Association of \gamma-ray sources with WISE colors

Unveiling the nature of the unidentified -ray sources I:
a new method for the association of -ray blazars

R. D’Abrusco11affiliation: Harvard - Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA , F. Massaro22affiliation: SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025, USA , A. Paggi11affiliation: Harvard - Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA , N. Masetti33affiliation: INAF/IASF di Bologna, via Gobetti 101, I-4019 Bologna, Italy , G. Tosti44affiliation: Dipartimento di Fisica, Università degli Studi di Perugia, 06123 Perugia, Italy 55affiliation: Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy , M. Giroletti66affiliation: INAF Istituto di Radioastronomia, via Gobetti 101, 40129, Bologna, Italy & H. A. Smith11affiliation: Harvard - Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA .
Abstract

We present a new method for identifying blazar candidates by examining the locus, i.e. the region occupied by the Fermi -ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our previous approach that made use of the two-dimensional projection of the distribution of WISE -ray emitting blazars (the Strip) in the three WISE color-color planes Massaro et al. (2012a). In this paper, we define the three-dimensional locus by means of a Principal Component (PCs) analysis of the colors distribution of a large sample of blazars composed by all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog and associated to -ray source in the second Fermi LAT catalog (2FGL) (the WISE Fermi Blazars sample, WFB). Our new procedure yields a total completeness of 81% and total efficiency of 97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated to the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all -ray blazars in the 2FGL and provide a catalog containing all the -ray candidates blazars selected according to our procedure.

Subject headings:
galaxies: active - galaxies: BL Lacertae objects - radiation mechanisms: non-thermal
slugcomment: version July 26, 2019: fm

1. Introduction

Unveiling the nature of the Unidentified Gamma-ray Sources (UGS) is one of the main scientific objectives of the ongoing Fermi -ray mission. Recently, several attempts have been performed to associate or characterize the UGSs, either using X-ray observations (e.g., Mirabal, 2009; Mirabal & Halpern, 2009) or with statistical approaches (e.g. Mirabal et al., 2010; Ackermann et al., 2012). Nevertheless, according to Nolan et al. (2012), 31% of the -ray sources in the second Fermi LAT catalog (2FGL) remain unidentified and many of these unidentified sources could be blazars, since blazars are known to dominate the -ray sky (e.g. Hartman et al., 1999; Abdo et al., 2010a), and among the 1297 associated sources within the 2FGL, 805 (62%) are known blazars Nolan et al. (2012). Therefore it is important to devise an efficient means of identifying candidate blazars among these sources.

Blazars are radio-loud Active Galactic Nuclei (AGNs) characterized by high and variable polarization, apparent superluminal motions, and high luminosities (e.g., Urry & Padovani, 1995). They exhibit a flat radio spectrum that steepens toward the infrared-optical bands. They also show rapid variability from the radio to -rays and have peculiar infrared colors (Massaro et al., 2011a). Their characteristic spectral energy distributions (SEDs) have two main components: the low-energy component peaking in the spectral range from the IR to the X-ray band and the high-energy component peaking from MeV to TeV energies.

Blazars come in two main classes: the BL Lac objects, which have featureless optical spectra, and the more luminous Flat-Spectrum Radio Quasars which, typically, show prominent optical spectral emission lines (Stickel et al., 1991; Stoke et al., 1991). In the following discussion, we label the BL Lac objects as BZBs and the Flat-Spectrum Radio Quasars as BZQs, following the nomenclature of the Multi-wavelength Catalog of blazars (ROMA-BZCAT, Massaro et al., 2009).

Data from WISE have been recently used to select and classify AGNs (Stern et al., 2012; Yan et al., 2013) from a general point of view. The specific problem of the classification and identification of -ray sources has been tackled using machine learning techniques (Hassan et al., 2013) and characterizing their optical variability (Ruan et al., 2012). Additional attempts to find counterparts of UGSs have been carried out using radio follow up observations (e.g., Kovalev et al., 2009; Kovalev, 2009).

Using the preliminary data release of the Wide-field Infrared Survey Explorer (WISE) (see Wright et al., 2010, for more details)111http://wise2.ipac.caltech.edu/docs/release/prelim/, we showed that the -ray blazar population occupies a distinctive region of the WISE color parameter space (called the WISE Gamma-ray Strip Massaro et al. (2011a); D’Abrusco et al. (2012); hereinafter, Papers I and II respectively).

We then used the results of our analyses to develop a new association method to investigate the nature of the unidentified -ray sources in the 2FGL (Massaro et al., 2012a, b, Paper III and IV) as well as the unidentified INTEGRAL sources (Massaro et al., 2012c, Paper V). Adopting our new association procedure, we have succeeded in finding low-energy counterpart candidates for 156 out of 313 (50%) of the unidentified -ray sources analyzed (Paper IV).

Taking advantage of the much larger data set now available thanks to the WISE All-Sky archive222http://wise2.ipac.caltech.edu/docs/release/allsky/, released in March 2012, in this work we present a revisited definition of the region occupied by the -ray blazars. We will refer to the 3-dimensional region occupied by the -ray emitting blazars as the locus while we will continue to indicate the 2-dimensional projection of the locus in the vs m color-color plane as WISE Gamma-ray Strip. In this paper we determine a geometrical description of the WFB locus in the space generated by the Principal Components of their distribution in the WISE color space and apply our association procedure the whole sample of blazars that belong to the 2FGL.

The paper is organized as follows: in Section 2 we describe the selection criteria adopted to create the samples needed for our investigation, together with the method for the positional associations between the ROMA-BZCAT and the WISE archive. In Section 3 we describe the new geometric model of the WFB locus in the PCs space and define the quantitative parameter used to measure the compatibility of a generic WISE source with the locus. Section 4 is devoted to the association procedure based on the new parametrization of the locus. In Section 5 and Section 7 we describe the results of the application of the new association procedure to the WFB sample (with the estimates of the completeness and efficiency of the process) and to the sample of 2FGL Fermi blazars, respectively. Section 6 discusses the evaluation of the efficiency and completeness of the association procedure based n the results of the re-association of the WFB sample presented in Section 5. In Section 8 we summarize the results of this paper and draw some conclusions.

The WISE magnitudes in the [3.4], [4.6], [12], [22] m nominal WISE filters are in the Vega system. We indicate the WISE colors [3.4]-[4.6], [4.6]-[12] and [12]-[22] as , and and their corresponding errors as , and , respectively. The values of the first two WISE magnitudes, namely and [4.6] and, in turn, of the two derived colors and , have been corrected for galactic extinction according to the extinction law presented in Draine (2003). The corrections on the remaining two WISE magnitudes ([12] and [22]) are negligible. All color values in the paper are corrected for galactic extinction. All the acronyms used in the paper are listed in Table 1.

Name Acronym
Multiwavelength Catalog of blazars ROMA-BZCAT
Second Fermi Large Area Telescope catalog 2FGL
Second Fermi LAT Catalog of AGNs 2LAC
BL Lac object BZB
Flat Spectrum Radio Quasar BZQ
Blazar of Uncertain type BZU
WISE Fermi Blazars sample WFB
2D region of the vs color-color
plane occupied by the WFB sample strip
3D region of the WISE color space
occupied by the WBF sample locus
Fermi 2FGL Blazars sample 2FB
Search Region for candidate blazars SR
Background Region for candidate blazars BR
Principal Components PCs

Table 1List of acronyms and specific terms used in this paper.

2. The sample selection

2.1. The ROMA-BZCAT

The starting sample used in our analysis is the one presented in the ROMA-BZCAT v4.1, released in August 2012, the most comprehensive blazars catalog existing in literature with 3149 bona fide blazars and blazar candidates. The catalog includes 1220 BZBs, divided as 950 BL Lacs, 270 BL Lac candidates, 1707 BZQs and 222 blazars of Uncertain type (BZUs) (Massaro et al., 2011a). All the details about the ROMA-BZCAT catalog and the surveys used to build it can be found in (Massaro et al., 2009, 2010, 2011b)333http://www.asdc.asi.it/bzcat/.

2.2. ROMA-BZCAT to Wise positional associations

We remark that the coordinates reported in the ROMA-BZCAT are non-uniform. The astrometric accuracy can be as low as 5″, corresponding to the uncertainty of the NRAO Very Large Array Sky Survey (NVSS) for sources with radio fluxes close to the survey limit (Condon et al., 1998). For this reason, we have developed a method to perform the positional association between the ROMA-BZCAT blazars and their WISE counterparts. All WISE sources considered in our analysis are detected in at least one WISE band with a signal-to-noise ratio (SNR) higher than 5 in the WISE All-Sky .

For each blazar, we searched for IR counterparts of the ROMA-BZCAT blazars in the WISE all-sky archive within circular regions of variable radius in the range between 0″and 6.5″. For each value of , we estimated the number of total and random matches , respectively, together with the chance probability for the spurious associations, calculated as follows. The random matches correspond to those found shifting the blazar coordinates by a fixed distance of 20″ in a random direction of the sky. This distance of 20″ has been chosen because it is larger than the maximum positional uncertainty on the coordinates reported in the ROMA-BZCAT. The chance probability for spurious associations is calculated as the ratio between and the total number of blazars listed in the ROMA-BZCAT (i.e., 3149).

Then, we calculated the differences between the number of associations at given radius and those at for total matches, defined as:

(1)

and the corresponding variation of the random associations, :

(2)

where = 0.1″.

Figure 1 shows the curves corresponding to , and for different values of the radius between 2″and 6.5″. For all radii larger than 3.3″ we found that the increase in number of IR sources positionally associated with blazars in the ROMA-BZCAT becomes systematically lower than the increase in number of random associations; thus we chose this value as our radial threshold in searching for counterparts of ROMA-BZCAT blazars in the WISE all-sky release. A similar positional association method has been adopted for the INTEGRAL sources (Stephen et al., 2006), while the chance probability for the spurious associations, has been estimated according to the procedure used for the SWIFT blazars detected in the hard X-rays by the BAT instrument on board (Maselli et al., 2010a, b). We followed the same recipe also for searching the WISE blazars counterparts in Paper I.

Figure 1.— Upper panel) The number of total (red line) and random matches (blue line) as function of the radius between 2″and 6.5″, respectively. The radial threshold selected for our ROMA-BZCAT - WISE crossmatches is indicated by the vertical dashed black line (see Section 2 for more details). Lower panel) The chance probability for the spurious associations, as function of the radius between 2″ad 6.5″.

2.3. The Wise Fermi Blazars sample

We found 3032 out of 3149 (i.e., 96.3% of the ROMA-BZCAT) blazars with an IR counterpart within 3.3″ in the WISE All-Sky data archive. In this sample, there are only 2 multiple matches out of 3032 spatial associations, for which we used the IR data of the closest WISE source in the following analysis. The probability of a chance associations for these 3032 is 3.3% (see Figure 1), implying that 100 sources associated within the above radius could be spurious associations.

Of these 3032 blazars, 1172 are BZBs, including 919 BL Lacs and 253 BL Lac candidates, 1642 are BZQs and 218 are BZUs. It is also worth noticing that all the blazars associated between the ROMA-BZCAT and the WISE all-sky data release are detected in the first two filters at 3.4 and 4.6 m. We also checked the properties of the blazars that have not been associated or do not have a counterpart in the WISE all-sky catalog, and we found that they do not appear to have peculiar properties in the radio, optical or X-ray energy range on the basis of the data reported in the ROMA-BZCAT.

Among the 3032 selected blazars, only 673 have a counterpart in the -rays according to the 2FGL and to the CLEAN sample presented in the second Fermi LAT Catalog of active galactic nuclei (2LAC; Ackermann et al., 2011). 637/673 (i.e., 94.7%) of these blazars (333 BZBs, 277 BZQs, and 27 BZUs) are detected in all four WISE bands. As in Paper III the sample of -ray emitting blazars in the ROMA-BZCAT catalog was derived excluding the BZUs sources from our sample of -ray loud blazars. For this reason, the final WFB sample includes only 610 WISE sources out of 673 WISE counterparts.

3. The locus parametrization

In paper III we characterized the region occupied by the -ray blazars in the WISE IR color space by considering the three different two-dimensional projections in the color-color planes built with the WISE filters separately. Taking advantage of the WISE All-Sky archive recently released, in this paper we refine our previous definition of the locus and improve significantly our association procedure by modeling the locus occupied by the -ray blazars directly in the three dimensional parameter space generated by the four WISE filters. This new parametrization and the improved association procedure replace our previous analyses.

3.1. The locus in the Principal Components space

The new parametrization of the WFB locus is based on a new model of the locus in the PCs space generated by the WISE colors of the WFB WISE counterparts, and on a more versatile definition of the statistical quantity used to evaluate the compatibility of a generic WISE source with the locus model, the score. The distribution of the WFB sources in the three-dimensional WISE color space is axisymmetric along a slew line (see Figure 2), so that a simple geometrical description of the locus can be determined in the PCs space.

Figure 2.— Scatterplot of the WFB sources in the three-dimensional WISE color space. The spectral class of the WFB sources is color-coded, while the three distributions of gray points represent the projections of the WFB sample in the three-dimensional color space onto the three two-dimensional color-color planes generated by the WISE colors , and respectively.

Principal Component Analysis (PCA) uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables, the PCs. This transformation is defined so that the first PC (PC) accounts for as much of the variance in the data as possible, and each following component (PC, PC, etc. up to the dimensionality of the initial space) has the highest variance possible under the constraint that it is orthogonal to the preceding components. In our case, the WFB sources in the three-dimensional PCs space based on their color distributions lie almost perfectly along the PC axis and are distributed symmetrically in the PC vs PC plane around the PC line. Based on the shape of the locus in the PCs space, we choose to define its geometrical model using a cylindrical parametrization, with axis aligned along the PC axis. The locus, as a whole, is modeled by three distinct cylinders: the first two of these cylindrical regions are dominated by BZB and BZQ sources respectively, while the third cylinder is defined as the region where the WFB population is mixed in terms of spectral classes (the Mixed region, hereinafter).

The upper and lower boundaries of the model along the PC axis have been determined requiring that 90% of the total number of WFB sources is contained within the boundaries of the cylinder, with 5% of the sources outside of the boundaries of the model on each side of the model along the PC axis. The boundaries of the Mixed section along the PC axis have been defined by requiring that, in this region, the fraction of either spectral class is smaller than 80% of the total number of WFB sources. The three boundaries along the PC axis defining the three sections of the WFB locus model are shown in Figure. 3.

Figure 3.— Boundaries of the three sections of the WFB locus in the PCs space along the PC axis. The solid black line represent the “purity” of the WFB population, i.e. the fraction of the dominant spectral class relative to the other spectral class. The solid red and blue lines represent the fraction of BZQs and BZBs sources, while the histogram in the background represents the normalized density of the distribution of the whole WFB sample along the PC axis. The horizontal green line shows the threshold used to determine the boundaries of the mixed region.

The variances of the distribution of the WFB distribution in the PC space along the second and third PCs are and respectively. Based on this fact, we have modeled the bases of the cylinders as circles centered on the axis of the first principal component PC (the variance of the WFB distribution along PC is ). The radii of the circular bases of each of the three cylinders representing the three different sections of the WFB locus in the PCs space have been determined independently as the radii containing the 90% of the WFB sources in each section. The radii of each of the three cylinders are defined in the plane generated by the PC and PC axes and evaluate d as . The cumulative radial profiles of the three sections and the corresponding radii determined as discussed above are shown in Figure 4. The numerical values of the boundaries along the PC axis and the radii of the three cylinders of the new model of the WFB locus are reported in Table LABEL:tab:model.

Figure 4.— Cumulative radial profiles of the WFB sources for the three different sections of the model of the WFB locus in the PCs space. The red, magenta and blue solid lines represent the cumulative profiles of the WFB sources belonging to the BZQs, mixed and BZBs sections of the model, respectively. The horizontal black line shows the 90% threshold used to determined the radii of the three cylinders (dotted vertical lines).
BZB Mixed BZQ
PC low. -3.79 -0.24 0.92
PC up. -0.24 0.92 2.55
radius 1.15 0.8 1.05
Table 2Parameters of the three cylinders representing the model of the WFB locus in the PCs space.

3.2. The score

The distance of a generic WISE source to the model of the WFB locus in the PCs space can be evaluated quantitatively using a numeric quantity that we call the score. The generic WISE source with colors can be projected onto the PCs space by applying the orthogonal transformation determined by the PCA performed on the WFB sample for the modelization of the WFB locus in the PCs space (Section 3.1). Thus, the position of the generic WISE source in the PCs space is determined by the PCs values . To take into account the uncertainties on the values of the WISE colors, the standard deviations on each color are also projected onto the PCs space and are used to define the error bars on the position of the source in the PCs space: . We simply assume that the generic WISE source is represented in the PCs space by the ellipsoid generated by the segments with extremes , hereinafter the uncertainty ellipsoid. Each of the six points at the extremes of the axes of the uncertainty ellipsoid in the PCs space will be generically called extremal point. The possible positions of the uncertainty ellipsoid associated with a generic WISE source relative to each of the three cylinders of the locus model (schematically shown in Figure 5 for one two-dimensional section of the PCs space) fall in one of the following cases:

  • Six extremal points within a cylinder (point A in Figure 5);

  • Five extremal points within a cylinder (point B in Figure 5);

  • Three extremal points within a cylinder (point C in Figure 5);

  • One extremal point within a cylinder (points D in Figure 5);

  • No extremal points within any cylinder (points F in Figure 5);

Other combinations are not possible because the axes of the uncertainty ellipsoids are either parallel or orthogonal to the PC axis of the PCs space. Points with any number of extremal points within two cylinders (like point E in Figure 5) are assigned a distinct score value for either cylinder according to the number of extremal points contained in each one.

Figure 5.— Schematic representation of the possible positions of the uncertainty ellipsoid of a generic WISE source in the PCs space relative to the cylindrical models of the WFB locus. In this plot the projection of the three-dimensional model and the uncertainty ellipsoids on a plane containing the axis of the cylinders are shown. The letters are references to the description of the different cases in Sec. 3.2.

The score for a generic WISE source with extremal points contained in one of the three sections of the WFB locus model is then defined as:

where is the index of the score assignment law. This is a simple generalization of the most natural choice that would assign to each extremal point within the locus model 1/6, defining the total score of a source as linearly proportional to the number of extremal points within the model cylinders. This behavior is obtained in the general equation when . Changing the value of is useful to tweak the performances of the association procedure in terms of the purity and completeness of the final sample of candidate blazars. While in this paper will be used for all experiments, the discussion of the influence of the value of the parameter on the results of the application of the association procedure and the justification of the choice of the value of used in the experiments in this paper can be found in Appendix A.

So far, the score assigned to a generic WISE source can take one of six different values determined by the score assignment law in Equation 3.2. To penalize the WISE sources with large uncertainties on the observed colors (and, in turn, large volume of the uncertainty ellipsoid in the PCs space) relatively to other WISE sources with the same number of extremal points contained in the locus model but smaller errors, we multiply the score obtained using Equation 3.2 by the ratio of the absolute values of the logarithms of the volume of the uncertainty ellipsoid of the source considered and of the volume of the largest uncertainty ellipsoid for WFB sources. Thus, for each of the three regions of the locus model, the weighted score is defined as:

where are the volumes of the uncertainty ellipsoids of the WFB sources in the PCs space calculated as , and is the volume of the uncertainty ellipsoid in the PCs space of the generic WISE source considered. The logarithms of the volumes of the uncertainty ellipsoids are used to take into account the large number of order of magnitude potentially spanned by the differences between the volumes (always smaller than one in the PCs space though). The above definition of the weighted score also has the effect of mapping the discrete distribution of scores calculated according to assignment law Equation 3.2 into a continuous distribution that allows a finer classification of the candidate blazars (as described in Section 4.1). In the remainder of the paper the term score will always be used to indicate the weighted score definition given in Equation 3.2.

4. The association procedure

4.1. Selection of the candidate blazars

The procedure for the evaluation of the scores based on the new parametrization of the WFB locus discussed in the previous section is used to associate high-energy sources to WISE candidate blazars. The WISE colors and their uncertainties for all the sources found in the WISE All-Sky photometry catalog within the region of positional uncertainty (hereinafter the Search Region - SR) of a given high-energy source and detected in all four WISE filters are retrieved, and the scores of these WISE sources are calculated as described in Section 3.2. Then, these sources are split among different classes according to the values of the their scores , and for the BZB, Mixed and BZQ regions of the WFB locus model in the PCs space respectively. For each locus region, every source is assigned to class A, class B, class C or is marked as an outlier based on its score values and relative to the threshold scores values defined as the 30%, 60% and 90% percentiles of the distributions of scores in the three regions of the locus for the WFB sources (see Figure 6). The classes are sorted according to decreasing probability of the WISE source to be compatible with the model of the WFB locus: class A sources are considered the most probable candidate blazars for the high-energy source in the SR, while class B and class C sources are less compatible with the WFB locus but are still deemed as candidate blazars. In more details, class A candidate blazars have score , class B candidate blazars have score and class C candidate blazars have score for each region. The other sources considered outliers are discarded. The values of the score thresholds derived from the score distributions of WFB sources for the three regions of the locus model are reported in Table LABEL:tab:thresholds and shown in Figure 6 overplotted to the histograms of the score distributions of the WFB sources assigned to each of the three locus regions.

Figure 6.— Histograms of distributions of score values calculated for the sources in the WFB sample for the three regions of the locus dominated respectively by the BZQs, the BZBs and in the mixed region (upper, mid and and lower panels respectively). The three vertical lines in each panel represent , and , i.e. the values of the score associated with the 30%-th, 60%-th and 90%-th percentiles for BZBs, BZQs and mixed sources respectively. These score thresholds have been used to define the classes of candidate blazars (see Section 4 for details).
BZB Mixed BZQ
0.48 0.44 0.41
0.75 0.79 0.79
0.93 0.92 0.94
Table 3Values of the score thresholds , and , used for the association experiments described in this paper. These values are determined as the 30%-th, 60%-th and 90%-th percentiles of the scores of the WFB sample divided by BZB, Mixed and BZB mixed regions.

