05 0.57 24.8 90.1 3
J05284617-6956260 05 28 46.17 -69 56 26.0 10.86 0.38 22.5 148.6 3
J05284670-6925539 05 28 46.71 -69 25 54.0 142264 11.19 0.39 12.74 0.65 0.32 281.4 44.6 1
J05284917-6659362aaThese stars were imaged twice and their results were averaged. 05 28 49.17 -66 59 36.3 11.48 0.03 11.43 -0.02 300.4 69.0 1 B7Ia 13 HD 269606
J05285595-6859004 05 28 55.96 -68 59 00.5 11.46 0.14 12.17 0.17 260.6 81.1 1 A5:I 30 GV 323
J05290363-7034432 05 29 03.63 -70 34 43.2 10.04 0.84 -3.0 91.5 3
J05290418-6644424 05 29 04.18 -66 44 42.5 10.96 0.34 24.4 145.9 3
J05290867-6652463aaThese stars were imaged twice and their results were averaged. 05 29 08.68 -66 52 46.3 7.80 0.71 22.6 140.7 3 K0 5 HD 269614
J05290910-6901396 05 29 09.10 -69 01 39.6 143305 10.99 0.33 12.23 0.46 0.30 30.9 78.2 3
J05291227-6645574aaThese stars were imaged twice and their results were averaged. 05 29 12.28 -66 45 57.4 11.48 0.30 4.2 60.1 3
J05291357-7024147 05 29 13.58 -70 24 14.8 10.51 0.62 66.5 52.4 3
J05291676-6701141aaThese stars were imaged twice and their results were averaged. 05 29 16.77 -67 01 14.1 11.25 0.27 27.1 105.0 3
J05291791-7136404 05 29 17.91 -71 36 40.4 10.98 0.29 3.5 87.8 3 G 5 HD 269622
J05291884-6813369 05 29 18.85 -68 13 36.9 143773 11.33 0.25 12.52 0.42 0.28 35.0 53.1 3
J05292039-6653139aaThese stars were imaged twice and their results were averaged. 05 29 20.39 -66 53 13.9 11.14 0.21 47.6 35.7 3 A5 5 HD 269617
J05292502-6828010 05 29 25.02 -68 28 01.1 10.81 0.10 11.34 0.13 263.2 38.6 1 B9Ia 1 HD 269619
J05292797-7038470 05 29 27.98 -70 38 47.0 9.08 0.80 99.1 81.8 3 K7 5 HD 269625
J05293091-7015196 05 29 30.91 -70 15 19.7 9.99 0.26 23.7 141.2 3 G5 5 HD 269626
J05293134-6628104 05 29 31.34 -66 28 10.5 11.27 0.23 30.2 66.1 3
J05293339-6926423 05 29 33.39 -69 26 42.3 9.04 0.41 3.9 109.4 3 G5 5 HD 269627
J05293400-6712259aaThese stars were imaged twice and their results were averaged. 05 29 34.01 -67 12 25.9 144561 8.91 0.69 11.45 1.07 0.57 15.0 110.3 3 K7 5 HD 269623
J05293404-6854147 05 29 34.05 -68 54 14.7 144567 12.56 0.01 12.67 0.03 0.04 275.9 77.4 1 B3:I 30 Sk-68 103
J05294716-6713575aaThese stars were imaged twice and their results were averaged. 05 29 47.16 -67 13 57.6 145298 9.55 0.62 12.08 0.85 0.53 30.5 58.9 3
J05295277-6636344 05 29 52.77 -66 36 34.4 10.40 0.26 14.0 89.2 3 F5 5 HD 269630
J05295616-6646486aaThese stars were imaged twice and their results were averaged. 05 29 56.16 -66 46 48.7 10.01 0.66 86.4 107.8 3
J05295650-6727308 05 29 56.50 -67 27 30.9 145807 12.11 0.04 12.49 0.05 0.11 300.2 100.6 1 A0Ia 1 HD 269634
J05295780-6855190 05 29 57.80 -68 55 19.1 8.70 0.65 30.1 157.2 3
J05300077-6958319 05 30 00.78 -69 58 32.0 5.13 0.86 33.6 69.0 3 K2III 15 HD 37122
J05300124-6714368aaThese stars were imaged twice and their results were averaged. 05 30 01.25 -67 14 36.9 11.64 0.08 12.01 0.07 299.1 105.9 1 A2Iab 8 HD 269638
J05300226-6702452aaThese stars were imaged twice and their results were averaged. 05 30 02.27 -67 02 45.2 146126 7.97 0.78 11.17 1.80 0.84 314.6 41.8 1 K5I 22
