Photometry of AST3-1 from Dome A

Variable stars observed in the Galactic disk by AST3-1 from Dome A, Antarctica

Abstract

AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time domain astronomy at Dome A, Antarctica. Here we present the results of band images survey from AST3-1 towards one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with magnitude 16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, EA), 27 pulsating variable stars ( Scuti,  Doradus,  Cephei variable and RR Lyrae stars) and 248 other types of variables (unclassified periodic, multi-periodic and aperiodic variable stars). Among the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another one shows a secondary maximum after peak brightness. We also detected a complex binary system with RS CVn-like light curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

Subject headings:
astronomical sites: Dome A – photometry: variable stars

1. Introduction

Time domain astronomy is the investigation of astronomical objects as a function of time, and has long been a source of interesting and unexpected discoveries. On-going and new ground- and space-based large synoptic sky surveys, such as the (intermediate) Palomar Transient Factory (Law et al., 2009; Rau et al., 2009), the SkyMapper Telescope (Keller et al., 2007), and the Large Synoptic Survey Telescope (LSST Science Collaboration et al., 2009) after its first light in 2020 35, are exploring or will explore new regions of parameter space in terms of depth and temporal coverage.

The Antarctic plateau offers a number of unique advantages for precision, ground-based, time-domain astronomy, such as the ability to observe continuously during winter, low scintillation noise, excellent seeing above a very low boundary layer, low airmass variations, low aerosols, low water vapor, more stable atmospheric transmission, wider wavelength windows, and a dark sky in the infrared (Lawrence et al., 2004, 2006, 2008; Moore et al., 2008; Kulesa et al., 2008; Aristidi et al., 2009; Burton, 2010; Zou et al., 2010; Yang et al., 2010; Sims et al., 2010; Bonner et al., 2010; Lascaux et al., 2011; Tremblin et al., 2011; Pei et al., 2011, 2012; Sims et al., 2012a, b; Giordano et al., 2012; Storey, 2013; Hu et al., 2014; Ashley, 2013; Yang et al., 2016). There is thus considerable interest in overcoming the technical challenges of operating in Antarctica, so that the advantages for astronomy can be realized (Tothill et al., 2008; Kulesa et al., 2008; Crouzet et al., 2010; Chapellier et al., 2016; Mékarnia et al., 2016).

Dome A (latitude S, longitude E, elevation 4093m above the sea level) is the highest region on the Antarctic plateau and is being used for a series of three increasingly ambitious optical survey telescopes (Yang et al., 2009; Gong et al., 2010). The first optical telescope was called CSTAR (the Chinese Small Telescope ARray; Yuan et al., 2008) with an effective aperture of 10 cm and field of view (FOV) of 20 deg and was installed at Dome A in January 2008; CSTAR produced a 3-year photometric dataset, and a number of studies of stellar variability have been published (Zhou et al., 2010a, b; Wang et al., 2011, 2012; Zhou et al., 2013; Wang et al., 2013a, b; Meng et al., 2013; Huang et al., 2013; Fu et al., 2014; Qian et al., 2014; Wang et al., 2014a, b; Zong et al., 2015; Huang et al., 2015; Wang et al., 2015; Yang et al., 2015; Oelkers et al., 2015, 2016; Liang et al., 2016). The second-generation of optical telescope at Dome A is called AST3, which in turn consists of three telescopes, each with an entrance pupil diameter of 0.5 m, and a FOV of 4.3 deg (Cui et al., 2008; Yuan & Su, 2012; Yuan et al., 2014, 2015). The first two of the AST3 telescopes—AST3-1 (Li et al., 2012a, b; Wen et al., 2012) and AST3-2—were installed at Dome A in January 2012 and 2015, respectively. The third AST3 telescope is planned to be installed in 2017, and will have a K-band infrared camera. The third-generation optical/infrared telescope destined for Dome A is called KDUST (the Kunlun Dark Universe Survey Telescope; Jia & Zhang, 2012, 2013; Yuan et al., 2013; Zhu et al., 2014; Burton et al., 2016; Li et al., 2016; Xu et al., 2016), which has an aperture of 2.5 m and FOV of 2.3 deg (Yuan et al., 2013); KDUST is expected to be operational at Dome A after 2022.

The three AST3 telescopes were originally conceived as multi-band survey telescopes, with each telescope having a fixed filter to reduce the risk of mechanism failure. Their main sky survey area is a zenith distance less than 70 (Yuan & Su, 2012). Meanwhile, other factors for observations are also taken into account, including the altitude and phase of the Moon, the angular distance between the telescope pointing and the Moon, and the altitude of the Sun (Shang et al., 2012). To operate the AST3 at remote Dome A, an improved version of PLATO (an automated observatory platform for CSTAR and other earlier instruments 36), PLATO-A was designed to offer about 1 kW power source for AST3 (Lawrence et al., 2009; Ashley et al., 2010; Shang et al., 2012).

The three main science goals for AST3 are the early detection of supernovae, exo-planet transit searches, and stellar variability(Cui et al., 2008). The first AST3 telescope (AST3-1) was deployed to Dome A in January 2012 successfully and  16,000 scientific frames were collected from March 16 to May 7, 2012, with a total exposure time of 189 hours. After that, AST3-1 unfortunately stopped work due to a malfunction a power distribution box. Of the  16,000 images obtained, 4,000 were of 500 fields mainly surveyed for supernova templates;  4700 images were of the center of the Large Magellanic Cloud, and  3400 images covered eight Galactic disk fields to study Wolf-Rayet stars, and one Galactic disk field was used primarily to search for transiting exo-planets. This latter field had the most number of observations, and so was also suited to a study of stellar variability, which is the subject of this paper. The field was centered at , , and was monitored in band with 3523 images over 8 days with a total exposure time of 38.9 hours. Of these 38.9 hours, 157 frames totalling 2.6 hours were observed on March 28, and 3366 frames totalling 36.3 hours were from April 24 to May 1 (Table 1). The distribution of the 36.3 hours over the 7 days of observations can be seen from the time-series plots. Gaps in the observations were mainly due to the AST3-1 telescope being pointed to other fields. The observations, the data reduction, and the time-series photometry are briefly described in §2. The catalog of variable stars and preliminary statistics of the variable star types are presented in §3. Our results are summarized in §4.

2. Observations and data reduction

2.1. Observations

AST3 (Cui et al., 2008; Yuan et al., 2014, 2015) was conceived as three telescopes, each equipped with one of three SDSS , and filters. Each telescope has an entrance pupil aperture of 0.5 m and a wide FOV of 4.3 deg, and is equipped with a 10K 10K frame transfer STA1600FT CCD (Charge Coupled Device) camera. The CCD detector is divided into frame store regions at the top and bottom quarters and an image area in the central half in order to operate in frame transfer mode without a shutter—this is part of our risk-mitigation strategy of eliminating mechanisms as far as possible, since the telescope has to operate entirely remotely for 11 months of the year with no possibility of repairs being carried out. The image area of the CCD has 16 readouts, each with 1320  2640 pixels, including an overscan region of 180 columns on the readout electronics end. More details about the AST3 CCD performance, data system and survey strategy can be found in Ma et al. (2012); Shang et al. (2012); Z. Shang et al. (2016, in preparation); Q. Liu et al. (2016, in preparation). For the total of 3523 images obtained of our field, 65% had exposure times of 30 seconds, and the remainder were 60 seconds. The field is not crowded as the median distance between every star and its nearest neighbor from our reference frame is 11.14 pixels (note that the AST3-1 pixel scale is 1.0 arcseconds/pixel). The stellar brightness profiles had a median FWHM (full width half maximum) of 3.73 pixels. The low level of crowding led us to use aperture photometry rather than PSF-fitting.

Date # images Total exp.
2012 time (hr)
3-28 156 2.56
4-24 6 0.02
4-25 515 6.91
4-26 516 6.03
4-27 58 0.83
4-28 368 5.64
4-29 666 6.55
4-30 750 6.25
5-01 488 4.07
Total 3523 38.86
Table 1Log of observations

The field probes the Galactic disk center at , , which was also monitored by the Optical Gravitational Lensing Experiment (OGLE-III; Fig. 1 of Pietrukowicz et al., 2013). Limited data bandwidth (128kbps for our Iridium OpenPort system; Xu, 2012) from Dome A meant that the raw images were carried back from Dome A on hard disk drives by the 29th Chinese Antarctic Research Expedition (CHINARE) team. The satellite bandwidth is sufficient for transferring only small sections of images and highly-reduced data (Shang et al., 2012).

2.2. Data reduction

The preliminary reduction of the raw science images involved crosstalk correction, bias subtraction, dark current subtraction, and flat fielding. The inter-channel interference crosstalk due to the multi-channel CCD readout, was corrected first. Overscan regions of the 16 readouts were used to correct the corresponding bias. Problems with the CCD’s thermoelectric cooler during 2012 meant that the images were subject to high dark current levels, comparable to the sky background. A new method was applied to calculate a dark frame from image pairs. More specifically, our dark frame was derived by combining 230 image pairs (each pair having the same temperature and exposure time), and was scaled to the same temperature and exposure time as the scientific images for dark current correction (Ma et al., 2014).

The flat-fielding of AST3-1’s wide field was achieved in two steps. Due to the relatively large 4.3 deg FOV, a sky brightness gradient of 1%  10% from individual twilight flat-field image remained after pre-processing for crosstalk, overscan, and dark current. The 200 twilight flat-field images were selected to correct the sky brightness gradient. More specifically, for each of the 200 twilight flat-field images, the brightness gradient was first fitted with an empirical function based on the sun’s altitude, and the angle between the image and the sun. The gradient was removed by dividing each image by the empirical fit, and the resulting 200 twilight images were then median-combined to obtain a master flat field, which was used for flat-fielding corrections for the science images (Wei et al., 2014).

After finishing the preliminary reduction, SExtractor (Bertin & Arnouts, 1996) was applied to perform aperture photometry on all the scientific images. The aperture selection with 4 pixels (SExtractor’s MAG_APER parameter) was adopted as it gave the minimum r.m.s photometric uncertainties on a test image (B. Ma et al. 2016, in preparation). The photometric uncertainty reached 2 mmag for bright stars 13 mag on a typical image. In order to obtain accurate astrometry, the photometric results were fed into SCAMP (Bertin, 2006) to register the positions of all the images with the PPMX system (Position and Proper Motions eXtended, Röser et al., 2008). Our photometric calibration was divided into two steps. First, a magnitude difference between an individual image and the reference image (the highest quality image) was obtained by matching  1000 bright, isolated stars. Then, stars in the reference image that were also in the APASS (the AAVSO Photometric All-Sky Survey 37) catalog (Henden et al., 2016) were used to adjust the zero point of our magnitudes. APASS is an all-sky photometric survey, conducted in five filters: Johnson B and V, plus Sloan , , bands. The AAVSO (American Association of Variable Star Observer 38) was created by amateur astronomers, and collects and archives variable star observations.

2.3. Time-series photometry

During the 8 days of observations, 3,523 images were collected in total for our field and 96,734 bright stars with were found on our reference image, which had the largest number of detections. We then rejected stars that were detected in fewer than 20% of the images. We are ignoring such objects but they could be interesting. This left a final sample of 92,583 stars.

Fig. 1 displays the r.m.s variations in the light curves of our sample stars as a function of error-weighted magnitude. The magnitude were weighted by their photometric errors after rejecting 3 outliers iteratively until the maximum iteration reaches 10. The r.m.s is less than 0.02 mag for stars brighter than 15.4 mag. And the r.m.s is less than 0.05 mag when the magnitudes are smaller than 16.4 mag, which accounts for 78% stars in our sample.

Figure 1.— r.m.s magnitude range of light curves of 92583 stars with at least 20% measurements.

The photometric errors estimated by SExtractor were under- or overestimated due to various reasons such as underestimated flat-fielding errors, and less than perfect photometry. We worked around this problem by assuming that the majority of stars are constant and assuming the errors for this majority are roughly Gaussian as the for the constant stars. Following the reference in Kaluzny et al. (1998), we firstly calculated the value for all the stars and then derived a scale factor curve for constant stars. Then we re-scaled all stars by multiplying by this curve. The re-scaled photometric errors were then used in the calculation of the Welch-Stetson variability index (Welch & Stetson, 1993; Stetson, 1996) to find variable candidates for the next section.

3. Variable Star Catalog and Statistics

3.1. Searching for Variability

The search for variable stars in our sample was conducted in three steps. Our candidates were initially selected as those stars with statistically significant magnitude variations. Such stars didn’t necessarily show a periodic behavior. Then for the selected candidates we conducted a search for periodic behavior. Finally we used visual inspection of the phase-folded light curve and time-series diagram of each candidate to distinguish periodic and aperiodic variables.

Variable stars exhibit magnitudes variations that can be measured by the Welch-Stetson index (Welch & Stetson, 1993), later slightly modified as the variability index by Stetson (1996). We calculated for each light curve in our sample using VARTOOLS 39 (Hartman et al., 2008; Hartman & Bakos, 2016). The resulting distribution in our sample is shown in Fig. 2; the overall distribution can be interpreted in terms of two components, one of which – the one presumably corresponding to non-variable stars – resembles a Gaussian, while the other – presumably corresponding to the variables – behaves rather like an exponential tail. We measured a median value of for all stars with . We used (equivalent to a selection) as the cut-off for our variable candidates.

Figure 2.— Distribution of the Welch-Stetson variability statistic  (Welch & Stetson, 1993; Stetson, 1996) for the 92,583 brightest stars in the AST3-1 sample.

We use Lomb-Scargle (Lomb, 1976; Scargle, 1982, hereinafter LS) and box fitting algorithms (Kovács et al., 2002, hereinafter BLS) to detect the periods of our variable candidates. The LS method applies the statistical properties of least-squares frequency analysis of unequally spaced data on a series of test periods. We hunted for periods between 0.01 and 10 d and applied a bin size of 0.01 d. Periods with in the periodogram were taken to be significant. The BLS method searches for signals characterized by a periodic alternation between two discrete levels with much less time spent at the low-level (occultation) phase. Similar methods (LS & BLS) for hunting for variable stars, were applied in Wang et al. (2011, 2013a); Yao et al. (2015). Surveys such as OGLE II use the Detached Eclipsing Binary Light curve fitter (Devor, 2005, hereinafter DEBiL) for finding and analyzing eclipsing binaries in large datasets. We also used the DEBiL code to find the corresponding periods of our variable candidates as an independent check of the periods found by the LS and BLS methods. We visually inspected the phased light curve folded by the periods found from each of the LS, BLS and DEBiL methods, and selected the period that had the smallest . Due to the very short observing window (only eight days of observations over 34 days) and observing gaps (when AST3-1 was pointing elsewhere, and avoiding twilight), we found that in some cases periods produced by the LS, BLS or DEBil methods did not produce well-folded phase curves. In these cases we manually adjusted the period to produce the best result.

In order to calculate the uncertainty of the above derived periods, we ran Markov Chain Monte Carlo (MCMC; Brooks, 1998) simulations of the high-order harmonic function as given in equation (1),

(1)

based on the detected period using the -nonlinfit tool of VARTOOLS (Hartman & Bakos, 2016). We used a 12th order fit to the light curve, which was able to fit eclipsing binaries with relative deep depths. The number of accepted links in a given fit was set to 1000. The initial guess and step size of each and were found by fitting the equation (1) to each light curve with a fixed period. The median value of each period and its uncertainty were calculated in the MCMC simulation by again fitting the equation (1) to each light curve, but now with the constraint .

Next, we visually inspected the light curve of each variable candidate to search for objects with statistically significant variations in magnitude that did not necessarily show a periodic behavior during our 8-day observations. Our final catalog of variables contains 560 stars in the magnitude range from 10.87 mag to 16.23 mag, 339 of which are new discoveries by AST3-1. Table 2 lists the properties of all the detected variables. Column 1 lists the 2012 AST3 ID; columns 2 and 3 give the right ascension and declination matched to the PPMX system; column 4 contains the weighted mean -band magnitude; column 5 gives the value; column 6 lists the most significant median period (top left panel in Fig. 3) in the MCMC simulation, and its standard deviation in brackets in unit of  d (when applicable); column 7 specifies the minimum per degree of freedom in the MCMC simulation; column 8 gives the peak-to-peak amplitude of variation; column 9 gives the time of the first minimum light contained in our observations (only for the periodic variables); column 10 contains a tentative classification of the variable 40, where possible; column 11 has additional information, including previous identification of the variable from the all-sky automated survey run by AAVSO (Pojmanski, 2005; Watson et al., 2016) or inclusion in the variable stars of OGLE-III (Samus et al., 2009) or the Bochum Survey of the Southern Galactic Disk (Hackstein et al., 2015, hereinafter GDS).