The choice of the percentiles used to define the classes of candidate blazars is arbitrary and can be changed to allow for more conservative (higher purity of the sample of candidates) or more complete (lower purity of the sample of candidates) selections of candidate blazars in the SRs associated with unidentified high-energy sources.

4.2. Background and spurious associations

In our association procedure, the presence of WISE background sources with score values that would qualify them as candidate blazars but that are not located within the SR of the unidentified high-energy source is taken into account by assessing the number and type of spurious associations from sources within a local background region for each unassociated source. For a generic SR of radius , we define the background region (BR) as an annulus of outer radius and inner radius equal to the SR radius and centered on the center of the SR. The SR and BR have same area by definition. Within a given SR, all WISE sources detected in all four WISE filters are assigned a score value for each region of the locus model, and successively ranked in classes using the same thresholds used to classify the sources within the SR. An example of a generic SR and associated background region is shown in Figure 7, where the candidate blazar and the spurious BR candidate blazar are colored according to their class membership as defined in Section 4.

Figure 7.— Results of the association procedure for a generic unassociated high-energy source superimposed on the image of the WISE sky around the position of the unassociated -ray source as seen in the m band. The inner circle represents the Search Region (SR) of the high-energy source while the outer circle delimits the annulus used as Background Region (BR). The open circles in the SR represent the sources of the WISE All-Sky catalog detected in all four WISE filters for which the scores have been evaluated (the sources not marked by symbols in the image are not detected in at least one of the four WISE filters and have not been considered for the score evaluation). The solid circle represents the candidate blazar found within the SR and its color indicates that it is class A candidate blazar. The gray stars in the background region are the WISE sources used to assess the possibility of spurious associations. Only one source in the BR has been classified as class C candidate blazar in this example.

For every unassociated high-energy source, our method produces all candidate blazars (sources classified as class A, class B or class C candidate) in the SR. All candidate blazars located in the BR of the high-energy sources are also provided and can be used to evaluate the chance of spurious associations as a function of the class of the candidate blazars (see, for example, Section 5 and Section 7 for WFB and 2FB association respectively, and the last columns of Table 5 and Table LABEL:tab:catalogsample2fb).

5. Re-association of the Wise -ray emitting blazars

The association procedure based on the new model of the locus of the WFB in the 3-dimensional WISE color space (described in Sec. 3.1) has been applied to the -ray sources of the WFB sample. The candidate blazars have been classified according to the score thresholds described in Sec. 4 and shown in Table LABEL:tab:thresholds. The SR associated with each -ray source has been defined as a circular region of radius corresponding to the semi-major axis of the uncertainty positional region at 95% level of confidence (see Nolan et al., 2012, for additional details). The method finds 542 candidate blazars for 486 out of 610 WFB -ray sources, corresponding to of the WFB sample. The 542 candidate blazars are divided into 186 BZB candidate blazars, 165 candidate blazars compatible with the Mixed region and the remaining 191 BZQ candidate blazars. The 542 candidate blazars are distributed in 75 class A candidates, 211 class B candidates and 256 class C candidate blazars. The average number of candidate blazars for each associated WFB -ray source is 1.1, with 197 WFB sources associated with only one WISE candidate. Out of the total of 486 -ray sources in the WFB that have been associated with at least one WISE candidate blazar, 468 sources have been associated (among other possible candidate blazars selected) to the same WISE source which has been selected as the counterpart of the -ray source according to the analysis discussed in Section 2.3, corresponding to 77% of the WFB sample. More details on this topic are given in Section 6 where the evaluation of the efficiency and completeness of the association procedure is discussed. A summary of the composition of the sample of candidate blazars selected by the new association method applied to the WFB sample can be found in Table LABEL:tab:composition.

WFB
Class A Class B Class C
BZB 28 81 77
Mixed 23 59 83
BZQ 24 71 96
2FB
Class A Class B Class C
BZB 0 13 5
Mixed 4 13 9
BZQ 4 8 20
Table 4Composition of the samples of candidate blazars selected by applying our association method to the -ray sources in the WFB and 2FB samples in terms of candidate types and class. See Section 5 and Section 7 for more details on the re-association of the WFB sample and the association of the 2FB sample respectively.

Table 5 shows the basic information for the first ten candidate blazars of the WFB sample that have been re-associated with the same WISE counterparts used in the WFB catalog itself. The complete list of candidate blazars associated with the WFB sources can be found in the Table 8 in Appendix B.

2FGLa WISEb ROMA-BZCATc [3.4]-[4.6]d [4.6]-[12]e [12]-[22]f zg typeh classi
name name name mag mag mag
2FGLJ0000.9-0748 J000118.01-074626.7 BZBJ0001-0746 0.93(0.03) 2.53(0.04) 2.12(0.1) ? BZB B
2FGLJ0004.7-4736 J000435.64-473619.5 BZQJ0004-4736 1.09(0.03) 2.92(0.03) 2.3 (0.06) 0.88 UND C
2FGLJ0006.1+3821 J000557.17+382015.2 BZQJ0005+3820 1.1 (0.03) 3.11(0.03) 2.69(0.03) 0.229 BZQ A
2FGLJ0007.8+4713 J000759.97+471207.7 BZBJ0007+4712 0.92(0.04) 2.28(0.06) 2.13(0.18) 0.28 BZB C
2FGLJ0012.9-3954 J001259.88-395425.8 BZBJ0012-3954 1.01(0.04) 2.84(0.04) 2.28(0.11) ? UND C
2FGLJ0013.8+1907 J001356.36+191042.0 BZBJ0013+1910 0.97(0.04) 2.58(0.06) 2.09(0.22) ? BZB C
2FGLJ0017.6-0510 J001735.81-051241.6 BZQJ0017-0512 1.06(0.03) 2.73(0.04) 2.45(0.08) 0.227 UND B
2FGLJ0021.6-2551 J002132.54-255049.2 BZBJ0021-2550 0.85(0.04) 2.3 (0.06) 2.23(0.1) ? BZB C
2FGLJ0022.5+0607 J002232.44+060804.4 BZBJ0022+0608 1.04(0.03) 2.8 (0.04) 2.28(0.09) ? UND B
2FGLJ0023.2+4454 J002335.44+445635.8 BZQJ0023+4456 1.22(0.04) 2.92(0.06) 2.41(0.14) 1.062 BZQ C
  • Ê Ê Ê Ê Ê

  • Notes:

    Ê Ê Ê Ê Ê

  • 2FLG name of the -ray source associated

  • WISE name of the candidate blazars

  • ROMA-BZCAT name of the source

  • WISE color of the candidate

  • WISE color of the candidate

  • WISE color of the candidate

  • redshift of the ROMA-BZCAT source

  • classification of the candidate blazar according to our method

  • class of the candidate blazar according to our method

Table 5First ten WISE candidate blazars associated to WFB sources and corresponding to the association in the 2FGL catalog (the complete list of WFB associations can be found in Table 8 in Appendix B).

Table LABEL:tab:wgscatalogsamplealternative shows some basic information for the first ten candidate blazars associated with the WFB sample but representing alternative associations of the -ray sources in the WFB sample (i.e., different WISE sources from the counterparts identified for the WFB sample with the positional method described in Section 2.2). For each of these candidate blazars, an extensive archival research has been performed in order to gather all critical information useful to characterize the nature of the source. This information is reported in the tenth column of Table LABEL:tab:wgscatalogsamplealternative, summarizing the available classifications and detections in different observations for each alternative association. The last column of this Table also reports the total number of BR candidate blazars, determined as described in Section 4.2, with class higher than or equal to the class of the candidate blazars associated with the -ray source and located within its SR. No class A candidate blazars have been found within the BRs of the 75 WFB sources associated to at least one class A candidate blazar (0%), while 32 out of the 201 WFB sources associated to a class B candidate have at least one class B or better candidate blazar in the BR (). Finally, 167 out of the remaining 192 WFB sources associated to a class C candidate blazar have at least one candidate blazar of equal or better class in their BRs (), confirming that class C candidate blazars are the most sensitive to possible contamination from background WISE sources compatible with the locus model. The complete list of alternative associations of the WFB sources can be found in Table 8 in Appendix B.

2FGLa WISEb otherc [3.4]-[4.6]d [4.6]-[12]e [12]-[22]f typeg classh notesi zl m
name name name mag mag mag
2FGLJ0000.9-0748 J000115.93-074233.1 APMUKS(BJ) B235842.09-075916.3 1.03(0.05) 3.21(0.08) 2.45(0.20) BZQ C - 1
2FGLJ0007.8+4713 J000745.11+471130.7 NVSSJ000745+471131 1.15(0.06) 2.92(0.12) 2.68(0.27) BZQ C N,X 0
2FGLJ0102.3+4216 J010142.98+421828.3 GALEXJ010142.98+421828.4 1.00(0.05) 2.76(0.09) 2.40(0.28) UND C - 1
2FGLJ0116.0-1134 J011559.75-113012.3 GALEX2673671438794228469 1.13(0.03) 2.46(0.03) 2.36(0.05) UND C M 1
2FGLJ0158.3-3931 J015752.11-392906.2 1.17(0.04) 3.19(0.05) 2.58(0.11) BZQ C M 1
2FGLJ0205.4+3211 J020537.46+321812.7 0.96(0.04) 2.58(0.06) 2.38(0.16) UND C M 1
2FGLJ0217.5-0813 J021649.93-080551.8 SDSSJ021649.94-080551.8 1.11(0.04) 3.23(0.05) 2.45(0.12) BZQ C s 3
2FGLJ0217.5-0813 J021716.20-082816.2 SDSSJ021716.21-082816.3 1.19(0.03) 2.68(0.03) 2.35(0.04) UND C M 0.497 3
2FGLJ0219.1-1725 J021906.91-173135.3 1.20(0.05) 2.98(0.09) 2.37(0.25) BZQ C - 2
2FGLJ0222.0-1615 J022222.65-162309.6 1.11(0.06) 3.04(0.10) 2.68(0.24) BZQ C - 0
  • Ê Ê Ê Ê Ê

  • Notes:

    Ê Ê Ê Ê Ê

  • 2FLG name of the -ray source associated

  • WISE name of the candidate blazars

  • alternative name (if available) of the source in the literature

  • WISE color of the candidate

  • WISE color of the candidate

  • WISE color of the candidate

  • classification of the candidate blazar according to our method

  • class of the candidate blazar according to our method

  • note about the available multi-wavelength information of the WISE source, if already observed and/or classified (surveys: N=NVSS, F=FIRST, S=SUMSS, M=2MASS, s=SDSS DR8, 6=6dFG, x=XMM or Chandra, X=ROSAT; classification: QSO=quasar, Sy=Seyfert, LNR=LINER; variability: v=variable in WISE (var 5 in at least one WISE filter))

  • redshift of the sources

  • number of WISE sources in the background region (BR) of the -ray source selected as candidate blazars with class equal or higher than the class of the best candidate blazar selected in the SR of the high-energy source.

Table 6First ten candidate blazars associated to WFB sources that do not correspond to the WISE counterparts of the associations in the 2FLG catalog (the complete list of WFB associations can be found in Table 8 in Appendix B.

6. Efficiency and completeness

The new parametrization of the locus, coupled with the revisited association procedure described in Section 4, can be treated as a classifier whose parameters are optimized through a supervised learning procedure. The training sample of this classifier is the WFB sample that has been used to define the locus model in the PCs space generated by the WFB distribution in the WISE color space, because the association procedure is based on the geometry of the locus. More specifically, the training of the classifier consists in the characterization of the locus model that is used to calculate the scores and to select the candidate blazars. In general, after a classifier has been trained its performances can be evaluated by applying the trained classifier on a different sample of sources, the testset, representative of the same underlying population from where the training set has been extracted. The performance of a classification method can be expressed by two quantities, the efficiency and the completeness of the classification. The efficiency is the ratio between the number of sources correctly classified by the classifier in the test-set and the total number of sources classified, and the completeness is the fraction of sources that the method correctly classifies relative to the total number of sources in the test-set that would have been correctly classified by an ideal perfect classifier.

The classification performed by the association procedure on one -ray source of the WFB sample is considered correct if one of the WISE sources associated with the WFB -ray source is the WISE source identified as counterpart of the WFB source by the method described in Section 2)444The candidate blazars that do not correspond to the WISE counterparts of the blazars in the WFB sample do not necessarily are incorrect from the physical point of view, as they can possibly represent more physically meaningful associations of the high-energy source worth further investigation. We label them as “incorrect” only to simplify the description of the evaluation of the efficiency and completeness of the association procedure.. The efficiency and completeness are thus defined as:

When the size of the parent population of the sample of sources used to train and test the classifier is large enough, training set and testset can be obtained by splitting the parent population in two subsets of different sizes. The minimum size of the sample that would permit to apply this strategy depends on the specific problem, on the features of the classifier used and the sample itself. Common choices of the training set to testset size proportions are 60%-40% or 70%-30%. Using this approach to assess the performances of our classifier, we verified that the values of the efficiency and completeness of the association strongly depended on the composition of both samples, revealing a suboptimal training of the classifier that led to “over-fitting”. Two likely causes of this behavior are, respectively, that our classifier is too complex to be trained on 60% or 70% fraction of the WFB sample, and that the parameters of the locus model are very sensitive to the particular subset of sources contained in the training test. To avoid this issue, we have used all WFB sources to determine the locus modelization, as described in Section 3, and estimated the efficiency and completeness of the association procedure using a different strategy, the -fold cross-validation Hastie et al. (2009), that employs the same sample used as training set. With the -fold cross-validation approach, the WFB sample is randomly partitioned into equal sized subsamples. Of the subsamples, only one subsample is retained as the testset data to evaluate the performances of the association procedure, while the remaining subsamples are used as training data of the locus model. Thus the efficiency and completeness are evaluated on the -th subset not used for training. The same steps are then repeated times, with each of the subsets of the WFB sample used exactly once as testset. The efficiency and completeness values determined for each of the cross-validations can be combined to produce single robust estimates.

Figure 8.— Maps of the efficiency of the association procedure based on the new model of the WFB locus in the WISE color space obtained with the 100-fold cross-validation as described in Sec. 6. The upper-left plot shows in the vs color-color plane, the upper-right plot shows in the vs color-color plane and the lower-right plot shows in the vs color-color plane. The lower-right plot shows the efficiency as a function of the galactic coordinates of the -ray sources in the WFB sample. In all plots, the size of the symbols is proportional to the number of WFB sources in the each bin and the local value of the efficiency normalized to unity is color-coded.

The parameters of the different models of the locus estimated with the cross-validation on the sum of the -1 subsets not used for validation are compatible with the values obtained with the procedure described in Section 3.1 for . The total efficiency and completeness for the re-association of the WFB sources performed with the new association procedure are and respectively. Both and have been also estimated as functions of the WISE colors and the galactic coordinates of the WISE sources (Figure 8 for the efficiency maps and Figure 9 for the completeness maps). The maps of and in the color-color planes and galactic coordinates have been created by estimating the two quantities in bins of the three independent WISE color-color projections and galactic coordinates respectively. For example, the efficiency and completeness evaluated in the -th bin of the first WISE color-color plane are defined as:

Similarly, we evaluate and in the -th bin of the galactic coordinates distribution of the WFB WISE counterparts as follows:

The plots in Figure 8 and Figure 9 show the values of the normalized efficiency and completeness expressed as the color of the symbols, while the size of the symbols are proportional to the total number of -ray candidate blazars falling in each bin of the maps. The right lower plots in both figures show the values of and as functions of the galactic coordinates in Aitoff projection. One comment that can be made by observing the efficiency map in galactic coordinates in the lower-right plot in Figure 8 is that the contribution of galactic sources to the contamination of the association procedure is not dominant as there is no clear indication of a positive gradient of the efficiency as a function of the galactic latitude (namely, going from the galactic disk to the galactic north and south poles).

Figure 9.— Maps of the completeness of the association procedure based on the new model of the WFB locus in the WISE color space obtained with the 100-fold cross-validation as described in Sec. 6. The upper-left plot shows in the vs color-color plane, the upper-right plot shows in the vs color-color plane and the lower-right plot shows in the vs color-color plane. The lower-right plot shows the completeness as a function of the galactic coordinates of the -ray sources in the WFB sample. In all plots, the size of the symbols is proportional to the number of WFB sources in the each bin and the local value of the efficiency normalized to unity is color-coded.

7. Association of the Fermi -ray blazars

2FGLa WISEb otherc [3.4]-[4.6]d [4.6]-[12]e [12]-[22]f typeg classh notesi zl reassoc.m n
name name name mag mag mag flag
2FGLJ0035.8+5951 J003552.62+595004.3 BZBJ0035+5950 0.59(0.03) 2.03(0.03) 1.87(0.09) BZB B M,v (0.08)6? y 0
2FGLJ0047.2+5657 J004700.43+565742.4 BZUJ0047+5657 1.03(0.04) 2.56(0.06) 2.4(0.13) UND C v 0.747 y 1
2FGLJ0057.9+3311 J005832.05+331117.3 BZUJ0058+3311 1.13(0.05) 3.0 (0.07) 2.45(0.19) BZQ C - 1.369 y 4
2FGLJ0102.7+5827 J010245.75+582411.1 BZUJ0102+5824 1.06(0.03) 2.98(0.03) 2.45(0.05) BZQ C v 0.644? y 0
2FGLJ0105.3+3930 J010509.20+392815.2 BZUJ0105+3928 1.01(0.03) 2.5(0.03) 2.16(0.05) UND C v (0.08)3? y 1
2FGLJ0105.3+3930 J010542.74+393024.2 - 1.17(0.06) 3.14(0.1) 2.55(0.26) BZQ C - ? n -
2FGLJ0109.9+6132 J010946.32+613330.4 NVSSJ010946+613329 1.06(0.03) 2.71(0.03) 2.47(0.05) UND B v 0.783 y 0
2FGLJ0113.2-3557 J011315.83-355148.2 BZQJ0113-3551 1.12(0.04) 2.9(0.05) 2.48(0.1) BZQ C - 1.22 y 2
2FGLJ0114.7+1326 J011452.77+132537.6 BZBJ0114+1325 0.82(0.03) 2.3(0.04) 1.86(0.15) BZB B M ? y 0
2FGLJ0144.6+2704 J014433.54+270503.1 BZUJ0144+2705 1.07(0.03) 2.75(0.03) 2.22(0.04) UND B M,v ? y 0
  • Ê Ê Ê Ê Ê

  • Notes:

    Ê Ê Ê Ê Ê

  • 2FLG name of the -ray source associated

  • WISE name of the candidate blazars

  • alternative name (if available) of the source in the literature

  • WISE color of the candidate

  • WISE color of the candidate

  • WISE color of the candidate

  • classification of the candidate blazar according to our method

  • class of the candidate blazar according to our method

  • note about the available multi-wavelength information of the WISE source, if already observed and/or classified (surveys: N=NVSS, F=FIRST, S=SUMSS, M=2MASS, s=SDSS DR8, 6=6dFG, x=XMM or Chandra, X=ROSAT; classification: QSO=quasar, Sy=Seyfert, LNR=LINER; variability: v=variable in WISE (var 5 in at least one WISE filter))

  • redshift of the sources

  • flag indicating whether our association corresponds to the association provided in the 2FGL catalog (“y”), or otherwise (“n”)

  • number of WISE sources in the background region (BR) of the -ray source selected as candidate blazars with class equal or higher than the class of the best candidate blazar selected in the SR of the high-energy source.

Table 7First ten candidate blazars associated to 2FB sources (the complete list of 2FB associations can be found in Table LABEL:tab:2fbcatalogreassociated in Appendix B).

The sample of -ray blazars associated by the 2FGL contains 752 -ray sources, excluding all sources with any analysis flag. We excluded from this list the 610 blazars already contained in WFB sample, for a final number of 142 2FGL sources. These -ray sources constitute the 2FGL Fermi blazar sample (hereinafter 2FB). The 2FB sample has been investigated with our association procedure similarly at what done for the WFB sample. The locus model and the parameters of the association procedure applied to the 2FB are the same used for the re-association of the WFB sample. The first ten associations of the 2FB sources are shown in Table LABEL:tab:catalogsample2fb, while the summary of the composition of the sample of candidate blazars associated with the 2FB sources can be found in Table LABEL:tab:composition. We summarize in the following the number and type of spurious candidate blazars found in the BRs of the 2FB sources. No class A spurious candidate blazars have been found within the BRs of the 8 2FB sources associated to at least one class A candidate blazar (0%), only 1 out of the 34 2FB sources associated to a class B or better candidate has one class B candidate blazar in the BR (). The number of 2FB sources associated to class C candidate blazars with at least one candidate blazars of same or better class is 31 out of the remaining 34 sources, corresponding to the of this sample. Also in this case, an extensive archival research has been performed for all candidate blazars associated by our method. This research has led to gather the essential information about the candidate blazars contained in the tenth column of Table LABEL:tab:catalogsample2fb.

8. Summary and conclusions

Using the preliminary data release of the Wide-field Infrared Survey Explorer (WISE), we discovered that -ray emitting blazars have infrared colors that distinguish them from other galactic and extragalactic sources in the 3-dimensional IR color space (Papers I and II). Then, we used these results to develop an association method able to associate IR selected blazar candidates as low-energy counterparts of a -ray source (Papers III and IV).

