Virtual Class Enhanced Discriminative Embedding Learning

Virtual Class Enhanced Discriminative Embedding Learning

Binghui Chen, Weihong Deng, Haifeng Shen
Beijing University of Posts and Telecommunications
AI Labs, Didi Chuxing, Beijing 100193, China
chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, shenhaifeng@didiglobal.com
Abstract

Recently, learning discriminative features to improve the recognition performances gradually becomes the primary goal of deep learning, and numerous remarkable works have emerged. In this paper, we propose a novel yet extremely simple method Virtual Softmax to enhance the discriminative property of learned features by injecting a dynamic virtual negative class into the original softmax. Injecting virtual class aims to enlarge inter-class margin and compress intra-class distribution by strengthening the decision boundary constraint. Although it seems weird to optimize with this additional virtual class, we show that our method derives from an intuitive and clear motivation, and it indeed encourages the features to be more compact and separable. This paper empirically and experimentally demonstrates the superiority of Virtual Softmax, improving the performances on a variety of object classification and face verification tasks.

 

Virtual Class Enhanced Discriminative Embedding Learning


  Binghui Chen, Weihong Deng, Haifeng Shen Beijing University of Posts and Telecommunications AI Labs, Didi Chuxing, Beijing 100193, China chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, shenhaifeng@didiglobal.com

\@float

noticebox[b]32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.\end@float

1 Introduction

In the community of deep learning, the Softmax layer is widely adopted as a supervisor at the top of the model due to its simplicity and differentiability, such as in object classificationhe2016deep (); hu2017squeeze (); huang2016densely (); zagoruyko2016wide () and face recognitionsun2014deep (); sun2015deeply (); schroff2015facenet (); wen2016discriminative (), etc. While, many research works take it for granted and omit the fact that the learned features by Softmax are only separable not discriminative. Thus, the performances of deep models in many recognition tasks are limited. Moreover, there are a few research works concentrating on learning discriminative features through refining this commonly used softmax layer, e.g. L-Softmax liu2016large () and A-Softmaxliu2017sphereface (). However, they require an annealing-like training procedure which is controlled by human, and thus are difficult to transfer to other new tasks. To this end, we intend to propose an automatic counterpart which dedicates to learning discriminative features.


Figure 1: Illustration of angularly distributed features on 2-D space. (a) shows features learned by the original 4-way softmax. (b) shows features learned by 8-way softmax, where there are 4 additionally hand-injected negative classes. denotes the class anchor vector.

In standard softmax, the input pattern (with label ) is classified by evaluating the inner product between its feature vector and the class anchor vector (if not specified, the basis is removed, which does not affect the final performances of DCNN verified in liu2016large (); liu2017sphereface ()). Since the inner product can be rewritten into , where is the angle between vector and , and the linear softmax classifier is mainly determined by the angle 111Elucidated in liu2016large (). Here for simplicity, assume that all ., thus can be regarded as an angle classifier. Moreover, as shown in wang2017normface (), the feature distribution leaned by softmax is ’radial’, like in Fig.1. Thus, learning the angularly discriminative feature is the bedrock of softmax-based classifier. Here, we will first succinctly elucidate the direct motivation of our Virtual Softmax. For a 4-class classification problem, as illustrated in Fig.1.(a)222N-dimensionality space complicates our analysis but has the similar mechanism as 2-D space., one can observe that when optimizing with the original 4 classes, the decision boundary for class overlaps with that for class , i.e. there is no inter-class angular margin. Obviously, this constraint of overlapped boundaries is not enough to ensure intra-class compactness and inter-class separability, and then contributes little to recognition performance improvement. While, in expanded 8-category constraint case as exhibited in Fig.1 .(b), the decision boundaries for class and have a large inter-class angular margin with each other due to the additionally injected class (which doesn’t take part in the final recognition evaluation) and the constrained region of class is much tighter than before (other classes have the same phenomenon), yielding more compact and separable features which are highly beneficial to the original 4-class recognition. Thus, artificially injected virtual classes (e.g. ) can be dedicated to encouraging larger decision margin among original classes (e.g. class ) such that produces angularly discriminative features.