We matched our final catalog of 560 stars with the AAVSO database and GDS catalog, with a matching radius of 15 arcseconds. This initially resulted in 231 variables stars being previously known. There were 116 variable stars in common between our survey and the AAVSO database, and 104 of these had magnitudes in the Cousins’ infra-red band (Watson et al., 2016). There are 152 variable stars in common between our catalog and the GDS database with magnitude values in Sloan band; 139 of these also had magnitude measurements in Sloan band (Hackstein et al., 2015), which is similar to our filter. There are 37 variables that appeared in both the AAVSO database and the GDS catalog. We double-checked our initial matching results by measuring the magnitude difference  mag our observations and (AAVSO) and (GDS). For the 104 stars in common with the AAVSO database, we measured a median value of and applied 3 outliers rejection to the and also required that the magnitude should be less than 16.5 mag to exclude 6 stars (AST11766, 12622, 37735, 64879, 74215 and 89418) from the initial common sample. The vs. magnitude diagram for the remaining 98 variable stars is shown in the right panel of Fig. 3. We excluded 4 outliers (AST05375, 57964, 71042 and 83522) with the same method applied to the 139 stars common between our catalog and GDS. vs. for 148 variables we have in common with GDS is shown in the bottom left panel of Fig. 3; vs. for 135 variables is shown in the bottom right panel.

Our final catalog shows that we have rediscovered 221 previously known variable stars; 96 of these are found in both the AAVSO database and the OGLE-III survey (Pietrukowicz et al., 2013); an additional 14 stars were in the AAVSO database but not in the OGLE-III survey; the remaining 111 stars were found in the GDS catalog. Due to our short observing window, we could not determine the periods of three variables: AST13431, 49035, and 83717. In addition, AST43064 and 62877 are listed in the AAVSO database without a period, and all known variables from the GDS catalog had no measurements of their periods until now. The estimated periods for the remaining 105 variables from AST3-1 are highly consistent with those given in the AAVSO database except for five variables: AST31492, 38531, 39901, 59773, and 68860, which have AST3-1 periods that are half of the AAVSO values. Our period detection methods (LS, BLS) are sensitive to detect sine wave or box-like signals. Our periods should be double for binary stars to show the primary and secondary eclipsing light variabilities, i.e., binaries AST38531, 59773 and 68860. While for another two periodic variable stars AST31492 and 39901, we believe our periods are correct (Fig. 4). The final period-period diagram from AST3-1 and AAVSO database is shown in top left panel of Fig. 3.

Figure 3.— Top left: the measured periods for 105 variable stars from AST3-1 compared to the periods given in the AAVSO database; top right: the measured magnitude for 98 variable stars from AST3-1 compared to the Cousins’ magnitude given in the AAVSO database; bottom left: black solid circles show magnitude for 148 variable stars from AST3-1 compared to the Sloan magnitude given in the GDS catalog (red squares for 135 out 148 stars with both , band magnitudes); bottom right: magnitude for 135 variable stars from AST3-1 compared to the Sloan magnitude given in the GDS catalog.
Figure 4.— Phased light curves were folded by periods from AST3-1 (left panels) and from the AAVSO database (twice that from AST3-1, right panels) for AST31492 and 39901; we believe that the AST3-1 periods are more likely to be correct.
Figure 5.— Phased light curves for six typical periodic variable stars. The periods and AST IDs are listed above each panel. Top row (from left to right): Scuti, RRLyr c-type star, and Cepheid; bottom row (from left to right): eclipsing binaries of W UMa-type (EW), Lyrae-type (EB), and Algol-type (EA) configurations.

We classified half of the variables into binaries, 17% of them into  Scuti,  Doradus, Cephei, RR Lyrae, and unclassified periodic or multiple periodic variables. Due to our short observing window, we could not detect the periods of the one third of the variables that passed our selection as a result of their significant time series variability. Table 3 contains approximate statistics for the different types, if possible. The folded light curves of the representative periodic variables are showed in Figs. 58, while the representative light curves of aperiodic variables are showed in Fig. 9. The time-series data of all 560 variable stars will be available in machine readable format through the VizieR Online Data Catalog 41.

3.2. Types of variables found by AST3-1

Eclipsing binaries

Eclipsing binaries can be classified into three broad categories based on the shape of their light curves: Algol-type eclipsing systems (EAs), Lyrae-type eclipsing systems (EBs) and W Ursae Majoris-type eclipsing variables (EWs). The EA systems have obviously different depths between the primary and secondary minima, and have clearly defined times for the beginning and ending of the eclipses; EA systems are often but not always a detached eclipsing system (Catelan & Smith, 2015), although the prototype of the class, Algol, is believed to be a semi-detached system (Soderhjelm, 1980; Kolbas et al., 2015). The EB systems show a continuous change in brightness and have a deeper primary depth than that of the secondary. The EW systems also show a continuous change in brightness and have an almost equal or non-obvious varying depth between the primary and secondary minima. The EW systems consist of two components almost in contact and thus have periods generally shorter than 1 day. Among our sample, there are 127 EWs, 33 EBs, 138 EAs and 65 stars in question are probably distributed into several different variability classes, including eclipsers, pulsators, and others, which are separated by a pipe symbol “” in Table 2. In total, we have detected 285 binaries and 143 ones are new detections from our data. Of the 339 new variables, 42% belong to the classes of eclipsing binary stars.

There are 34 interesting EW or EB binaries among our 285 detections which show O’Connell effects, i.e., the two successive out-of-eclipse maxima have unequal height in the light curves (O’Connell, 1951; Milone, 1968; Nataf et al., 2010). The O’Connell effect can be explained by the interaction of circumstellar material with the binary components (Liu & Yang, 2003). The interaction model suggests that the O’Connell effect is most obvious in late type and/or short period binaries. In our sample, a short-period EW binary AST46538 exhibits the most obvious O’Connell effect (Fig. 6), and has a magnitude difference of 0.06 mag in band between the first and second maximum out-of-eclipse brightness. AST46538 appears in the UCAC4 catalog (Fourth U.S. Naval Observatory CCD Astrograph Catalog; Zacharias et al., 2013) and has  mag and  mag. It also appears in the 2MASS All-Sky catalog of Point Sources (Cutri et al., 2003) and has of  mag., respectively. In order to estimate the color excess of AST46538, we compared its color-color diagrams ( vs. , vs. , vs. , vs. and vs. ) with the intrinsic color-color diagrams for main sequence stars 42 (Fitzgerald, 1970; Ducati et al., 2001) and we found that its interstellar extinction can be neglected. Thus the color term of AST46538 from UCAC4 and 2MASS catalogs can be taken as its intrinsic color to estimate its spectral type, which is equivalent to spectral type G8 (Fitzgerald, 1970; Ducati et al., 2001). We find that the spectral type G8 and orbital period 0.333d of AST46538 are close to that of the W UMa binary YY Eri with spectral type G5V and orbital period 0.322d (Liu & Yang, 2003); thus, both should exhibit similar O’Connell effects based on the model of Liu & Yang (2003). Indeed, we find consistent O’Connell effects in AST46538 and YY Eri: for YY Eri, the modeled bolometric magnitude difference is 0.07 mag and the observed magnitude difference in band is 0.04 mag (Liu & Yang, 2003), while for AST46538, the observed magnitude difference in band is 0.06 mag. More observations are needed to double check the above analysis for AST46538.

Figure 6.— The phased diagram of AST46538, which has the most significant O’Connell effect in our sample. Its ID and orbital period are marked in the title.

Pulsating variable stars

Pulsating variable stars exhibit periodic expansion and contraction (radially or non-radially) of their surface layers (Catelan & Smith, 2015). The pulsating variable stars are classified into many types based on their period, amplitude, light curve shape, evolutionary status and so on. A more complete classification for all kinds of pulsating variable stars ( Scuti,  Doradus, RR Lyrae stars, Cepheids and so on) can be found at Catelan & Smith (2015). Scuti variables are late A- and early F-type stars situated in the instability strip on or above the main sequence in the HR Diagram. Their typical pulsation periods are found to be in the range of 0.02d to 0.25 d (Breger, 2000).  Doradus stars locate in the similar position in the instability strip as the  Scuti stars but with relatively larger pulsating periods ranging from 0.3 d to 3 d (Cuypers et al., 2009). RR Lyrae stars are radially pulsating giant stars with spectral type A to F with periods from 0.2 to 1 d (Smith, 2004). Most RR Lyrae stars are pulsating in the radial fundamental mode (RRab stars) and the first overtone mode (RRc stars).

Cepheid variables obey the period-luminosity relation and are divided into two subclasses—type I and type II Cepheids (Catelan & Smith, 2015)—based on their masses, ages and evolutionary states. The period-luminosity relation shows that there is a subtype between I and II, called Anomalous Cepheids (Figure 7.3 of Catelan & Smith, 2015). The majority of  Cepheid variables show a large light variation and a rapid rise to maximum and a slow decline back to minimum (i.e., Fig. 7), which is similar to a RR Lyrae star (Schmidt et al., 2004; Soszynski et al., 2008). There are Cepheids with lower amplitudes ( mag. in ) but they have symmetrical light curves and shorter periods ( days; Catelan & Smith, 2015). Type II Cepheids generally shows a relatively broad maximum and a symmetric minimum (Schmidt et al., 2004) and they have periods of  0.8 - 35 days and light amplitudes from 0.3 to 1.2 mag in band 43. Anomalous Cepheids show the similar light-curve morphology as RR Lyrae variables with periods shorter than two days and the majority of them show a small bump before the rise to maximum (Soszyński et al., 2008). Based on the light-curve morphology, 12 variable candidates were classified as Cepheids as they have higher light amplitudes ( 0.3 mag.), larger periods ( 2 days) and also exhibit a rapid rise to maximum and a slow decline to minimum. Another 13 variables (AST04480, 09282, 35419, 35518, 40551, 42471, 49241, 53255, 67933, 75631, 79599, 81000, and 84533) also show the morphology of a fast rise and a slow fall, and we have classified them as type “PER” (§3.2.3) since their amplitudes are less than 0.3 mag. and they have no bumps before the rise to maximum.

In our sample, there are 27 pulsators, which are classified into 10  Scuti stars, 2  Doradus stars, 12  Cepheids, and 3 RR Lyraes. For example, AST13387 is the previously known  Cepheid GS Car. Its phased light curve in band can be well fitted by the Fourier decompositions with a fundamental frequency of 0.245616 d and the harmonics of 0.497130, 0.736473, 0.984846, 1.225154 d) in order of decreasing amplitude values (the red curves in Fig. 7).

Figure 7.— Observed light curves of the known Cepheid GS Car (AST13387) in band (black points) and the fitting curves with the fundamental frequency and the harmonics (red curves).

Other types of variable stars

For the unclassified 248 variable stars we detected the main periods for 67 of them (periodic and multi-periodic). If the phased light curve folded by its main period was significantly scattered, we classify it as a multi-periodic type variable star, otherwise we classify it as a periodic one. For the remaining 181 unclassified objects we could not detect a period due to the short observing window (8 days spanning 34 days). In our sample, we detected a new complex binary system, AST10442 (Fig. 8). The system has a period of 0.845 d, and an magnitude of 14.64. The system, which presents RS CVn-like light curve morphology (obvious variability when out of eclipse), shows a primary depth of 0.15 mag but does not show the secondary eclipse on the folded light curve (bottom panel of Fig. 8). AST10442 appears in the SPM4 catalog (Girard et al., 2011) and has mag and mag. It also appears in the 2MASS All-Sky catalog of Point Sources (Cutri et al., 2003) and has of  mag., respectively. We have done the same analysis (color-color diagrams) as the AST46538 and found its interstellar extinction can also be neglected. Based on the empirical formula (Krishna Swamy, 1996; Zong et al., 2015), color  mag is equivalent to  K. Such low suggests that AST10442 has a spectral type of K5 or M0. If it is a giant, its orbital velocity could be km/s from Figure 4 of Gaulme et al. (2013). To our knowledge, no published spectroscopic observations have been performed of this interesting system to date. We have obtained 2 hours on Gemini South to carry out spectroscopic observations of this system, in order to measure its maximum radial velocities at phases 0.25 and 0.75.

Figure 8.— Top panel: Light curve of AST10442 in the band, showing an RS CVn-like pattern with a period of 0.845 d, and a prominent primary minimum clearly detected (marked with arrows in the top plot). Bottom panel: Phased light curve of AST10442 folded by the period of 0.845 d.