In this paper we have described an updated version of the WFB sample, gathered using the new WISE All-Sky release, the 2FGL catalog and the latest release of the ROMA-BZCAT list of blazars. Then, we have discussed a new association procedure for the unidentified high-energy sources based on a new model of the locus occupied by WFB sample in the three-dimensional PCs space generated by the distribution of WFB WISE sources in the WISE color space. We defined a quantitative measure of the compatibility of a generic WISE source with the locus model and expounded the new association procedure. The new association procedure can select candidate blazars classified as BZB or BZQ candidates, and ranked according to the likelihood of each candidate of being an actual blazar. We also investigated the possibility of spurious associations by determining the number and class of WISE sources compatible with the model of the WFB locus in background regions defined around the SR of each high-energy source. We have assessed the performances of the association procedure in terms of the efficiency and completeness by re-associating the -ray sources in the WFB sample, yielding a total efficiency and total completeness respectively. By using a -fold cross-validation approach, we have also estimated the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The lack of a positive gradient in the efficiency of the association procedure as function of the galactic latitude suggests that galactic sources do not contribute significantly to the contamination of the locus. We will make the code for the association procedure available to the astronomical community on request.

In this paper, we have presented the catalog of candidate blazars associated by the new procedure to the 2FGL -ray sources included in the WFB sample, used to define the new model of the locus. We have investigated the archival information available for the WISE sources representing alternative associations of the Fermi -ray sources in the WFB. We also presented the catalog of candidate blazars obtained by applying the new association procedure to the 2FB sample, composed of all clean -ray sources associated with blazars in the 2FGL catalog but not contained in the WFB sample. In both catalogs, for every candidate blazar we provided the basic WISE data and information about the association; for the alternative associations (candidate blazars different from the WISE counterparts defined in the WFB and 2FB samples), we complemented the WISE data with some additional archival information (known name and classification), when available, that can hopefully help to physically characterize the nature of these sources. We will make both catalogs publicly available in electronic format.

Finally, we acknowledge that the effects of the distribution in redshift and the variability in WISE observations of the WFB sources on the definition of the model of the locus on which the association procedure is based are still unknown. To address these open questions, we plan to carry out a detailed investigation of the WISE blazar variability and the statistical characterization of the SEDs of WFB blazars, that will be presented in future papers.

The work is supported by the NASA grants NNX10AD50G, NNH09ZDA001N and NNX10AD68G. R. D’Abrusco gratefully acknowledges the financial support of the US Virtual Astronomical Observatory, which is sponsored by the National Science Foundation and the National Aeronautics and Space Administration. F. Massaro is grateful to A. Cavaliere, S. Digel, D. Harris, D. Thompson, A. Wehrle for their helpful discussions. The work by G. Tosti is supported by the ASI/INAF contract I/005/12/0. H. A. Smith acknowledges partial support from NASA/JPL grant RSA 1369566. TOPCAT555http://www.star.bris.ac.uk/mbt/topcat/ (Taylor, 2005) and SAOImage DS9 were used extensively in this work for the preparation and manipulation of the tabular data and the images. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC) provided by NASA’s Goddard Space Flight Center; the SIMBAD database operated at CDS, Strasbourg, France; the NASA/IPAC Extragalactic Database (NED) operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Part of this work is based on archival data, software or on-line services provided by the ASI Science Data Center. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration.

References

  • Abdo et al. (2010a) Abdo, A. A. et al. 2010a ApJS 188 405
  • Ackermann et al. (2011) Ackermann, M. et al. 2011 ApJ, 743, 171
  • Ackermann et al. (2012) Ackermann, M. et al. 2012 ApJ, 753, 83
  • Condon et al. (1998) Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., Taylor, G. B., & Broderick, J. J. 1998, AJ, 115, 1693
  • D’Abrusco et al. (2012) D’Abrusco, R., Massaro, F., Ajello, M., Grindlay, J. E., Smith, Howard A. & Tosti, G. 2012 ApJ, 748, 68 (Paper II)
  • Draine (2003) Draine, B. T. 2003, ARA&A, 41, 241
  • Hartman et al. (1999) Hartman, R.C. et al., 1999 ApJS 123
  • Hassan et al. (2013) Hassan, T., Mirabal, N., Contreras, J. L., & Oya, I. 2013, MNRAS, 428, 220
  • Hastie et al. (2009) Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of statistical learning, Springer.
  • Kovalev et al. (2009) Kovalev, Y. Y., Aller, H. D., Aller, M. F., et al. 2009, ApJ, 696, L17
  • Kovalev (2009) Kovalev, Y. Y. 2009, ApJ, 707, L56
  • Maselli et al. (2010a) Maselli, A., Massaro, E., Nesci, R., Sclavi, S., Rossi, C., Giommi, P. 2010 A&A, 512A, 74
  • Maselli et al. (2010b) Maselli, A., Cusumano, G., Massaro, E., La Parola, V., Segreto, A., Sbarufatti, B. 2010 A&A, 520A, 47
  • Massaro et al. (2009) Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., Sclavi, S. 2009 A&A, 495, 691
  • Massaro et al. (2010) Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., Sclavi, S. 2010 http://arxiv.org/abs/1006.0922
  • Massaro et al. (2011a) Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., 2011 “Multifrequency Catalogue of Blazars (3rd Edition)”, ARACNE Editrice, Rome, Italy
  • Massaro et al. (2011b) Massaro, F., D’Abrusco, R., Ajello, M., Grindlay, J. E. & Smith, H. A. 2011 ApJ, 740L, 48 (Paper I)
  • Massaro et al. (2012a) Massaro, F., D’Abrusco, R., Tosti, G., Ajello, M., Gasparrini, D., Grindlay, J. E. & Smith, Howard A. 2012b ApJ, 750, 138 (Paper III)
  • Massaro et al. (2012b) Massaro, F., D’Abrusco, R., Tosti, G., Ajello, M., Paggi, A., Gasparrini, 2012c ApJ, 752, 61(Paper IV)
  • Massaro et al. (2012c) Massaro, F., D’Abrusco, R., Paggi, A., Tosti, G., Gasparrini, D. 2012d ApJ, 750L, 35 (Paper V)
  • Mirabal (2009) Mirabal, N. 2009 [arxiv.org/abs/0908.1389v2]
  • Mirabal & Halpern (2009) Mirabal, N., & Halpern, J. P. 2009, ApJ, 701, L129
  • Mirabal et al. (2010) Mirabal, Nieto, D. & Pardo, S. 2010 A&A submitted, [arxiv.org/abs/1007.2644v2]
  • Nolan et al. (2012) Nolan et al. 2012 ApJS, 199, 31
  • Ruan et al. (2012) Ruan, J. J., Anderson, S. F., MacLeod, C. L., et al. 2012, ApJ, 760, 51
  • Stephen et al. (2006) Stephen, J. B., Bassani, L., Malizia, A., et al. 2006, A&A, 445, 869
  • Stickel et al. (1991) Stickel, M., Padovani, P., Urry, C. M., Fried, J. W., Kuehr, H. 1991 ApJ, 374, 431
  • Stern et al. (2012) Stern, D., Assef, R. J., Benford, D. J., et al. 2012, ApJ, 753, 30
  • Stoke et al. (1991) Stocke et al. 1991, ApJS, 76, 813
  • Taylor (2005) Taylor, M. B. 2005, ASP Conf. Ser., 347, 29
  • Urry & Padovani (1995) Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
  • Wright et al. (2010) Wright, E. L., et al. 2010 AJ, 140, 1868
  • Yan et al. (2013) Yan, L., Donoso, E., Tsai, C.-W., et al. 2013, AJ, 145, 55

Appendix A Appendix A: performances of the association procedure as functions of index of the score assignment law

The score assignment law (Equation 3.2) has been introduced in Section 3.2 to provide a flexible way to assign the score values to the WISE sources as a function of the number of extremal points contained within the locus model. As shown in the left panel of Figure 10, the score of a source with extremal points contained in one cylinder of the locus model for becomes smaller than the fractional value of 1/, while for the score becomes larger than the default value corresponding to the linear proportionality obtained with . The parameter permits to control the behavior of the score assignment law and to tweak it for different scientific goals. For example, a more efficient (or pure) association can be obtained by assigning large score values only to the WISE sources with a large number of extremal points within the model; this can be accomplished by using a value of the index larger than unity. On the other hand, by assigning large scores to sources with few extremal points inside the model, the completeness of the selection can be enhanced at the cost of a lower efficiency. For this reason, the value of has to be optimized for each distinct experiment. In the case of the experiments described in this paper, the choice of the value of the parameter has been based on the characterization of the efficiency and completeness (defined in Section 6) of the association procedure as functions of . We have run multiple association experiments on the WFB sample with fixed values of the parameters of the geometric model of the locus (see Table LABEL:tab:model), but letting vary in the range. Values of and have been evaluated for these experiments according to the definitions given in Section 6. The distributions of the and as functions of are shown in the right panel in Figure 10.

Figure 10.— Left panel: score as function of the number of extremal points contained in the locus model for different values of the parameter of the score assignment law (Equation 3.2). For a fixed number of extremal points within the model, the corresponding value of the score will be larger than /6 for and smaller than /6 for (the dashed vertical black line shows the score values for extremal points as an example). The linearly proportional assignment law for is represented by the curve with black solid circles. Right panel: Total efficiency (solid circles) and completeness (open circles) of the association procedure evaluated on the whole WFB sample as functions of the parameter of the score assignment law (Equation 3.2 in Section 3.2). The values of and obtained with , used for the association of the WFB and 2FB samples in Section 5 and Section 7 respectively, are indicated by the vertical dashed line.

The curve representing varies in the range but is not monotonically increasing with . The total efficiency locally peaks at for and then decreases to for larger values of . The plateau observed between and indicates that a large fraction of candidate blazars have a large number of extremal points within the cylindrical model of the locus, so that the slowly rising curve in the left panel in Figure 10 for small values of and the steeper slope for do not affect the overall efficiency of the association. The efficiency becomes larger and then reaches 1 for approaching 4. The total completeness is monotonically decreasing from small to large values of , ranging from a maximum value for to a minimum value of for . In general, the value of used for the evaluation of the efficiency and completeness as functions of the color and galactic coordinates in Section 6 and the association of the WFB and 2FB samples has been chosen as a reasonable compromise between the largest achievable total efficiency and a large enough completeness for the association procedure applied on the WFB sample. Different experiments should be performed with values of the parameter optimized for one aspect or the other of the association procedure.