Naturally motivated by this, we propose Virtual Softmax, a novel yet extremely simple technique to improve the recognition performances by training with an extra dynamic virtual class. Injecting this virtual class aims at imposing stronger and continuous constraint on decision boundaries so as to further produces the angularly discriminative features. Concretely, generalizing Softmax to Virtual Softmax gives chances of enlarging inter-class angular margin and tightening intra-class distribution, and allows the performance improvement of recognition via introducing a large angular margin. Different from L-Softmaxliu2016large () and A-Softmaxliu2017sphereface (), our work aims at extending Softmax to an automatic counterpart, which can be easily performed without or with little human interaction. Fig.2 verifies our technique where the learned features by our Virtual Softmax turn to be much more compact and well separated. And the main contributions of this paper are summarized as follows:

We propose Virtual Softmax to automatically enhance the representation power of learned features by employing a virtual negative class. The learned features are much more compact and separable, illustrated in Fig.2. And to our best knowledge, it is the first work to employ additional virtual class in Softmax to optimize the feature learning and to improve the recognition performance.

The injected virtual class derives from the natural and intuitive motivation, and intends to force a zero limit which is a much stronger constraint than softmax. Moreover, it is dynamic and adaptive, pursuing an automatic training procedure and without incurring much computational complexity and memory consumption.

Extensive experiments have been conducted on several datasets, including MNIST lecun1998mnist (), SVHN netzer2011reading (), CIFAR10/100 krizhevsky2009learning (), CUB200 welinder2010caltech (), ImageNet32Chrabaszcz2017A (), LFW huang2007labeled () and SLLFW deng2017fine (). Finally, our Virtual Softmax has achieved competitive and appealing performances, validating its effectiveness.

2 Related Work

Since the training of deep model is dominated and guided by the top objective loss, and this objective function can be equipped with more semantic information, many research works force stronger representation by refining the supervisor at the top of deep model. In sun2014deep (), contrastive loss is employed to enlarge the inter-class Euclidean distance and to reduce the intra-class Euclidean distance. Afterwards, it is generalized to triplet loss, the major idea is to simultaneously maximize inter-class distance and minimize intra-class distance, and it is widely applied in numerous computer vision tasks, such as in face verification schroff2015facenet (), in person re-identification cheng2016person (), in fine-grained classification wang2016mining (), etc. Moreover, many tuple-based methods are developed and perform better on the corresponding tasks, such as Lifted loss oh2016deep (), N-pair loss sohn2016improved (); chen2018almn (), etc. However, these tuple-based methods constrain the feature learning with multiple instances, and thus require to elaborately manipulate the tuple mining procedure, which is much expensive in computation and is performance-sensitive. In addition, inspired by linear discriminant analysis, center loss wen2016discriminative () breaks away from the tuple-based idea and shows better performances. However, our Virtual Softmax differs with them in that (1) the model is optimized with only the single Virtual Softmax loss not the joint loss functions (e.g. softmax + contrastive-loss). (2) our method can also be applied to improve the classification performances, while the above methods are not as good in classification tasks. Compared to L-Softmaxliu2016large () and A-Softmaxliu2017sphereface (), this paper heads from a totally different idea that encourages a large margin among classes via injecting additionally virtual class, and dedicates to proposing an automatic method, i.e. Virtual-Softmax.

Figure 2: Visualization of the learned features optimized by original Softmax vs. Virtual Softmax on MNIST dataset. We provide two cases of 2-D and 3-D visualization, which are shown in the left two columns and the right two columns, respectively. From the visualization, it can be observed that our Virtual Softmax possesses a stronger power of forcing compact and separable features.

3 Intuition and Motivation

In this section, we will give a toy example to introduce the immediate motivation of our Virtual Softmax. Define the i-th input data with its corresponding label , where and is the class number. Define the j-th class anchor vector in softmax classifier , where . The output feature of deep model is defined as .


Figure 3: Toy example for non-uniform distribution case. If the class number increases, the constrained regions will be more compact than before.

In standard softmax, the optimization objective is to minimize the following cross-entropy loss:

(1)

here we omit the basis and it does not affect the performance. Obviously, in original softmax optimization, it is to force , in order to correctly classify the input .

Thus we can obtain the following property of softmax, which is the immediate incentive of our Virtual Softmax.

Property 1.

As the number of class anchor vector increases, the constrained region for each class (e.g. the area of each class in Fig.1,3) becomes more and more compact, i.e. will gradually decreases (e.g. in Fig.1,3).

Proof.