In addition, out of the 181 aperiodic variable stars, four variable stars AST68688, 40957, 90095 and 83717 with the largest amplitudes in Table 2, are showed in the four panels of Fig. 9. AST68688 and 40957 have shown fast rising variability, i.e.,  0.6 mag in 3 days (top panels of Fig. 9). AST90095 shows a brightness plateau during its ascending stage (bottom left panel of Fig. 9); its variability was detected in the GDS catalog, based on sparse data with big gaps (Hackstein et al., 2015). The new variable AST83717 shows a secondary maximum during its descending stage after its band maximum brightness (bottom right panel of Fig. 9). More observations are needed for further investigations into these four interesting objects.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
ID R.A. Dec. Period Amp Type Note
(mag) (d) (mag)
AST00006 10:50:18.48 61:50:54.4 15.31 0.88 0.15 VAR
AST00391 10:50:21.84 62:11:29.2 14.71 6.99 3.024214983 ( 144) 0.48 0.59 DCEP
AST00424 10:50:20.62 62:01:08.1 13.13 0.67 2.455793858 ( 602) 0.26 0.04 15429.813526 EW-OCPER
AST00626 10:50:23.52 62:00:18.8 14.56 1.47 2.310849190 ( 88) 0.63 0.24 15430.484424 EA
AST00651 10:50:23.85 62:27:13.9 14.35 0.86 0.13 VAR
AST00723 10:50:20.70 62:17:13.6 12.90 4.76 0.23 VAR
AST00769 10:50:25.00 62:10:13.5 15.21 1.20 0.17 VAR
AST01150 10:50:27.04 62:47:05.8 13.84 1.33 1.342747211 ( 118) 0.32 0.08 15428.847705 EW-OC
AST01289 10:50:27.57 61:59:12.4 13.11 0.75 1.351890564 ( 204) 0.31 0.05 PER
AST01361 10:50:28.59 62:27:36.5 14.95 0.85 0.324106067 ( 18) 0.98 0.08 15428.167041 PER
AST01736 10:50:30.38 61:35:26.4 14.05 3.65 1.333363891 ( 38) 0.41 0.23 15429.029346 EB [G]
AST01935 10:50:29.32 60:49:45.8 13.77 0.73 2.421975374 ( 431) 0.40 0.05 15430.448291 PER
AST02020 10:50:34.97 61:59:27.7 15.89 0.95 0.323549092 ( 17) 0.79 0.15 15428.327198 PER
AST02031 10:50:33.64 62:51:31.4 13.75 1.02 0.103944004 ( 2) 1.73 0.05 15427.918994 DS
AST02065 10:50:34.09 62:31:19.2 13.74 1.77 0.11 VAR
AST02152 10:50:34.08 60:08:33.7 15.53 1.35 0.740864873 ( 71) 0.52 0.17 15456.359893 PER
AST02184 10:50:29.85 60:13:04.0 12.76 0.87 2.310723543 ( 310) 0.36 0.07 15456.825713 MP
AST02246 10:50:33.77 60:34:06.7 13.86 1.60 1.058485031 ( 96) 0.49 0.07 15429.240804 PER
AST02460 10:50:34.22 61:11:10.8 12.41 2.46 0.30 VAR
AST02497 10:50:36.12 61:26:00.7 14.58 1.25 0.279432029 ( 5) 0.68 0.09 15428.068929 EW [A,O]
AST02664 10:50:36.09 61:21:30.5 14.38 1.09 0.131989017 ( 3) 1.30 0.06 15427.890674 DS
AST03058 10:50:40.89 62:03:31.2 15.60 1.06 0.682276845 ( 35) 0.77 0.20 15428.034180 EWPER
AST03182 10:50:41.41 61:11:20.5 15.39 2.88 0.987051964 ( 26) 1.65 0.36 15429.252979 EBEW [A,O]
AST03318 10:50:38.07 60:45:36.5 12.61 1.03 0.07 VAR
AST03552 10:50:44.37 62:03:51.5 14.11 0.81 4.132096767 (1626) 0.36 0.06 15432.010791 PER
AST03868 10:50:48.72 62:30:26.5 15.73 1.20 0.868575275 ( 21) 0.69 0.44 15428.344776 EA
AST04458 10:50:49.81 60:53:39.9 14.52 1.47 0.09 VAR
AST04480 10:50:47.56 61:04:14.7 12.47 0.75 3.719808578 (1112) 0.21 0.05 15433.159750 PER
AST04554 10:50:52.64 61:58:47.2 14.75 3.47 3.075015306 ( 104) 0.36 0.52 15430.994190 EB [G]
AST05016 10:50:46.30 60:28:41.2 11.61 1.03 3.182297707 ( 582) 0.10 0.13 15432.733448 EWPER [G]
AST05109 10:50:55.93 62:05:52.8 13.92 16.22 4.095854759 ( 137) 0.78 0.61 DCEP
AST05115 10:50:54.93 61:29:51.5 13.55 0.90 0.06 VAR
AST05375 10:50:54.82 60:21:08.3 12.83 2.25 0.16 VAR
AST05512 10:50:59.14 61:09:36.4 15.77 1.02 0.488956094 ( 11) 0.52 0.39 15428.115283 EA [A,O]
AST06124 10:51:03.02 62:18:27.3 12.39 1.17 0.08 VAR
AST06200 10:51:06.66 62:33:13.6 14.64 3.34 0.680435836 ( 8) 7.94 0.36 15428.026416 EA
AST06223 10:51:01.75 61:30:45.9 13.28 1.00 1.355532765 ( 115) 0.63 0.06 15428.845752 EWPER
AST06264 10:51:04.53 61:21:47.1 14.43 6.17 0.780832171 ( 9) 0.37 0.36 15428.401416 EW-OC [A,O,G]
AST06454 10:51:06.13 62:49:23.1 12.74 0.76 0.04 VAR
AST06485 10:51:08.81 62:53:09.8 13.74 0.90 0.05 VAR
AST06551 10:51:04.87 60:45:58.9 13.35 1.15 3.140070915 ( 583) 0.51 0.08 15431.992237 MP
AST06935 10:51:07.08 60:49:13.1 14.87 2.01 0.404375076 ( 6) 2.01 0.21 15428.370110 EW-OC [A,O]
AST06992 10:51:13.05 62:56:21.9 14.72 2.24 2.859702110 ( 113) 0.63 0.30 15428.544971 EA
AST07161 10:51:12.83 62:18:16.1 13.98 0.79 0.11 VAR
AST07651 10:51:12.23 61:32:00.2 12.74 1.56 0.09 VAR
AST07839 10:51:14.15 61:45:24.3 13.20 1.95 0.13 VAR [G]
AST07857 10:51:12.31 60:54:20.0 12.74 0.89 0.05 VAR
AST07949 10:51:16.12 60:44:17.0 15.45 1.57 1.600357056 ( 64) 0.64 0.36 15429.700244 EA
AST08137 10:51:15.13 60:39:12.6 12.55 0.88 0.05 VAR
AST08233 10:51:17.71 60:48:20.5 14.59 0.70 1.310830474 ( 126) 0.65 0.10 MP
AST08359 10:51:20.06 61:59:51.8 14.99 1.41 0.983328998 ( 63) 1.05 0.10 15428.013721 PER
AST08666 10:51:15.25 60:32:08.2 12.00 10.69 0.398373961 ( 1) 0.57 0.54 15427.925830 EW [A,G]
AST08720 10:51:18.04 60:14:34.2 13.55 1.70 0.629107833 ( 12) 0.30 0.14 15456.153838 EA
AST08781 10:51:23.30 62:17:45.0 13.46 0.80 0.260562032 ( 9) 1.07 0.05 15428.100244 DS
AST08972 10:51:22.87 62:13:03.1 12.35 1.06 0.08 VAR
AST09228 10:51:27.85 62:01:17.4 15.55 2.31 7.822863579 ( 967) 0.48 0.41 15428.225586 EA
AST09260 10:51:27.26 61:59:37.4 15.05 2.80 0.603488028 ( 7) 9.40 0.45 15428.265674 EA
AST09282 10:51:23.78 60:11:49.4 14.07 3.65 2.139209986 ( 318) 0.50 0.14 15457.765166 PER
AST09688 10:51:28.20 60:34:46.6 15.82 0.77 0.285608947 ( 7) 1.90 0.17 15427.964893 EAPER
AST09763 10:51:24.25 60:50:36.4 13.86 0.91 0.544745624 ( 19) 0.75 0.07 15427.966846 EWPER
AST10084 10:51:34.84 62:55:42.6 13.26 2.77 1.228544593 ( 29) 0.82 0.18 15428.983448 EA
AST10364 10:51:39.63 62:50:31.8 14.41 1.25 0.288527936 ( 6) 0.70 0.08 15427.904867 EWPER
AST10372 10:51:31.04 60:09:45.6 13.60 0.76 0.04 VAR [G]
AST10395 10:51:35.03 61:52:57.9 13.59 1.31 0.08 VAR
AST10442 10:51:32.50 60:06:42.0 14.64 1.22 0.845150113 ( 19) 0.54 0.10 15455.538945 MP
AST10684 10:51:39.22 62:04:33.3 15.49 3.08 0.416190863 ( 5) 0.70 0.33 15428.288135 EW-OC
AST11314 10:51:45.40 62:14:48.0 14.83 0.80 0.782273173 ( 65) 1.32 0.08 MP
AST11322 10:51:44.78 61:59:01.2 15.76 1.25 0.082026005 ( 1) 0.49 0.22 15428.077198 DS
AST11515 10:51:45.30 61:46:13.0 14.93 6.71 0.367223918 ( 1) 0.66 0.76 15427.991260 EW [G]
AST11525 10:51:43.51 61:02:20.5 15.62 2.55 0.341762990 ( 3) 0.76 0.61 15428.279867 EW-OC [A,O,G]
AST11717 10:51:41.96 61:16:05.2 12.50 1.51 0.13 VAR
AST11766 10:51:45.65 61:16:44.8 15.65 0.72 0.529805183 ( 33) 0.54 0.12 15428.673421 EWPER
AST12171 10:51:52.18 62:53:59.4 13.53 0.97 0.06 VAR
AST12284 10:51:47.20 60:27:14.2 15.42 0.94 1.371219635 ( 43) 0.57 0.30 15456.192901 EA
AST12297 10:51:45.13 60:24:00.8 14.85 0.85 3.703156710 (1783) 0.37 0.08 15459.456573 PER
AST12412 10:51:46.90 60:15:51.3 15.03 1.95 3.401479006 ( 483) 0.72 0.25 15457.275909 MP
AST12477 10:51:49.45 62:14:25.1 13.72 3.09 3.274060965 ( 47) 0.69 1.33 15429.622119 EA
AST12622 10:51:50.77 61:40:00.9 14.10 0.87 1.318220377 ( 130) 0.53 0.08 15429.218799 PER
AST12715 10:51:51.20 60:57:26.3 14.96 1.67 1.026523948 ( 41) 0.43 0.25 15428.869190 EW-OC [A,O]
AST13126 10:51:50.85 61:36:47.7 12.53 1.62 0.08 VAR
AST13156 10:51:52.66 60:42:23.8 15.82 0.93 0.414962053 ( 12) 1.35 0.25 15428.103109 EW-OC
AST13387 10:51:54.10 61:28:02.2 11.93 4.39 4.069720268 ( 206) 0.18 0.43 DCEP [A,G]
AST13431 10:51:58.32 61:27:01.5 15.45 0.67 0.17 VAR [A]
AST13448 10:52:02.41 62:11:40.1 15.16 1.98 2.042309999 ( 54) 0.58 0.60 15430.961963 EA
AST13451 10:51:57.81 61:07:09.2 14.33 0.78 1.192824006 ( 61) 0.45 0.12 15429.060596 EAPER [A,O]
AST14392 10:52:08.26 62:06:44.3 14.32 1.42 0.525962174 ( 13) 1.18 0.12 15428.502979 EWPER
AST14578 10:52:05.33 61:20:31.6 13.19 1.98 1.977267146 ( 34) 0.51 0.27 15429.874724 EA [A,O,G]
AST14741 10:52:10.46 62:03:19.1 13.96 0.87 0.04 VAR
AST15267 10:52:12.44 61:20:12.3 14.64 1.14 2.827423811 ( 429) 0.43 0.10 15430.448291 EWPER
AST15280 10:52:10.47 60:35:41.6 15.70 1.47 1.597659945 ( 36) 0.83 0.62 15428.646533 EA [G]
AST15337 10:52:10.16 60:40:43.1 14.27 1.52 0.09 VAR
AST15400 10:52:07.35 60:34:23.1 12.47 2.09 0.11 VAR
AST15457 10:52:07.66 60:38:29.2 12.72 1.02 0.05 VAR
AST15912 10:52:20.45 62:06:50.1 14.29 3.89 0.830626786 ( 13) 0.41 0.27 15428.783252 EW-OC
AST16017 10:52:17.93 61:20:10.3 13.77 0.70 0.07 VAR [G]
AST16189 10:52:18.24 62:16:59.9 13.42 1.93 0.12 VAR
AST16271 10:52:12.37 60:33:46.0 12.33 2.24 3.441099882 ( 90) 0.68 0.26 15429.156299 EA
AST16336 10:52:09.47 61:25:46.2 12.09 0.95 0.08 VAR [G]
AST16337 10:52:18.49 60:47:01.2 14.21 0.70 3.435531855 ( 497) 6.29 0.13 PER
AST16396 10:52:12.11 60:32:20.4 13.39 1.39 0.09 VAR
AST16539 10:52:22.98 61:32:08.7 13.81 7.16 7.395895958 ( 446) 0.31 0.62 15439.385742 EB [G]
AST16578 10:52:15.25 60:24:13.0 12.05 1.38 0.607649922 ( 20) 0.17 0.10 15456.536651 EW [G]
AST16587 10:52:23.55 61:57:47.6 13.52 1.05 1.588346481 ( 282) 0.45 0.05 15428.842823 PER
AST16670 10:52:15.97 60:23:47.8 12.75 5.18 0.28 VAR [G]
AST16693 10:52:21.08 60:33:35.4 15.91 1.08 1.242375016 ( 59) 0.51 0.65 15429.258838 EA [G]
AST16917 10:52:19.39 60:49:07.0 13.31 0.86 0.08 VAR
AST16928 10:52:29.48 62:08:26.8 14.32 0.77 0.828264415 ( 56) 0.43 0.07 15428.339893 EWPER
AST16981 10:52:24.56 60:57:17.6 15.00 1.53 0.447291791 ( 12) 0.61 0.19 15428.528890 EW-OC
AST17108 10:52:31.84 62:21:48.7 15.19 3.23 0.882196426 ( 20) 1.12 0.35 15428.790088 EW-OC
AST17511 10:52:28.94 61:04:35.6 15.05 1.03 0.443277836 ( 14) 0.79 0.10 15428.052783 EWPER
AST17592 10:52:29.42 61:14:58.9 13.42 1.11 0.07 VAR
AST17775 10:52:33.12 61:29:05.4 15.45 1.61 2.391628981 ( 217) 0.74 0.31 15430.316455 DCEP [A,O]
AST17892 10:52:37.23 62:05:37.3 15.38 1.97 3.269760847 ( 490) 0.53 0.25 15430.398031 EW-OCPER
AST17934 10:52:31.44 60:51:40.5 14.35 1.48 0.14 VAR
AST17938 10:52:32.07 60:56:32.3 15.99 1.41 1.413506150 ( 51) 0.62 0.44 15429.412158 EA [A,O]
AST17970 10:52:24.54 60:34:38.2 12.09 0.91 0.07 VAR [G]
AST18237 10:52:30.09 60:07:42.7 15.58 1.75 0.854213774 ( 14) 1.08 0.74 15456.284698 EA
AST18432 10:52:42.11 62:15:18.1 15.60 0.90 1.822781205 ( 44) 0.57 0.27 15428.615283 EA
AST18438 10:52:32.39 60:25:05.9 14.57 0.71 2.720453978 ( 122) 0.76 0.16 15456.515166 EA
AST18697 10:52:33.02 60:29:20.1 13.24 0.77 0.05 VAR
AST18843 10:52:34.49 60:35:45.9 12.39 0.84 0.05 VAR
AST18900 10:52:38.80 60:51:02.1 14.87 1.70 0.390786111 ( 10) 0.60 0.12 15428.069385 EW-OCPER [A,O]
AST19345 10:52:45.70 61:43:51.3 14.27 1.07 0.08 VAR
AST19397 10:52:46.50 61:56:32.8 12.94 2.28 1.487738967 ( 40) 2.12 0.17 15429.200244 EAEB [G]
AST19490 10:52:40.15 60:17:49.6 13.74 1.19 0.07 VAR
AST19571 10:52:50.42 61:55:57.3 15.52 3.60 0.523991883 ( 7) 0.69 0.51 15428.272054 EW [A,O,G]
AST19702 10:52:40.54 60:14:30.6 13.11 0.72 0.06 VAR
AST19762 10:52:43.98 60:40:21.9 14.27 0.71 0.07 VAR
AST19802 10:52:52.71 62:09:08.3 15.12 1.73 1.435382485 ( 35) 1.34 0.38 15428.928760 EA
AST20003 10:52:48.50 61:20:33.1 13.02 1.37 0.12 VAR [G]
AST20105 10:52:56.09 62:22:09.6 14.96 1.52 2.558847904 ( 102) 0.69 0.37 15429.147510 EA
AST20541 10:52:43.12 60:08:53.2 12.53 0.77 0.05 VAR
AST20657 10:52:51.86 61:21:25.8 13.44 5.67 0.547526121 ( 6) 0.33 0.21 15428.025440 EW [A,O,G]
AST20751 10:52:55.61 61:20:22.8 14.80 0.98 1.859558702 ( 140) 0.72 0.19 15429.148487 EA [A,O]