Appendix B: complete lists of Wise associations for WFB and 2FB samples

2FGL WISE ROMA-BZCAT [3.4]-[4.6] [4.6]-[12] [12]-[22] z type class m
name name name mag mag mag
2FGLJ0000.9-0748 J000118.01-074626.7 BZBJ0001-0746 0.93(0.03) 2.53(0.04) 2.12(0.1) ? BZB B 0
2FGLJ0004.7-4736 J000435.64-473619.5 BZQJ0004-4736 1.09(0.03) 2.92(0.03) 2.3 (0.06) 0.88 UND C 0
2FGLJ0006.1+3821 J000557.17+382015.2 BZQJ0005+3820 1.1 (0.03) 3.11(0.03) 2.69(0.03) 0.229 BZQ A 0
2FGLJ0007.8+4713 J000759.97+471207.7 BZBJ0007+4712 0.92(0.04) 2.28(0.06) 2.13(0.18) 0.28 BZB C 0
2FGLJ0012.9-3954 J001259.88-395425.8 BZBJ0012-3954 1.01(0.04) 2.84(0.04) 2.28(0.11) ? UND C 1
2FGLJ0013.8+1907 J001356.36+191042.0 BZBJ0013+1910 0.97(0.04) 2.58(0.06) 2.09(0.22) ? BZB C 1
2FGLJ0017.4-0018 J001611.08-001512.3 BZQJ0016-0015 1.29(0.11) 3.01(0.26) 3.65(0.33) 1.577 - - -
2FGLJ0017.6-0510 J001735.81-051241.6 BZQJ0017-0512 1.06(0.03) 2.73(0.04) 2.45(0.08) 0.227 UND B 0
2FGLJ0021.6-2551 J002132.54-255049.2 BZBJ0021-2550 0.85(0.04) 2.3 (0.06) 2.23(0.1) ? BZB C 0
2FGLJ0022.5+0607 J002232.44+060804.4 BZBJ0022+0608 1.04(0.03) 2.8 (0.04) 2.28(0.09) ? UND B 0
2FGLJ0023.2+4454 J002335.44+445635.8 BZQJ0023+4456 1.22(0.04) 2.92(0.06) 2.41(0.14) 1.062 BZQ C 1
2FGLJ0024.5+0346 J002445.21+034903.7 BZQJ0024+0349 0.98(0.05) 2.96(0.09) 1.84(0.38) 0.545 - - -
2FGLJ0029.2-7043 J002841.53-704515.8 BZBJ0028-7045 1.0 (0.03) 2.6 (0.03) 2.15(0.07) ? UND C 3
2FGLJ0030.2-4223 J003017.48-422446.3 BZQJ0030-4224 1.17(0.03) 2.72(0.04) 2.14(0.1) 0.495 - - -
2FGLJ0033.5-1921 J003334.36-192132.9 BZBJ0033-1921 0.79(0.03) 2.14(0.04) 1.75(0.13) 0.61 BZB B 0
2FGLJ0035.2+1515 J003514.71+151504.2 BZBJ0035+1515 0.77(0.03) 2.19(0.06) 1.92(0.23) ? BZB C 0
2FGLJ0037.8+1238 J003750.87+123819.9 BZBJ0037+1238 0.61(0.03) 2.13(0.04) 1.85(0.14) ? BZB B 1
2FGLJ0038.1+0015 J003808.49+001336.6 BZBJ0038+0013 0.95(0.05) 2.74(0.11) 2.38(0.31) ? - - -
2FGLJ0038.3-2457 J003814.72-245902.2 BZQJ0038-2459 1.09(0.04) 3.18(0.05) 2.47(0.09) 1.196 BZQ C 0
2FGLJ0043.7+3426 J004348.88+342625.9 BZQJ0043+3426 0.89(0.06) 2.89(0.11) 2.57(0.29) 0.966 - - -
2FGLJ0045.3+2127 J004519.28+212740.1 BZBJ0045+2127 0.72(0.03) 2.1 (0.05) 1.86(0.17) ? BZB C 1
2FGLJ0046.7-8416 J004426.56-842239.9 BZQJ0044-8422 1.03(0.04) 2.81(0.04) 2.49(0.08) 1.032 UND C 3
2FGLJ0047.9+2232 J004802.60+223524.3 BZQJ0048+2235 1.02(0.05) 2.64(0.13) 2.35(0.42) 1.161 - - -
2FGLJ0049.7-5738 J004959.50-573826.7 BZQJ0049-5738 1.01(0.04) 2.81(0.04) 2.41(0.1) 1.797 UND C 1
2FGLJ0050.1-0452 J005021.52-045220.3 BZQJ0050-0452 1.13(0.05) 2.82(0.1) 2.18(0.3) 0.92 - - -
2FGLJ0050.2+0234 J004943.22+023703.9 BZBJ0049+0237 1.03(0.04) 2.9(0.06) 2.6 (0.13) ? BZQ C 0
2FGLJ0050.6-0929 J005041.30-092904.9 BZBJ0050-0929 0.98(0.04) 2.6(0.05) 2.33(0.13) ? UND C 0
2FGLJ0051.0-0648 J005108.20-065001.9 BZQJ0051-0650 1.13(0.06) 3.16(0.11) 2.28(0.35) 1.975 - - -
2FGLJ0057.9-3236 J005802.21-323420.6 BZBJ0058-3234 1.01(0.03) 2.64(0.03) 2.23(0.07) ? UND B 0
2FGLJ0102.3+4216 J010227.15+421419.0 BZQJ0102+4214 1.05(0.03) 2.84(0.04) 2.42(0.09) 0.874 UND C 1
2FGLJ0105.0-2411 J010458.18-241628.2 BZQJ0104-2416 1.2(0.05) 2.96(0.07) 2.81(0.14) 1.747 BZQ C 3
2FGLJ0108.6+0135 J010838.76+013500.5 BZQJ0108+0135 1.15(0.04) 3.21(0.04) 2.64(0.06) 2.099 BZQ B 0
2FGLJ0109.0+1817 J010908.17+181607.7 BZBJ0109+1816 0.81(0.03) 2.27(0.05) 1.99(0.15) 0.145 BZB B 0
2FGLJ0112.1+2245 J011205.81+224438.9 BZBJ0112+2244 0.94(0.03) 2.46(0.02) 2.04(0.03) ? BZB A 0
2FGLJ0112.8+3208 J011250.33+320817.3 BZQJ0112+3208 1.04(0.03) 2.81(0.03) 2.36(0.04) 0.603 UND B 0
2FGLJ0113.7+4948 J011327.00+494824.0 BZQJ0113+4948 1.09(0.03) 2.89(0.03) 2.37(0.05) 0.389 UND C 0
2FGLJ0115.4+0358 J011540.50+035643.4 BZBJ0115+0356 0.94(0.03) 2.31(0.05) 2.0 (0.17) ? BZB C 1
2FGLJ0115.7+2518 J011546.14+251953.5 BZBJ0115+2519 0.68(0.04) 2.13(0.06) 2.19(0.23) ? BZB C 1
2FGLJ0116.0-1134 J011612.52-113615.3 BZQJ0116-1136 1.12(0.03) 2.79(0.03) 2.41(0.05) 0.67 UND C 1
2FGLJ0118.8-2142 J011857.25-214129.9 BZQJ0118-2141 1.08(0.03) 2.9(0.04) 2.28(0.07) 1.165 UND B 0
2FGLJ0120.4-2700 J012031.65-270124.5 BZBJ0120-2701 0.93(0.03) 2.59(0.03) 2.11(0.04) ? BZB A 0
2FGLJ0124.5-0621 J012450.46-062500.7 BZBJ0124-0625 1.14(0.04) 2.66(0.08) 2.05(0.29) ? - - -
2FGLJ0132.8-1654 J013243.47-165448.4 BZQJ0132-1654 1.11(0.03) 2.89(0.03) 2.35(0.04) 1.02 UND C 0
2FGLJ0136.5+3905 J013632.59+390559.2 BZBJ0136+3905 0.78(0.03) 2.1(0.03) 1.73(0.07) ? BZB B 0
2FGLJ0136.9+4751 J013658.58+475129.2 BZQJ0136+4751 1.07(0.03) 3.12(0.03) 2.47(0.03) 0.859 BZQ A 0
2FGLJ0137.6-2430 J013738.34-243053.8 BZQJ0137-2430 1.16(0.03) 2.95(0.03) 2.61(0.04) 0.835 BZQ A 0
2FGLJ0141.5-0928 J014125.81-092843.6 BZBJ0141-0928 1.02(0.03) 2.78(0.03) 2.33(0.04) 0.73? UND B 0
2FGLJ0145.1-2732 J014503.38-273334.1 BZQJ0145-2733 1.21(0.03) 3.15(0.03) 2.59(0.06) 1.148 BZQ B 1
2FGLJ0152.6+0148 J015239.60+014717.4 BZBJ0152+0147 0.38(0.03) 1.71(0.04) 1.68(0.18) 0.08 - - -
2FGLJ0153.9+0823 J015402.76+082351.2 BZBJ0154+0823 0.88(0.03) 2.41(0.03) 2.15(0.06) ? BZB B 0
2FGLJ0154.9+4434 J015454.46+443337.9 BZBJ0154+4433 0.88(0.04) 2.26(0.06) 2.07(0.21) ? BZB C 0
2FGLJ0158.0-4609 J015751.11-461423.2 BZQJ0157-4614 1.04(0.09) 3.09(0.18) 2.48(0.51) 2.287 - - -
2FGLJ0158.3-3931 J015838.09-393203.7 BZBJ0158-3932 0.9 (0.03) 2.39(0.04) 1.99(0.09) ? BZB B 0
2FGLJ0159.5+1046 J015934.38+104705.8 BZBJ0159+1047 0.74(0.03) 2.16(0.05) 2.07(0.18) ? BZB C 0
2FGLJ0159.6-2741 J015943.34-274038.0 BZBJ0159-2740 0.85(0.03) 2.38(0.04) 1.93(0.13) ? BZB B 0
2FGLJ0203.6+7235 J020333.55+723253.0 BZBJ0203+7232 0.61(0.03) 2.28(0.03) 2.21(0.05) ? - - -
2FGLJ0205.3-1657 J020457.66-170119.8 BZQJ0204-1701 1.09(0.04) 3.01(0.05) 2.4(0.12) 1.74 BZQ C 4
2FGLJ0205.4+3211 J020504.92+321230.2 BZQJ0205+3212 1.56(0.04) 3.24(0.05) 2.24(0.13) 1.466 - - -
2FGLJ0206.5-1149 J020626.08-115039.7 BZQJ0206-1150 1.1 (0.03) 2.7 (0.04) 2.47(0.08) 1.663 UND C 0
2FGLJ0209.5-5229 J020921.60-522922.7 BZBJ0209-5229 0.6 (0.03) 1.96(0.05) 1.77(0.1) ? BZB C 0
2FGLJ0211.2+1050 J021113.16+105134.8 BZBJ0211+1051 0.95(0.03) 2.49(0.02) 2.11(0.03) ? BZB A 0
2FGLJ0213.1+2245 J021252.81+224452.2 BZBJ0212+2244 0.54(0.03) 2.2 (0.06) 1.99(0.24) 0.459 BZB C 0
2FGLJ0217.4+0836 J021717.11+083704.1 BZBJ0217+0837 0.84(0.03) 2.52(0.03) 2.11(0.04) ? BZB A 0
2FGLJ0217.5-0813 J021702.65-082052.2 BZQJ0217-0820 1.05(0.04) 3.02(0.04) 2.53(0.08) 0.607 BZQ B 0
2FGLJ0217.9+0143 J021748.93+014449.9 BZQJ0217+0144 1.12(0.03) 2.94(0.03) 2.46(0.03) 1.715 BZQ A 0
2FGLJ0219.1-1725 J021905.49-172512.9 BZBJ0219-1725 0.45(0.04) 1.72(0.11) 2.24(0.38) 0.128 - - -
2FGLJ0222.0-1615 J022200.71-161516.4 BZQJ0222-1615 1.12(0.03) 2.77(0.04) 2.51(0.1) 0.698 BZQ C 1
2FGLJ0222.6+4302 J022239.60+430207.8 BZBJ0222+4302 0.83(0.03) 2.23(0.03) 1.94(0.03) 0.444? BZB A 0
2FGLJ0229.3-3644 J022928.42-364356.7 BZQJ0229-3643 1.13(0.05) 3.06(0.07) 2.28(0.19) 2.115 BZQ C 2
2FGLJ0230.8+4031 J023045.70+403253.1 BZQJ0230+4032 1.16(0.04) 2.86(0.05) 2.31(0.12) 1.019 - - -
2FGLJ0237.1-6136 J023653.23-613615.2 BZQJ0236-6136 0.99(0.03) 2.79(0.02) 2.25(0.03) 0.465 UND A 0
2FGLJ0237.8+2846 J023752.39+284808.9 BZQJ0237+2848 1.1 (0.03) 2.9 (0.03) 2.4 (0.05) 1.213 BZQ B 0
2FGLJ0238.6-3117 J023832.47-311657.9 BZBJ0238-3116 0.64(0.03) 1.91(0.04) 1.73(0.19) ? BZB C 0
2FGLJ0238.7+1637 J023838.92+163659.4 BZBJ0238+1636 1.1 (0.03) 2.99(0.03) 2.43(0.04) 0.94 BZQ A 0
2FGLJ0242.9+7118 J024330.88+712017.8 BZBJ0243+7120 0.9 (0.03) 2.36(0.04) 2.36(0.09) ? BZB C 0
2FGLJ0245.1+2406 J024516.83+240535.0 BZQJ0245+2405 1.04(0.09) 3.09(0.1) 2.55(0.47) 2.243 - - -
2FGLJ0245.9-4652 J024600.09-465117.1 BZQJ0246-4651 1.08(0.03) 2.93(0.03) 2.46(0.06) 1.385 BZQ B 0
2FGLJ0252.7-2218 J025247.94-221925.3 BZQJ0252-2219 1.12(0.04) 3.05(0.04) 2.56(0.09) 1.427 BZQ B 0
2FGLJ0257.7-1213 J025741.00-121201.3 BZQJ0257-1212 1.21(0.04) 2.74(0.07) 1.85(0.28) 1.391 - - -
2FGLJ0259.5+0740 J025927.06+074739.6 BZQJ0259+0747 1.01(0.04) 2.92(0.06) 2.48(0.14) 0.893 - - -
2FGLJ0302.7-7919 J030320.89-791456.5 BZQJ0303-7914 1.2 (0.04) 3.01(0.05) 2.52(0.1) 1.115 BZQ C 1
2FGLJ0303.4-2407 J030326.49-240711.4 BZBJ0303-2407 0.86(0.03) 2.27(0.03) 1.98(0.04) 0.26? BZB A 0
2FGLJ0303.5-6209 J030350.61-621125.5 BZQJ0303-6211 1.22(0.03) 2.97(0.03) 2.35(0.05) 1.351 BZQ B 0
2FGLJ0309.1+1027 J030903.61+102916.3 BZQJ0309+1029 1.06(0.03) 2.92(0.03) 2.4 (0.05) 0.863 BZQ C 0
2FGLJ0310.0-6058 J030956.07-605838.9 BZQJ0309-6058 1.1 (0.03) 3.0 (0.03) 2.46(0.05) 1.48 BZQ B 0
2FGLJ0310.7+3813 J031049.87+381453.9 BZQJ0310+3814 1.11(0.04) 3.0 (0.06) 2.5 (0.13) 0.816? BZQ C 0
2FGLJ0312.6+0132 J031243.60+013317.6 BZQJ0312+0133 1.06(0.04) 2.8 (0.05) 2.58(0.1) 0.664 BZQ C 0
2FGLJ0314.2-5106 J031425.69-510431.5 BZBJ0314-5104 1.02(0.04) 2.67(0.04) 2.12(0.12) ? UND C 0
2FGLJ0315.8-2611 J031614.93-260757.2 BZBJ0316-2607 0.75(0.03) 2.14(0.04) 1.78(0.18) 0.443 BZB C 1
2FGLJ0316.1+0904 J031612.72+090443.3 BZBJ0316+0904 0.76(0.03) 2.19(0.03) 1.95(0.07) ? BZB B 0
2FGLJ0322.0+2336 J032159.96+233611.2 BZBJ0321+2326 0.75(0.03) 2.02(0.06) 2.31(0.15) ? - - -
2FGLJ0325.6-1650 J032541.09-164616.8 BZBJ0325-1646 0.7 (0.04) 2.01(0.07) 2.2 (0.23) 0.291 BZB C 2
2FGLJ0326.1+0224 J032613.94+022514.7 BZBJ0326+0225 0.56(0.04) 2.0 (0.08) 1.75(0.39) 0.147 BZB C 1
2FGLJ0326.1+2226 J032536.80+222400.4 BZQJ0325+2224 1.22(0.04) 3.2 (0.04) 2.47(0.09) 2.066 BZQ B 0
2FGLJ0334.2-4008 J033413.64-400825.4 BZBJ0334-4008 1.07(0.03) 2.88(0.02) 2.34(0.03) ? UND A 0
2FGLJ0334.3-3728 J033415.41-372543.1 BZBJ0334-3725 0.95(0.03) 2.62(0.03) 2.18(0.03) ? UND C 0
2FGLJ0339.4-0144 J033930.93-014635.7 BZQJ0339-0146 1.14(0.03) 2.91(0.03) 2.45(0.05) 0.85 BZQ B 1
2FGLJ0340.6-2113 J034035.60-211931.0 BZBJ0340-2119 0.98(0.03) 2.75(0.03) 2.22(0.05) 0.223 UND B 0
2FGLJ0342.4+3859 J034216.26+385906.2 BZQJ0342+3859 1.03(0.04) 2.57(0.06) 2.2 (0.1) 0.945 UND C 0
2FGLJ0348.6-2750 J034838.13-274913.5 BZQJ0348-2749 1.09(0.04) 3.04(0.05) 2.37(0.12) 0.991 BZQ C 0
2FGLJ0350.0-2104 J034957.81-210247.6 BZQJ0349-2102 1.11(0.08) 3.56(0.11) 2.28(0.38) 2.944 - - -
2FGLJ0354.1+8010 J035446.07+800928.8 BZBJ0354+8009 0.98(0.04) 2.72(0.08) 2.59(0.18) ? - - -
2FGLJ0357.0-4950 J035700.17-495548.6 BZBJ0357-4955 0.93(0.03) 2.54(0.03) 2.01(0.05) ? BZB B 0
2FGLJ0402.0-2616 J040200.77-261539.3 BZBJ0402-2615 1.01(0.04) 2.7 (0.04) 2.13(0.12) ? UND C 0
2FGLJ0403.9-3604 J040353.75-360501.9 BZQJ0403-3605 1.2 (0.03) 3.24(0.03) 2.52(0.03) 1.417 BZQ A 0
2FGLJ0405.8-1309 J040533.99-130813.6 BZQJ0405-1308 1.09(0.03) 2.45(0.03) 2.12(0.06) 0.571 UND C 2
2FGLJ0407.7+0740 J040729.07+074208.1 BZBJ0407+0742 0.98(0.04) 2.94(0.07) 2.52(0.15) 1.133? - - -
2FGLJ0413.5-5332 J041313.41-533200.4 BZQJ0413-5332 1.02(0.04) 3.02(0.07) 2.58(0.18) 1.027 BZQ C 0
2FGLJ0416.7-1849 J041636.53-185108.3 BZQJ0416-1851 1.26(0.05) 3.14(0.07) 2.64(0.16) 1.421 BZQ C 1
2FGLJ0416.8+0105 J041652.48+010523.9 BZBJ0416+0105 0.66(0.04) 1.83(0.07) 1.88(0.27) 0.287 BZB C 1
2FGLJ0422.1-0645 J042210.78-064345.3 BZQJ0422-0643 0.96(0.03) 2.8 (0.03) 2.31(0.06) 0.242 UND B 0
2FGLJ0423.2-0120 J042315.79-012032.9 BZQJ0423-0120 1.1 (0.03) 3.06(0.03) 2.42(0.02) 0.916 BZQ A 0
2FGLJ0424.7+0034 J042446.83+003606.3 BZBJ0424+0036 0.98(0.03) 2.62(0.03) 2.14(0.03) ? UND C 0
2FGLJ0428.6-3756 J042840.41-375619.6 BZBJ0428-3756 1.02(0.03) 2.65(0.02) 2.27(0.03) 1.03? UND A 0
2FGLJ0430.4-2507 J043016.01-250738.9 BZBJ0430-2507 0.83(0.04) 2.49(0.06) 2.08(0.21) ? BZB C 2
2FGLJ0434.1-2014 J043407.91-201517.1 BZBJ0434-2015 0.94(0.04) 2.58(0.05) 2.48(0.11) ? UND C 6
2FGLJ0439.0-1252 J043835.01-125103.3 BZQJ0438-1251 1.08(0.04) 2.97(0.06) 2.21(0.19) 1.276 UND C 2
2FGLJ0440.9+2749 J044050.36+275046.9 BZBJ0440+2750 0.65(0.03) 1.98(0.07) 2.12(0.22) ? BZB C 0
2FGLJ0442.7-0017 J044238.65-001743.2 BZQJ0442-0017 1.04(0.03) 2.89(0.04) 2.34(0.06) 0.844 UND B 0
2FGLJ0448.5-1633 J044837.61-163243.1 BZBJ0448-1632 0.8 (0.04) 2.08(0.09) 2.27(0.29) ? - - -
2FGLJ0448.6-2118 J044817.37-210944.7 BZQJ0448-2109 0.96(0.05) 2.89(0.08) 2.21(0.26) 1.971 UND C 6
2FGLJ0449.4-4350 J044924.69-435008.9 BZBJ0449-4350 0.83(0.03) 2.27(0.02) 1.91(0.03) 0.205? BZB A 0
2FGLJ0453.1-2807 J045314.64-280737.2 BZQJ0453-2807 1.04(0.04) 3.23(0.04) 2.57(0.06) 2.564 BZQ B 0
2FGLJ0456.5-3132 J045636.68-313612.5 BZQJ0456-3136 1.06(0.04) 2.92(0.06) 2.57(0.13) 0.865 BZQ C 3
2FGLJ0457.0-2325 J045703.18-232452.0 BZQJ0457-2324 1.11(0.03) 2.95(0.03) 2.39(0.03) 1.003 BZQ A 0
2FGLJ0501.2-0155 J050112.80-015914.2 BZQJ0501-0159 1.13(0.03) 3.09(0.04) 2.49(0.06) 2.291 BZQ B 1
2FGLJ0502.5+0607 J050215.43+060907.5 BZQJ0502+0609 1.11(0.05) 3.08(0.07) 2.47(0.16) 1.106 BZQ C 1
2FGLJ0505.5+0501 J050523.18+045942.8 BZQJ0505+0459 1.17(0.03) 3.1 (0.03) 2.51(0.04) 0.954 BZQ B 1
2FGLJ0507.5-6102 J050754.64-610443.2 BZQJ0507-6104 1.1 (0.03) 2.85(0.04) 2.51(0.09) 1.088 BZQ B 0
2FGLJ0508.0+6737 J050756.16+673724.3 BZBJ0507+6737 0.69(0.03) 1.92(0.05) 1.53(0.22) 0.416? BZB C 0
2FGLJ0509.2+1013 J050927.44+101144.6 BZQJ0509+1011 0.95(0.05) 2.71(0.1) 2.38(0.31) 0.621 UND C 0
2FGLJ0509.4+0542 J050925.96+054135.3 BZBJ0509+0541 0.9 (0.03) 2.44(0.02) 2.07(0.03) ? BZB A 0
2FGLJ0515.9+1528 J051547.35+152716.5 BZBJ0515+1527 0.82(0.03) 2.35(0.04) 1.93(0.11) ? BZB B 0
2FGLJ0516.5-4601 J051545.23-455643.3 BZQJ0515-4556 0.95(0.03) 2.8 (0.03) 2.43(0.04) 0.194 UND B 2
2FGLJ0526.1-4829 J052616.66-483036.8 BZQJ0526-4830 1.14(0.03) 3.0 (0.03) 2.33(0.07) 1.299 BZQ B 0