For simplicity, here we consider the 2-D c-class case (n-D c-class case can be generalized as well but is more complicated.). First, assume and they are evenly distributed in feature space, in another word, every two vectors have the same vectorial angle . As stated above, the softmax is to force in order to correctly classify , i.e. , where denotes the angle between feature vector and class vector . Hence, the decision boundary for class is , i.e. , we define as the angle between and the decision boundary of class , and the solution is (see Fig.1. (a) for a toy example). Considering the distribution symmetry of , the angle range of the constrained region for class is , which is inversely proportional to . Thus, if the class number increases, the constrained region of each class will be more and more compact. Moreover, for the and non-uniform distribution case, the analysis is a little more complicated. Because the length of are different, the feasible angles of class and class are also different (see the decision boundary of the case before injecting new classes in Fig.3.(a)). Normally, the larger is, the larger the feasible region of the class is liu2016large (). While, as illustrated in Fig.3.(b), if the class number increases, i.e. more new classes are injected to the same space, the constrained region of each class is going to be compact as well. ∎

4 Virtual Softmax

Naturally motivated by the property.1, a simple way to introduce a large margin between classes for achieving intra-class compactness and inter-class separability is to constrain the features with more and more additional classes. In another word, injecting additional classes is to space the original classes, resulting in a margin between these original classes. Concretely, for a given classification task (namely that the number of categories to be classified is fixed), the additionally injected classes (if inserted at the exact position) will introduce a new and more rigorous decision boundary for these original classes, compressing their intra-class distribution, and furthermore the originally overlapped decision boundaries of the adjacent categories will thus be forced to separate with each other, producing a margin between these decision boundaries and thus encouraging inter-class separability (see Fig.1 for a toy example). Therefore, injecting extra classes for feature supervision is a bold yet reasonable idea to enhance the discriminative property of features, and the objective function can be formulated as:

(2)

where is the number of extra injected classes. From Eq. 2, it can be observed that it is more possible to acquire a compact region for class quantified by the angle , since the angle is optimized above a much larger set (C+K classes)333Assume that all the K classes are injected at the exact position among original C classes..

Theoretically, the larger is, the better features are. Nevertheless, in practical cases where the available training samples are limited and the total number of classes is changeless, it is intractable to enlarge the angular margin with real and existed extra classes. Moreover, a most troublesome problem is that we can not insert the extra classes exactly between the originally adjacent categories due to the random initialization of class anchor vectors before training and the dynamic nature of parameter update during optimizing.

To address the aforementioned issues, we introduce a single and dynamic negative class into original softmax. This negative class is constructed on the basis of current training instance . Since there is no real training data belonging to this class and it is employed only as a negative category (i.e. this class is utilized only to assist the training of original C classes and have no need to be treated as a positive class), we denote it as virtual negative class and have the following formulation of our proposed Virtual Softmax:

(3)

where and is the training batch size. In the above equation, we instead require , it is a special case of Eq. 2 where . Replacing a large and fixed set of virtual classes (like classes in Eq. 2) with a single dynamic virtual class incurs nearly zero extra computational cost and memory consumption compared to original softmax.

From Eq.3, one can observe that this virtual class is tactfully inserted around the class , and particularly it is inserted at the same position with as illustrated in Fig.4.(a). It well matches our motivation that insert negative class between the originally adjacent classes and , and this negative class will never stop pushing towards until they overlap with each other due to the dynamic nature of during training procedure. Moreover, from another optimization perspective, in order to correctly classify , Virtual Softmax forces to be the largest one among inner product values. Since , the only way to make , i.e. , is to optimize , however, the original softmax is to optimize , i.e. (briefly, if have the same magnitude, the original softmax is to optimize ). Obviously, the original softmax is to make to be smaller than a certain value, while our Virtual Softmax optimizes a much more rigorous objective, i.e. zero limit , aiming to produce more compact and separable features. And based on this optimization goal, the new decision boundary of class is overlapping with the class anchor , which is more strict than softmax.

Optimization: The Virtual Softmax can be optimized with standard SGD and BP. And in backward propagation, the computation of gradients are listed as follows:

(4)
(5)

5 Discussion

Except for the above analysis that Virtual Softmax optimizes a much more rigorous objective than the original Softmax for learning discriminative features, in this section, we will give some interpretations from several other perspectives, i.e. coupling decay5.1 and feature update5.2. And we also provide the visualization of the learned features for intuitive understanding5.3.

5.1 Interpretation from Coupling Decay

In this paragraph, we give a macroscopic analysis from coupling decay which can be regarded as a regularization strategy.