AST21008 10:52:48.78 60:39:16.4 12.57 6.76 0.40 VAR [G]
AST21541 10:52:56.62 60:24:24.0 15.59 3.48 0.425307095 ( 5) 0.52 0.48 15455.772979 EW
AST21898 10:53:03.31 61:38:22.1 13.21 2.84 1.577608943 ( 25) 0.32 0.33 15429.568408 EAEB [A,O,G]
AST21960 10:53:00.44 61:31:28.6 12.94 0.70 1.152198195 ( 131) 0.45 0.04 15428.828174 GD
AST22118 10:53:01.35 61:07:28.0 12.06 0.80 0.07 VAR [G]
AST22460 10:53:09.66 62:08:12.9 13.21 1.06 0.07 VAR
AST22946 10:53:09.45 60:56:28.7 14.66 1.98 0.656189680 ( 23) 0.54 0.14 15428.748096 EW
AST22962 10:53:10.61 61:11:00.5 15.10 1.38 0.282831937 ( 4) 4.26 0.15 15428.128955 EWPER [A,O]
AST23276 10:53:08.51 60:23:33.8 14.34 0.74 1.510576248 ( 155) 0.63 0.05 15456.063995 MP?
AST23445 10:53:08.01 60:08:52.9 14.34 4.33 3.660130024 ( 494) 0.39 0.31 DCEP [G]
AST23515 10:53:16.79 61:14:36.0 15.20 1.04 3.664343834 ( 111) 0.86 0.28 15429.375049 EA [A,O]
AST23549 10:53:17.02 62:11:11.9 12.43 1.04 0.05 VAR [G]
AST23732 10:53:26.97 62:50:34.0 13.71 7.34 1.148756146 ( 8) 0.73 0.47 15428.734424 EW [G]
AST24162 10:53:20.84 61:12:34.7 14.52 1.35 0.20 VAR [G]
AST24293 10:53:15.80 60:06:10.9 15.22 1.02 1.696804285 ( 56) 0.53 0.33 15456.459502 EA
AST24378 10:53:18.86 60:40:31.6 13.78 4.50 1.162574887 ( 20) 2.29 0.34 15429.216846 EBPER
AST24383 10:53:25.13 61:50:57.6 13.98 0.94 0.08 VAR
AST24483 10:53:20.10 60:51:15.7 14.22 5.41 0.32 VAR [G]
AST24488 10:53:22.64 61:09:59.6 13.62 1.27 1.223636627 ( 84) 0.61 0.05 15428.988330 EWPER
AST24519 10:53:24.91 61:36:12.9 13.62 1.38 1.013308048 ( 17) 0.43 0.31 15428.983448 EA
AST24595 10:53:27.96 61:47:05.0 15.02 1.15 1.151387572 ( 64) 0.50 0.15 15428.665088 EA [A,O]
AST24761 10:53:31.41 62:03:36.0 14.65 3.78 0.960982978 ( 19) 0.42 0.49 15428.367237 EB-OC [G]
AST24936 10:53:34.41 62:19:58.8 14.94 1.03 0.12 VAR [G]
AST25082 10:53:20.23 60:29:51.8 12.43 0.93 0.10 VAR [G]
AST25627 10:53:29.57 60:38:48.5 15.98 0.96 0.371532083 ( 5) 3.05 0.60 15428.250049 EW
AST25633 10:53:33.00 61:29:16.1 13.91 2.81 3.507858992 ( 96) 0.51 0.51 EA [G]
AST25740 10:53:36.00 61:32:53.6 15.71 0.84 1.584113002 ( 151) 0.56 0.19 15428.189502 EA [A]
AST25746 10:53:32.06 61:26:53.4 13.29 1.29 0.08 VAR
AST25809 10:53:34.00 61:37:04.7 13.44 1.00 1.191421747 ( 100) 0.95 0.05 15428.616260 PER
AST26037 10:53:33.61 61:03:36.8 13.69 4.42 0.25 VAR [G]
AST26542 10:53:35.79 61:24:16.4 12.56 1.61 2.834712982 ( 92) 1.03 0.29 15429.387744 EA [G]
AST26602 10:53:41.52 61:36:54.1 14.25 0.94 2.780464172 ( 57) 1.65 0.16 15431.603750 EA [A,G]
AST26987 10:53:45.46 61:45:38.5 13.15 1.10 0.07 VAR
AST27264 10:53:35.65 60:21:14.2 12.95 2.31 0.14 VAR [G]
AST27396 10:53:45.46 61:15:34.9 13.81 8.67 0.417315871 ( 2) 0.54 0.44 15427.911182 EW-OC [A,O,G]
AST27409 10:53:50.87 62:12:28.5 13.72 1.16 2.180987358 ( 139) 0.42 0.17 15428.778369 EA
AST27423 10:53:46.54 61:44:27.0 12.91 1.87 2.292398691 ( 384) 0.50 0.07 PER
AST27446 10:53:40.56 60:41:23.0 13.38 0.94 0.06 VAR [G]
AST27616 10:53:51.09 61:43:00.7 15.10 3.42 0.384974092 ( 3) 0.44 0.37 15427.903369 EW [A,O,G]
AST27693 10:53:43.12 60:44:55.0 13.68 0.99 0.804831743 ( 17) 0.43 0.14 15428.485401 EA
AST28128 10:53:58.08 62:15:55.9 13.95 13.00 1.843686104 ( 27) 5.13 0.55 15429.411182 DCEP
AST28261 10:53:59.01 62:21:33.5 13.20 1.16 0.12 VAR
AST28305 10:54:02.19 62:29:22.3 14.55 3.22 0.344083905 ( 3) 0.51 0.23 15428.029346 EW-OC
AST28312 10:53:52.06 61:11:21.8 14.32 0.91 0.07 VAR
AST28392 10:54:00.77 62:07:23.5 16.09 1.90 0.363243043 ( 5) 0.53 0.69 15428.054737 EW
AST28525 10:53:53.89 61:02:43.9 16.05 1.47 0.497086167 ( 14) 1.49 0.38 15428.055713 PER
AST28541 10:54:07.05 62:52:47.8 14.61 4.99 0.441091061 ( 3) 0.85 0.33 15428.212940 EW
AST28591 10:53:57.54 61:40:28.7 13.86 2.46 3.233769655 ( 87) 0.63 0.31 15430.993213 EA [G]
AST28592 10:53:55.54 61:28:13.9 13.53 1.22 1.850862265 ( 29) 0.34 0.37 15429.826221 EA [G]
AST28694 10:53:47.52 60:33:12.8 11.95 1.63 0.14 VAR [G]
AST28842 10:53:49.56 60:10:28.5 15.23 0.72 0.832642198 ( 92) 0.54 0.08 15456.691924 MP
AST28998 10:54:03.15 62:07:32.1 14.17 1.35 0.560002744 ( 23) 0.35 0.09 15428.401416 EB
AST29379 10:53:51.00 60:15:27.4 13.24 0.99 0.07 VAR [G]
AST29542 10:54:01.83 61:09:28.0 14.90 2.00 1.456911564 ( 26) 0.58 0.51 15429.487354 EA [A,O]
AST30089 10:54:03.02 60:45:49.0 15.08 0.96 0.674265802 ( 34) 1.17 0.10 MP
AST30454 10:54:03.07 60:19:17.6 15.87 1.48 0.977033973 ( 30) 0.87 0.37 15456.120635 EAEB
AST30846 10:54:05.48 60:37:27.7 12.15 1.36 0.08 VAR [G]
AST30972 10:54:20.12 62:26:53.6 12.87 0.74 0.07 VAR
AST31346 10:54:13.57 61:08:30.8 13.41 0.89 0.07 VAR
AST31414 10:54:10.60 60:30:23.3 15.36 1.16 0.897397995 ( 19) 0.54 0.44 15428.017627 EAEB
AST31492 10:54:18.96 61:35:09.7 16.23 0.83 0.376334101 ( 17) 1.26 0.27 15427.947836 MP [A,O]
AST31705 10:54:21.06 61:28:57.6 15.32 2.69 1.405745387 ( 57) 0.98 0.39 15428.174854 EW [A,O]
AST31708 10:54:13.36 60:34:53.1 15.69 1.44 0.580020070 ( 16) 1.18 0.51 15428.633122 RRAB
AST32315 10:54:32.08 62:17:49.1 14.46 0.74 1.061147928 ( 32) 0.48 0.13 15428.913135 EA
AST32456 10:54:20.75 60:55:33.7 14.70 3.63 0.279452026 ( 3) 1.03 0.31 15428.039112 RRC
AST32504 10:54:18.70 60:32:34.3 13.77 0.87 1.175762773 ( 111) 0.40 0.05 15428.931690 EBPER
AST32604 10:54:17.71 60:23:02.7 14.27 1.34 3.658822775 ( 300) 0.58 0.17 15459.938018 MP
AST33265 10:54:26.87 61:20:49.6 11.29 1.80 4.705473900 ( 665) 0.13 0.41 15431.933187 DCEP [A,G]
AST33315 10:54:39.04 62:12:34.9 14.55 2.81 0.345232904 ( 8) 1.27 0.18 15428.012289 RRCEW
AST33563 10:54:40.63 62:05:47.9 14.53 1.32 3.494258881 ( 144) 0.50 0.32 15430.169971 EA
AST34380 10:54:48.08 62:15:51.1 15.77 0.93 1.506839395 ( 50) 0.56 0.65 15429.258838 EA
AST34755 10:54:35.99 60:30:13.5 14.87 0.97 0.756472111 ( 14) 0.93 0.40 15428.877002 EA
AST35419 10:54:47.89 61:22:51.1 14.14 1.93 2.303624392 ( 343) 0.88 0.10 15430.683643 PER
AST35518 10:54:47.31 61:45:04.2 12.85 1.68 1.670595169 ( 194) 0.36 0.08 15429.008838 PER
AST35527 10:54:41.80 60:40:12.2 13.68 1.02 7.527365208 (1026) -NaN 0.07 15429.567953 PER
AST35554 10:54:45.18 60:53:14.7 14.97 0.70 2.548235416 ( 104) 0.91 0.26 15430.415088 EA [A,O]
AST35618 10:54:42.65 60:46:46.6 13.76 0.74 0.06 VAR [G]
AST36262 10:54:49.01 60:40:40.6 15.96 1.95 0.831375599 ( 16) 0.68 0.81 15428.657276 EB [G]
AST36515 10:55:04.42 62:19:20.0 13.82 0.74 0.05 VAR
AST36836 10:55:01.32 61:42:46.3 14.91 1.36 0.599171996 ( 12) 1.63 0.35 15428.388072 EW-OC
AST36837 10:55:00.13 61:40:00.3 13.12 1.74 1.911146045 ( 129) 0.54 0.11 15429.260791 EW
AST36995 10:55:08.68 62:12:47.8 15.23 1.20 4.800000191 ( 148) 3.90 0.72 15454.918018 EA
AST37278 10:54:51.51 60:15:55.8 13.86 0.81 1.449908495 ( 188) 0.27 0.04 15457.181182 EWPER
AST37300 10:55:05.30 61:39:29.4 14.34 0.98 0.11 VAR
AST37460 10:55:02.95 61:16:31.0 14.25 1.21 0.13 VAR
AST37489 10:55:08.64 61:43:59.2 15.81 0.85 0.735394716 ( 30) 4.13 0.44 15428.645557 EB [A,O]
AST37704 10:55:14.40 62:36:05.8 13.35 0.97 0.10 VAR [G]
AST37735 10:55:02.52 61:08:57.2 13.18 1.14 0.08 VAR
AST37813 10:55:13.07 62:06:33.8 13.61 0.67 0.08 VAR
AST37940 10:55:10.04 61:35:08.5 15.44 1.20 1.760604978 ( 53) 0.47 0.68 15429.831104 EA [A,O,G]
AST38108 10:55:07.42 61:23:45.5 14.93 0.79 0.790589273 ( 43) 2.12 0.19 RRAB
AST38214 10:55:18.37 62:26:19.1 13.65 1.38 0.11 VAR [G]
AST38428 10:55:11.97 61:42:24.4 11.84 1.09 0.13 VAR [G]
AST38503 10:55:06.81 60:48:49.5 15.18 3.54 0.866045535 ( 20) 0.74 0.40 15428.149007 EW
AST38528 10:55:21.71 62:25:06.1 14.59 0.76 0.07 VAR
AST38531 10:55:14.23 61:37:21.9 15.37 0.76 3.240096092 ( 101) 2.50 0.62 15429.458057 EA [A,O]
AST38733 10:55:28.68 62:50:28.4 15.04 3.16 0.429434806 ( 5) 0.44 0.25 15428.062549 EW
AST38989 10:55:12.18 60:58:19.3 15.51 1.29 1.579001188 ( 35) 0.76 0.56 15428.886768 EA [A,O]
AST39051 10:55:16.45 61:36:23.0 12.98 0.70 0.04 VAR [G]
AST39275 10:55:05.64 60:06:58.4 15.37 0.81 0.10 VAR
AST39579 10:55:12.53 60:34:10.4 15.53 2.56 0.710536838 ( 16) 0.92 0.33 15428.539112 EW [A,O]
AST39766 10:55:07.66 60:04:37.3 13.66 3.14 3.126559973 ( 76) 0.32 0.80 15459.139190 EA [G]
AST39901 10:55:25.98 61:41:08.7 15.68 1.07 0.597742140 ( 24) 1.24 0.20 MP [A,O]
AST39979 10:55:09.10 60:32:51.8 11.08 1.08 5.495259762 (1338) 0.06 0.39 DCEP [A,G]
AST40037 10:55:29.18 62:04:08.2 13.84 5.63 0.311896056 ( 2) 1.80 0.29 15428.130908 EW-OC
AST40137 10:55:31.23 62:11:43.0 13.36 4.52 0.564102173 ( 5) 0.31 0.27 15428.466846 EB [G]
AST40361 10:55:23.18 61:08:01.6 15.63 0.75 0.19 VAR
AST40531 10:55:18.29 60:25:52.5 15.85 0.87 1.720689893 ( 58) 0.53 0.39 15456.416534 EA
AST40536 10:55:21.58 60:54:55.6 14.03 1.29 3.906109333 ( 82) 1.53 0.25 15429.293018 EA [A,O,G]
AST40551 10:55:17.20 60:34:01.3 12.92 4.25 3.180012941 ( 289) 0.61 0.19 15430.945362 PER
AST40565 10:55:23.95 61:15:58.8 13.13 0.97 0.254520088 ( 5) 0.71 0.04 15427.975635 EW
AST40655 10:55:32.03 61:49:49.5 14.64 1.02 0.826864839 ( 21) 0.87 0.17 15428.421924 EA [A,O]
AST40671 10:55:21.73 60:50:31.5 13.74 3.44 3.720889091 ( 122) 2.45 0.32 15431.042041 EA [A,O,G]
AST40766 10:55:23.08 60:50:51.4 14.23 3.30 1.205307245 ( 22) 0.41 0.35 15428.075244 EB [A,O,G]
AST40904 10:55:24.62 60:48:42.4 14.55 2.34 1.436740637 ( 27) 10.67 0.44 15430.209033 EA [A,O]
AST40957 10:55:12.26 60:09:30.3 12.05 6.60 0.62 VAR [G]
AST40966 10:55:36.09 61:58:54.4 14.83 0.82 0.369984895 ( 8) 1.24 0.10 15428.098633 EWDS
AST41209 10:55:23.77 60:34:06.9 14.37 0.93 0.11 VAR [G]
AST41484 10:55:39.68 62:18:07.9 11.74 1.23 0.16 VAR [G]
AST41594 10:55:41.59 61:52:24.9 15.47 2.48 0.980476022 ( 38) 1.79 0.28 15428.038135 EW [A,O]
AST41650 10:55:41.79 62:23:58.2 12.46 1.05 0.10 VAR [G]
AST41745 10:55:24.49 60:21:29.5 14.88 1.01 1.285867810 ( 72) 0.80 0.26 15457.657745 EA [A,O]
AST41973 10:55:42.14 61:42:45.2 14.93 0.68 0.244695961 ( 6) 0.87 0.07 15428.032796 EWDS
AST42266 10:55:39.27 61:26:18.2 12.38 1.57 0.10 VAR
AST42287 10:55:36.50 60:56:50.2 15.07 1.00 3.011338949 ( 174) 0.55 0.21 15428.702198 EA [A,O]
AST42467 10:55:33.33 60:36:53.8 14.54 1.39 0.13 VAR
AST42471 10:55:45.35 61:42:00.0 14.69 0.68 1.380798340 ( 240) 0.36 0.06 15429.068018 PER
AST42633 10:55:36.28 60:39:30.5 15.67 1.12 0.529599667 ( 19) 0.96 0.18 15428.054281 EW [A,O]
AST42854 10:55:45.13 61:40:04.9 12.94 2.17 0.11 VAR [G]
AST42869 10:55:45.83 61:29:11.4 14.57 1.84 5.210867882 ( 190) 0.58 0.39 15434.615283 EA [A,O]
AST43064 10:55:34.27 60:25:44.2 12.25 1.76 3.294270754 ( 813) 0.16 0.08 15459.939971 PER [A]
AST43091 10:55:52.82 62:18:28.3 12.97 1.57 0.07 VAR
AST43350 10:55:49.11 61:19:56.7 15.44 2.35 0.348057121 ( 5) 0.70 0.29 15428.060596 EW [A,O]
AST43409 10:55:34.25 60:04:59.0 13.46 2.05 0.15 VAR [G]
AST43421 10:55:36.80 60:13:03.9 14.55 1.09 2.331650019 ( 99) 1.12 0.26 15457.692901 EA [A,O]
AST43483 10:55:55.39 61:53:26.8 14.17 1.21 0.09 VAR
AST43594 10:55:41.33 60:26:24.2 14.78 4.59 1.319027424 ( 36) 1.39 0.34 15456.387237 EW [A,O]
AST43846 10:56:05.91 62:29:46.4 14.31 1.53 0.16 VAR [G]
AST44047 10:55:54.02 61:48:38.3 15.16 1.39 0.18 VAR
AST44142 10:56:00.05 61:53:36.9 14.77 5.21 3.456959963 ( 88) 0.45 0.74 15429.667041 EA [A,O,G]
AST44299 10:55:46.51 60:43:14.0 12.99 0.94 0.05 VAR
AST44490 10:56:06.39 62:10:40.4 14.28 0.74 0.06 VAR
AST44663 10:55:53.76 60:51:03.7 14.87 1.22 0.367153913 ( 9) 1.54 0.10 15428.104541 EWPER