2FGLJ0530.8+1333 J053056.40+133155.2 BZQJ0530+1331 0.89(0.06) 2.91(0.12) 2.74(0.24) 2.07 - - -
2FGLJ0531.8-8324 J053338.36-832435.8 BZQJ0533-8324 1.06(0.04) 3.01(0.04) 2.27(0.1) 0.774 UND C 1
2FGLJ0532.7+0733 J053239.00+073243.3 BZQJ0532+0732 1.12(0.04) 3.1 (0.04) 2.53(0.08) 1.254 BZQ B 0
2FGLJ0536.2-3348 J053629.06-334302.5 BZBJ0536-3343 0.68(0.03) 2.04(0.05) 2.23(0.16) ? - - -
2FGLJ0538.8-4405 J053850.35-440509.0 BZBJ0538-4405 1.07(0.03) 2.75(0.02) 2.24(0.02) 0.892 UND A 0
2FGLJ0539.3-2841 J053954.26-283956.2 BZQJ0539-2839 0.97(0.09) 3.27(0.15) 2.76(0.37) 3.104 - - -
2FGLJ0540.4-5415 J054045.83-541822.1 BZQJ0540-5418 1.08(0.03) 2.81(0.03) 2.3(0.07) 1.185 UND B 0
2FGLJ0543.9-5532 J054357.21-553207.5 BZBJ0543-5532 0.68(0.03) 1.99(0.04) 1.72(0.16) ? BZB B 0
2FGLJ0558.7-7501 J055846.03-745905.2 BZBJ0558-7459 0.97(0.03) 2.57(0.03) 2.13(0.04) ? BZB C 2
2FGLJ0607.4+4739 J060723.24+473947.0 BZBJ0607+4739 0.88(0.03) 2.4 (0.03) 2.02(0.04) ? BZB A 0
2FGLJ0608.0-0836 J060759.61-083451.6 BZQJ0607-0834 0.39(0.04) 1.88(0.06) 2.16(0.1) 0.872 - - -
2FGLJ0609.6-1847 J061017.88-184740.1 BZBJ0610-1847 1.04(0.03) 2.89(0.03) 2.38(0.06) ? UND B 1
2FGLJ0611.8-6059 J061030.31-605838.1 BZQJ0610-6058 1.27(0.08) 2.97(0.15) 2.79(0.35) 1.773 - - -
2FGLJ0612.8+4122 J061251.18+412237.4 BZBJ0612+4122 0.97(0.03) 2.6 (0.03) 2.14(0.05) ? UND C 0
2FGLJ0616.9+5701 J061716.91+570116.5 BZBJ0617+5701 0.96(0.03) 2.57(0.03) 2.1 (0.05) ? BZB B 0
2FGLJ0617.6-1716 J061733.42-171525.0 BZBJ0617-1715 0.18(0.03) 1.46(0.08) 2.14(0.27) ? - - -
2FGLJ0625.2+4441 J062518.26+444001.6 BZBJ0625+4440 0.94(0.03) 2.62(0.04) 1.97(0.11) ? BZB B 0
2FGLJ0629.3-2001 J062923.76-195919.8 BZBJ0629-1959 1.09(0.03) 2.75(0.03) 2.31(0.05) ? UND B 0
2FGLJ0630.9-2406 J063059.51-240646.2 BZBJ0630-2406 0.85(0.03) 2.24(0.03) 1.93(0.07) ? BZB B 0
2FGLJ0635.5-7516 J063546.51-751616.9 BZQJ0635-7516 1.07(0.03) 2.8 (0.02) 2.36(0.03) 0.653 UND A 0
2FGLJ0650.7+2505 J065046.48+250259.6 BZBJ0650+2503 0.72(0.03) 2.08(0.04) 1.73(0.15) 0.203? - - -
2FGLJ0654.5+5043 J065422.06+504223.7 BZQJ0654+5042 0.82(0.03) 2.69(0.04) 2.24(0.08) 1.253 BZB B 0
2FGLJ0700.3-6611 J070031.24-661045.2 BZBJ0700-6610 0.9 (0.03) 2.4 (0.02) 2.02(0.03) ? BZB A 0
2FGLJ0701.7-4630 J070134.54-463436.7 BZQJ0701-4634 1.18(0.03) 3.1 (0.03) 2.48(0.05) 0.822 BZQ B 1
2FGLJ0710.5+5908 J071030.05+590820.5 BZBJ0710+5908 0.48(0.03) 1.78(0.06) 2.04(0.22) 0.125 - - -
2FGLJ0710.8+4733 J071046.30+473213.2 BZBJ0710+4732 0.19(0.03) 1.84(0.06) 2.3 (0.17) 1.292?? - - -
2FGLJ0712.9+5032 J071243.68+503322.7 BZBJ0712+5033 1.04(0.03) 2.7 (0.03) 2.25(0.05) ? UND B 0
2FGLJ0714.0+1933 J071355.67+193500.4 BZQJ0713+1935 0.99(0.03) 2.69(0.03) 2.26(0.05) 0.54 UND B 0
2FGLJ0718.7-4320 J071843.63-431949.8 BZBJ0718-43.4 0.89(0.03) 2.23(0.04) 1.68(0.17) ? - - -
2FGLJ0721.9+7120 J072153.44+712036.3 BZBJ0721+7120 0.98(0.03) 2.65(0.02) 2.11(0.02) ? UND C 0
2FGLJ0725.3+1426 J072516.80+142513.6 BZQJ0725+1425 1.09(0.04) 2.83(0.04) 2.52(0.09) 1.038 BZQ B 0
2FGLJ0727.0-4726 J072626.23-472853.4 BZQJ0726-4728 1.09(0.04) 2.97(0.05) 2.28(0.16) 1.686 BZQ C 0
2FGLJ0729.9+3304 J073026.06+330722.9 BZBJ0730+3307 0.84(0.03) 2.26(0.05) 1.75(0.19) 0.112 - - -
2FGLJ0733.9+5023 J073352.51+502209.2 BZQJ0733+5022 1.04(0.04) 2.72(0.06) 2.64(0.12) 0.72 - - -
2FGLJ0738.0+1742 J073807.39+174219.0 BZBJ0738+1742 0.94(0.03) 2.6 (0.03) 2.03(0.04) 0.424 BZB B 0
2FGLJ0739.2+0138 J073918.03+013704.6 BZQJ0739+0137 1.0 (0.03) 2.72(0.03) 2.26(0.03) 0.191 UND A 0
2FGLJ0746.6+2549 J074625.85+254902.4 BZQJ0746+2549 1.15(0.12) 3.63(0.1) 2.54(0.48) 2.979 - - -
2FGLJ0747.7+4501 J074906.50+451033.9 BZQJ0749+4510 1.01(0.03) 2.84(0.03) 2.62(0.04) 0.192 BZQ A 0
2FGLJ0750.6+1230 J075052.04+123104.8 BZQJ0750+1231 1.08(0.03) 2.82(0.03) 2.46(0.05) 0.889 UND C 0
2FGLJ0753.0+5352 J075301.38+535259.8 BZBJ0753+5352 1.02(0.04) 2.92(0.05) 2.46(0.11) ? - - -
2FGLJ0754.8+4824 J075445.66+482350.7 BZBJ0754+4823 1.04(0.03) 2.73(0.03) 2.3 (0.04) ? UND B 0
2FGLJ0757.1+0957 J075706.64+095634.8 BZBJ0757+0956 1.06(0.03) 2.83(0.03) 2.45(0.04) 0.266 BZQ C 0
2FGLJ0801.5+4401 J080108.28+440110.2 BZBJ0801+4401 1.1(0.05) 2.75(0.07) 2.17(0.25) ? UND C 3
2FGLJ0805.3+7535 J080526.63+753424.9 BZBJ0805+7534 0.54(0.03) 2.01(0.04) 1.81(0.17) 0.121 BZB B 0
2FGLJ0805.5+6145 J080518.15+614424.0 BZQJ0805+6144 1.17(0.09) 3.39(0.13) 2.76(0.27) 3.033 - - -
2FGLJ0807.1-0543 J080709.61-054113.9 BZBJ0807-0541 0.96(0.03) 2.7 (0.04) 2.21(0.09) ? UND B 0
2FGLJ0808.2-0750 J080815.53-075109.9 BZQJ0808-0751 0.99(0.03) 2.74(0.03) 2.31(0.03) 1.837 UND A 0
2FGLJ0809.8+5218 J080949.19+521858.3 BZBJ0809+5218 0.68(0.03) 2.06(0.03) 1.84(0.1) 0.138 BZB B 0
2FGLJ0811.1-7527 J081103.23-753027.9 BZBJ0811-7530 0.79(0.03) 2.29(0.03) 1.89(0.1) ? - - -
2FGLJ0811.4+0149 J081126.71+014652.2 BZBJ0811+0146 1.09(0.04) 3.06(0.05) 2.56(0.11) 1.148 BZQ C 1
2FGLJ0814.0-1006 J081411.69-101210.3 BZBJ0814-1012 0.83(0.03) 2.33(0.03) 1.97(0.08) ? BZB B 0
2FGLJ0814.7+6429 J081439.19+643122.0 BZBJ0814+6431 0.92(0.03) 2.48(0.03) 2.04(0.04) ? BZB A 0
2FGLJ0816.4-1311 J081627.20-131152.6 BZBJ0816-1311 0.77(0.04) 1.94(0.06) 1.78(0.24) ? BZB C 0
2FGLJ0816.5+5739 J081622.71+573909.2 BZBJ0816+5739 0.84(0.03) 2.35(0.04) 2.09(0.11) ? BZB B 0
2FGLJ0816.9+2049 J081649.78+205106.4 BZBJ0816+2051 0.92(0.04) 2.24(0.08) 1.67(0.42) ? - - -
2FGLJ0817.9+3238 J081750.99+324340.7 BZBJ0817+3243 0.73(0.05) 2.31(0.13) 2.32(0.4) ? - - -
2FGLJ0818.2-0935 J081749.75-093330.5 BZBJ0817-0933 1.02(0.03) 2.54(0.03) 2.32(0.06) ? UND - -
2FGLJ0819.3+2750 J081918.85+274730.7 BZBJ0819+2747 1.04(0.04) 2.73(0.05) 2.54(0.09) ? UND C 1
2FGLJ0819.6-0803 J081917.58-075626.0 BZBJ0819-0756 0.51(0.05) 2.0 (0.1) 3.61(0.28) ? - - -
2FGLJ0824.7+3914 J082455.47+391641.9 BZQJ0824+3916 1.24(0.04) 3.12(0.05) 2.51(0.12) 1.216 BZQ C 1
2FGLJ0824.9+5552 J082447.23+555242.8 BZQJ0824+5552 1.23(0.05) 2.99(0.07) 2.59(0.17) 1.417 BZQ C 0
2FGLJ0825.9+0308 J082550.35+030924.4 BZBJ0825+0309 1.0 (0.03) 2.72(0.03) 2.3 (0.04) 0.506 UND B 1
2FGLJ0830.5+2407 J083052.09+241059.8 BZQJ0830+2410 1.19(0.03) 3.11(0.04) 2.37(0.07) 0.939? BZQ B 0
2FGLJ0831.9+0429 J083148.88+042939.0 BZBJ0831+0429 0.98(0.03) 2.6 (0.03) 2.16(0.03) 0.174 UND C 0
2FGLJ0834.3+4221 J083353.88+422401.9 BZQJ0833+4224 1.03(0.03) 2.75(0.03) 2.28(0.05) 0.249 UND B 0
2FGLJ0834.3+4400 J083458.19+440338.2 BZBJ0834+4403 0.92(0.03) 2.56(0.04) 2.16(0.1) ? - - -
2FGLJ0839.6+0059 J083949.61+010426.9 BZQJ0839+0104 1.2 (0.06) 3.08(0.1) 2.32(0.3) 1.123 BZQ C 0
2FGLJ0839.7+3541 J083943.36+354001.5 BZBJ0839+3540 0.88(0.04) 2.29(0.07) 2.19(0.23) ? BZB C 1
2FGLJ0841.6+7052 J084124.35+705342.2 BZQJ0841+7053 1.12(0.04) 3.39(0.04) 2.55(0.07) 2.218 BZQ B 0
2FGLJ0843.9+5312 J084411.70+531250.7 BZBJ0844+5312 0.84(0.04) 2.48(0.06) 2.02(0.26) ? BZB C 0
2FGLJ0847.2+1134 J084712.93+113350.2 BZBJ0847+1133 0.61(0.04) 1.81(0.12) 2.08(0.54) 0.199 - - -
2FGLJ0848.1-0703 J084756.73-070316.8 BZBJ0847-0703 1.02(0.03) 2.75(0.03) 2.24(0.04) ? UND A 0
2FGLJ0849.0+0455 J084932.55+045507.8 BZBJ0849+0455 0.82(0.04) 2.52(0.08) 2.24(0.27) ? BZB C 1
2FGLJ0849.2+6606 J084854.60+660609.3 BZBJ0848+6606 0.73(0.04) 2.15(0.09) 1.63(0.53) ? - - -
2FGLJ0849.8+4852 J085000.35+485458.8 BZBJ0850+4854 0.97(0.03) 2.65(0.03) 2.19(0.03) ? UND A 0
2FGLJ0850.2-1212 J085009.64-121335.3 BZQJ0850-1213 1.05(0.03) 2.79(0.03) 2.27(0.03) 0.566 UND A 0
2FGLJ0854.8+2005 J085448.87+200630.7 BZBJ0854+2006 1.04(0.03) 2.72(0.03) 2.28(0.04) 0.306 UND A 0
2FGLJ0856.3+2058 J085639.74+205743.4 BZBJ0856+2057 0.9 (0.04) 2.63(0.07) 2.07(0.31) 0.18? - - -
2FGLJ0856.6-1105 J085641.80-110514.4 BZBJ0856-1105 0.95(0.03) 2.58(0.03) 2.08(0.06) ? BZB B 0
2FGLJ0902.4+2050 J090226.91+205046.5 BZBJ0902+2050 0.89(0.03) 2.41(0.03) 2.04(0.08) ? BZB B 0
2FGLJ0903.4+4651 J090303.99+465104.2 BZQJ0903+4651 1.19(0.04) 3.14(0.06) 2.31(0.15) 1.462 BZQ C 1
2FGLJ0905.6+1357 J090534.98+135806.4 BZBJ0905+1358 0.85(0.03) 2.29(0.04) 2.08(0.1) ? BZB B 1
2FGLJ0909.1+0121 J090910.08+012135.6 BZQJ0909+0121 1.18(0.03) 2.91(0.03) 2.4 (0.06) 1.024 BZQ B 0
2FGLJ0909.2+2308 J090900.63+231113.0 BZBJ0909+2311 0.75(0.04) 2.1 (0.08) 2.19(0.26) 0.223 BZB C 0
2FGLJ0909.7-0229 J090944.90-023129.2 BZQJ0909-0231 0.83(0.04) 2.42(0.09) 2.54(0.21) 0.957 - - -
2FGLJ0910.6+3329 J091037.04+332924.5 BZBJ0910+3329 0.87(0.03) 2.38(0.03) 1.91(0.09) ? BZB B 0
2FGLJ0912.1+4126 J091211.61+412609.4 BZQJ0912+4126 1.21(0.06) 2.96(0.12) 2.88(0.22) 2.563 - - -
2FGLJ0912.9-2102 J091300.22-210321.0 BZBJ0913-2103 0.6 (0.03) 2.04(0.04) 2.13(0.11) 0.198 BZB C 0
2FGLJ0915.8+2932 J091552.40+293324.0 BZBJ0915+2933 0.76(0.03) 2.24(0.04) 1.89(0.1) ? BZB B 0
2FGLJ0917.0+3900 J091648.89+385428.2 BZQJ0916+3854 1.1 (0.05) 2.89(0.09) 2.3 (0.25) 1.267 - - -
2FGLJ0920.9+4441 J092058.46+444154.1 BZQJ0920+4441 1.21(0.04) 3.28(0.04) 2.54(0.07) 2.19 BZQ B 0
2FGLJ0921.9+6216 J092136.24+621552.3 BZQJ0921+6215 1.14(0.04) 3.19(0.05) 2.62(0.09) 1.446 BZQ C 0
2FGLJ0924.0+2819 J092351.52+281525.1 BZQJ0923+2815 1.07(0.04) 3.1 (0.06) 2.22(0.17) 0.744 - - -
2FGLJ0927.9-2041 J092751.82-203451.2 BZQJ0927-2034 1.03(0.03) 2.7 (0.03) 2.26(0.05) 0.348 UND B 1
2FGLJ0929.5+5009 J092915.43+501336.1 BZBJ0929+5013 1.0 (0.03) 2.88(0.04) 2.22(0.08) ? UND B 0
2FGLJ0934.7+3932 J093406.65+392632.2 BZBJ0934+3926 1.18(0.07) 2.87(0.13) 2.89(0.26) ? - - -
2FGLJ0937.6+5009 J093712.32+500852.1 BZQJ0937+5008 1.15(0.03) 3.06(0.04) 2.53(0.07) 0.276 BZQ B 0
2FGLJ0945.9+5751 J094542.21+575747.6 BZBJ0945+5757 0.76(0.03) 2.35(0.03) 1.98(0.08) 0.229 BZB B 0
2FGLJ0946.5+1015 J094635.06+101706.1 BZQJ0946+1017 1.09(0.05) 2.7 (0.08) 1.97(0.34) 1.007 - - -
2FGLJ0948.8+4040 J094855.34+403944.6 BZQJ0948+4039 1.28(0.04) 3.02(0.06) 1.97(0.21) 1.249 UND - -
2FGLJ0950.1+4554 J095011.82+455320.1 BZBJ0950+4553 0.9 (0.04) 2.48(0.06) 2.25(0.17) 0.399 BZB C 2
2FGLJ0953.1-0839 J095302.71-084018.2 BZBJ0953-0840 0.83(0.03) 2.34(0.04) 2.03(0.1) ? BZB B 0
2FGLJ0956.9+2516 J095649.88+251516.1 BZQJ0956+2515 1.13(0.03) 2.96(0.03) 2.46(0.06) 0.708 BZQ B 0
2FGLJ0957.6-1350 J095718.18-135001.2 BZQJ0957-1350 1.16(0.05) 2.83(0.08) 2.39(0.24) 1.323 BZQ C 1
2FGLJ0957.7+5522 J095738.17+552257.8 BZQJ0957+5522 1.04(0.03) 2.89(0.03) 2.36(0.06) 0.899 UND B 0
2FGLJ0958.6+6533 J095847.23+653354.9 BZBJ0958+6533 1.01(0.03) 2.75(0.03) 2.22(0.03) 0.367 UND A 0
2FGLJ1001.0+2913 J100110.20+291137.6 BZBJ1001+2911 1.04(0.03) 2.76(0.03) 2.26(0.06) 0.558 UND B 0
2FGLJ1007.1-2157 J100646.41-215920.4 BZQJ1006-2159 0.99(0.03) 2.48(0.03) 2.28(0.06) 0.33 UND C 0
2FGLJ1007.7+0621 J100800.81+062121.2 BZBJ1008+0621 0.99(0.03) 2.66(0.03) 2.18(0.04) ? UND B 0
2FGLJ1009.7-3123 J101015.98-311908.3 BZBJ1010-3119 0.46(0.03) 1.72(0.07) 1.88(0.31) 0.143 - - -
2FGLJ1010.8-0158 J101051.67-020019.5 BZQJ1010-0200 1.1 (0.05) 2.93(0.11) 2.39(0.26) 0.887 - - -
2FGLJ1012.1+0631 J101213.35+063057.2 BZBJ1012+0630 0.96(0.04) 2.68(0.04) 2.02(0.15) 0.518? BZB C 0
2FGLJ1012.6+2440 J101241.39+243923.2 BZQJ1012+2439 1.16(0.09) 2.71(0.25) 2.98(0.5) 1.805 - - -
2FGLJ1014.1+2306 J101447.08+230116.7 BZQJ1014+2301 1.07(0.04) 2.75(0.04) 2.56(0.08) 0.566 UND C 5
2FGLJ1015.1+4925 J101504.13+492600.8 BZBJ1015+4926 0.8 (0.03) 2.21(0.03) 2.06(0.05) 0.212 BZB B 0
2FGLJ1016.0+0513 J101603.13+051302.2 BZQJ1016+0513 1.12(0.06) 3.19(0.11) 2.64(0.23) 1.714 BZQ C 0
2FGLJ1017.0+3531 J101810.98+354239.6 BZQJ1018+3542 1.33(0.05) 2.8 (0.07) 2.33(0.1) 1.226 - - -
2FGLJ1018.3-3119 J101828.76-312353.8 BZQJ1018-3123 1.15(0.03) 2.87(0.04) 2.46(0.09) 0.794 BZQ B 1
2FGLJ1019.0+5915 J101858.54+591127.9 BZBJ1018+5911 0.72(0.04) 2.42(0.06) 2.23(0.18) ? BZB C 2
2FGLJ1019.8+6322 J101950.86+632001.7 BZBJ1019+6320 1.02(0.03) 2.69(0.03) 2.21(0.06) ? UND B 3
2FGLJ1023.1-0115 J102243.73-011302.2 BZBJ1022-0113 0.69(0.04) 1.88(0.13) 1.96(0.55) ? - - -
2FGLJ1023.8-3248 J102400.42-323416.1 BZQJ1024-3234 1.15(0.04) 3.1 (0.06) 2.37(0.15) 1.568 - - -
2FGLJ1023.8-4335 J102356.20-433601.5 BZBJ1023-4336 0.76(0.03) 2.04(0.04) 1.79(0.17) ? BZB B 0
2FGLJ1026.3-8546 J102634.47-854314.2 BZBJ1026-8543 0.87(0.03) 2.32(0.03) 2.02(0.08) ? BZB B 0
2FGLJ1026.7-1749 J102658.57-174858.8 BZBJ1026-1748 0.64(0.03) 2.05(0.06) 1.8 (0.26) 0.114? BZB C 0
2FGLJ1032.6+3733 J103240.73+373826.8 BZBJ1032+3738 0.92(0.03) 2.46(0.05) 1.99(0.18) ? BZB C 2
2FGLJ1033.2+4117 J103303.70+411606.2 BZQJ1033+4116 1.23(0.03) 3.27(0.03) 2.59(0.04) 1.117 BZQ A 0
2FGLJ1037.5-2820 J103742.46-282304.0 BZQJ1037-2823 1.07(0.04) 2.78(0.05) 2.43(0.12) 1.066 UND C 0
2FGLJ1037.6+5712 J103744.30+571155.7 BZBJ1037+5711 0.91(0.03) 2.42(0.03) 1.93(0.09) ? BZB B 0
2FGLJ1040.7+0614 J104117.17+061017.0 BZQJ1041+0610 1.43(0.04) 3.21(0.04) 2.51(0.08) 1.264 - - -
2FGLJ1042.6+8053 J104423.03+805439.5 BZQJ1044+8054 1.09(0.03) 2.88(0.03) 2.36(0.04) 1.254 UND C 4
2FGLJ1043.1+2404 J104309.04+240835.5 BZQJ1043+2408 0.96(0.04) 2.69(0.04) 2.33(0.09) 0.559 UND B 0
2FGLJ1049.7+7240 J104747.51+723813.0 BZBJ1047+7238 0.85(0.03) 2.34(0.03) 2.01(0.08) ? - - -
2FGLJ1051.8+0107 J105151.83+010311.5 BZBJ1051+0103 0.67(0.04) 2.01(0.14) 2.56(0.36) 0.265 - - -
2FGLJ1053.6+4928 J105344.13+492956.1 BZBJ1053+4929 0.41(0.03) 1.78(0.06) 1.37(0.45) 0.14 - - -
2FGLJ1054.5+2212 J105430.63+221055.0 BZBJ1054+2210 0.8 (0.04) 2.05(0.12) 2.47(0.28) ? - - -
2FGLJ1057.0-8004 J105843.34-800354.1 BZBJ1058-8003 1.04(0.03) 2.8 (0.03) 2.23(0.04) 0.581 - - -
2FGLJ1057.1+7001 J105653.61+701145.9 BZQJ1056+7011 1.24(0.05) 3.4 (0.06) 2.54(0.13) 2.492 - - -