Observing Eq.3, can be reformulated as: , then performing the first order Taylor Expansion for the second term, a term of shows up. Therefore, minimizing Eq.3 is to minimize to some extend, and it can be viewed as a coupling decay term, i.e. data-dependent weight decay and weight-dependent data decay. It regularizes the norm of both feature representation and the parameters in classifier layer such that improves the generalization ability of deep models by reducing over-fitting. Moreover, it is supported by some experimental results, e.g. the feature norm in Fig.2 is decreased by Virtual Softmax (e.g. from 100 to 50 in 2-D space), and the performance improvement over the original Softmax is increased when using a much wider network as in Sec.6.1 (e.g. in CIFAR100/100+, increasing the model width from t=4 to t=7, the performance improvement is rising, since increasing the dimensionality of parameters while keeping data set size constant calls for stronger regularization).

However, the reason of calling the above analysis a macroscopic one is that it coarsely throws away many other relative terms and only considers the single effect of , without taking into account the collaborative efforts of other terms. Thus there are some other phenomenons that cannot be explained well, e.g. why the inter-class angular margin is increased as shown in Fig.2 and why the confusion matrix of Virtual Softmax in Fig.5 shows more compact intra-class distribution and separable inter-class distribution than the original Softmax. To this end, we provide another discussion below from a relatively microscopic view that how the individual data representations of Virtual Softmax and original Softmax are constrained and formed in the feature space.

5.2 Interpretation From Feature Update

Here, considering the collaborative effect of all the terms in Eq.3, we give another microscopic interpretation from the perspective of feature update, which is also a strong justification of our method. In part, it reveals the reason why the learned features by Virtual Softmax are much more compact and separable than original softmax.


Figure 4: (a) shows the virtual class by green arrow. (b) exhibits the feature layer in CNN. (c) illustrates the feature update, the blue arrow represents obtained by original softmax and the red arrow represents obtained by Virtual Softmax.

To simplify our analysis, we only consider the update in a linear feature layer, namely that the input to this linear feature layer is fixed. As illustrated in Fig.4.(b), the feature vector is computed as 444Although the following discussion is based on this assumption, the actual uses of activation functions (like the piecewise linear function ReLU and PReLU) and the basis do not affect the final performances., where is the input vector, is the weight parameters in this linear layer. We denote the -th element of vector as , the connected weight vector (i.e. the -th column of ) as . Thus, , after computing the partial derivative , the parameters are updated by SGD as , where is the learning rate. Since is fixed, in the next training iteration, the new feature output can be computed by the updated as:

(6)

thus from Eq. 5.2, it can be inferred that the holistic feature vector can be obtained by , where , implying that updating weight parameters with SGD can implicitly lead to the update of the output feature in the similar way. Based on this observation, putting the partial derivatives of Softmax and Virtual Softmax into Eq. 5.2 respectively, we can obtain the following corresponding updated features for Softmax (Eq. 7) and Virtual Softmax (Eq. 8) respectively:

(7)
(8)

Since the above equations are complicated enough to discuss, here for simplicity, we will give an approximate analysis. Consider a well trained feature (i.e. and ) and that the parameters in Softmax and Virtual Softmax are the same. Then, omitting the relatively smaller terms in denominators, i.e. , Eq.7, 8 can be separately approximated as:

(9)
(10)

from the above Eq.9 and Eq.10, we consider the magnitude and direction of ’vector1’, ’vector2’ and ’vector3’, and then the updated by the corresponding softmax and Virtual Softmax can be easily illustrated as in Fig.4.(c). It can be firstly observed that the norm of red arrow is smaller than that of blue arrow, showing a similar result with the analysis in Sec.5.1, i.e. Virtual Softmax will regularize the feature norm. Meanwhile, one can also observe another important phenomenon that the feature vector optimized by Virtual Softmax has a much smaller angle to the class anchor than original Softmax, well explaining the reason why the features learned by Virtual Softmax is much more compact and separable than original Softmax. In summary, by considering the collaborative effort of many terms, we could know the working principle of our Virtual Softmax better. The Virtual Softmax not only provides regularization but more importantly, intensifies the discrimination property within the learned features.

Although it is based on an approximate analysis, to some extent, it can give us an heuristic interpretation of Virtual Softmax why it is capable of encouraging the discrimination of features from a novel feature update perspective. And practically, without these assumptions the Virtual Softmax can indeed produce discriminative features, validated by the visualization in Sec. 5.3 and the experimental results in Sec. 6.