AST45236 10:55:57.07 60:47:19.7 15.58 0.87 0.470419914 ( 20) 0.92 0.15 15428.452198 EW-OCPER [A,O]
AST45483 10:56:00.72 61:00:16.0 14.88 1.93 1.544415832 ( 47) 0.74 0.29 15429.040088 EA [A,O]
AST45682 10:55:54.71 60:31:55.1 11.98 1.48 0.559423745 ( 19) 1.63 0.11 15428.278369 MP [G]
AST46247 10:56:07.39 60:57:59.7 15.52 2.12 0.373133093 ( 7) 0.49 0.24 15428.302783 EW [A,O]
AST46248 10:55:58.69 60:08:55.0 15.75 1.08 1.423607945 ( 32) 0.45 0.68 15455.928252 EA
AST46259 10:56:12.29 61:39:04.8 12.46 2.48 0.20 VAR
AST46538 10:56:04.08 60:41:49.7 12.50 5.74 0.332560122 ( 2) 0.56 0.28 15428.296924 EW-OC [G]
AST46624 10:56:07.27 60:54:07.9 12.83 0.73 0.05 VAR [G]
AST46738 10:56:22.40 61:59:35.1 13.36 0.79 0.06 VAR [G]
AST46831 10:56:23.01 62:08:52.8 12.40 0.70 0.05 VAR
AST46971 10:56:02.84 60:14:08.6 12.77 1.06 4.698013783 ( 183) 0.39 0.17 15459.567901 EA [G]
AST47752 10:56:24.33 61:40:25.7 13.17 0.78 0.754773319 ( 66) 0.44 0.04 15428.530323 PER
AST47810 10:56:13.06 60:36:54.7 15.76 1.62 0.232284963 ( 4) 5.00 0.27 15428.055713 MP
AST48113 10:56:27.76 61:38:18.5 14.71 0.87 0.347427934 ( 12) 1.06 0.06 15428.090869 EWDS
AST48273 10:56:27.91 61:36:42.6 15.22 0.94 1.041998029 ( 51) 1.18 0.17 15428.113330 EAPER
AST48567 10:56:16.57 60:36:14.5 15.04 0.71 0.472171098 ( 21) 1.12 0.08 MP
AST48664 10:56:37.53 62:18:55.8 12.32 1.24 1.096216321 ( 48) 0.25 0.09 15429.486377 EW [G]
AST49035 10:56:27.03 60:56:12.7 14.19 1.62 0.15 VAR [A,O,G]
AST49082 10:56:26.29 60:51:33.4 15.24 2.61 0.632324636 ( 11) 2.11 0.40 15428.699268 EW
AST49241 10:56:28.18 61:12:02.4 12.58 0.69 1.638723373 ( 281) 0.32 0.04 15428.926807 PER
AST49631 10:56:40.04 61:53:57.9 13.09 1.86 0.15 VAR
AST50202 10:56:47.48 61:56:02.8 14.24 1.89 0.130455017 ( 1) 0.49 0.12 15427.906299 DS
AST50267 10:56:26.13 60:12:32.8 15.37 0.92 0.582240939 ( 17) 0.59 0.23 15455.982940 EA [A,O]
AST50549 10:56:30.72 60:31:50.2 13.88 0.91 1.230798006 ( 22) 0.40 0.48 15456.821183 EA [A,O]
AST50581 10:56:26.85 60:17:04.9 12.58 0.91 0.08 VAR [G]
AST50984 10:56:46.78 61:26:04.2 14.77 1.13 0.10 VAR
AST51624 10:56:35.38 60:12:39.1 13.37 3.66 1.533192635 ( 54) 0.31 0.18 15457.358916 EB [A,O,G]
AST51948 10:57:08.68 62:35:21.8 13.58 1.20 0.08 VAR
AST52507 10:56:46.21 60:42:26.1 14.18 1.00 0.09 VAR
AST52618 10:57:00.15 61:35:04.4 14.20 0.75 0.333141983 ( 12) 0.93 0.05 15455.707549 EWPER
AST53068 10:57:11.92 62:20:18.8 12.42 0.70 0.04 VAR
AST53255 10:56:57.55 61:09:04.3 13.16 1.88 2.278520823 ( 216) 0.56 0.09 15457.303252 PER
AST53328 10:57:10.14 62:11:12.1 13.43 1.69 0.143530995 ( 2) 4.00 0.07 15455.716338 DS
AST53334 10:56:45.63 60:04:32.0 14.02 1.07 0.385251939 ( 10) 0.59 0.09 15455.992705 EW
AST53357 10:56:46.85 60:14:42.1 14.90 5.02 0.356884986 ( 1) 1.24 0.86 15455.919463 EW [A,O,G]
AST53582 10:57:18.79 62:24:23.9 15.08 1.70 3.934043884 ( 765) 0.64 0.18 15456.464385 PER
AST53821 10:56:56.39 60:40:13.2 13.64 0.92 0.05 VAR [G]
AST53841 10:57:19.40 62:34:18.6 11.94 0.93 0.09 VAR [G]
AST54338 10:57:04.00 60:53:37.9 15.75 1.13 0.386257917 ( 11) 1.13 0.18 15455.932159 EW-OC [A,O]
AST54349 10:56:57.83 60:25:06.5 14.81 2.16 0.287913978 ( 1) 2.87 0.52 15455.644073 EW-OC [A,O]
AST54537 10:57:06.53 61:01:12.1 13.54 6.16 2.962728024 ( 21) 2.09 1.32 15456.965362 EA [A,O,G]
AST54552 10:57:21.33 62:10:02.0 13.77 0.68 0.05 VAR
AST54590 10:57:15.01 61:34:03.3 14.67 5.44 0.926824987 ( 5) 0.91 1.23 15456.758330 EAEB [A,O,G]
AST54604 10:57:19.23 61:58:44.1 14.16 1.00 2.200000048 ( 55) 1.13 0.23 15456.295440 EA
AST55024 10:57:07.50 60:47:17.8 15.38 0.85 0.828652203 ( 26) 0.55 0.20 15456.043487 EA [A,O]
AST55167 10:57:30.88 62:31:16.8 13.74 1.21 0.07 VAR [G]
AST55196 10:57:20.34 61:37:00.3 16.08 1.99 0.441311985 ( 8) 0.64 0.45 15455.693877 EW
AST55253 10:57:10.80 60:51:21.9 15.58 1.30 4.309783936 ( 869) 0.47 0.22 15457.232940 PER
AST55334 10:57:01.04 60:15:02.9 13.04 2.88 2.966520071 ( 64) 0.41 0.29 15457.888213 EA [G]
AST55351 10:57:29.82 62:18:16.0 13.83 0.73 0.06 VAR
AST55752 10:57:21.40 61:43:13.4 13.60 0.83 0.07 VAR
AST55824 10:57:08.06 60:24:24.1 15.19 0.81 0.11 VAR
AST56058 10:57:29.85 61:52:00.3 14.72 1.37 2.821491003 ( 194) 0.38 0.51 15459.187041 EA [A,O,G]
AST56095 10:57:09.66 60:22:14.3 14.67 1.84 1.975157976 ( 74) 0.95 0.18 15457.733916 EAPER
AST56173 10:57:06.48 60:11:39.9 14.53 0.95 0.06 VAR
AST56219 10:57:26.04 61:32:20.8 14.43 2.03 0.532076061 ( 12) 0.38 0.16 15456.005401 EW-OC
AST56493 10:57:35.02 62:04:49.7 12.97 2.96 0.22 VAR
AST56624 10:57:44.81 62:39:35.3 13.56 4.17 0.709099114 ( 8) 0.32 0.31 15456.135284 EB [G]
AST56993 10:57:29.07 61:39:40.6 12.60 1.11 0.06 VAR [G]
AST57345 10:57:21.60 60:41:53.2 15.17 0.69 0.08 VAR
AST57491 10:57:18.96 60:18:25.3 15.64 2.44 1.887721539 ( 75) 2.09 0.70 15457.099151 EA [A,O]
AST57853 10:57:50.95 62:31:51.1 13.49 1.57 0.15 VAR
AST57906 10:57:42.52 61:52:17.0 13.27 1.64 0.480562925 ( 7) 3.30 0.10 15456.015166 EWPER
AST57964 10:57:43.40 61:50:10.1 15.14 1.14 0.12 VAR
AST58731 10:57:52.08 62:01:52.3 15.39 1.28 0.393677950 ( 10) 1.07 0.17 15455.633330 EWPER
AST58825 10:57:25.32 60:08:47.7 14.69 1.58 1.710039496 ( 115) 2.35 0.11 MP
AST58900 10:57:24.27 60:15:57.7 14.59 0.75 4.699999809 ( 234) 0.62 0.20 15460.579620 EA
AST59186 10:57:52.76 61:52:01.1 15.26 1.70 1.427323580 ( 52) 3.83 0.52 15456.567901 EB [A,O]
AST59410 10:57:56.16 62:02:08.2 14.96 1.80 0.418405950 ( 7) 1.73 0.20 15456.181182 EW
AST59773 10:57:46.79 61:12:14.6 15.47 0.99 1.339923859 ( 54) 0.75 0.24 15455.911651 EA [A,O]
AST60119 10:57:34.91 60:21:04.8 13.56 0.72 0.06 VAR [G]
AST60221 10:57:32.80 60:11:56.5 12.89 1.57 1.650184274 ( 100) 1.99 0.08 15457.878448 MP
AST61020 10:57:44.56 60:31:22.0 14.87 1.08 1.165158987 ( 98) 0.42 0.10 15456.215362 EW-OCPER
AST61176 10:57:52.28 60:55:51.4 15.15 3.40 0.381975025 ( 4) 2.41 0.39 15455.847198 EW [A,O]
AST61299 10:58:17.11 62:36:23.9 13.16 1.19 0.07 VAR [G]
AST61303 10:58:06.80 62:02:39.8 14.39 1.13 0.394757956 ( 12) 1.49 0.08 15455.618682 DS
AST61514 10:57:58.80 61:45:17.8 11.63 1.29 0.15 VAR [G]
AST61607 10:58:10.07 61:51:48.0 15.87 1.04 0.928019166 ( 22) 0.41 0.64 15456.250518 EA [A,O]
AST61969 10:57:57.41 60:57:00.3 14.45 1.43 3.344052076 ( 222) 0.49 0.26 15457.584502 EA [A,O,G]
AST62031 10:58:11.31 61:45:33.8 15.05 1.95 0.508938134 ( 18) 3.47 0.20 15455.904815 PER
AST62121 10:58:04.71 61:22:28.9 14.91 1.59 4.820000172 ( 166) 0.59 0.53 15460.830596 EA [A,O,G]
AST62331 10:58:07.53 61:26:42.9 15.30 1.07 0.624118149 ( 19) 1.16 0.25 15455.881377 EA [A,O]
AST62372 10:57:48.81 60:12:34.3 13.87 2.88 2.180143595 ( 32) 0.84 0.39 15456.820830 EA [A,O,G]
AST62577 10:58:31.14 62:44:37.7 15.44 0.79 0.13 VAR
AST62838 10:58:02.88 61:08:57.7 14.98 1.14 1.763568044 ( 57) 0.92 0.49 15456.709502 EA [G]
AST62877 10:57:55.65 60:26:43.1 15.03 3.05 0.700860083 ( 13) 6.90 0.41 15456.188995 EW-OCPER [A,O]
AST62975 10:58:23.44 62:19:59.1 13.75 0.96 0.08 VAR
AST63063 10:58:06.82 61:02:15.1 14.66 1.44 3.809439898 ( 100) 3.02 0.50 EA [A,O]
AST63331 10:57:57.13 60:11:42.4 15.50 1.02 1.051903009 ( 23) 0.58 0.38 15456.558135 EA [A,O]
AST63530 10:58:06.87 60:56:39.4 14.66 0.82 0.433721989 ( 13) 0.94 0.08 15455.646026 EWDS
AST64031 10:58:08.01 60:38:30.1 15.38 0.82 0.315470010 ( 7) 1.85 0.14 15455.787627 EWDS [A,O]
AST64129 10:58:12.56 60:54:51.8 13.97 3.38 0.834581017 ( 20) 0.31 0.17 15456.320830 EW
AST64135 10:58:22.88 61:46:07.3 13.56 0.92 1.063877940 ( 74) 0.83 0.05 15456.558135 EWPER
AST64136 10:58:38.41 62:35:30.6 13.87 0.73 0.05 VAR
AST64197 10:58:39.30 62:31:33.6 15.84 0.80 0.263724029 ( 6) 2.29 0.18 15455.719268 EWDS
AST64296 10:58:45.02 62:55:40.3 13.65 1.29 0.08 VAR
AST64308 10:58:21.57 61:31:32.5 12.88 1.04 0.07 VAR [G]
AST64442 10:58:33.50 62:11:52.4 12.96 0.74 0.05 VAR
AST64493 10:58:17.04 61:02:46.0 14.75 1.45 3.134212017 ( 93) 2.97 0.38 15459.931182 EA
AST64778 10:58:17.69 61:12:03.5 12.31 2.84 1.359030247 ( 59) 0.31 0.11 15456.825713 EW [G]
AST64879 10:58:16.53 60:51:49.7 14.92 1.14 0.991783977 ( 41) 1.65 0.12 15455.914580 PER
AST65112 10:58:44.85 62:26:11.2 15.47 0.75 0.771312177 ( 81) 0.66 0.12 15456.442901 PER
AST65308 10:58:12.35 60:17:56.6 15.34 1.20 0.704288244 ( 31) 1.03 0.16 15456.180205 EWPER
AST65568 10:58:40.30 62:06:11.2 13.03 1.96 0.09 VAR
AST65679 10:58:38.30 61:57:46.2 15.26 1.78 1.004011989 ( 14) 0.63 0.84 15456.016143 EA [A,O]
AST66017 10:58:44.06 62:08:05.9 13.10 0.89 0.834789872 ( 50) 0.71 0.05 15455.778838 GD [G]
AST66226 10:58:18.58 60:19:58.9 15.42 2.87 0.442695051 ( 7) 0.94 0.33 15456.066924 EW [A,O]
AST67325 10:58:34.13 61:01:53.2 13.64 1.93 0.610230863 ( 12) 0.34 0.17 15455.755401 EA [A,O,G]
AST67331 10:58:36.28 61:10:26.2 12.56 1.74 3.900000095 ( 135) 0.32 0.18 15459.605010 EA
AST67468 10:58:30.09 60:32:22.9 15.30 2.14 0.34 VAR
AST67489 10:58:54.17 61:59:25.5 15.63 2.10 0.636152804 ( 16) 0.69 0.34 15455.945830 EW
AST67652 10:58:24.15 60:07:15.5 15.17 2.65 1.036239028 ( 26) 0.59 0.35 15455.793487 EA
AST67686 10:58:31.23 60:41:12.8 13.44 1.34 0.074568003 ( 1) 2.20 0.05 15455.653838 DS [G]
AST67750 10:58:25.08 60:08:33.9 14.96 0.74 0.948569000 ( 65) 0.49 0.10 15455.770049 EWPER
AST67860 10:59:01.97 62:19:44.3 14.70 0.69 0.182973012 ( 6) 0.85 0.06 15455.636260 DS
AST67933 10:58:42.38 61:15:34.9 13.45 1.03 4.946595669 ( 931) 0.31 0.06 15459.415557 PER
AST68291 10:59:13.98 62:45:09.4 15.32 0.65 2.234649181 ( 98) 0.52 0.49 15456.987823 EA
AST68688 10:58:48.67 61:19:55.2 15.74 1.12 0.62 VAR [G]
AST68860 10:58:46.32 60:55:09.8 15.45 2.02 2.006680012 ( 50) 0.89 0.46 15456.698760 EA [A,O]
AST69102 10:58:44.66 60:55:31.6 12.93 1.41 0.09 VAR
AST69131 10:59:05.65 62:00:01.9 15.26 0.92 1.385008097 ( 43) 0.89 0.38 15456.710479 EA
AST69265 10:58:49.45 61:02:29.8 14.02 2.87 0.21 VAR [G]
AST69401 10:59:21.34 62:43:29.4 15.41 5.26 2.956250906 ( 147) 0.45 0.76 DCEP [G]
AST69426 10:59:15.36 62:22:21.5 15.41 0.69 0.17 VAR
AST69676 10:59:07.62 62:01:41.2 12.36 1.11 1.261240005 ( 13) 0.44 0.28 15457.034698 EA [G]
AST69793 10:59:07.83 61:49:59.5 15.06 0.80 2.676496267 ( 311) 1.17 0.08 MP
AST69949 10:59:03.33 61:30:35.9 15.39 1.27 0.572337806 ( 20) 0.62 0.19 15456.501495 EW-OC
AST69995 10:58:54.87 61:01:25.3 15.35 3.10 1.225924969 ( 26) 0.97 0.59 15456.688995 EW [A,O]
AST70007 10:59:18.62 62:23:09.4 15.01 1.35 0.15 VAR [G]
AST70054 10:58:48.54 60:46:17.8 13.61 0.92 0.273245960 ( 5) 2.25 0.05 15455.725127 EW-OCPER [A,O]
AST70649 10:59:24.20 62:24:33.8 14.24 1.52 0.506746173 ( 27) 0.65 0.09 15456.332549 PER
AST70793 10:59:26.05 62:32:00.5 14.27 2.10 1.428078413 ( 36) 0.38 0.23 15457.138213 EA [G]
AST70874 10:59:18.96 61:58:23.2 15.81 0.75 0.555686116 ( 31) 0.64 0.14 15455.927276 EWPER
AST70909 10:58:54.34 60:38:43.5 13.42 0.78 0.06 VAR
AST70929 10:58:49.26 60:12:05.6 15.95 1.29 0.525443792 ( 14) 1.54 0.27 15455.882354 EWPER
AST71022 10:58:55.24 60:51:36.5 11.85 6.56 1.059298992 ( 19) 0.40 0.33 15456.752471 EB [G]
AST71042 10:59:07.55 61:46:57.3 12.49 1.37 0.11 VAR
AST71082 10:59:22.25 62:19:28.9 13.33 0.68 0.04 VAR
AST71296 10:59:12.74 61:30:21.3 13.96 2.05 0.783400357 ( 27) 1.94 0.14 15455.841338 EWPER
AST71576 10:58:56.67 60:25:15.6 15.19 2.71 0.405622095 ( 6) 1.67 0.27 15455.989776 EW [A,O]
AST71613 10:59:09.25 61:17:26.9 12.85 1.39 0.10 VAR