2FGLJ1058.6+5628 J105837.73+562811.3 BZBJ1058+5628 0.79(0.03) 2.27(0.03) 1.98(0.05) 0.143 BZB B 0
2FGLJ1059.3-1132 J105912.43-113422.6 BZBJ1059-1134 0.98(0.03) 2.61(0.03) 2.15(0.05) ? UND C 0
2FGLJ1059.4+8113 J105811.54+811432.7 BZQJ1058+8114 1.15(0.03) 3.11(0.03) 2.46(0.06) 0.706 BZQ B 0
2FGLJ1103.4-2330 J110337.62-232931.0 BZBJ1103-2329 0.54(0.03) 1.8 (0.08) 1.83(0.33) 0.186 - - -
2FGLJ1104.3+0729 J110424.07+073053.3 BZBJ1104+0730 0.91(0.04) 2.63(0.05) 1.93(0.15) ? BZB C 1
2FGLJ1104.4+3812 J110427.32+381231.9 BZBJ1104+3812 0.6 (0.03) 1.98(0.02) 1.85(0.03) 0.03 BZB A 0
2FGLJ1106.1+2814 J110607.26+281247.1 BZQJ1106+2812 1.16(0.03) 3.01(0.04) 2.41(0.06) 0.844 BZQ B 0
2FGLJ1107.2-4448 J110708.70-444907.6 BZQJ1107-4449 1.19(0.03) 3.05(0.03) 2.42(0.04) 1.598 BZQ A 0
2FGLJ1107.5+0223 J110735.91+022224.5 BZBJ1107+0222 0.88(0.04) 2.24(0.11) 2.19(0.41) ? - - -
2FGLJ1110.2+7134 J111037.60+713356.6 BZBJ1110+7133 0.83(0.04) 2.23(0.06) 2.13(0.23) ? BZB C 0
2FGLJ1112.4+3450 J111238.78+344639.1 BZQJ1112+3446 1.16(0.04) 3.11(0.05) 2.38(0.1) 1.956 BZQ C 0
2FGLJ1117.2+2013 J111706.26+201407.5 BZBJ1117+2014 0.6 (0.03) 2.04(0.05) 1.92(0.18) 0.138 BZB C 0
2FGLJ1118.1-4629 J111826.96-463415.0 BZQJ1118-4634 1.17(0.03) 2.87(0.03) 2.63(0.04) 0.713 BZQ A 0
2FGLJ1121.0+4211 J112048.06+421212.6 BZBJ1120+4212 0.7 (0.03) 1.97(0.07) 1.59(0.34) 0.124?? BZB C 0
2FGLJ1124.2+2338 J112402.71+233645.9 BZBJ1124+2336 1.19(0.04) 3.05(0.06) 2.42(0.15) ? BZQ C 0
2FGLJ1125.6-3559 J112531.49-355703.3 BZBJ1125-3557 0.87(0.03) 2.47(0.04) 2.09(0.1) 0.284 BZB B 1
2FGLJ1126.0-0743 J112551.98-074220.9 BZBJ1125-0742 0.59(0.04) 1.77(0.13) 2.26(0.45) 0.279 - - -
2FGLJ1126.6-1856 J112704.40-185717.3 BZQJ1127-1857 1.1 (0.03) 2.94(0.03) 2.42(0.04) 1.048 - - -
2FGLJ1127.6+3622 J112758.88+362028.4 BZQJ1127+3620 1.06(0.06) 2.77(0.14) 2.41(0.4) 0.884 - - -
2FGLJ1130.3-1448 J113007.05-144927.4 BZQJ1130-1449 1.32(0.03) 2.85(0.03) 2.58(0.05) 1.184 BZQ B 0
2FGLJ1130.9+5809 J113118.62+580858.9 BZBJ1131+5808 0.81(0.03) 2.29(0.04) 2.03(0.11) 0.36 BZB B 0
2FGLJ1132.9+0033 J113245.62+003427.7 BZBJ1132+0034 0.93(0.03) 2.54(0.05) 1.95(0.16) 1.223?? BZB C 1
2FGLJ1136.3+6736 J113630.10+673704.4 BZBJ1136+6737 0.44(0.03) 1.87(0.06) 1.65(0.33) 0.136 - - -
2FGLJ1136.7+7009 J113626.42+700927.1 BZBJ1136+7009 0.41(0.03) 1.95(0.03) 2.0 (0.06) 0.045 - - -
2FGLJ1137.0+2553 J113650.11+255052.4 BZBJ1136+2550 0.37(0.04) 2.45(0.07) 1.96(0.32) 0.156 - - -
2FGLJ1143.1+6119 J114312.12+612210.8 BZBJ1143+6122 0.81(0.03) 2.26(0.04) 2.02(0.09) ? BZB B 0
2FGLJ1146.8-3812 J114701.37-381211.0 BZBJ1147-3812 1.13(0.03) 3.09(0.03) 2.47(0.05) 1.048? BZQ B 0
2FGLJ1146.9+4000 J114658.31+395834.4 BZQJ1146+3958 1.14(0.03) 3.0 (0.03) 2.41(0.05) 1.089 BZQ B 0
2FGLJ1147.7-0724 J114751.56-072441.2 BZQJ1147-0724 1.08(0.04) 2.92(0.07) 2.94(0.13) 1.342 - - -
2FGLJ1150.1+2419 J115019.22+241753.9 BZBJ1150+2417 1.01(0.03) 2.67(0.03) 2.2 (0.03) ? UND A 0
2FGLJ1150.5+4154 J115034.76+415440.0 BZBJ1150+4154 0.8 (0.03) 2.29(0.04) 1.63(0.18) ? - - -
2FGLJ1151.5+5857 J115124.66+585917.6 BZBJ1151+5859 0.79(0.03) 2.15(0.04) 1.84(0.14) ? BZB B 0
2FGLJ1152.4-0840 J115217.21-084103.1 BZQJ1152-0841 1.2 (0.04) 3.13(0.05) 2.57(0.1) 2.37 BZQ C 0
2FGLJ1154.0-0010 J115404.56-001009.6 BZBJ1154-0010 0.53(0.05) 1.97(0.21) 3.15(0.36) 0.254 - - -
2FGLJ1154.4+6019 J115404.56+602220.9 BZQJ1154+6022 1.23(0.05) 2.79(0.08) 2.96(0.14) 1.12 - - -
2FGLJ1159.3-2142 J115921.42-214245.0 BZQJ1159-2142 1.1 (0.04) 2.81(0.04) 2.4 (0.1) 0.617 - - -
2FGLJ1159.5+2914 J115931.84+291443.9 BZQJ1159+2914 1.09(0.03) 3.0 (0.03) 2.42(0.04) 0.725 BZQ A 0
2FGLJ1203.2+6030 J120303.53+603119.3 BZBJ1203+6031 0.67(0.03) 2.26(0.03) 1.94(0.05) 0.065 BZB B 0
2FGLJ1204.3-0711 J120416.67-071008.8 BZBJ1204-0710 0.59(0.03) 1.95(0.06) 1.78(0.3) 0.184 BZB C 0
2FGLJ1206.0-2638 J120533.21-263404.4 BZQJ1205-2634 1.13(0.03) 2.37(0.04) 2.07(0.13) 0.789 - - -
2FGLJ1208.8+5441 J120854.26+544158.2 BZQJ1208+5441 1.14(0.04) 2.83(0.05) 2.55(0.1) 1.345 BZQ C 1
2FGLJ1209.6+4121 J120922.80+411941.4 BZBJ1209+4119 0.94(0.03) 2.56(0.04) 2.1 (0.09) ? BZB B 0
2FGLJ1209.7+1807 J120951.77+181006.7 BZQJ1209+1810 0.96(0.05) 2.64(0.11) 2.67(0.28) 0.845 - - -
2FGLJ1214.6+1309 J121332.18+130720.9 BZQJ1213+1307 0.99(0.05) 2.83(0.09) 2.52(0.22) 1.139 - - -
2FGLJ1214.8+1653 J121503.99+165437.9 BZQJ1215+1654 1.01(0.05) 3.14(0.08) 2.53(0.18) 1.132 BZQ C 0
2FGLJ1214.9+5004 J121500.80+500215.5 BZBJ1215+5002 0.91(0.04) 2.46(0.05) 2.13(0.17) ? BZB C 2
2FGLJ1217.8+3006 J121752.08+300700.7 BZBJ1217+3007 0.83(0.03) 2.32(0.03) 2.02(0.04) 0.13? BZB A 0
2FGLJ1218.5-0122 J121834.94-011954.2 BZBJ1218-0119 0.91(0.03) 2.44(0.04) 2.18(0.08) ? BZB B 0
2FGLJ1219.2+7107 J122003.64+710531.2 BZQJ1220+7105 1.14(0.06) 3.03(0.09) 2.54(0.25) 0.451 BZQ C 1
2FGLJ1219.7+0201 J122011.89+020342.3 BZQJ1220+0203 0.98(0.03) 2.27(0.03) 2.34(0.06) 0.241 BZB B 1
2FGLJ1219.8-0310 J121945.71-031423.8 BZBJ1219-0314 0.71(0.04) 2.23(0.1) 2.65(0.22) 0.299 - - -
2FGLJ1221.3+3010 J122121.95+301037.2 BZBJ1221+3010 0.67(0.03) 2.05(0.04) 1.9 (0.13) 0.182 BZB B 0
2FGLJ1221.4+2814 J122131.69+281358.5 BZBJ1221+2813 0.85(0.03) 2.32(0.03) 2.0 (0.03) 0.102 BZB A 0
2FGLJ1222.4+0413 J122222.55+041315.8 BZQJ1222+0413 1.11(0.03) 2.7 (0.04) 2.35(0.08) 0.966 UND B 0
2FGLJ1223.9+8043 J122340.50+804004.4 BZBJ1223+8040 1.09(0.03) 2.97(0.03) 2.37(0.07) ? BZQ B 0
2FGLJ1224.4+2436 J122424.20+243623.6 BZBJ1224+2436 0.75(0.04) 2.08(0.08) 2.08(0.31) 0.218 BZB C 0
2FGLJ1224.9+2122 J122454.46+212246.4 BZQJ1224+2122 1.06(0.03) 2.57(0.03) 2.13(0.03) 0.435 UND A 0
2FGLJ1225.0+4335 J122451.51+433519.4 BZBJ1224+4335 0.98(0.05) 2.72(0.08) 2.63(0.1) ? - - -
2FGLJ1226.7-1331 J122654.42-132838.8 BZBJ1226-1328 1.05(0.04) 2.81(0.04) 2.34(0.1) 0.456 UND B 0
2FGLJ1228.6+4857 J122851.77+485801.5 BZQJ1228+4858 1.21(0.06) 3.14(0.1) 2.97(0.17) 1.722 - - -
2FGLJ1229.1+0202 J122906.70+020308.6 BZQJ1229+0203 0.96(0.03) 2.26(0.02) 2.2 (0.02) 0.158 BZB A 0
2FGLJ1230.2+2517 J123014.09+251807.1 BZBJ1230+2518 0.97(0.03) 2.58(0.03) 2.08(0.04) 0.135?? BZB A 0
2FGLJ1231.7+2848 J123143.57+284749.8 BZBJ1231+2847 0.86(0.03) 2.32(0.03) 1.96(0.05) 0.236? BZB B 0
2FGLJ1233.7-0145 J123341.34-014423.6 BZBJ1233-0144 1.01(0.05) 2.62(0.1) 1.8 (0.47) ? - - -
2FGLJ1239.5+0443 J123932.76+044305.3 BZQJ1239+0443 1.14(0.04) 2.91(0.06) 2.04(0.17) 1.762 - - -
2FGLJ1241.6-1457 J124149.40-145558.4 BZBJ1241-1455 0.68(0.03) 2.03(0.06) 1.88(0.24) ? BZB C 0
2FGLJ1243.1+3627 J124312.74+362744.0 BZBJ1243+3627 0.78(0.03) 2.2 (0.03) 1.87(0.09) ? BZB B 0
2FGLJ1245.1+5708 J124510.03+570954.3 BZBJ1245+5709 0.91(0.03) 2.55(0.04) 2.27(0.08) ? BZB C 2
2FGLJ1246.7-2546 J124646.81-254749.1 BZQJ1246-2547 1.1 (0.03) 2.91(0.03) 2.41(0.04) 0.635 BZQ A 0
2FGLJ1248.2+5820 J124818.79+582028.8 BZBJ1248+5820 0.86(0.03) 2.29(0.03) 1.9(0.04) ? BZB A 0
2FGLJ1251.2+1045 J125117.89+103907.1 BZBJ1251+1039 0.73(0.04) 2.07(0.07) 1.81(0.31) 0.245 BZB C 0
2FGLJ1253.1+5302 J125311.91+530111.8 BZBJ1253+5301 0.93(0.03) 2.55(0.03) 2.1 (0.05) ? BZB B 0
2FGLJ1254.1+6237 J125359.34+624257.6 BZBJ1253+6242 0.85(0.04) 2.33(0.07) 2.19(0.23) ? BZB C 0
2FGLJ1254.4+2209 J125433.28+221103.9 BZBJ1254+2211 0.77(0.03) 2.16(0.05) 2.15(0.17) ? BZB C 0
2FGLJ1256.1-0547 J125611.17-054721.5 BZQJ1256-0547 1.31(0.03) 3.14(0.03) 2.7(0.03) 0.536 BZQ C 0
2FGLJ1257.0+3650 J125716.58+364715.0 BZBJ1257+3647 0.8 (0.03) 2.26(0.05) 2.06(0.16) 0.531 BZB C 1
2FGLJ1258.2+3231 J125757.23+322929.3 BZQJ1257+3229 1.01(0.03) 2.65(0.03) 2.26(0.05) 0.806 UND B 0
2FGLJ1258.4-1801 J125838.32-180003.1 BZQJ1258-1800 0.98(0.05) 2.84(0.08) 2.68(0.18) 1.956 - - -
2FGLJ1258.8-2223 J125854.48-221931.1 BZQJ1258-2219 1.19(0.03) 2.95(0.03) 2.41(0.06) 1.303 BZQ B 0
2FGLJ1303.1+2435 J130303.21+243355.7 BZBJ1303+2433 1.06(0.04) 2.82(0.05) 2.27(0.11) 0.993 UND C 0
2FGLJ1303.5-4622 J130340.28-462102.3 BZQJ1303-4621 1.08(0.03) 2.86(0.04) 2.23(0.08) 1.664 UND B 0
2FGLJ1308.5+3547 J130823.73+354637.1 BZQJ1308+3546 1.07(0.05) 3.08(0.06) 2.63(0.14) 1.055 BZQ C 0
2FGLJ1309.3+1154 J130933.93+115424.6 BZBJ1309+1154 1.08(0.03) 2.77(0.04) 2.29(0.08) ? UND B 0
2FGLJ1309.4+4304 J130925.52+430505.6 BZBJ1309+4305 0.89(0.03) 2.36(0.04) 1.88(0.1) ? BZB B 0
2FGLJ1310.9+0036 J131106.47+003510.0 BZBJ1311+0035 0.79(0.04) 2.11(0.1) 2.22(0.35) ? BZB C 0
2FGLJ1312.4-2157 J131231.56-215623.3 BZBJ1312-2156 0.92(0.03) 2.35(0.03) 1.92(0.07) 1.491? BZB B 0
2FGLJ1313.0-0425 J131250.90-042449.9 BZQJ1312-0424 0.98(0.07) 3.42(0.11) 2.39(0.32) 0.825 - - -
2FGLJ1314.6+2348 J131443.81+234826.7 BZBJ1314+2348 0.87(0.03) 2.31(0.03) 1.95(0.05) ? BZB B 0
2FGLJ1315.9-3339 J131607.99-333859.1 BZQJ1316-3338 1.12(0.03) 3.09(0.03) 2.3 (0.06) 1.21 BZQ B 1
2FGLJ1317.9+3426 J131736.49+342516.0 BZQJ1317+3425 1.11(0.03) 2.89(0.04) 2.26(0.08) 1.05 UND C 1
2FGLJ1321.1+2215 J132111.21+221612.1 BZQJ1321+2216 1.15(0.04) 3.08(0.04) 2.47(0.07) 0.943 BZQ B 0
2FGLJ1326.8+2210 J132700.87+221050.2 BZQJ1327+2210 1.17(0.04) 3.13(0.05) 2.45(0.1) 1.4? BZQ C 0
2FGLJ1330.9+7001 J133025.81+700138.7 BZBJ1330+7001 0.83(0.04) 2.14(0.07) 2.29(0.21) ? BZB C 0
2FGLJ1332.0-0508 J133204.47-050943.1 BZQJ1332-0509 1.27(0.03) 3.33(0.03) 2.57(0.05) 2.15 BZQ C 0
2FGLJ1332.5-1255 J133239.26-125615.3 BZQJ1332-1256 1.26(0.07) 2.97(0.15) 2.45(0.43) 1.498 - - -
2FGLJ1332.7+2726 J133307.50+272518.3 BZQJ1333+2725 0.91(0.04) 2.95(0.06) 2.56(0.14) 2.126 - - -
2FGLJ1332.7+4725 J133245.22+472222.5 BZQJ1332+4722 0.94(0.04) 3.02(0.07) 2.59(0.17) 0.668 - - -
2FGLJ1337.7-1257 J133739.79-125724.5 BZQJ1337-1257 1.16(0.03) 3.12(0.03) 2.55(0.03) 0.539 BZQ A 0
2FGLJ1338.9+1152 J133859.06+115316.7 BZBJ1338+1153 0.92(0.04) 2.28(0.06) 2.35(0.19) ? BZB C 0
2FGLJ1340.5+4407 J134029.82+441003.9 BZBJ1340+4410 0.35(0.04) 1.06(0.32) 3.67(0.44) 0.546 - - -
2FGLJ1341.3-2048 J134204.74-205129.3 BZQJ1342-2051 1.45(0.05) 3.1 (0.07) 2.44(0.14) 1.582 - - -
2FGLJ1344.2-1723 J134414.40-172340.2 BZQJ1344-1723 1.12(0.03) 2.96(0.04) 2.31(0.07) 2.49 BZQ C 0
2FGLJ1345.4+4453 J134533.17+445259.6 BZQJ1345+4452 1.2 (0.09) 3.28(0.16) 3.09(0.28) 2.534 - - -
2FGLJ1345.9+0706 J134549.32+070631.2 BZQJ1345+0706 1.09(0.03) 2.89(0.04) 2.36(0.08) 1.093 UND C 3
2FGLJ1347.7-3752 J134740.43-375036.5 BZQJ1347-3750 1.03(0.03) 2.77(0.04) 2.14(0.11) 1.3 UND B 0
2FGLJ1351.1+0032 J135104.45+003119.6 BZQJ1351+0031 1.07(0.04) 2.68(0.08) 2.39(0.23) 2.084 UND C 3
2FGLJ1351.4+1115 J135120.85+111453.1 BZBJ1351+1114 0.66(0.04) 2.06(0.07) 1.88(0.3) ? BZB C 1
2FGLJ1352.6-4413 J135256.54-441240.2 BZBJ1352-4412 1.04(0.03) 2.8 (0.03) 2.25(0.04) ? UND B 0
2FGLJ1353.3+1435 J135322.84+143539.3 BZBJ1353+1435 0.99(0.03) 2.89(0.04) 2.41(0.09) ? UND B 0
2FGLJ1354.5+3703 J135426.70+370654.6 BZBJ1354+3706 0.76(0.03) 2.14(0.05) 2.08(0.15) ? BZB B 0
2FGLJ1354.7-1047 J135446.52-104102.5 BZQJ1354-1041 0.98(0.03) 3.02(0.04) 2.51(0.07) 0.33 BZQ C 2
2FGLJ1358.0+0137 J135738.70+012813.7 BZBJ1357+0128 0.82(0.04) 2.38(0.06) 2.28(0.18) ? BZB C 8
2FGLJ1358.1+7644 J135755.39+764321.1 BZQJ1357+7643 1.16(0.04) 2.89(0.07) 2.88(0.13) 1.585 - - -
2FGLJ1359.4+5541 J135905.74+554429.4 BZQJ1359+5544 1.02(0.03) 2.8 (0.04) 2.38(0.08) 1.014 UND B 1
2FGLJ1359.9-3746 J135949.72-374600.7 BZBJ1359-3746 0.85(0.03) 2.46(0.04) 2.03(0.09) ? BZB B 1
2FGLJ1408.8-0751 J140856.48-075226.5 BZQJ1408-0752 1.22(0.04) 2.96(0.04) 2.58(0.07) 1.494 BZQ B 0
2FGLJ1410.3+2811 J141029.56+282055.7 BZBJ1410+2820 0.71(0.04) 2.01(0.09) 2.16(0.38) ? - - -
2FGLJ1418.1+2539 J141756.67+254325.9 BZBJ1417+2543 0.52(0.03) 2.01(0.05) 1.51(0.28) 0.237 BZB C 4
2FGLJ1418.4-0234 J141826.33-023334.0 BZBJ1418-0233 0.85(0.03) 2.2 (0.03) 1.86(0.06) ? BZB B 0
2FGLJ1419.4+3820 J141946.61+382148.5 BZQJ1419+3821 1.21(0.04) 3.21(0.04) 2.51(0.08) 1.831 BZQ B 1
2FGLJ1420.2+5422 J141946.60+542314.8 BZBJ1419+5423 0.94(0.03) 2.54(0.02) 2.13(0.03) 0.153 BZB A 0
2FGLJ1425.1+3615 J142455.51+361536.0 BZBJ1424+3615 0.9 (0.04) 2.36(0.07) 1.75(0.36) ? - - -
2FGLJ1426.1+3406 J142607.73+340426.4 BZBJ1426+3404 0.89(0.03) 2.42(0.04) 2.07(0.12) ? BZB B 0
2FGLJ1427.0+2347 J142700.40+234800.1 BZBJ1427+2348 0.82(0.03) 2.24(0.02) 1.9(0.03) ? BZB A 0
2FGLJ1427.4-3306 J142741.36-330531.5 BZBJ1427-3305 1.12(0.03) 2.95(0.03) 2.46(0.04) ? BZQ A 0
2FGLJ1428.0-4206 J142756.30-420619.3 BZQJ1427-4206 1.08(0.03) 2.93(0.02) 2.37(0.03) 1.522 BZQ C 0
2FGLJ1428.6+4240 J142832.62+424021.0 BZBJ1428+4240 0.5 (0.03) 1.79(0.05) 1.55(0.28) 0.129 - - -
2FGLJ1433.8+4205 J143405.70+420315.9 BZQJ1434+4203 1.01(0.05) 2.77(0.08) 2.53(0.22) 1.24 UND C 2
2FGLJ1436.9+2319 J143640.99+232103.4 BZQJ1436+2321 1.23(0.04) 3.21(0.05) 2.74(0.08) 1.544 BZQ C 0
2FGLJ1439.2+3932 J143917.48+393242.8 BZBJ1439+3932 0.71(0.03) 2.1 (0.04) 1.84(0.13) 0.344 BZB B 1
2FGLJ1440.3+4948 J143946.98+495805.3 BZBJ1439+4958 1.13(0.03) 3.06(0.03) 2.5 (0.06) ? BZQ B 0
2FGLJ1440.9+0611 J144052.94+061016.2 BZBJ1440+0610 0.8 (0.03) 2.27(0.05) 1.94(0.17) ? BZB C 0
2FGLJ1442.0+4352 J144207.15+434836.7 BZBJ1442+4348 0.91(0.03) 2.41(0.05) 1.93(0.17) ? BZB C 0
2FGLJ1442.7+1159 J144248.24+120040.3 BZBJ1442+1200 0.48(0.03) 1.69(0.06) 1.67(0.33) 0.163 - - -
2FGLJ1443.9-3908 J144357.20-390839.9 BZBJ1443-3908 0.71(0.03) 2.14(0.03) 1.9 (0.08) 0.065? BZB B 0
2FGLJ1444.1+2500 J144356.90+250144.4 BZQJ1443+2501 0.99(0.05) 2.92(0.1) 2.73(0.23) 0.939 - - -
2FGLJ1448.0+3608 J144800.59+360831.2 BZBJ1448+3608 0.77(0.03) 2.13(0.04) 2.11(0.12) ? BZB B 0