J05300709-6715431aaThese stars were imaged twice and their results were averaged. 05 30 07.10 -67 15 43.2 11.22 0.07 11.46 0.05 301.1 108.1 1 B7Ia+ 13 HD 269639
J05300805-6824329 05 30 08.06 -68 24 32.9 146455 10.82 0.27 12.27 0.55 0.33 -4.3 124.5 3 F8 5 HD 269641
J05300849-6705368aaThese stars were imaged twice and their results were averaged. 05 30 08.49 -67 05 36.8 146480 9.91 0.75 12.76 1.11 0.64 -8.6 136.9 3
J05301061-7045120 05 30 10.62 -70 45 12.0 10.57 0.28 -0.2 98.9 3 G5 5 HD 269643
J05301228-7158143 05 30 12.29 -71 58 14.3 9.81 0.75 -3.1 119.0 3
J05301299-6624336 05 30 12.99 -66 24 33.6 10.27 0.69 16.7 64.5 3
J05301332-6840374 05 30 13.32 -68 40 37.5 146765 9.20 0.71 11.93 1.04 0.58 54.1 121.2 3
J05301486-6735568 05 30 14.86 -67 35 56.8 146857 11.26 0.33 12.80 0.62 0.40 54.8 101.5 3
J05301488-6658549aaThese stars were imaged twice and their results were averaged. 05 30 14.88 -66 58 54.9 12.02 0.03 12.20 0.03 304.8 87.3 1 B8I 30 Sk-67 146
J05301564-6732218 05 30 15.65 -67 32 21.8 11.12 0.03 11.15 -0.01 311.6 100.0 1 B8Ia 13 HD 269644
J05301591-7049464aaThese stars were imaged twice and their results were averaged. 05 30 15.91 -70 49 46.4 6.25 0.66 8.92 1.16 14.7 62.0 3 K1III 15 HD 37181
J05301783-6928594 05 30 17.84 -69 28 59.4 147018 11.56 0.25 12.73 0.43 0.27 -6.0 57.6 3
J05301885-7151310 05 30 18.86 -71 51 31.0 10.60 0.31 8.1 87.2 3 F2 5 HD 271338
J05302127-6936389 05 30 21.28 -69 36 39.0 10.10 0.67 23.1 114.4 3
J05302243-6705059aaThese stars were imaged twice and their results were averaged. 05 30 22.43 -67 05 06.0 147276 8.67 0.90 11.94 1.33 0.71 62.7 108.3 3 K2V 25
J05302256-6919389 05 30 22.57 -69 19 39.0 10.12 0.12 10.69 0.09 255.0 60.8 1 B2.5: 30 HD 269649
J05302289-6919070 05 30 22.90 -69 19 07.1 147308 10.58 0.22 11.92 0.53 0.32 11.2 81.5 3
J05302430-6729126 05 30 24.30 -67 29 12.7 147372 8.63 0.90 11.91 1.31 0.73 55.6 96.7 3 K2V 25
J05302461-7131148 05 30 24.61 -71 31 14.8 10.61 0.61 -11.4 111.0 3
J05302547-6657340aaThese stars were imaged twice and their results were averaged. 05 30 25.47 -66 57 34.1 11.72 0.10 12.29 0.13 280.6 72.5 1 A9I 30 Sk-66 116
J05302839-7011373 05 30 28.39 -70 11 37.3 6.85 0.65 -4.5 81.2 3 K0III 15 HD 37180
J05302968-6637217 05 30 29.68 -66 37 21.7 11.21 0.29 245.4 41.0 1 F5I 37 SOI 62
J05303245-6909119 05 30 32.45 -69 09 12.0 10.07 0.20 10.73 0.19 255.2 38.4 1 A5Ia0: 30 HD 269651
J05303293-6912122 05 30 32.93 -69 12 12.2 147902 10.86 0.30 12.31 0.55 0.34 23.8 86.8 3
J05303357-6800325 05 30 33.57 -68 00 32.5 8.33 0.62 23.2 154.8 3 K2 5 HD 269652
J05303397-7033139 05 30 33.98 -70 33 13.9 10.34 0.61 37.2 78.6 3
J05303764-6708001 05 30 37.64 -67 08 00.1 148155 10.96 0.35 12.43 0.50 0.36 27.5 101.0 3
J05303783-6824392 05 30 37.84 -68 24 39.2 148172 12.05 0.09 12.20 0.02 0.07 266.3 29.1 1 B0Ia 38 HD 269655
J05304010-6716379aaThese stars were imaged twice and their results were averaged. 05 30 40.11 -67 16 38.0 148305 12.26 0.03 12.34 0.01 0.05 301.9 71.1 1 B9Ia 8
J05304162-6924353 05 30 41.63 -69 24 35.4 148393 11.08 0.23 12.12 0.37 0.24 -15.1 57.6 3
J05304287-6939098 05 30 42.87 -69 39 09.9 9.81 0.68 15.0 106.5 3