AST72114 10:59:06.23 60:51:27.6 14.28 0.98 0.09 VAR
AST72125 10:58:52.90 60:05:05.2 15.15 0.66 1.537524700 ( 56) 0.66 0.25 15455.905791 EA
AST72278 10:58:54.88 60:10:41.3 13.76 2.18 1.634567142 ( 20) 1.00 0.49 15456.992705 EA [G]
AST72361 10:58:55.93 60:05:03.7 15.86 1.12 3.749475718 ( 172) 2.15 0.94 15459.315666 EA
AST72757 10:59:41.90 62:33:32.8 13.77 1.87 0.15 VAR
AST72785 10:59:36.22 62:16:56.4 15.31 2.67 0.581168115 ( 9) 0.83 0.35 15456.147979 EW
AST73021 10:59:42.09 62:32:01.4 15.38 1.78 0.372183055 ( 8) 0.53 0.19 15455.868682 EW
AST73109 10:59:35.74 62:01:09.2 15.67 1.63 0.902405977 ( 45) 0.69 0.25 15456.601104 EW
AST73146 10:59:33.98 61:54:47.8 15.63 1.23 1.436450005 ( 69) 3.15 0.37 15456.118682 EBPER [A,O]
AST73556 10:59:41.98 62:13:24.4 14.76 1.29 0.10 VAR
AST73648 10:59:04.92 60:16:43.9 11.37 2.66 5.383046150 (1236) 0.03 0.36 15460.509307 DCEP [A]
AST74215 10:59:32.41 61:33:05.9 13.20 5.27 0.946877956 ( 15) 0.40 0.23 15456.802276 EW-OC
AST74334 10:59:12.06 60:18:42.4 12.79 13.62 5.380424023 ( 272) 2.24 0.45 15459.911651 DCEP [A]
AST74335 10:59:27.91 61:11:45.1 14.64 1.50 1.281070471 ( 106) 1.57 0.14 15456.590362 MP
AST74404 10:59:22.21 60:46:59.1 15.00 2.01 1.661826730 ( 23) 0.61 1.08 15457.099151 EA [A,O,G]
AST74606 10:59:31.73 61:17:20.9 15.39 1.05 1.356480002 ( 55) 0.50 0.27 15457.855010 EA [A,O]
AST74652 10:59:18.03 60:30:03.9 15.83 0.99 0.663666129 ( 13) 1.10 0.39 15456.587432 EA [A,O]
AST75041 10:59:25.59 60:48:23.4 14.35 1.33 5.010527134 ( 89) 2.94 0.41 15456.905791 EA
AST75065 10:59:46.52 61:58:04.4 13.14 0.71 1.726010919 ( 350) 0.38 0.04 PER
AST75081 10:59:28.12 60:53:34.7 14.59 0.78 0.09 VAR [G]
AST75217 11:00:03.51 62:44:31.6 14.21 0.80 0.06 VAR
AST75327 10:59:14.14 60:13:31.0 11.72 0.92 0.14 VAR [G]
AST75336 10:59:23.03 60:27:49.8 15.47 0.71 1.818343401 ( 316) 0.50 0.12 PER
AST75400 10:59:54.50 62:19:13.8 13.66 0.97 0.08 VAR
AST75631 10:59:44.08 61:46:59.2 12.28 1.25 4.403527737 (1353) 0.22 0.07 PER
AST75636 10:59:46.01 61:41:53.0 13.93 1.34 0.08 VAR
AST75743 10:59:28.26 60:41:10.6 14.08 0.66 1.135247707 ( 124) 0.75 0.05 15456.100127 EWPER
AST75921 10:59:35.66 60:59:48.7 15.46 1.38 0.397131979 ( 9) 0.88 0.21 15455.820830 EW [A,O]
AST75983 10:59:31.37 60:47:11.5 13.59 0.82 0.06 VAR
AST76094 11:00:13.31 62:57:25.1 14.00 0.83 0.06 VAR
AST76234 10:59:51.04 61:46:23.5 13.62 1.42 3.231553078 ( 327) 0.48 0.10 MP
AST76237 10:59:37.57 60:56:14.0 15.46 1.37 0.424853921 ( 12) 0.94 0.16 15456.000518 EW [A,O]
AST76408 10:59:56.46 62:02:30.9 13.80 1.38 1.611443520 ( 45) 2.21 0.17 15457.196807 EA
AST76422 10:59:38.62 61:15:35.8 11.64 0.71 1.512575626 ( 94) 0.07 0.13 15455.931182 EA [G]
AST76867 10:59:35.63 60:41:39.5 13.33 0.91 0.05 VAR [G]
AST76928 10:59:32.47 60:26:20.2 15.14 0.87 0.09 VAR
AST77152 10:59:54.59 61:35:15.8 14.22 1.20 2.358073950 ( 78) 0.39 0.49 15456.473174 EA [A,O,G]
AST77247 10:59:58.11 61:50:12.8 14.43 4.70 0.472918957 ( 4) 2.31 0.32 15456.147002 EW-OC [A,O]
AST77535 11:00:21.46 62:47:46.5 14.71 5.56 0.418929994 ( 3) 0.54 0.39 15455.815948 EW [G]
AST77543 10:59:45.44 60:58:34.9 14.16 0.92 0.08 VAR
AST77614 10:59:55.18 61:28:37.8 13.94 1.36 1.693002820 ( 18) 1.45 0.49 15457.791534 EA [G]
AST77732 10:59:31.39 60:09:01.2 15.62 0.86 0.455402941 ( 12) 1.30 0.36 15456.125518 EB
AST78181 10:59:35.61 60:16:39.1 14.15 0.82 0.06 VAR [G]
AST78295 11:00:26.24 62:57:43.9 11.82 0.95 2.498666763 ( 398) 0.10 0.12 15458.425323 EB [G]
AST78364 10:59:56.42 61:17:25.3 13.87 1.43 2.577502012 ( 89) 2.94 0.23 15457.371612 EA
AST78612 11:00:04.03 61:35:18.0 14.68 0.66 0.10 VAR
AST79050 10:59:59.52 61:06:51.2 15.48 1.75 3.651263952 ( 155) 0.55 0.64 15460.842315 EA
AST79599 10:59:50.89 60:36:45.1 15.27 1.02 1.376046419 ( 178) 0.82 0.14 15456.682159 PER
AST79613 10:59:43.56 60:13:36.8 12.39 1.46 0.07 VAR
AST79622 11:00:06.47 61:26:30.1 13.26 1.02 5.061350822 ( 627) 0.38 0.08 15459.654815 MP?
AST79649 10:59:57.83 60:54:31.6 13.77 1.74 1.137414455 ( 28) 0.62 0.19 15456.239776 EA
AST79966 10:59:46.88 60:15:55.5 13.34 6.82 2.232448101 ( 70) 0.46 0.27 15457.567901 EW [G]
AST80012 11:00:22.62 62:04:26.2 13.46 1.04 0.06 VAR
AST80203 11:00:03.69 61:13:57.1 11.85 0.80 0.08 VAR [G]
AST80240 11:00:18.75 61:43:17.1 15.86 1.32 0.427687973 ( 9) 0.91 0.42 15456.019073 EB
AST80312 11:00:08.04 61:13:37.0 12.87 1.50 0.10 VAR [G]
AST80978 11:00:48.71 62:50:48.4 15.81 0.66 0.350737929 ( 13) 0.68 0.14 15455.898955 DSEW
AST80979 11:00:00.22 60:26:29.2 15.88 2.50 1.307191014 ( 34) 2.49 0.77 15456.734893 EA
AST81000 11:00:28.38 62:02:46.4 14.13 1.21 1.654411435 ( 226) 0.40 0.10 15457.108916 PER
AST81429 11:00:04.29 60:31:35.1 15.11 1.06 0.658730805 ( 29) 1.16 0.12 15455.999541 EW
AST81601 11:00:25.68 61:33:32.7 15.53 2.82 0.335701942 ( 2) 2.28 0.71 15455.838409 EW-OC
AST81713 11:00:25.74 61:46:43.9 13.30 1.05 0.07 VAR
AST81880 11:00:36.34 61:56:54.0 15.97 1.18 1.182840943 ( 88) 0.56 0.31 15456.383330 EW [A,O]
AST82234 11:00:07.40 60:22:03.5 15.54 1.15 0.346008927 ( 9) 1.09 0.17 15455.773955 EW
AST82352 11:00:21.51 61:03:50.4 15.99 0.88 2.598101139 ( 161) 1.06 0.47 15458.010284 EA
AST82464 11:00:19.71 60:56:43.0 15.38 3.72 0.461488903 ( 6) 0.58 0.40 15456.141143 EW
AST82900 11:00:57.73 62:37:16.4 16.01 1.92 0.378636062 ( 4) 0.78 0.52 15455.897979 EW
AST82902 11:00:15.68 60:38:05.6 13.45 0.71 1.196163774 ( 111) 0.34 0.05 15455.955314 PEREW [G]
AST83207 11:00:27.91 61:08:29.8 14.09 1.50 2.121176004 ( 60) 1.67 0.18 EA
AST83522 11:00:35.59 61:29:12.5 13.81 2.85 0.19 VAR
AST83717 11:00:25.06 60:59:35.5 11.99 6.70 0.53 VAR [A,G]
AST83767 11:00:48.81 62:00:58.9 13.18 1.18 1.043633938 ( 64) 0.45 0.06 15456.513213 PEREW
AST83801 11:00:36.74 61:18:14.7 14.92 2.65 0.848176777 ( 22) 0.43 0.26 15455.955596 EW
AST84036 11:01:03.99 62:36:29.7 14.41 8.58 0.419048011 ( 2) 0.69 0.62 15455.631377 EW [G]
AST84135 11:00:23.46 60:36:15.1 13.98 0.80 0.630318224 ( 14) 0.34 0.14 15455.978057 EA
AST84533 11:00:20.08 60:15:19.2 13.49 2.37 3.063382864 ( 491) 0.35 0.10 PER
AST84604 11:00:48.45 61:37:49.5 14.14 1.43 4.781635761 ( 90) 2.11 0.36 15460.908721 EA
AST84689 11:00:21.37 60:18:14.9 13.20 0.81 0.06 VAR [G]
AST84695 11:00:56.82 62:04:45.3 13.02 1.21 0.07 VAR [G]
AST84931 11:01:04.37 62:12:53.3 15.71 1.01 2.092283964 ( 180) 0.60 0.23 15457.631377 EA
AST84977 11:00:28.77 60:44:18.2 12.76 0.72 0.05 VAR
AST85100 11:00:40.12 61:06:06.0 13.58 1.40 4.323956013 ( 602) 0.41 0.10 15456.975127 MP
AST85302 11:00:22.82 60:05:36.8 13.56 1.77 2.960293055 ( 117) 0.35 0.22 15458.518096 EA [G]
AST85799 11:01:17.62 62:32:26.0 13.97 1.62 0.13 VAR
AST85880 11:00:55.46 61:28:50.4 15.11 2.47 0.589543819 ( 12) 4.42 0.36 15456.180205 EW-OC
AST85912 11:00:24.20 60:06:16.0 11.98 6.61 6.132975101 ( 235) 0.22 0.45 15461.849151 EAEB [G]
AST85934 11:00:45.32 60:57:46.1 15.55 1.44 1.390612960 ( 37) 0.77 0.62 15456.724151 EAEB [G]
AST85999 11:00:33.03 60:20:23.0 14.72 0.81 1.135742188 ( 31) 0.77 0.30 15456.638213 EA
AST86485 11:00:47.01 60:54:29.0 13.87 0.65 1.391839862 ( 28) 0.52 0.17 15456.886260 EA
AST86847 11:01:15.93 62:05:31.7 16.01 1.03 0.523865879 ( 19) 1.43 0.32 15455.728057 EW [A,O]
AST86876 11:01:02.69 61:33:24.4 13.33 0.68 0.06 VAR
AST86951 11:01:11.19 61:49:25.6 14.80 0.77 3.116760015 ( 138) 0.40 0.19 15457.280791 EA [A,O]
AST87007 11:01:10.09 61:45:06.0 14.35 1.16 0.894828022 ( 54) 0.50 0.08 15455.730987 EWPER
AST87126 11:01:04.90 61:31:24.8 14.09 1.43 0.09 VAR
AST87214 11:01:07.05 61:37:16.4 14.52 5.04 0.628040135 ( 7) 1.01 0.29 15455.646026 EW [A,O,G]
AST87272 11:01:03.89 61:27:52.2 13.58 2.33 0.14 VAR
AST87412 11:00:57.33 61:03:50.7 15.41 1.13 3.134212255 ( 270) 0.54 0.28 15456.805205 EA
AST87507 11:01:12.77 61:45:18.0 13.62 0.81 0.06 VAR [G]
AST87739 11:01:23.99 62:09:42.8 14.70 2.66 1.090512872 ( 11) 0.50 0.07 EA
AST87765 11:01:11.67 61:36:08.4 15.46 1.36 0.318134964 ( 4) 0.97 0.24 15455.766143 EW [A,O]
AST88288 11:01:28.49 62:10:59.4 15.99 0.72 0.847743869 ( 55) 0.49 0.24 15456.183135 EBEW
AST88311 11:00:47.08 60:12:13.9 14.40 2.67 0.25 VAR
AST88807 11:01:03.60 60:53:01.3 12.58 1.18 1.084530234 ( 62) 0.45 0.07 15456.626495 EWPER
AST88839 11:01:25.78 61:53:17.4 14.14 3.33 0.768816769 ( 11) 0.34 0.31 15455.693877 EAEB [A,O,G]
AST88906 11:01:39.33 62:24:21.0 15.70 0.78 0.602456033 ( 24) 0.46 0.18 15455.740470 EW
AST88907 11:01:38.41 62:22:06.3 15.04 0.74 0.07 VAR
AST88908 11:01:02.96 61:01:10.0 12.28 10.25 2.062977076 ( 30) 1.01 0.33 15456.743682 EW [G]
AST88926 11:01:26.96 61:51:02.2 15.50 1.63 0.21 VAR
AST89238 11:01:28.67 61:48:29.1 15.25 0.82 0.931394637 ( 39) 0.52 0.17 15456.854034 EAEB [A,O]
AST89418 11:01:27.22 61:40:52.8 15.52 0.71 1.501621485 ( 189) 0.46 0.11 15456.966338 PER
AST89420 11:01:43.67 62:26:35.8 15.09 0.66 0.385253936 ( 15) 1.23 0.08 15456.133330 PER
AST89486 11:01:13.02 61:03:46.8 14.34 2.11 0.16 VAR
AST89743 11:01:55.79 62:54:17.2 14.14 1.24 0.10 VAR
AST90020 11:01:54.53 62:44:23.2 14.49 4.54 1.755432963 ( 26) 0.51 0.51 15457.333526 EA [G]
AST90055 11:01:03.56 60:21:31.6 15.78 0.70 0.14 VAR
AST90095 11:01:34.27 62:12:36.8 11.87 6.07 0.48 VAR [G]
AST90183 11:01:13.44 60:59:47.6 12.12 1.06 0.521816909 ( 19) 1.45 0.07 MP [G]
AST90456 11:01:46.65 62:17:16.7 13.18 1.76 0.140802026 ( 2) 0.32 0.08 15455.591338 DS
AST90563 11:01:24.69 61:11:53.9 15.11 1.73 0.24 VAR
AST90571 11:01:44.12 62:09:47.6 12.34 1.31 0.15 VAR [G]
AST91731 11:01:58.79 62:21:02.9 13.33 0.96 1.123609185 ( 98) 1.81 0.06 MP [G]
AST91879 11:01:12.22 60:10:58.0 15.88 1.04 1.649948955 ( 94) 0.71 0.50 15457.482940 EA
AST91976 11:01:33.95 61:10:52.3 14.49 1.13 0.13 VAR [G]
AST92009 11:01:53.88 62:01:08.9 13.99 0.78 1.272266030 ( 103) 1.39 0.08 MP
AST92177 11:01:38.48 61:20:59.1 13.44 1.89 3.766558409 ( 180) 0.81 0.20 15457.053252 EA [G]
AST92210 11:01:33.84 61:08:57.5 13.48 0.71 4.316951752 ( 269) 0.59 0.13 15456.715362 EA
AST92381 11:01:36.50 61:12:54.0 12.96 1.62 0.09 VAR [G]
AST92676 11:02:09.35 62:28:23.8 15.44 1.01 0.332666010 ( 6) 2.11 0.19 15455.957139 EW-OCPER
AST92761 11:01:47.17 61:31:28.9 12.82 0.71 0.06 VAR
AST92790 11:01:40.34 61:09:16.2 14.80 2.52 0.565165877 ( 10) 2.13 0.21 15455.825398 EW-OC
AST92823 11:02:05.15 62:17:23.6 13.79 5.16 3.523474932 ( 110) 3.47 0.35 MP
AST92905 11:02:02.51 62:05:30.6 14.15 3.03 1.219866037 ( 16) 0.94 0.48 15456.070601 EA [A,O,G]
AST93025 11:02:05.11 62:08:31.4 15.86 0.98 0.675100148 ( 27) 1.29 0.25 15456.175445 EAPER
AST93211 11:01:14.38 60:06:59.7 10.87 1.05 4.585689545 ( 942) 0.04 0.51 15460.092315 DCEP [A,G]
AST93860 11:01:52.42 61:18:52.1 14.32 0.90 0.08 VAR
AST94842 11:01:47.64 60:51:56.1 13.03 5.27 1.297754049 ( 19) 0.58 0.38 15456.340362 EW [G]
AST95037 11:02:18.65 62:01:56.5 15.91 0.70 0.542633057 ( 26) 0.68 0.40 15456.278090 EAEB [A,O]
AST95098 11:02:30.59 62:32:42.0 13.83 1.17 1.436138988 ( 25) 0.65 0.36 15456.684450 EA [G]
AST95539 11:01:57.08 60:55:56.0 15.68 0.77 0.338556021 ( 7) 0.92 0.42 15455.734506 EB-OC
AST96345 11:01:52.59 60:45:11.2 13.10 1.37 2.746053934 ( 168) 0.20 0.17 15458.397979 EA [G]
AST62053 10:58:10.51 61:54:57.6 12.88 2.99 3.320623636 ( 67) 0.60 0.70 15458.667510 EA [A,G]
AST93814 11:01:27.07 60:26:28.9 10.92 1.47 2.218652010 ( 98) 0.22 0.73 15457.573760 EAEB [A,G]