2FGLJ1454.4+5123 J145427.13+512433.7 BZBJ1454+5124 0.91(0.03) 2.39(0.03) 2.03(0.06) ? BZB B 0
2FGLJ1457.4-3540 J145726.71-353909.8 BZQJ1457-3539 1.04(0.04) 2.83(0.04) 2.27(0.07) 1.424 UND B 0
2FGLJ1501.0+2238 J150101.83+223806.3 BZBJ1501+2238 0.83(0.03) 2.27(0.03) 1.91(0.04) 0.235 BZB B 0
2FGLJ1503.7-1541 J150340.67-154114.0 BZBJ1503-1541 0.64(0.04) 1.99(0.1) 2.19(0.39) ? - - -
2FGLJ1504.3+1029 J150424.98+102939.2 BZQJ1504+1029 1.12(0.03) 2.89(0.03) 2.33(0.06) 1.839 UND C 0
2FGLJ1504.9-3433 J150502.37-343256.9 BZBJ1505-3432 1.29(0.05) 3.09(0.07) 2.64(0.17) ? BZQ C 1
2FGLJ1506.0+3729 J150609.53+373051.1 BZQJ1506+3730 1.34(0.03) 2.89(0.04) 2.06(0.09) 0.674 - - -
2FGLJ1506.6+0806 J150644.47+081400.8 BZBJ1506+0814 0.72(0.03) 2.2 (0.05) 2.03(0.15) 0.376? BZB B 0
2FGLJ1508.5+2709 J150842.69+270909.0 BZBJ1508+2709 0.43(0.04) 1.85(0.1) 2.38(0.3) 0.27 - - -
2FGLJ1508.9-4342 J150935.73-434032.1 BZQJ1509-4340 1.04(0.05) 2.66(0.07) 2.72(0.18) 0.776 - - -
2FGLJ1509.7+5556 J150947.96+555617.3 BZBJ1509+5556 0.8 (0.03) 2.24(0.05) 2.02(0.16) ? BZB C 2
2FGLJ1510.9-0545 J151053.59-054307.3 BZQJ1510-0543 1.13(0.03) 2.91(0.04) 2.56(0.06) 1.191 BZQ B 0
2FGLJ1512.8-0906 J151250.53-090559.7 BZQJ1512-0905 1.05(0.03) 2.7 (0.03) 2.38(0.03) 0.36 UND A 0
2FGLJ1514.6+4449 J151436.65+445004.3 BZQJ1514+4450 0.99(0.03) 2.56(0.03) 2.16(0.07) 0.57 UND C 2
2FGLJ1516.9+1925 J151656.80+193213.0 BZBJ1516+1932 1.05(0.03) 2.87(0.03) 2.36(0.04) ? UND B 0
2FGLJ1517.7-2421 J151741.82-242219.4 BZBJ1517-2422 0.86(0.03) 2.59(0.03) 2.19(0.03) 0.048 BZB A 0
2FGLJ1518.0+6526 J151747.59+652523.3 BZBJ1517+6525 0.72(0.03) 1.94(0.06) 1.95(0.21) 0.702 BZB C 0
2FGLJ1520.8-0349 J152048.91-034851.5 BZBJ1520-0348 0.81(0.03) 2.2 (0.05) 1.9 (0.16) ? BZB C 0
2FGLJ1522.0+4348 J152149.61+433639.2 BZQJ1521+4336 1.13(0.05) 3.2 (0.07) 2.32(0.21) 2.171 BZQ C 5
2FGLJ1522.1+3144 J152210.00+314414.4 BZQJ1522+3144 1.2 (0.05) 2.86(0.08) 2.84(0.18) 1.487 - - -
2FGLJ1522.7-2731 J152237.68-273010.6 BZBJ1522-2730 0.97(0.04) 2.82(0.07) 2.2 (0.18) ? UND C 0
2FGLJ1531.0+5725 J153058.21+573625.3 BZBJ1530+5736 0.85(0.04) 2.05(0.12) 2.61(0.32) ? - - -
2FGLJ1535.4+3720 J153447.21+371554.8 BZBJ1534+3715 0.54(0.04) 1.97(0.08) 2.03(0.36) 0.143 BZB C 2
2FGLJ1538.1+8159 J154015.90+815505.6 BZBJ1540+8155 0.68(0.03) 1.99(0.04) 1.85(0.16) ? - - -
2FGLJ1539.5+2747 J153939.14+274438.2 BZQJ1539+2744 1.21(0.04) 3.05(0.06) 2.31(0.16) 2.19 BZQ C 0
2FGLJ1540.4+1438 J154049.49+144746.0 BZBJ1540+1447 1.03(0.03) 2.85(0.03) 2.34(0.05) 0.605 UND B 0
2FGLJ1542.9+6129 J154256.94+612955.3 BZBJ1542+6129 0.88(0.03) 2.36(0.03) 1.97(0.03) ? BZB A 0
2FGLJ1546.1+0820 J154604.26+081913.5 BZBJ1546+0819 0.8 (0.04) 2.2 (0.08) 1.68(0.4) ? BZB C 2
2FGLJ1548.8-2251 J154849.76-225102.5 BZBJ1548-2251 0.65(0.03) 2.04(0.05) 1.69(0.28) ? BZB C 0
2FGLJ1549.5+0237 J154929.44+023701.2 BZQJ1549+0237 1.04(0.03) 2.6 (0.03) 2.31(0.05) 0.414 UND B 0
2FGLJ1550.7+0526 J155035.27+052710.6 BZQJ1550+0527 1.19(0.04) 3.11(0.04) 2.49(0.07) 1.422 BZQ B 0
2FGLJ1551.9+0855 J155203.26+085047.4 BZBJ1552+0850 0.96(0.03) 2.69(0.03) 2.19(0.06) ? UND B 0
2FGLJ1553.5+1255 J155332.70+125651.7 BZQJ1553+1256 1.27(0.05) 3.11(0.08) 2.34(0.21) 1.308 BZQ C 0
2FGLJ1553.5-3116 J155333.56-311830.9 BZBJ1553-3118 0.69(0.03) 2.17(0.04) 2.07(0.11) ? BZB B 0
2FGLJ1555.7+1111 J155543.05+111124.4 BZBJ1555+1111 0.8 (0.03) 2.14(0.03) 1.85(0.05) ? BZB B 0
2FGLJ1559.0+5627 J155848.30+562514.1 BZBJ1558+5625 0.98(0.03) 2.59(0.03) 2.16(0.04) 0.3 UND C 4
2FGLJ1604.6+5710 J160437.36+571436.6 BZQJ1604+5714 1.11(0.03) 2.94(0.03) 2.51(0.04) 0.72 BZQ A 0
2FGLJ1607.0+1552 J160706.43+155134.8 BZBJ1607+1551 1.01(0.03) 2.84(0.04) 2.52(0.08) ? UND C 0
2FGLJ1608.5+1029 J160846.20+102907.8 BZQJ1608+1029 1.09(0.03) 2.8 (0.03) 2.41(0.05) 1.226 UND C 0
2FGLJ1610.8-6650 J161046.45-664901.1 BZBJ1610-6649 0.74(0.03) 2.06(0.04) 1.64(0.16) ? BZB C 0
2FGLJ1613.4+3409 J161341.07+341248.0 BZQJ1613+3412 1.14(0.04) 2.9 (0.05) 2.57(0.12) 1.397 BZQ C 0
2FGLJ1618.2-7718 J161749.28-771718.3 BZQJ1617-7717 1.05(0.04) 3.01(0.04) 2.45(0.07) 1.71 BZQ B 0
2FGLJ1630.4+5218 J163043.14+522138.7 BZBJ1630+5221 0.81(0.03) 2.17(0.04) 1.96(0.12) ? BZB B 0
2FGLJ1635.2+3810 J163515.50+380804.5 BZQJ1635+3808 1.21(0.03) 3.33(0.03) 2.6 (0.04) 1.814 - - -
2FGLJ1637.7+4714 J163745.14+471733.8 BZQJ1637+4717 1.18(0.03) 3.07(0.03) 2.44(0.04) 0.735 BZQ A 0
2FGLJ1640.7+3945 J164029.64+394646.1 BZQJ1640+3946 1.12(0.05) 3.14(0.08) 2.49(0.19) 1.66 - - -
2FGLJ1641.6-0614 J164202.18-062123.5 BZBJ1642-0621 1.1 (0.04) 3.05(0.04) 2.46(0.07) ? - - -
2FGLJ1649.6+5238 J164925.00+523515.0 BZBJ1649+5235 0.82(0.03) 2.35(0.03) 1.95(0.07) ? BZB B 0
2FGLJ1650.8+0830 J165037.56+082452.4 BZQJ1650+0824 1.2 (0.04) 3.13(0.05) 2.29(0.14) 1.965 BZQ C 3
2FGLJ1653.9+3945 J165352.22+394536.5 BZBJ1653+3945 0.46(0.03) 2.01(0.03) 2.0 (0.03) 0.033 BZB C 0
2FGLJ1700.2+6831 J170009.29+683007.0 BZQJ1700+6830 1.03(0.03) 2.64(0.03) 2.18(0.02) 0.301 UND A 0
2FGLJ1703.2-6217 J170336.55-621239.9 BZQJ1703-6212 0.97(0.03) 2.81(0.03) 2.28(0.04) 1.75 - - -
2FGLJ1709.7+4319 J170941.09+431844.6 BZQJ1709+4318 1.14(0.04) 3.0 (0.04) 2.44(0.07) 1.027 BZQ B 0
2FGLJ1714.8+6836 J171613.93+683638.8 BZQJ1716+6836 1.01(0.03) 2.75(0.03) 2.3 (0.04) 0.777 - - -
2FGLJ1719.3+1744 J171913.05+174506.5 BZBJ1719+1745 1.08(0.03) 2.87(0.03) 2.26(0.05) 0.137? UND B 0
2FGLJ1722.7+1013 J172244.58+101335.9 BZQJ1722+1013 1.06(0.03) 2.95(0.03) 2.41(0.04) 0.732 BZQ C 0
2FGLJ1724.0+4003 J172405.42+400436.5 BZQJ1724+4004 1.07(0.04) 3.04(0.05) 2.38(0.11) 1.049 BZQ C 0
2FGLJ1725.0+1151 J172504.34+115215.5 BZBJ1725+1152 0.78(0.03) 2.13(0.03) 1.83(0.08) ? BZB B 0
2FGLJ1725.2+5853 J172535.02+585140.0 BZBJ1725+5851 0.9 (0.03) 2.46(0.03) 1.93(0.07) ? BZB B 1
2FGLJ1727.1+4531 J172727.66+453039.7 BZQJ1727+4530 1.15(0.03) 3.1 (0.03) 2.6 (0.06) 0.717 BZQ B 0
2FGLJ1727.9+1220 J172807.05+121539.6 BZQJ1728+1215 1.14(0.04) 2.97(0.04) 2.53(0.08) 0.583 BZQ B 1
2FGLJ1728.2+0429 J172824.95+042704.9 BZQJ1728+0427 0.97(0.03) 2.82(0.03) 2.64(0.04) 0.293 - - -
2FGLJ1728.2+5015 J172818.63+501310.5 BZBJ1728+5013 0.62(0.03) 2.18(0.03) 2.05(0.07) 0.055 BZB B 0
2FGLJ1730.7+0023 J173035.00+002438.8 BZQJ1730+0024 1.07(0.03) 2.89(0.03) 2.34(0.07) 1.335 UND C 0
2FGLJ1731.3+3718 J173047.05+371455.2 BZBJ1730+3714 0.7 (0.03) 2.28(0.04) 2.18(0.13) ? BZB B 1
2FGLJ1733.1-1307 J173302.71-130449.5 BZQJ1733-1304 1.02(0.03) 2.85(0.03) 2.53(0.05) 0.902 BZQ B 0
2FGLJ1734.3+3858 J173420.58+385751.4 BZQJ1734+3857 1.16(0.03) 3.17(0.03) 2.37(0.06) 0.976 BZQ B 0
2FGLJ1739.5+4955 J173927.39+495503.4 BZQJ1739+4955 1.08(0.03) 2.83(0.03) 2.33(0.04) 1.545 UND B 0
2FGLJ1740.2+5212 J174036.97+521143.4 BZQJ1740+5211 1.16(0.03) 2.97(0.03) 2.33(0.03) 1.381 BZQ A 0
2FGLJ1740.3+4738 J173957.13+473758.4 BZBJ1739+4737 1.07(0.03) 2.91(0.03) 2.36(0.06) ? UND C 1
2FGLJ1742.1+5948 J174232.00+594506.7 BZBJ1742+5945 0.94(0.03) 2.54(0.03) 2.04(0.05) ? BZB B 0
2FGLJ1744.1+1934 J174357.84+193509.3 BZBJ1743+1935 0.42(0.03) 1.87(0.04) 1.94(0.11) 0.084 BZB C 0
2FGLJ1745.5-0751 J174527.10-075303.7 BZBJ1745-0753 0.88(0.04) 2.63(0.04) 2.34(0.09) ? UND B 0
2FGLJ1748.8+7006 J174832.85+700550.7 BZBJ1748+7005 1.02(0.03) 2.73(0.02) 2.24(0.03) 0.77? UND A 0
2FGLJ1749.1+4323 J174900.36+432151.4 BZBJ1749+4321 1.11(0.03) 3.02(0.03) 2.36(0.06) ? BZQ B 1
2FGLJ1754.3+3212 J175411.80+321223.1 BZBJ1754+3212 0.85(0.03) 2.27(0.03) 1.94(0.07) ? BZB B 0
2FGLJ1756.5+5523 J175615.90+552218.0 BZBJ1756+5522 0.6 (0.04) 1.85(0.1) 2.1(0.47) ? - - -
2FGLJ1800.5+7829 J180045.70+782804.1 BZBJ1800+7828 1.12(0.03) 2.94(0.02) 2.32(0.03) 0.68 BZQ B 0
2FGLJ1801.7+4405 J180132.33+440421.8 BZQJ1801+4404 1.02(0.03) 3.0 (0.03) 2.5(0.05) 0.663 BZQ B 0
2FGLJ1806.7+6948 J180650.69+694928.1 BZBJ1806+6949 0.85(0.03) 2.47(0.02) 2.08(0.03) 0.046 BZB A 0
2FGLJ1809.7+2909 J180945.39+291019.9 BZBJ1809+2910 0.95(0.03) 2.55(0.03) 2.07(0.06) ? BZB B 1
2FGLJ1810.8+1606 J181050.18+160820.8 BZBJ1810+1608 0.88(0.04) 2.33(0.07) 2.09(0.28) ? BZB C 0
2FGLJ1811.3+0339 J181118.02+034113.7 BZBJ1811+0341 0.67(0.03) 1.97(0.07) 1.61(0.33) ? BZB C 0
2FGLJ1813.5+3143 J181335.20+314417.7 BZBJ1813+3144 0.78(0.03) 2.17(0.04) 1.72(0.14) 0.117 BZB C 0
2FGLJ1813.7+0617 J181333.41+061542.0 BZBJ1813+0615 0.99(0.04) 2.79(0.04) 2.33(0.08) ? UND B 0
2FGLJ1818.6+0903 J181840.06+090346.3 BZQJ1818+0903 1.02(0.04) 2.77(0.05) 2.32(0.09) 0.354 UND C 1
2FGLJ1823.7+6856 J182332.64+685752.2 BZBJ1823+6857 0.85(0.03) 2.57(0.03) 2.34(0.07) ? BZB C 3
2FGLJ1824.0+5650 J182407.07+565101.5 BZBJ1824+5651 1.02(0.03) 2.94(0.03) 2.36(0.04) 0.664 UND A 0
2FGLJ1829.2+5402 J182924.29+540259.7 BZBJ1829+5402 0.81(0.03) 2.12(0.04) 1.98(0.14) ? BZB B 0
2FGLJ1832.7-5700 J183230.98-565920.6 BZBJ1832-5659 0.96(0.04) 2.71(0.04) 2.37(0.09) ? UND B 1
2FGLJ1836.2+3137 J183621.23+313626.7 BZBJ1836+3136 0.8 (0.03) 2.24(0.04) 1.98(0.14) ? BZB B 0
2FGLJ1838.7+4759 J183849.15+480234.4 BZBJ1838+4802 0.74(0.03) 2.03(0.04) 1.99(0.15) ? BZB B 0
2FGLJ1841.7+3221 J184147.04+321839.2 BZBJ1841+3218 0.72(0.04) 1.91(0.07) 1.66(0.42) ? BZB C 0
2FGLJ1848.5+3216 J184822.09+321902.7 BZQJ1848+3219 1.13(0.04) 3.0 (0.04) 2.52(0.06) 0.798 BZQ B 1
2FGLJ1849.4+6706 J184916.08+670541.5 BZQJ1849+6705 1.17(0.03) 3.09(0.03) 2.52(0.04) 0.657 BZQ A 0
2FGLJ1849.7-4310 J184925.92-431413.2 BZBJ1849-4314 0.93(0.03) 2.51(0.03) 2.07(0.06) ? BZB B 0
2FGLJ1852.5+4856 J185228.55+485547.6 BZQJ1852+4855 1.05(0.03) 2.81(0.03) 2.3 (0.06) 1.25 UND B 0
2FGLJ1902.5-6746 J190301.23-674935.6 BZQJ1903-6749 1.07(0.03) 2.81(0.04) 2.44(0.09) 0.254 UND C 2
2FGLJ1903.3+5539 J190311.60+554038.5 BZBJ1903+5540 0.9 (0.03) 2.37(0.03) 2.03(0.04) ? BZB A 0
2FGLJ1917.6-1921 J191744.82-192131.5 BZBJ1917-1921 0.82(0.03) 2.24(0.03) 2.14(0.06) 0.137 BZB B 0
2FGLJ1918.2-4110 J191816.05-411130.8 BZBJ1918-4111 0.97(0.04) 2.47(0.05) 2.23(0.1) ? - - -
2FGLJ1921.9-1608 J192151.55-160713.2 BZBJ1921-1607 0.65(0.03) 3.52(0.03) 0.9 (0.1) ? - - -
2FGLJ1923.5-2105 J192332.17-210433.3 BZQJ1923-2104 1.09(0.03) 2.74(0.03) 2.36(0.04) 0.874 UND B 0
2FGLJ1924.8-2912 J192451.05-291430.0 BZQJ1924-2914 1.13(0.03) 3.07(0.02) 2.48(0.02) 0.352 BZQ A 0
2FGLJ1936.8-4721 J193656.10-471950.0 BZBJ1936-4719 0.63(0.04) 2.16(0.09) 2.34(0.26) 0.265 - - -
2FGLJ1946.1-3115 J194559.41-311139.3 BZBJ1945-3111 0.76(0.04) 2.38(0.05) 2.24(0.14) ? BZB C 1
2FGLJ1958.2-3848 J195759.81-384506.2 BZQJ1957-3845 1.14(0.03) 2.88(0.03) 2.44(0.05) 0.63 - - -
2FGLJ1959.1-4245 J195913.26-424607.4 BZQJ1959-4246 1.14(0.04) 2.94(0.04) 2.47(0.09) 2.174 BZQ B 0
2FGLJ2000.0+6509 J195959.84+650854.7 BZBJ1959+6508 0.59(0.03) 2.12(0.03) 1.93(0.04) 0.047 BZB A 0
2FGLJ2000.8-1751 J200057.09-174857.5 BZQJ2000-1748 1.12(0.03) 3.16(0.03) 2.58(0.05) 0.652 BZQ B 0
2FGLJ2004.5+7754 J200531.01+775243.2 BZBJ2005+7752 1.01(0.03) 2.7 (0.03) 2.26(0.03) 0.342 UND A 0
2FGLJ2009.5-4850 J200925.39-484953.5 BZBJ2009-4849 0.73(0.03) 2.21(0.03) 1.93(0.04) 0.071 BZB A 0
2FGLJ2009.7+7225 J200952.29+722919.3 BZBJ2009+7229 1.07(0.03) 2.76(0.03) 2.41(0.06) ? UND B 1
2FGLJ2015.1-0137 J201515.15-013732.4 BZBJ2015-0137 0.96(0.03) 2.63(0.04) 2.16(0.08) ? UND C 1
2FGLJ2022.3-4518 J202226.40-451329.5 BZBJ2022-4513 0.95(0.04) 2.6 (0.04) 2.14(0.07) ? BZB C 6
2FGLJ2022.5+7614 J202235.57+761126.1 BZBJ2022+7611 1.01(0.03) 2.82(0.03) 2.28(0.04) ? UND A 0
2FGLJ2023.4-1137 J202336.67-113957.5 BZQJ2023-1139 0.63(0.11) 3.71(0.19) 2.88(0.32) 0.698 - - -
2FGLJ2025.6-0736 J202540.65-073552.5 BZQJ2025-0735 1.19(0.04) 3.17(0.04) 2.56(0.07) 1.388 BZQ B 0
2FGLJ2030.3-0622 J203015.14-062214.8 BZQJ2030-0622 1.22(0.04) 3.06(0.07) 1.72(0.32) 0.667 - - -
2FGLJ2031.7+1223 J203154.99+121941.5 BZBJ2031+1219 1.1 (0.04) 3.05(0.06) 2.54(0.13) 1.215?? BZQ C 0
2FGLJ2035.4+1058 J203522.28+105605.9 BZQJ2035+1056 0.66(0.03) 2.57(0.03) 2.37(0.08) 0.601 - - -
2FGLJ2039.1-1046 J203900.71-104641.7 BZBJ2039-1046 0.95(0.03) 2.57(0.03) 2.22(0.05) ? UND C 0
2FGLJ2050.0+0408 J205006.23+040749.0 BZBJ2050+0407 1.04(0.03) 2.79(0.04) 2.22(0.07) ? UND B 1
2FGLJ2055.4-0023 J205528.22-002117.0 BZBJ2055-0021 0.74(0.04) 2.29(0.1) 2.03(0.39) ? - - -
2FGLJ2056.2-4715 J205616.35-471447.3 BZQJ2056-4714 1.27(0.03) 3.28(0.03) 2.52(0.04) 1.491 BZQ A 0
2FGLJ2115.3+2932 J211529.41+293338.4 BZQJ2115+2933 1.17(0.04) 3.05(0.05) 2.37(0.11) 1.514 BZQ C 0
2FGLJ2116.2+3339 J211614.52+333920.6 BZBJ2116+3339 0.73(0.03) 2.12(0.04) 1.9 (0.08) ? BZB B 0
2FGLJ2121.0+1901 J212100.57+190128.4 BZQJ2121+1901 0.89(0.12) 2.35(0.45) 3.64(0.62) 2.18 - - -
2FGLJ2131.6-0914 J213135.41-091523.5 BZBJ2131-0915 0.71(0.04) 2.23(0.12) 2.45(0.33) 0.449 - - -
2FGLJ2133.8-0154 J213410.30-015317.1 BZBJ2134-0153 1.1 (0.03) 2.92(0.03) 2.48(0.05) 1.283 BZQ B 0
2FGLJ2139.3-4236 J213924.16-423520.3 BZBJ2139-4235 0.9 (0.03) 2.48(0.03) 2.03(0.04) ? BZB A 0
2FGLJ2141.7-3739 J214152.44-372912.8 BZQJ2141-3729 1.1 (0.04) 2.91(0.05) 2.7(0.08) 0.423 - - -
2FGLJ2143.2-3929 J214302.85-392924.7 BZBJ2143-3929 0.77(0.04) 2.22(0.11) 1.95(0.45) ? - - -
2FGLJ2143.5+1743 J214335.55+174348.8 BZQJ2143+1743 1.09(0.03) 2.79(0.03) 2.43(0.03) 0.213 UND C 0
2FGLJ2144.8-3356 J214501.13-335716.2 BZQJ2145-3357 1.11(0.04) 2.77(0.05) 2.44(0.13) 1.36 - - -
2FGLJ2146.5-1530 J214622.97-152543.6 BZQJ2146-1525 1.05(0.04) 2.96(0.05) 2.28(0.11) 0.698 UND C 6
2FGLJ2147.3+0930 J214710.14+092946.4 BZQJ2147+0929 1.17(0.05) 2.84(0.1) 2.67(0.24) 1.113 BZQ C 1
2FGLJ2147.4-7534 J214712.71-753613.0 BZQJ2147-7536 1.21(0.03) 3.12(0.02) 2.44(0.03) 1.138 BZQ A 0