J05304939-6709121aaThese stars were imaged twice and their results were averaged. 05 30 49.39 -67 09 12.2 11.77 0.10 12.20 0.09 277.1 74.6 1 A5I: 32 GV 338
J05304991-7037167 05 30 49.91 -70 37 16.7 10.25 0.63 5.9 93.7 3
J05305008-7157055 05 30 50.08 -71 57 05.6 8.64 0.67 11.27 1.12 62.7 100.8 3 K2 5 HD 271345
J05305009-6931293 05 30 50.10 -69 31 29.3 9.78 0.23 10.34 0.13 262.0 96.5 1 A0Ia+ 37 HD 269661
J05305147-6902587 05 30 51.47 -69 02 58.8 9.50 0.28 10.35 0.24 247.8 43.0 1 F0Iae 36 HD 269662
J05305168-6701414aaThese stars were imaged twice and their results were averaged. 05 30 51.69 -67 01 41.5 11.07 0.37 318.4 33.0 1 F:Ib 37 SOI 228
J05305194-6738103 05 30 51.94 -67 38 10.4 149005 12.11 0.07 12.49 0.04 0.09 298.9 92.2 1 A2I 30 Sk-67 151
J05305196-7025535 05 30 51.97 -70 25 53.5 10.98 0.29 -16.4 103.4 3
J05305214-6841374 05 30 52.15 -68 41 37.4 149015 11.91 0.13 12.53 0.12 0.12 268.5 79.7 1 A1I 30 Sk-68 109
J05305231-6649594aaThese stars were imaged twice and their results were averaged. 05 30 52.31 -66 49 59.4 12.29 0.01 12.17 0.16 305.7 68.3 1 B8I 30 Sk-66 119
J05305310-6730516 05 30 53.11 -67 30 51.7 149065 9.12 0.82 12.09 1.21 0.68 -29.2 100.5 3 K0V 25
J05305376-6911409 05 30 53.77 -69 11 41.0 11.81 0.04 12.08 0.04 280.5 95.2 1 B3I 30 Sk-69 172
J05305398-6653154aaThese stars were imaged twice and their results were averaged. 05 30 53.98 -66 53 15.5 12.01 0.00 12.15 0.03 302.3 89.2 1 B8I 30 GV 341
J05305506-6647012aaThese stars were imaged twice and their results were averaged. 05 30 55.06 -66 47 01.3 11.80 0.10 12.16 0.07 298.0 91.9 1 A0I 30 Sk-66 119a
J05305564-6716162aaThese stars were imaged twice and their results were averaged. 05 30 55.65 -67 16 16.2 11.98 0.02 12.01 -0.02 308.7 62.7 1 B7I 30 Sk-67 153
J05305705-6641198aaThese stars were imaged twice and their results were averaged. 05 30 57.05 -66 41 19.9 12.35 0.04 12.50 0.03 304.6 88.2 1 A0I 30 Sk-66 120
J05305739-6701591aaThese stars were imaged twice and their results were averaged. 05 30 57.40 -67 01 59.2 11.08 0.35 26.0 130.5 3
J05305815-6806007 05 30 58.15 -68 06 00.7 149397 10.71 0.47 12.58 0.79 0.45 6.0 83.1 3
J05305942-7123486 05 30 59.43 -71 23 48.6 11.59 0.27 -7.9 100.8 3
J05310002-7146139 05 31 00.03 -71 46 14.0 10.20 0.60 -27.9 104.5 3
J05310372-6825230 05 31 03.72 -68 25 23.0 149738 8.95 0.63 11.24 0.88 0.48 38.8 82.3 3 K2 5 HD 269672
J05310613-6936475 05 31 06.14 -69 36 47.5 10.07 0.34 0.0 126.9 3 G5 5 HD 269673
J05310735-6806397 05 31 07.35 -68 06 39.8 9.07 0.23 9.8 69.8 3 F5 5 HD 269674
J05310940-7016174 05 31 09.40 -70 16 17.4 11.54 0.22 22.0 64.0 3
J05310951-6849296 05 31 09.52 -68 49 29.6 150058 11.46 0.17 12.50 0.40 0.25 23.7 85.2 3
J05310996-6740427 05 31 09.96 -67 40 42.7 150087 10.68 0.60 13.02 0.93 0.54 100.8 81.6 3
J05311111-7147538 05 31 11.11 -71 47 53.9 8.30 0.65 37.6 83.4 3 G5 5 HD 271351
J05311226-6825508 05 31 12.26 -68 25 50.8 150215 10.52 0.41 12.27 0.73 0.43 44.2 83.8 3
J05311283-6715079aaThese stars were imaged twice and their results were averaged. 05 31 12.83 -67 15 08.0 11.30 0.07 11.60 0.09 299.5 105.3 1 A1I 30 HD 269678
J05311586-6710252aaThese stars were imaged twice and their results were averaged.