Note. – [] The -band mean magnitude (not an intensity mean). [] The median value of the period and its standard deviation in brackets in units of  d via MCMC simulation, when applicable. [] Epoch of minimum light since 1970-01-01 00:00:00 UTC, if possible. [] type: VAR, objects with statistically significant variabilities, but not showing periodic behaviours; EW, W Urase Majoris-type binary; EB, Lyrae-type binary; EA, Algol-type binary; EW-OC, EW binary with O’Connell effect; EB-OC, EB binary with O’Connell effect; DCEP,  Cephei variable; DS,  Scuti variable; GD,  Doradus variable; PER, unclassified periodic; MP, multi-periodic; RRAB, RRab Lyrae variable; RRC, RRc Lyrae variable; the “” sign, separator of two different alternatives. [] Note: [A], AAVSO variable; [O], OGLE-III variable; [G], GDS variable.

Table 2Variable stars
Variable Type N % N(new)
Binaries (EW, EB, EA) 285 50.9 143
Pulsators (DS, GD, DCEP, RRab, RRc) 27 4.8 16
Others (PER, MP, VAR) 248 44.3 180
Table 3Distribution of variable star types
Figure 9.— Light curves of four unclassified aperiodic variable stars with the largest variability amplitudes.

4. Summary

We have presented the analysis of band images survey from the AST3-1 telescope towards one Galactic disk field centered at , . 560 variable stars were detected in the field from the time series photometry of 92,583 stars with magnitude 16.5 mag during the eight days of observations. Multiple methods (LS, BLS, DEBiL and visual inspection) were used to look for the initial periods and we adopted the one that gave the smallest scatter in the phase-folded light curves. We used MCMC simulations based on the harmonic function of the primary period for each variable star to estimate the uncertainty of the period and its median value. For the previously known periodic variable stars, the median periods from the MCMC simulations are highly consistent with those given in the AAVSO database, see Fig. 3.

We tentatively classified the 560 variables into 285 eclipsing binaries (EWs, EBs, EAs), 27 pulsating variable stars ( Scuti,  Doradus,  Cepheid variable and RR Lyrae stars) and 248 other types of variables (unclassified periodic, multi-periodic and aperiodic variable stars). Out of the 560 variables, 339 (61%) are new detections from our data; 42% of the new detections are eclipsing binary stars. We found 34 eclipsing binaries that show O’Connell effects. The interaction between circumstellar matter and the binary components may offer an explanation for the O’Connell effect (see the discussion on AST46538 in §3.2.1). We also found one aperiodic variable that shows a plateau light curve and another one that shows a secondary maximum after peak brightness. Among our newly discovered variables, we found one with complex behaviour showing a binary system with RS CVn-like light curve morphology; we are in the process of obtaining spectroscopic follow-up observations of this object using the Gemini South telescope. All the time-series data of the variable stars will be available via the VizieR Online Data Catalog 44.

We thank Mrcio Catelan for helpful discussions and Ricardo Salinas when applying for spectral follow-up observations of AST10442. We appreciate comments from the anonymous referees, Lucas Macri for discussions on the Welch-Stetson variability and Joel Hartman for the discussions on the period uncertainty. This work was supported by the National Basic Research Program (973 Program) of China (Grant Nos. 2013CB834901, 2013CB834900, 2013CB834903), the Chinese Polar Environment Comprehensive Investigation & Assessment Program (Grand No. CHINARE2016-02-03-05), the National Natural Science Foundation of China (NSFC grants 11303041, 11203039, 11273019, 11273025, 11403048, 11473038, 11673003), the Australian Antarctic Division, and the National Collaborative Research Infrastructure Strategy (NCRIS). LZW acknowledges the Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy (CASSACA) in Santiago, Chile and support by the One-Hundred-Talent program of the Chinese Academy of Sciences (034031001). LFW acknowledges the Strategic Priority Research Program ”The Emergence of Cosmological Structures” of the Chinese Academy of Sciences, Grant No. XDB09000000. JNF acknowledges the support from the Joint Fund of Astronomy of National Natural Science Foundation of China (NSFC) and Chinese Academy of Sciences through the grant U1231202, the National Basic Research Program of China (973 Program 2014CB845700), and the LAMOST FELLOWSHIP supported by Special Funding for Advanced Users, budgeted and administrated by Center for Astronomical Mega-Science, Chinese Academy of Sciences (CAMS). The authors deeply appreciate the great efforts made by the 24–32th Dome A expedition teams, who provided invaluable assistance to the astronomers that set up and maintained the AST3 and the PLATO-A system.
(1) (2) (3) (4)
AST3 AAVSO GDS OGLE-III or others
AST01736 GDS_J1050304-613526
AST02497 310338 OGLE-GD-ECL-03652
AST03182 310357 OGLE-GD-ECL-03671
AST04554 GDS_J1050526-615847
AST05016 GDS_J1050463-602841
AST05512 310418 OGLE-GD-ECL-03733
AST06264 310438 GDS_J1051045-612147 OGLE-GD-ECL-03753
AST06935 310450 OGLE-GD-ECL-03765
AST07839 GDS_J1051142-614524
AST08666 92320 GDS_J1051153-603208 ASAS J105115-6032.1
AST10372 GDS_J1051315-600945
AST11515 GDS_J1051453-614613
AST11525 310601 GDS_J1051435-610220 OGLE-GD-ECL-03919
AST12715 310634 OGLE-GD-ECL-03957
AST13387 5954 GDS_J1051541-612802 GS Car
AST13431 226193 [PMF2009] V041
AST13451 310655 OGLE-GD-ECL-03980
AST14578 310681 GDS_J1052054-612031 OGLE-GD-ECL-04022
AST15280 GDS_J1052104-603541
AST16017 GDS_J1052179-612010
AST16336 GDS_J1052096-612546
AST16539 226339 GDS_J1052229-613208 [PMF2009] V114
AST16578 GDS_J1052152-602413
AST16670 GDS_J1052165-602348
AST16693 GDS_J1052219-603335
AST17775 358801 OGLE-GD-CEP-0005
AST17938 310754 OGLE-GD-ECL-04118
AST17970 GDS_J1052246-603438
AST18900 310774 OGLE-GD-ECL-04146
AST19397 GDS_J1052465-615633
AST19571 310815 GDS_J1052504-615557 OGLE-GD-ECL-04193
AST20003 GDS_J1052484-612033
AST20657 310822 GDS_J1052518-612125 OGLE-GD-ECL-04200
AST20751 310834 OGLE-GD-ECL-04212
AST21008 GDS_J1052487-603916
AST21898 310869 GDS_J1053033-613822 OGLE-GD-ECL-04249
AST22118 GDS_J1053013-610728
AST22962 310898 OGLE-GD-ECL-04280
AST23445 GDS_J1053079-600853
AST23515 310915 OGLE-GD-ECL-04309
AST23549 GDS_J1053169-621112
AST23732 GDS_J1053269-625034
AST24162 GDS_J1053208-611234
AST24483 310927 GDS_J1053209-605115 OGLE-GD-ECL-04325
AST24595 310958 OGLE-GD-ECL-04363
AST24761 GDS_J1053314-620336
AST24936 GDS_J1053343-621959
AST25082 GDS_J1053201-602952
AST25633 GDS_J1053332-612915
AST25740 226643 [PMF2009] V266
AST26037 GDS_J1053336-610336
AST26542 GDS_J1053357-612416
AST26602 5982 GDS_J1053415-613654 IL Car
AST27264 GDS_J1053355-602114
AST27396 311017 GDS_J1053454-611535 OGLE-GD-ECL-04451
AST27446 GDS_J1053405-604122
AST27616 311038 GDS_J1053518-614300 OGLE-GD-ECL-04478
AST28591 GDS_J1053575-614028
AST28592 GDS_J1053555-612813
AST28694 GDS_J1053474-603313
AST29379 GDS_J1053508-601527
AST29542 311073 OGLE-GD-ECL-04521
AST30846 GDS_J1054054-603728
AST31492 311144 OGLE-GD-ECL-04596
AST31705 311154 OGLE-GD-ECL-04606
AST33265 5857 GDS_J1054268-612049 CC Car
AST35554 311250 OGLE-GD-ECL-04704
AST35618 GDS_J1054426-604647
AST36262 GDS_J1054491-604040
AST37489 311315 OGLE-GD-ECL-04769
AST37704 GDS_J1055143-623605
AST37940 311326 GDS_J1055106-613508 OGLE-GD-ECL-04780
AST38214 GDS_J1055183-622619
AST38428 GDS_J1055119-614224
AST38531 311348 OGLE-GD-ECL-04803
AST38989 311335 OGLE-GD-ECL-04789
AST39051 GDS_J1055164-613623
AST39579 311340 OGLE-GD-ECL-04794
AST39766 GDS_J1055076-600437
AST39901 311400 OGLE-GD-ECL-04858
AST39979 5983 GDS_J1055097-603251 IM Car
AST40137 GDS_J1055312-621143
AST40536 311382 GDS_J1055215-605455 OGLE-GD-ECL-04840
AST40655 311441 OGLE-GD-ECL-04899
AST40671 311383 GDS_J1055216-605032 OGLE-GD-ECL-04841
AST40766 311387 GDS_J1055231-605051 OGLE-GD-ECL-04845
AST40904 311392 OGLE-GD-ECL-04850
AST40957 GDS_J1055122-600930
AST41209 GDS_J1055237-603407
AST41484 GDS_J1055396-621808
AST41594 311497 OGLE-GD-ECL-04955
AST41650 GDS_J1055417-622358
AST41745 311391 OGLE-GD-ECL-04849
AST42287 311470 OGLE-GD-ECL-04928
AST42633 311469 OGLE-GD-ECL-04927
AST42854 GDS_J1055451-614004
AST42869 311535 OGLE-GD-ECL-04993
AST43064 56994 NSV 18559
AST43350 311558 OGLE-GD-ECL-05017
AST43409 GDS_J1055342-600459
AST43421 311472 OGLE-GD-ECL-04930
AST43594 311494 OGLE-GD-ECL-04952
AST43846 GDS_J1056058-622946
AST44142 311616 GDS_J1056002-615337 OGLE-GD-ECL-05075
AST45236 311601 OGLE-GD-ECL-05060
AST45483 311620 OGLE-GD-ECL-05079
AST45682 GDS_J1055547-603155
AST46247 311651 OGLE-GD-ECL-05110
AST46538 GDS_J1056047-604149
AST46624 GDS_J1056072-605408
AST46738 GDS_J1056223-615935
AST46971 GDS_J1056028-601408
AST48664 GDS_J1056375-621855
AST49035 311772 GDS_J1056276-605613 OGLE-GD-ECL-05232
AST50267 311762 OGLE-GD-ECL-05222
AST50549 311789 OGLE-GD-ECL-05249
AST50581 GDS_J1056268-601705
AST51624 311830 GDS_J1056353-601239 OGLE-GD-ECL-05291
AST53357 311884 GDS_J1056468-601442 OGLE-GD-ECL-05346
AST53821 GDS_J1056563-604013
AST53841 GDS_J1057193-623419
AST54338 311973 OGLE-GD-ECL-05436
AST54349 311929 OGLE-GD-ECL-05392
AST54537 311991 GDS_J1057065-610112 OGLE-GD-ECL-05454
AST54590 312031 GDS_J1057151-613403 OGLE-GD-ECL-05494
AST55024 311997 OGLE-GD-ECL-05460
AST55167 GDS_J1057307-623116
AST55334 GDS_J1057013-601502
AST56058 312096 GDS_J1057298-615200 OGLE-GD-ECL-05560
AST56624 GDS_J1057448-623935
AST56993 GDS_J1057296-613940
AST57491 312051 OGLE-GD-ECL-05514
AST59186 312200 OGLE-GD-ECL-05667
AST59773 312166 OGLE-GD-ECL-05632
AST60119 GDS_J1057348-602105
AST61176 312195 OGLE-GD-ECL-05662
AST61299 GDS_J1058171-623624
AST61514 GDS_J1057588-614517
AST61607 312291 OGLE-GD-ECL-05761
AST61969 312222 GDS_J1057573-605700 OGLE-GD-ECL-05690
AST62053 5772 GDS_J1058105-615457 SS Car
AST62121 312262 GDS_J1058047-612228 OGLE-GD-ECL-05732
AST62331 312278 OGLE-GD-ECL-05748
AST62372 312176 GDS_J1057488-601234 OGLE-GD-ECL-05642
AST62838 GDS_J1058028-610857
AST62877 358849 OGLE-GD-RRLYR-0020
AST63063 312274 OGLE-GD-ECL-05744
AST63331 312220 OGLE-GD-ECL-05688
AST64031 312282 OGLE-GD-ECL-05752
AST64308 GDS_J1058215-613132
AST64778 GDS_J1058176-611203
AST65679 312442 OGLE-GD-ECL-05913
AST66017 GDS_J1058445-620806
AST66226 312330 OGLE-GD-ECL-05800
AST67325 312421 GDS_J1058341-610153 OGLE-GD-ECL-05892
AST67686 GDS_J1058311-604113
AST68688 GDS_J1058486-611955
AST68860 312484 OGLE-GD-ECL-05956
AST69265 GDS_J1058494-610230
AST69401 GDS_J1059213-624329
AST69676 GDS_J1059076-620141
AST69995 312533 OGLE-GD-ECL-06005
AST70007 GDS_J1059186-622309
AST70054 312497 OGLE-GD-ECL-05969
AST70793 GDS_J1059265-623200
AST71022 GDS_J1058552-605136
AST71576 312543 OGLE-GD-ECL-06015
AST72278 GDS_J1058549-601041
AST73146 312755 OGLE-GD-ECL-06231
AST73648 5860 CF Car
AST74334 6195 V0442 Car
AST74404 312671 GDS_J1059222-604659 OGLE-GD-ECL-06146
AST74606 312741 OGLE-GD-ECL-06217
AST74652 312651 OGLE-GD-ECL-06125
AST75081 GDS_J1059281-605335
AST75327 GDS_J1059141-601331
AST75921 312765 OGLE-GD-ECL-06242
AST76237 312773 OGLE-GD-ECL-06250
AST76422 GDS_J1059386-611535
AST76867 GDS_J1059356-604139
AST77152 312841 GDS_J1059546-613515 OGLE-GD-ECL-06321
AST77247 312848 OGLE-GD-ECL-06328
AST77535 GDS_J1100214-624746
AST77614 GDS_J1059551-612837
AST78181 GDS_J1059356-601639
AST78295 GDS_J1100262-625744
AST79966 GDS_J1059469-601556
AST80203 GDS_J1100036-611357
AST80312 GDS_J1100081-611337
AST81880 312869 OGLE-GD-ECL-06350
AST82902 GDS_J1100156-603805
AST83717 5929 GDS_J1100256-605935 FM Car
AST84036 GDS_J1101041-623629
AST84689 GDS_J1100213-601815
AST84695 GDS_J1100568-620445
AST85302 GDS_J1100228-600536
AST85912 GDS_J1100242-600616
AST85934 GDS_J1100453-605746
AST86847 312949 OGLE-GD-ECL-06431
AST86951 312942 OGLE-GD-ECL-06423
AST87214 312932 GDS_J1101075-613716 OGLE-GD-ECL-06413
AST87507 GDS_J1101127-614518
AST87765 312943 OGLE-GD-ECL-06424
AST88839 312963 GDS_J1101257-615317 OGLE-GD-ECL-06445
AST88908 GDS_J1101029-610110
AST89238 312970 OGLE-GD-ECL-06452
AST90020 GDS_J1101545-624423
AST90095 GDS_J1101342-621237
AST90183 GDS_J1101134-605947
AST90571 GDS_J1101441-620947
AST91731 GDS_J1101588-622103
AST91976 GDS_J1101339-611052
AST92177 GDS_J1101385-612058
AST92381 GDS_J1101365-611253
AST92905 313020 GDS_J1102025-620530 OGLE-GD-ECL-06503
AST93211 5930 GDS_J1101143-600659 FN Car
AST93814 5963 GDS_J1101276-602629 HI Car
AST94842 GDS_J1101476-605156
AST95037 313050 OGLE-GD-ECL-06533
AST95098 GDS_J1102306-623242
AST96345 GDS_J1101525-604511
Table 4Identifications for the 221 variables in common