5.3 Visualization of Compactness and Separability

In order to highlight and emphasize that Virtual Softmax indeed encourages the discriminative feature learning, we provide a clear visualization of the learned features on MNIST dataset lecun1998mnist () in 2-D and 3-D space respectively, as shown in Fig.2. From it, one can observe that the learned features by our Virtual Softmax are much compact and well separated, with larger inter-class angular margin and tighter intra-class distribution than softmax, and Virtual Softmax can consistently improve the performances in both 2-D (99.2% vs. 98.91%) and 3-D (99.38% vs. 99.13%) cases. Furthermore, we also visualize the leaned features in k-D space (where ) with the confusion matrix. The confusion matrix comparison between original softmax and our Virtual Softmax are shown in Fig.5. Specifically, we compute the included angle cosine (i.e. ) between any two feature vectors which are extracted from the testing splits of CIFAR10/100/100+ krizhevsky2009learning () datasets. From Fig.5, it can be observed that, over the there datasets, the intra-class similarities are enhanced and the inter-class similarities are reduced when training with our Virtual Softmax. Moreover, our Virtual Softmax improves nearly , and classification accuracies over the original softmax on CIFAR10/100/100+, respectively. To summarize, all these aforementioned experiments demonstrate that our Virtual Softmax indeed serves as an efficient algorithm which has a much stronger power of enlarging inter-class angular margin and compressing intra-class distribution than softmax and thus can significantly improve the recognition performances.

5.4 Relationship to Other Methods

Layer MNIST(for fig.2) MNIST SVHN CIFAR10 CIFAR100/100+
Block1 [5x5,32t]x2,padding 2 [3x3,32t]x4 [3x3,32t]x5 [3x3,32t]x5 [3x3,32t]x5
Pool1 Max-Pooling
Block2 [5x5,64t]x2,padding 2 [3x3,32t]x4 [3x3,64t]x4 [3x3,64t]x4 [3x3,64t]x4
Pool2 Max-Pooling
Block3 [5x5,128t]x2,padding 2 [3x3,32t]x4 [3x3,128t]x4 [3x3,128t]x4 [3x3,128t]x4
Pool3 Max-Pooling Max-Pooling Max-Pooling Max-Pooling Ave-Pooling
Fully Connected 2/3 64 64 64 512
Table 1: Model architectures for different benchmarks. [3x3,32t]x4 denotes 4 cascaded convolutional layers with filters of size 3x3. The toy models are of . Max-Pooling is with kernel and stride of 2.

Figure 5: Cosine confusion matrixes on the test splits of CIFAR10/100/100+. On each dataset, both Softmax and Virtual Softmax use the same CNN architecture.

There are a few research works concentrating on refining the Softmax objective, e.g. L-Softmaxliu2016large (), A-Softmaxliu2017sphereface () and Noisy SoftmaxChen_2017_CVPR (). Research works liu2016large (); liu2017sphereface () require to manually select a tractable constraint, and need a careful and annealing-like training procedure which is under human control. However, our Virtual-Softmax can be easily trained end-to-end without or with little human interventions, since the margin constraint is introduced automatically by the virtual class. Moreover, our method differs from L-Softmax and A-softmax in a heuristic idea that training deep models with the additional virtual class not only the given ones, which is the first work to extend the original Softmax to employ virtual class for discriminative feature learning and may inspire other researchers. And it can also provide regularization for deep models implicitly. Method Chen_2017_CVPR () aims to improve the generalization ability of DCNN by injecting noise into Softmax, which heads from a different perspective. In summary, our Virtual-Softmax comes from a clear and unusual motivation that injects a dynamic virtual class for enhancing features, which is different from the listed other methodsliu2016large (); liu2017sphereface (); Chen_2017_CVPR (), even though all the methods intend to learn better features.

6 Experiments and Results

We evaluate our Virtual Softmax on classification tasks and on face verification tasks. For fair comparison, we train with the same network for both Virtual Softmax and the baseline softmax.

Small-Set Object Classification: We follow zagoruyko2016wide (); liu2016large (); Chen_2017_CVPR () to devise our CNN models. Denote as the widening factor, which is used to multiply the basic number of filters in one convolutional layer, then our architecture configurations are listed in Table.1. For training, the initial learning rate is 0.1, and is divided by 10 at (20k, 27k) and (12k, 18k) in CIFAR100 and the other datasets respectively, and the corresponding total iterations are 30k and 20k.

Fine-grained Object Classification: We fine-tune some popular models pre-trained on ImageNetrussakovsky2015imagenet (), including GooglenetV1szegedy2015going () and GooglenetV2szegedy2016rethinking () , by replacing the last softmax layer with our Virtual Softmax. The learning rates are fixed to and for the pre-trained layers and the randomly initialized layer respectively, and stop training at 30k iteration.