Footnotes

  1. affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. wanglingzhi@bao.ac.cn
  2. affiliation: Chinese Academy of Sciences South America Center for Astronomy, Camino EL Observatorio 1515, Las Condes, Santiago, Chile
  3. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  4. affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. wanglingzhi@bao.ac.cn
  5. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  6. affiliation: Department of Astronomy, Beijing Normal University, Beijing, 100875, China
  7. affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. wanglingzhi@bao.ac.cn
  8. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  9. affiliation: Department of Astronomy, Beijing Normal University, Beijing, 100875, China
  10. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  11. affiliation: Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
  12. affiliation: Mitchell Institute for Fundamental Physics & Astronomy, Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA
  13. affiliation: School of Physics, University of New South Wales, NSW 2052, Australia
  14. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  15. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  16. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  17. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  18. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  19. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  20. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  21. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  22. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  23. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  24. affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. wanglingzhi@bao.ac.cn
  25. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  26. affiliation: Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
  27. affiliation: National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China. wanglingzhi@bao.ac.cn
  28. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  29. affiliation: Tianjin Normal University, Tianjin 300074, China
  30. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  31. affiliation: Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China
  32. affiliation: Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
  33. affiliation: Chinese Center for Antarctic Astronomy, Nanjing 210008, China
  34. affiliation: School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093, China
  35. https://www.lsst.org/about/timeline
  36. http://mcba11.phys.unsw.edu.au/plato-a
  37. https://www.aavso.org/apass
  38. https://www.aavso.org/
  39. http://www.astro.princeton.edu/jhartman/vartools.html
  40. http://www.sai.msu.su/gcvs/gcvs/iii/vartype.txt
  41. http://vizier.u-strasbg.fr/
  42. http://www.stsci.edu/inr/intrins.html
  43. http://www.sai.msu.su/gcvs/gcvs/iii/vartype.txt
  44. http://vizier.u-strasbg.fr/

References

  1. Aristidi, E., Fossat, E., Agabi, A., et al. 2009, A&A, 499, 955
  2. Ashley, M. C. B. 2013, in IAU Symposium, Vol. 288, Astrophysics from Antarctica, ed. M. G. Burton, X. Cui, & N. F. H. Tothill, 15–24
  3. Ashley, M. C. B., Bonner, C. S., Everett, J. R., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 773540
  4. Bertin, E. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 351, Astronomical Data Analysis Software and Systems XV, ed. C. Gabriel, C. Arviset, D. Ponz, & S. Enrique, 112
  5. Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
  6. Bonner, C. S., Ashley, M. C. B., Cui, X., et al. 2010, PASP, 122, 1122
  7. Breger, M. 2000, in Astronomical Society of the Pacific Conference Series, Vol. 210, Delta Scuti and Related Stars, ed. M. Breger & M. Montgomery, 3–+
  8. Brooks, S. P. 1998, Journal of the Royal Statistical Society. Series D (The Statistician), 47, 69
  9. Burton, M. G. 2010, A&A Rev., 18, 417
  10. Burton, M. G., Zheng, J., Mould, J., et al. 2016, PASA, 33, e047
  11. Catelan, M., & Smith, H. A. 2015, Pulsating Stars (Wiley-VCH)
  12. Chapellier, E., Mékarnia, D., Abe, L., et al. 2016, ApJS, 226, 21
  13. Crouzet, N., Guillot, T., Agabi, A., et al. 2010, A&A, 511, A36
  14. Cui, X., Yuan, X., & Gong, X. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  15. Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog, 2246
  16. Cuypers, J., Aerts, C., De Cat, P., et al. 2009, A&A, 499, 967
  17. Devor, J. 2005, ApJ, 628, 411
  18. Ducati, J. R., Bevilacqua, C. M., Rembold, S. B., & Ribeiro, D. 2001, ApJ, 558, 309
  19. Fitzgerald, M. P. 1970, A&A, 4, 234
  20. Fu, J. N., Zong, W. K., Yang, Y., et al. 2014, in IAU Symposium, Vol. 301, IAU Symposium, ed. J. A. Guzik, W. J. Chaplin, G. Handler, & A. Pigulski, 409–410
  21. Gaulme, P., McKeever, J., Rawls, M. L., et al. 2013, ApJ, 767, 82
  22. Giordano, C., Vernin, J., Chadid, M., et al. 2012, PASP, 124, 494
  23. Girard, T. M., van Altena, W. F., Zacharias, N., et al. 2011, AJ, 142, 15
  24. Gong, X., Wang, L., Cui, X., et al. 2010, in EAS Publications Series, Vol. 40, EAS Publications Series, ed. L. Spinoglio & N. Epchtein, 65–72
  25. Hackstein, M., Fein, C., Haas, M., et al. 2015, Astronomische Nachrichten, 336, 590
  26. Hartman, J. D., & Bakos, G. Á. 2016, ArXiv e-prints, arXiv:1605.06811
  27. Hartman, J. D., Gaudi, B. S., Holman, M. J., et al. 2008, ApJ, 675, 1254
  28. Henden, A. A., Templeton, M., Terrell, D., et al. 2016, VizieR Online Data Catalog, 2336
  29. Hu, Y., Shang, Z., Ashley, M. C. B., et al. 2014, PASP, 126, 868
  30. Huang, Z., Fu, J., Zong, W., et al. 2015, AJ, 149, 25
  31. Huang, Z. H., Fu, J. N., & Zong, W. K. 2013, in EAS Publications Series, Vol. 64, EAS Publications Series, ed. K. Pavlovski, A. Tkachenko, & G. Torres, 401–402
  32. Jia, P., & Zhang, S. 2012, in Proc. SPIE, Vol. 8447, Adaptive Optics Systems III, 84475J
  33. Jia, P., & Zhang, S. 2013, Research in Astronomy and Astrophysics, 13, 875
  34. Kaluzny, J., Stanek, K. Z., Krockenberger, M., et al. 1998, AJ, 115, 1016
  35. Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, PASA, 24, 1
  36. Kolbas, V., Pavlovski, K., Southworth, J., et al. 2015, MNRAS, 451, 4150
  37. Kovács, G., Zucker, S., & Mazeh, T. 2002, A&A, 391, 369
  38. Krishna Swamy, K. S. 1996, Astrophysics: a modern perspective (New Age Internat. Publ.), 342
  39. Kulesa, C. A., Walker, C. K., Schein, M., et al. 2008, in Proc. SPIE, Vol. 7012, Ground-based and Airborne Telescopes II, 701249
  40. Lascaux, F., Masciadri, E., & Hagelin, S. 2011, MNRAS, 411, 693
  41. Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395
  42. Lawrence, J. S., Ashley, M. C. B., Hengst, S., et al. 2009, Review of Scientific Instruments, 80, 064501
  43. Lawrence, J. S., Ashley, M. C. B., Tokovinin, A., & Travouillon, T. 2004, Nature, 431, 278
  44. Lawrence, J. S., Ashley, M. C. B., Burton, M. G., et al. 2006, in Proc. SPIE, Vol. 6267, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 62671L
  45. Lawrence, J. S., Allen, G. R., Ashley, M. C. B., et al. 2008, in Proc. SPIE, Vol. 7012, Ground-based and Airborne Telescopes II, 701227
  46. Li, X., Wang, D., Xu, L., et al. 2012a, in Proc. SPIE, Vol. 8444, Ground-based and Airborne Telescopes IV, 84445M
  47. Li, Y., Zheng, J., Tuthill, P., et al. 2016, PASA, 33, e008
  48. Li, Z., Yuan, X., Cui, X., et al. 2012b, in Proc. SPIE, Vol. 8444, Ground-based and Airborne Telescopes IV, 84441O
  49. Liang, E.-S., Wang, S., Zhou, J.-L., et al. 2016, ArXiv e-prints, arXiv:1608.07904
  50. Liu, Q.-Y., & Yang, Y.-L. 2003, Chinese J. Astron. Astrophys., 3, 142
  51. Lomb, N. R. 1976, Ap&SS, 39, 447
  52. LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, ArXiv e-prints, arXiv:0912.0201
  53. Ma, B., Shang, Z., Hu, Y., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9154, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1
  54. Ma, B., Shang, Z., Wang, L., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 6
  55. Mékarnia, D., Guillot, T., Rivet, J.-P., et al. 2016, MNRAS, 463, 45
  56. Meng, Z., Zhou, X., Zhang, H., et al. 2013, PASP, 125, 1015
  57. Milone, E. E. 1968, AJ, 73, 708
  58. Moore, A., Allen, G., Aristidi, E., et al. 2008, in Proc. SPIE, Vol. 7012, Ground-based and Airborne Telescopes II, 701226
  59. Nataf, D. M., Stanek, K. Z., & Bakos, G. Á. 2010, Acta Astron., 60, 261
  60. O’Connell, D. J. K. 1951, Publications of the Riverview College Observatory, 2, 85
  61. Oelkers, R. J., Macri, L. M., Wang, L., et al. 2015, AJ, 149, 50
  62. —. 2016, AJ, 151, 166
  63. Pei, C., Yuan, X. Y., Chen, H. L., et al. 2011, Acta Astronomica Sinica, 52, 401
  64. Pei, C., Yuan, X.-Y., Chen, H.-L., et al. 2012, Chinese Astron. Astrophys., 36, 327
  65. Pietrukowicz, P., Mróz, P., Soszyński, I., et al. 2013, Acta Astron., 63, 115
  66. Pojmanski, G. 2005, VizieR On-line Data Catalog: J/other/AcA/50.177. Originally published in: 2000AcA….50..177P, 50, 5001
  67. Qian, S.-B., Wang, J.-J., Zhu, L.-Y., et al. 2014, ApJS, 212, 4
  68. Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334
  69. Röser, S., Schilbach, E., Schwan, H., et al. 2008, A&A, 488, 401
  70. Samus, N. N., Durlevich, O. V., & et al. 2009, VizieR Online Data Catalog, 1, 2025
  71. Scargle, J. D. 1982, ApJ, 263, 835
  72. Schmidt, E. G., Johnston, D., Langan, S., & Lee, K. M. 2004, AJ, 128, 1748
  73. Shang, Z., Hu, K., Hu, Y., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8448, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 26
  74. Sims, G., Ashley, M. C. B., Cui, X., et al. 2010, in Proc. SPIE, Vol. 7733, Ground-based and Airborne Telescopes III, 77334M
  75. Sims, G., Ashley, M. C. B., Cui, X., et al. 2012a, PASP, 124, 637
  76. —. 2012b, PASP, 124, 74
  77. Smith, H. A. 2004, RR Lyrae Stars (Cambridge University Press), 166
  78. Soderhjelm, S. 1980, A&A, 89, 100
  79. Soszynski, I., Poleski, R., Udalski, A., et al. 2008, Acta Astron., 58, 163
  80. Soszyński, I., Udalski, A., Szymański, M. K., et al. 2008, Acta Astron., 58, 293
  81. Stetson, P. B. 1996, PASP, 108, 851
  82. Storey, J. W. V. 2013, in IAU Symposium, Vol. 288, IAU Symposium, ed. M. G. Burton, X. Cui, & N. F. H. Tothill, 1–5
  83. Tothill, N. F. H., Kulesa, C. A., Walker, C. K., et al. 2008, in EAS Publications Series, Vol. 33, EAS Publications Series, ed. H. Zinnecker, N. Epchtein, & H. Rauer, 301–306
  84. Tremblin, P., Minier, V., Schneider, N., et al. 2011, A&A, 535, A112
  85. Wang, L., Macri, L. M., Krisciunas, K., et al. 2011, AJ, 142, 155
  86. Wang, L., Macri, L. M., Wang, L., et al. 2013a, AJ, 146, 139
  87. Wang, L., Macri, L. M., Wang, L., et al. 2013b, in IAU Symposium, Vol. 288, Astrophysics from Antarctica, ed. M. G. Burton, X. Cui, & N. F. H. Tothill, 320–321
  88. Wang, S., Zhou, X., Zhang, H., et al. 2012, PASP, 124, 1167
  89. Wang, S., Zhang, H., Zhou, J.-L., et al. 2014a, ApJS, 211, 26
  90. Wang, S., Zhang, H., Zhou, X., et al. 2015, ApJS, 218, 20
  91. Wang, S.-H., Zhou, X., Zhang, H., et al. 2014b, Research in Astronomy and Astrophysics, 14, 345
  92. Watson, C., Henden, A. A., & Price, A. 2016, VizieR Online Data Catalog, 1
  93. Wei, P., Shang, Z., Ma, B., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9149, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2
  94. Welch, D. L., & Stetson, P. B. 1993, AJ, 105, 1813
  95. Wen, H., Gong, X., & Zhang, R. 2012, in Proc. SPIE, Vol. 8444, Ground-based and Airborne Telescopes IV, 84445F
  96. Xu, J., Gong, X., & Gu, B. 2016, PASP, 128, 125004
  97. Xu, L. 2012, in Proc. SPIE, Vol. 8451, Software and Cyberinfrastructure for Astronomy II, 845114
  98. Yang, H., Allen, G., Ashley, M. C. B., et al. 2009, PASP, 121, 174
  99. Yang, H., Kulesa, C. A., Walker, C. K., et al. 2010, PASP, 122, 490
  100. Yang, M., Zhang, H., Wang, S., et al. 2015, ApJS, 217, 28
  101. Yang, Y., Moore, A. M., Krisciunas, K., et al. 2016, ArXiv e-prints, arXiv:1610.10094
  102. Yao, X., Wang, L., Wang, X., et al. 2015, AJ, 150, 107
  103. Yuan, X., Cui, X., Su, D.-q., et al. 2013, in IAU Symposium, Vol. 288, IAU Symposium, ed. M. G. Burton, X. Cui, & N. F. H. Tothill, 271–274
  104. Yuan, X., & Su, D.-q. 2012, MNRAS, 424, 23
  105. Yuan, X., Cui, X., Liu, G., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7012, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  106. Yuan, X., Cui, X., Gu, B., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9145, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 0
  107. Yuan, X., Cui, X., Wang, L., et al. 2015, IAU General Assembly, 22, 56923
  108. Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, AJ, 145, 44
  109. Zhou, X., Wu, Z., Jiang, Z., et al. 2010a, Research in Astronomy and Astrophysics, 10, 279
  110. Zhou, X., Fan, Z., Jiang, Z., et al. 2010b, PASP, 122, 347
  111. Zhou, X., Ashley, M. C. B., Cui, X., et al. 2013, in IAU Symposium, Vol. 288, Astrophysics from Antarctica, ed. M. G. Burton, X. Cui, & N. F. H. Tothill, 231–238
  112. Zhu, Y., Wang, L., Yuan, X., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9145, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 0
  113. Zong, W., Fu, J.-N., Niu, J.-S., et al. 2015, AJ, 149, 84
  114. Zou, H., Zhou, X., Jiang, Z., et al. 2010, AJ, 140, 602
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minumum 40 characters
   
Add comment
Cancel
Loading ...
101216
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description