Large-Set Object Classification: Here, we use the network for CIFAR100 with t=7, the learning rate starts from 0.1 and is divided by 10 at 20k, 40k, 60k iterations. The maximal iteration is 70k.

Face Verification: We employ the published Resnet model in liu2017sphereface () to evaluate our Virtual Softmax. Start with a learning rate of 0.1, divide it by 10 at (30k, 50k) and stop training at 70k.

Compared Methods: We set L-Softmax(LS)liu2016large (), Noisy-Softmax(NS)Chen_2017_CVPR () and A-Softmax(AS)liu2017sphereface () as the compared methods and re-implement them with the same experimental configurations as us.

All of our experiments are implemented by Caffejia2014caffe (). The models are trained on one TitanX and we fill it with different batch sizes for different networks. For data preprocessing, we follow NSChen_2017_CVPR (). For testing, we use original softmax to classify the testing data in classification tasks and cosine distance to evaluate the performances in face verification tasks.

6.1 Ablation Study on Network Width


Figure 6: Testing Acc(%) on CIFAR10/100/100+ datasets.
CIFAR10
Softmax 9.84 8.2 7.76 7.15
Virtual Softmax 8.95 7.27 7.04 6.68
Improvement 0.77 0.93 0.72 0.47
CIFAR100
Softmax 32.72 30.74 28.76 27.7
Virtual Softmax 29.84 28.4 27.81 26.02
Improvement 2.88 2.34 0.95 1.68
CIFAR100+
Softmax 30.44 28.59 27.21 25.52
Virtual Softmax 28.62 26.81 26.17 24.01
Improvement 1.82 1.78 1.04 1.51
Table 2: Recognition error rates(%) on CIFAR10/100 datasets. is the widening factor and + denotes data augmentation.

As listed in Table.1, our toy network on each dataset is with the widening factor of . We expand the toy models by setting and on CIFAR10 and CIFAR100 respectively, and the experimental results are listed in Table.2. From these results, for example on CIFAR100+, it can be observed that as the model width increasing (i.e. from to ) the recognition error rate of Virtual Softmax is diminishing, and our method achieves consistent performance gain over the original softmax when training with different networks, verifying the robustness of our method. Furthermore, when training with Virtual Softmax, the recognition error rates of wider models are consistently lower than that of thinner models across all these datasets, indicating that the Virutal Softmax does not easily suffer from over-fitting and supporting the analysis in Sec.5.1. And we plot the curves of testing Acc on CIFAR10/100/100+ as shown in Fig.6, one can observe that our Virtual Softmax can be easily optimized, with a similar convergence speed compared to the original softmax.

6.2 Evaluation on objecect datasets

MNIST lecun1998mnist (), SVHN netzer2011reading (), CIFAR krizhevsky2009learning () are the popular used small-set object classification datasets, including different number of classes. From Table.4, it can be observed that on both MNIST and SVHN datasets the Virtual Softmax not only surpasses the original softmax using the same network (i.e. on MNIST, on SVHN) but also outperforms LSliu2016large (), NSChen_2017_CVPR () and ASliu2017sphereface (), showing the effectiveness of our method. Moreover, we also report the experimental results on CIFAR dataset as in Table.4. Specifically, one can observe that our Virtual Softmax drastically improves nearly accuracies over the baseline softmax on CIFAR10/100/100+ respectively. Meanwhile, it outperforms all of the other methods on both CIFAR10/100 datasets, e.g. it surpasses both the RestNet-110he2016deep () and Densenet-40huang2016densely () on CIFAR100+ which are much deeper and more complex than our architecture, and also surpasses the listed compared methods.

Method MNIST(%) SVHN(%) Maxout goodfellow2013maxout () 0.45 2.47 DSN lee2015deeply () 0.39 1.92 R-CNN liang2015recurrent () 0.31 1.77 WRN zagoruyko2016wide () - 1.85 DisturbLabel xie2016disturblabel () 0.33 2.19 Noisy Softmax Chen_2017_CVPR () 0.33 - L-Softmax liu2016large () 0.31 - Softmax 0.35 2.11 NS*Chen_2017_CVPR () 0.32 2.04 LS*liu2016large () 0.30 2.01 AS*liu2017sphereface () 0.31 2.04 Virtual Softmax 0.28 1.93
Table 3: Recognition error rates on MNIST and SVHN. * denotes our reproducing.
Method CIFAR10(%) CIFAR100(%) CIFAR100+(%) GenPool lee2016generalizing () 7.62 32.37 - DisturbLabel xie2016disturblabel () 9.45 32.99 26.63 Noisy Softmax Chen_2017_CVPR () 7.39 28.48 - L-Softmax liu2016large () 7.58 29.53 - ACU jeon2017active () 7.12 27.47 - ResNet-110 he2016deep () - - 25.16 Densenet-40 huang2016densely () 7.00 27.55 24.42 Softmax 7.15 27.7 25.52 NS*Chen_2017_CVPR () 6.91 26.33 25.20 LS*liu2016large () 6.77 26.18 24.32 AS*liu2017sphereface () 6.83 26.09 24.11 Virtual Softmax 6.68 26.02 24.01
Table 4: Recognition error rates on CIFAR datasets. + denotes data augmentation. * denotes our reproducing.
Method CUB(%) Pose Normalization branson2014bird () 75.7 Part-based RCNN zhang2014part () 76.4 VGG-BGLm zhou2016fine () 80.4 PG Alignment krause2015fine () 82.8 Softmax (V1) 73.5 NS*Chen_2017_CVPR ()(V1) 74.8 LS*liu2016large ()(V1) 76.5 AS*liu2017sphereface ()(V1) 75.2 Virtual Softmax (V1) 77.1 Softmax (V2) 77.2 NS*Chen_2017_CVPR ()(V2) 77.9 LS*liu2016large ()(V2) 80.5 AS*liu2017sphereface ()(V2) 80.2 Virtual Softmax (V2) 81.1
Table 5: Accuracy results on CUB200. * denotes our reproducing.
Method Models LFW SLLFW DeepID2+ sun2015deeply () 25 99.47 - VGG parkhi2015deep () 1 97.27 88.13 Lightened CNN wu2015lightened () 1 98.13 91.22 L-Softmax liu2016large () 1 98.71 - Center loss wen2016discriminative () 1 99.05 - Noisy Softmax Chen_2017_CVPR () 1 99.18 94.50 Normface wang2017normface () 1 99.19 - A-Softmax liu2017sphereface () 1 99.42 - Softmax 1 99.10 94.59 NS*Chen_2017_CVPR () 1 99.16 94.75 LS*liu2016large () 1 99.37 95.58 AS*liu2017sphereface ()+Normface*wang2017normface () 1 99.57 96.45 Virtual Softmax 1 99.46 95.85
Table 6: Verification results (%) on LFW/SLLFW. * denotes our reproducing.
Method Top1 Top5
Softmax 47.63 73.14
NS*Chen_2017_CVPR () 47.96 73.25
LS*liu2016large () 48.59 73.82
AS*liu2017sphereface () 48.66 73.57
Virtual Softmax 48.84 74.06
Table 7: Acc (%) on ImageNet32

CUB200 welinder2010caltech () is the popular fine-grained object classification set. The comparison results between other state-of-the-art research works and our Virtual Softmax are shown in Table.6, V1 and V2 denote the corresponding GoogleNet models. One can observe that the Virtual Softmax outperforms the baseline softmax over all the two pre-trained models, and surpasses all the compared methods LSliu2016large (), NSChen_2017_CVPR () and ASliu2017sphereface (). Additionally, training with only the Virtual Softmax, our final result is comparable to other remarkable works which exploit many assistant attention and alignment models, showing the superiority of our method.

ImageNet32Chrabaszcz2017A (): is a downsampled version of large-scale dataset ImageNet russakovsky2015imagenet (), which contains exactly the same number of images as original dataset but with 32x32 size. The results are in Tab.7, one can observe that Virtual Softmax performs the best.

6.3 Evaluation on face datasets

LFW huang2007labeled () is a popular face verification benchmark. SLLFW deng2017fine () generalizes the original protocol in LFW to a more difficult verification task, indicating that the images are all coming from LFW but the testing pairs are more knotty to verify. For data preprocessing, we follow the method in Chen_2017_CVPR (). Then augment the training data by randomly mirroring. We adopt the public available Resnet model from A-Softmaxliu2017sphereface (). Then we train this Resnet model with the cleaned subset of guo2016ms (). The final results are listed in Table.6. One can observe that our Virtual Softmax drastically improves the performances over the baseline softmax on both LFW and SLLFW datasets, e.g. from to and to , respectively. And it also outperforms both NSChen_2017_CVPR () and LSliu2016large (), showing the effectiveness of our method. Moreover, since the class number for training is very large, i.e. 67k, the optimizing procedure is difficult than that in object classification tasks, therefore, if the training phase can be eased by human guidance and control, the performance will be more better, e.g. AS*liu2017sphereface ()+Normface*wang2017normface () achieve the best results when artificially and specifically choose the optimal margin constraints and feature scale for the current training set.

7 Conclusion

In this paper, we propose a novel but extremely simple method Virtual Softmax to enhance the discriminative property of learned features by encouraging larger angular margin between classes. It derives from a clear motivation and generalizes the optimization goal of the original softmax to a more rigorous one, i.e. zero limit . Moreover, it also has heuristic interpretations from feature update and coupling decay perspectives. Extensive experiments on both object classification and face verification tasks validate that our Virtual Softmax can significantly outperforms the original softmax and indeed serves as an efficient feature-enhancing method.

Acknowledgments: This work was partially supported by the National Natural Science Foundation of China under Grant Nos. 61573068 and 61871052, Beijing Nova Program under Grant No. Z161100004916088, and sponsored by DiDi GAIA Research Collaboration Initiative.

References

  • (1) S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952, 2014.
  • (2) B. Chen and W. Deng. Almn: Deep embedding learning with geometrical virtual point generating. arXiv preprint arXiv:1806.00974, 2018.
  • (3) B. Chen, W. Deng, and J. Du. Noisy softmax: Improving the generalization ability of dcnn via postponing the early softmax saturation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
  • (4) D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Person re-identification by multi-channel parts-based cnn with improved triplet loss function. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1335–1344, 2016.
  • (5) P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet as an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.
  • (6) W. Deng, J. Hu, N. Zhang, B. Chen, and J. Guo. Fine-grained face verification: Fglfw database, baselines, and human-dcmn partnership. Pattern Recognition, 66:63–73, 2017.
  • (7) I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. arXiv preprint arXiv:1302.4389, 2013.
  • (8) Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face recognition. In European Conference on Computer Vision (ECCV), pages 87–102. Springer, 2016.
  • (9) K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
  • (10) J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 2017.
  • (11) G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016.
  • (12) G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, Technical Report 07-49, University of Massachusetts, Amherst, 2007.
  • (13) Y. Jeon and J. Kim. Active convolution: Learning the shape of convolution for image classification. arXiv preprint arXiv:1703.09076, 2017.
  • (14) Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678. ACM, 2014.
  • (15) J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without part annotations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5546–5555, 2015.
  • (16) A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.
  • (17) Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
  • (18) C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In International conference on artificial intelligence and statistics, 2016.
  • (19) C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets. In Artificial Intelligence and Statistics, pages 562–570, 2015.
  • (20) M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3367–3375, 2015.
  • (21) W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding for face recognition. arXiv preprint arXiv:1704.08063, 2017.
  • (22) W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural networks. In Proceedings of The 33rd International Conference on Machine Learning (ICML), pages 507–516, 2016.
  • (23) Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning, volume 2011, page 5, 2011.
  • (24) H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via lifted structured feature embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4004–4012, 2016.
  • (25) O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In BMVC, volume 1, page 6, 2015.
  • (26) O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.
  • (27) F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 815–823, 2015.
  • (28) K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Advances in Neural Information Processing Systems (NIPS), pages 1849–1857, 2016.
  • (29) Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint identification-verification. In Advances in neural information processing systems (NIPS), pages 1988–1996, 2014.
  • (30) Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2892–2900, 2015.
  • (31) C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.
  • (32) C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.
  • (33) F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: hypersphere embedding for face verification. arXiv preprint arXiv:1704.06369, 2017.
  • (34) Y. Wang, J. Choi, V. Morariu, and L. S. Davis. Mining discriminative triplets of patches for fine-grained classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1163–1172, 2016.
  • (35) P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-ucsd birds 200. 2010.
  • (36) Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision (ECCV), pages 499–515. Springer, 2016.
  • (37) X. Wu, R. He, and Z. Sun. A lightened cnn for deep face representation. arXiv preprint arXiv:1511.02683, 2015.
  • (38) L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian. Disturblabel: Regularizing cnn on the loss layer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4753–4762, 2016.
  • (39) S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
  • (40) N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based r-cnns for fine-grained category detection. In European conference on computer vision (ECCV), pages 834–849. Springer, 2014.
  • (41) F. Zhou and Y. Lin. Fine-grained image classification by exploring bipartite-graph labels. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1124–1133, 2016.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
322019
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description