2FGLJ2148.2+0659 J214805.46+065738.7 BZQJ2148+0657 1.31(0.03) 2.7 (0.03) 2.38(0.04) 0.999 - - -
2FGLJ2151.5-3021 J215155.51-302753.5 BZQJ2151-3027 1.05(0.04) 3.13(0.06) 2.09(0.1) 2.345 - - -
2FGLJ2152.4+1735 J215224.81+173437.8 BZBJ2152+1734 0.95(0.03) 2.59(0.03) 2.19(0.05) ? UND C 1
2FGLJ2154.0-1138 J215350.22-113613.9 BZQJ2153-1136 1.18(0.04) 3.0 (0.05) 2.58(0.11) 1.582 BZQ C 1
2FGLJ2157.4+3129 J215728.81+312701.4 BZQJ2157+3127 1.07(0.03) 2.9 (0.03) 2.34(0.07) 1.488 UND C 0
2FGLJ2157.9-1501 J215806.27-150109.0 BZQJ2158-1501 1.04(0.03) 2.79(0.03) 2.5 (0.06) 0.672 UND C 0
2FGLJ2158.8-3013 J215852.05-301332.0 BZBJ2158-3013 0.78(0.03) 2.13(0.03) 1.85(0.04) 0.116 BZB A 0
2FGLJ2201.9-8335 J220219.20-833811.6 BZQJ2202-8338 1.09(0.03) 2.9 (0.04) 2.33(0.1) 1.865 - - -
2FGLJ2202.8+4216 J220243.29+421640.0 BZBJ2202+4216 0.96(0.03) 2.53(0.03) 2.19(0.02) 0.069 UND C 0
2FGLJ2203.4+1726 J220326.89+172548.3 BZQJ2203+1725 1.08(0.03) 2.84(0.03) 2.35(0.03) 1.076 UND A 0
2FGLJ2206.6-0029 J220643.27-003102.3 BZBJ2206-0031 0.98(0.04) 2.71(0.04) 2.21(0.1) ? UND B 0
2FGLJ2208.1-5345 J220743.71-534633.6 BZQJ2207-5346 1.15(0.04) 2.92(0.05) 2.57(0.11) 1.215 BZQ C 1
2FGLJ2211.9+2355 J221205.96+235540.7 BZQJ2212+2355 1.17(0.05) 2.73(0.12) 2.71(0.26) 1.125? - - -
2FGLJ2213.1-2527 J221302.49-252929.9 BZQJ2213-2529 1.11(0.04) 3.02(0.04) 2.52(0.06) 1.833 BZQ B 0
2FGLJ2217.1+2422 J221700.82+242146.0 BZBJ2217+2421 1.04(0.03) 2.79(0.03) 2.31(0.05) 0.505 UND B 0
2FGLJ2219.1+1805 J221914.07+180635.8 BZQJ2219+1806 0.68(0.07) 3.17(0.14) 2.33(0.35) 1.802 - - -
2FGLJ2221.6-5223 J222129.30-522527.6 BZBJ2221-5225 0.72(0.03) 2.16(0.05) 1.94(0.17) ? BZB C 0
2FGLJ2222.0-3503 J222305.92-345547.0 BZQJ2223-3455 1.05(0.03) 2.93(0.03) 2.69(0.04) 0.298 - - -
2FGLJ2225.6-0454 J222547.25-045701.2 BZQJ2225-0457 1.19(0.03) 3.2 (0.03) 2.53(0.04) 1.404 BZQ B 0
2FGLJ2229.7-0832 J222940.08-083254.3 BZQJ2229-0832 1.14(0.03) 3.35(0.04) 2.6 (0.05) 1.56 BZQ B 0
2FGLJ2232.4+1143 J223236.40+114350.9 BZQJ2232+1143 1.28(0.03) 2.98(0.04) 2.39(0.07) 1.037 BZQ B 0
2FGLJ2234.9-4831 J223513.23-483558.6 BZQJ2235-4835 1.11(0.03) 2.81(0.04) 2.46(0.07) 0.51 BZQ C 3
2FGLJ2236.4+2828 J223622.47+282857.4 BZQJ2236+2828 1.02(0.03) 2.83(0.03) 2.36(0.03) 0.79 UND A 0
2FGLJ2236.5-1431 J223634.08-143322.0 BZBJ2236-1433 1.08(0.03) 2.84(0.03) 2.34(0.04) ? UND A 0
2FGLJ2237.2-3920 J223708.10-392137.9 BZQJ2237-3921 0.96(0.03) 2.68(0.04) 2.29(0.11) 0.297 UND B 0
2FGLJ2243.2-2540 J224326.40-254430.4 BZBJ2243-2544 1.04(0.03) 2.83(0.03) 2.3 (0.06) 0.774 UND B 0
2FGLJ2243.9+2021 J224354.74+202103.8 BZBJ2243+2021 0.85(0.03) 2.24(0.03) 1.96(0.07) ? BZB B 0
2FGLJ2244.1+4059 J224412.72+405713.7 BZBJ2244+4057 1.13(0.03) 2.94(0.04) 2.33(0.06) ? BZQ B 0
2FGLJ2247.2-0002 J224730.18+000006.7 BZBJ2247+0000 1.08(0.04) 2.86(0.08) 2.3 (0.17) ? UND C 2
2FGLJ2250.0+3825 J225005.75+382437.3 BZBJ2250+3824 0.58(0.03) 1.86(0.04) 1.86(0.14) 0.119 BZB B 0
2FGLJ2251.9+4032 J225159.77+403058.2 BZBJ2251+4030 0.79(0.03) 2.19(0.05) 1.81(0.11) ? BZB B 0
2FGLJ2253.9+1609 J225357.74+160853.6 BZQJ2253+1608 1.04(0.03) 2.92(0.02) 2.42(0.02) 0.859 UND C 0
2FGLJ2255.2+2408 J225515.37+241011.4 BZBJ2255+2410 0.87(0.03) 2.25(0.04) 2.0 (0.11) ? BZB B 0
2FGLJ2256.4-2009 J225641.19-201140.3 BZBJ2256-2011 1.06(0.03) 2.81(0.03) 2.32(0.06) ? UND B 0
2FGLJ2258.0-2759 J225805.95-275821.0 BZQJ2258-2758 1.16(0.03) 2.94(0.03) 2.46(0.03) 0.926 BZQ A 0
2FGLJ2304.7+3703 J230436.71+370507.5 BZBJ2304+3705 0.65(0.04) 2.16(0.07) 2.05(0.26) ? BZB C 0
2FGLJ2308.0+1457 J230733.99+145018.1 BZBJ2307+1450 0.98(0.04) 2.76(0.05) 2.26(0.15) 0.503 - - -
2FGLJ2311.0+3425 J231105.32+342511.0 BZQJ2311+3425 1.1 (0.03) 3.01(0.03) 2.4 (0.05) 1.817 BZQ B 0
2FGLJ2315.7-5014 J231544.32-501839.5 BZBJ2315-5018 1.09(0.03) 2.97(0.03) 2.45(0.05) ? BZQ B 0
2FGLJ2321.0+2737 J232159.86+273246.9 BZQJ2321+2732 0.93(0.04) 2.53(0.05) 2.34(0.15) 1.253 - - -
2FGLJ2322.2+3206 J232154.96+320407.7 BZQJ2321+3204 1.14(0.04) 2.9 (0.05) 2.36(0.13) 1.489 BZQ C 1
2FGLJ2322.6+3435 J232244.01+343613.9 BZBJ2322+3436 0.27(0.03) 1.62(0.07) 1.68(0.36) 0.098 - - -
2FGLJ2323.6-0316 J232331.94-031704.8 BZQJ2323-0317 1.14(0.03) 2.94(0.04) 2.36(0.07) 1.393 BZQ B 0
2FGLJ2323.8+4212 J232352.07+421058.6 BZBJ2323+4210 0.75(0.03) 2.26(0.07) 1.45(0.42) 0.059? - - -
2FGLJ2324.7-4042 J232444.65-404049.3 BZBJ2324-4040 0.74(0.03) 2.06(0.03) 1.62(0.1) ? BZB C 0
2FGLJ2325.3+3957 J232517.86+395736.5 BZBJ2325+3957 1.01(0.04) 2.63(0.06) 2.54(0.14) ? UND C 0
2FGLJ2325.4-4758 J232526.86-480017.0 BZBJ2325-4800 0.92(0.03) 2.43(0.03) 2.04(0.05) 0.221 BZB A 0
2FGLJ2327.5+0940 J232733.57+094009.8 BZQJ2327+0940 1.28(0.06) 3.24(0.09) 2.56(0.21) 1.843 BZQ C 0
2FGLJ2329.2-4956 J232920.86-495540.5 BZQJ2329-4955 1.22(0.04) 3.19(0.03) 2.55(0.06) 0.518 BZQ B 0
2FGLJ2330.6-3723 J233035.78-372437.8 BZBJ2330-3724 0.98(0.03) 2.84(0.03) 2.38(0.05) 0.279 UND B 0
2FGLJ2330.9-2144 J233104.01-214815.0 BZQJ2331-2148 1.06(0.04) 2.8 (0.08) 2.25(0.21) 0.563 UND C 0
2FGLJ2331.8-1607 J233138.63-155656.8 BZQJ2331-1556 1.07(0.05) 3.05(0.06) 2.51(0.16) 1.153 - - -
2FGLJ2334.3+0734 J233412.82+073627.6 BZQJ2334+0736 1.11(0.03) 2.82(0.04) 2.42(0.09) 0.401 - - -
2FGLJ2334.8+1431 J233453.82+143214.9 BZBJ2334+1432 0.9 (0.04) 2.4 (0.05) 2.03(0.18) ? BZB C 0
2FGLJ2336.3-4111 J233633.97-411521.7 BZQJ2336-4115 1.15(0.04) 3.01(0.06) 2.64(0.12) 1.406 BZQ C 0
2FGLJ2338.1-0229 J233757.33-023057.4 BZQJ2337-0230 1.18(0.03) 3.01(0.03) 2.51(0.05) 1.071 BZQ B 0
2FGLJ2339.0+2125 J233856.38+212441.3 BZBJ2338+2124 0.83(0.04) 2.36(0.05) 1.66(0.19) 0.291 - - -
2FGLJ2341.7+8016 J234054.23+801515.9 BZBJ2340+8015 0.71(0.03) 2.07(0.04) 1.76(0.11) 0.274 BZB B 0
2FGLJ2345.0-1553 J234512.45-155507.7 BZQJ2345-1555 1.07(0.03) 2.81(0.03) 2.29(0.05) 0.621 UND B 0
2FGLJ2347.9-1629 J234802.60-163111.9 BZQJ2348-1631 1.06(0.03) 2.78(0.03) 2.36(0.04) 0.576 UND B 0
2FGLJ2353.5-3034 J235347.44-303748.2 BZBJ2353-3037 1.0 (0.04) 2.9 (0.04) 2.22(0.09) ? UND B 0
2FGLJ2359.0-3037 J235907.88-303740.5 BZBJ2359-3037 0.68(0.03) 2.05(0.06) 1.68(0.27) 0.165 BZB C 0
Table 8List of all candidate blazars associated to the WFB sources. The explanation of the content of the columns can be found in the notes of Table 5.
2FGLa WISEb otherc [3.4]-[4.6]d [4.6]-[12]e [12]-[22]f typeg classh notesi zl reassoc.m n
name name name mag mag mag flag
2FGLJ0303.5+4713 J030335.23+471616.3 BZBJ0303+4716 1.06(0.03) 2.88(0.03) 2.31(0.03) UND A M ? y 0
2FGLJ0719.3+3306 J071919.41+330709.7 BZUJ0719+3307 1.04(0.03) 2.71(0.03) 2.23(0.03) UND A M 0.779 y 0
2FGLJ0730.2-1141 J073019.11-114112.5 BZQJ0730-1141 1.04(0.03) 2.95(0.03) 2.44(0.04) BZQ A M 1.589 y 0
2FGLJ0825.9-2229 J082601.57-223027.2 BZBJ0826-2230 0.96(0.03) 2.7 (0.03) 2.2 (0.04) UND A M 0.91 y 0
2FGLJ1058.4+0133 J105829.61+013358.8 BZUJ1058+0133 1.1 (0.03) 2.92(0.03) 2.39(0.03) BZQ A M 0.89 y 0
2FGLJ1153.2+4935 J115324.46+493108.9 BZQJ1153+4931 1.1 (0.03) 2.8 (0.03) 2.34(0.03) UND A M,v 0.334 y 0
2FGLJ1751.5+0938 J175132.82+093900.8 BZUJ1751+0939 1.14(0.03) 3.08(0.03) 2.54(0.03) BZQ A M,v (0.32)2 y 0
2FGLJ1955.2+1356 J195511.57+135816.3 BZQJ1955+1358 1.11(0.03) 3.08(0.03) 2.51(0.04) BZQ A - 0.743 y 0
2FGLJ0035.8+5951 J003552.62+595004.3 BZBJ0035+5950 0.52(0.03) 1.93(0.03) 1.87(0.09) BZB B M,v (0.08)6? y 0
2FGLJ0109.9+6132 J010946.32+613330.4 NVSSJ010946+613329 0.98(0.03) 2.61(0.03) 2.47(0.05) UND B v 0.783 y 0
2FGLJ0114.7+1326 J011452.77+132537.6 BZBJ0114+1325 0.82(0.03) 2.3 (0.04) 1.86(0.15) BZB B M ? y 0
2FGLJ0144.6+2704 J014433.54+270503.1 BZUJ0144+2705 1.07(0.03) 2.75(0.03) 2.22(0.04) UND B M,v ? y 0
2FGLJ0216.9-6630 J021650.85-663642.5 CRATESJ0216-6636 0.73(0.03) 2.12(0.05) 2.18(0.13) BZB B M ? y 0
2FGLJ0221.0+3555 J022105.47+355613.7 BZUJ0221+3556 1.13(0.03) 2.66(0.03) 2.27(0.06) UND B M 0.944 y 0
2FGLJ0359.1+6003 J035902.63+600522.0 NVSSJ035902+600522 1.02(0.04) 2.71(0.03) 2.44(0.05) UND B M ? y 0
2FGLJ0423.8+4149 J042356.00+415002.7 BZBJ0423+4150 0.94(0.04) 2.75(0.04) 2.32(0.09) UND B M ? y 0
2FGLJ0448.9+1121 J044907.66+112128.6 BZBJ0449+1121 1.07(0.03) 2.99(0.04) 2.42(0.06) BZQ B M,v ? y 0
2FGLJ0509.9+1802 J051002.36+180041.6 BZQJ0510+1800 1.02(0.03) 2.77(0.03) 2.34(0.04) UND B M 0.416 y 0
2FGLJ0516.8-6207 J051644.91-620705.4 BZUJ0516-6207 1.06(0.03) 2.84(0.03) 2.37(0.04) UND B M,v ? y 0
2FGLJ0521.7+2113 J052145.96+211251.4 BZBJ0521+2112 0.72(0.03) 2.11(0.03) 1.95(0.04) BZB B M ? y 0
2FGLJ0533.0+4823 J053315.86+482252.8 BZQJ0533+4822 1.19(0.03) 3.11(0.03) 2.52(0.05) BZQ B M 1.162 y 0
2FGLJ0601.1-7037 J060111.19-703608.8 CRATESJ0601-7036 1.1 (0.03) 3.08(0.03) 2.36(0.05) BZQ B v ? y 0
2FGLJ0643.2+0858 J064326.44+085738.0 NVSSJ064326+085738 0.98(0.03) 2.77(0.04) 2.26(0.09) UND B - ? y 0
2FGLJ0654.2+4514 J065423.70+451423.5 BZUJ0654+4514 1.17(0.04) 3.13(0.04) 2.55(0.07) BZQ B M 0.933? y 0
2FGLJ1048.3+7144 J104827.60+714335.9 BZUJ1048+7143 1.13(0.03) 3.01(0.03) 2.37(0.05) BZQ B M 1.15? y 0
2FGLJ1312.8+4828 J131243.36+482830.9 BZUJ1312+4828 1.05(0.03) 2.66(0.03) 2.23(0.05) UND B - 0.501 y 0
2FGLJ1326.7-5254 J132649.24-525623.6 AT20GJ132649-525623 1.01(0.03) 2.92(0.03) 2.3 (0.05) UND B M,v ? y 0
2FGLJ1350.8+3035 J135049.63+302810.5 SDSSJ135049.61+302810.5 1.28(0.03) 2.81(0.04) 2.64(0.08) BZQ B s ? n -
2FGLJ1435.1+2022 J143521.95+202118.1 BZUJ1435+2021 0.83(0.04) 2.39(0.05) 2.15(0.13) BZB B M,v 0.748 y 0
2FGLJ1512.2+0201 J151215.74+020317.0 BZUJ1512+0203 0.95(0.03) 2.65(0.03) 2.32(0.05) UND B M,v (0.21)9 y 0
2FGLJ1626.1-2948 J162606.03-295126.7 BZUJ1626-2951 1.13(0.04) 2.96(0.04) 2.68(0.07) BZQ B M 0.815? y 0
2FGLJ1802.6-3940 J180242.68-394007.8 BZQJ1802-3940 1.13(0.04) 2.99(0.04) 2.45(0.06) BZQ B - 1.319 y 0
2FGLJ1849.5+2744 J184931.74+274800.8 NVSSJ184931+274801 1.0 (0.03) 2.7 (0.03) 2.18(0.06) UND B M ? y 0
2FGLJ1927.0+6153 J192649.89+615442.4 NVSSJ192649+615441 0.78(0.03) 2.17(0.04) 1.88(0.13) BZB B M ? y 0
2FGLJ2001.1+4352 J200112.87+435252.8 BZBJ2001+4352 0.68(0.03) 2.05(0.03) 1.88(0.06) BZB B M ? y 0
2FGLJ2001.7+7042 J200133.95+704025.6 NVSSJ200134+704025 0.78(0.03) 2.38(0.04) 2.29(0.11) BZB B M,v ? y 0
2FGLJ2012.1+4630 J201205.64+462855.8 BZBJ2012+4628 0.92(0.03) 2.58(0.03) 2.13(0.04) BZB B M ? y 0
2FGLJ2016.3-0904 J201624.03-090333.3 NVSSJ201624-090333 0.83(0.03) 2.3 (0.04) 1.93(0.11) BZB B M ? y 0
2FGLJ2036.6+6551 J203620.13+655314.5 NVSSJ203619+655314 0.83(0.03) 2.27(0.04) 2.1 (0.1) BZB B M ? y 0
2FGLJ2127.8+3614 J212743.03+361305.8 NVSSJ212743+361305 0.8 (0.03) 2.3 (0.04) 1.87(0.12) BZB B M ? y 1
2FGLJ2300.6+3139 J230022.83+313704.5 NVSSJ230022+313703 0.9 (0.04) 2.37(0.04) 2.08(0.11) BZB B M ? y 0
2FGLJ2310.9+0204 J231101.28+020505.4 NVSSJ231101+020504 1.0 (0.03) 2.62(0.03) 2.19(0.08) UND B M ? y 0
2FGLJ0047.2+5657 J004700.43+565742.4 BZUJ0047+5657 1.0 (0.04) 2.53(0.06) 2.4 (0.13) UND C v 0.747 y 1
2FGLJ0057.9+3311 J005832.05+331117.3 BZUJ0058+3311 1.13(0.05) 3.0 (0.07) 2.45(0.19) BZQ C - 1.369 y 4
2FGLJ0102.7+5827 J010245.75+582411.1 BZUJ0102+5824 0.99(0.03) 2.95(0.03) 2.45(0.05) BZQ C v 0.644? y 0
2FGLJ0105.3+3930 J010509.20+392815.2 BZUJ0105+3928 1.01(0.03) 2.5 (0.03) 2.16(0.05) UND C v (0.08)3? y 1
2FGLJ0105.3+3930 J010542.74+393024.2 - 1.17(0.06) 3.14(0.1) 2.55(0.26) BZQ C - ? n -
2FGLJ0113.2-3557 J011315.83-355148.2 BZQJ0113-3551 1.12(0.04) 2.9 (0.05) 2.48(0.1) BZQ C - 1.22 y 2
2FGLJ0250.6+1713 J025037.95+171208.9 BZUJ0250+1712 0.6 (0.04) 2.0 (0.08) 1.91(0.32) BZB C M 1.1 y 0
2FGLJ0407.3-3826 J040659.02-382627.9 BZUJ0406-3826 1.24(0.04) 3.09(0.04) 2.59(0.09) BZQ C M 1.285? y 2
2FGLJ0506.5-0901 J050557.55-084948.0 - 1.02(0.05) 3.09(0.08) 2.44(0.21) BZQ C M,X ? n 4
2FGLJ0521.9+0108 J052140.81+010255.5 NVSSJ052140+010257 0.94(0.03) 2.46(0.05) 1.98(0.15) BZB C N ? n 1
2FGLJ0608.0-1521 J060801.52-152036.9 NVSSJ060801-152036 1.12(0.05) 3.02(0.07) 2.4 (0.17) BZQ C v ? y 0
2FGLJ0608.0-1521 J060803.15-152410.1 - 1.1 (0.06) 2.95(0.1) 2.62(0.23) BZQ C - ? n -
2FGLJ0648.7-1739 J064828.49-174405.5 BZQJ0648-1744 1.29(0.04) 2.86(0.05) 2.33(0.15) BZQ C - 1.232 y 1
2FGLJ0656.2-0320 J065611.11-032307.0 BZQJ0656-0323 1.03(0.05) 2.66(0.06) 2.41(0.16) UND C M 0.634 y 1
2FGLJ0706.5+3744 J070631.70+374436.5 NVSSJ070631+374436 0.83(0.04) 2.18(0.06) 1.8 (0.24) BZB C M ? y 0
2FGLJ0754.4-1147 J075426.46-114716.7 BZBJ0754-1147 1.07(0.03) 2.9 (0.03) 2.34(0.06) UND C M ? y 0
2FGLJ0912.5+2758 J091257.08+275646.8 SDSSJ091257.08+275646.7 1.09(0.04) 2.59(0.05) 2.4 (0.11) UND C M,s 0.512 n 0
2FGLJ0923.2+4125 J092331.32+412527.5 BZUJ0923+4125 1.12(0.05) 3.01(0.09) 2.52(0.23) BZQ C - 0.028 y 2
2FGLJ0941.4+6148 J094151.51+615102.1 SDSSJ094151.50+615101.8 0.97(0.04) 2.7 (0.06) 2.16(0.245 UND C M,s 0.429 n 3
2FGLJ0957.7+4735 J095819.66+472507.9 BZQJ0958+4725 1.12(0.05) 3.03(0.08) 2.46(0.21) BZQ C - 1.882 y 0
2FGLJ0957.7+4735 J095833.44+473854.9 SDSSJ095833.43+473854.9 1.04(0.04) 2.55(0.06) 2.19(0.19) UND C M,s,X 0.418 n -
2FGLJ1023.6+3947 J102311.57+394815.4 BZQJ1023+3948 1.23(0.05) 3.19(0.07) 2.41(0.17) BZQ C M 1.254 y 0
2FGLJ1305.7+7854 J130257.86+785151.1 - 1.24(0.04) 2.74(0.06) 2.33(0.18) BZQ C - ? n 1
2FGLJ1305.7+7854 J130522.09+784841.5 - 1.24(0.04) 2.99(0.06) 2.5 (0.15) BZQ C - ? n -
2FGLJ1350.8+3035 J135052.74+303453.6 BZQJ1350+3034 1.03(0.04) 2.78(0.05) 2.41(0.13) UND C - 0.712 y 3
2FGLJ1438.7+3712 J143853.62+371035.4 BZQJ1438+3710 1.17(0.04) 3.02(0.06) 2.46(0.15) BZQ C v 2.401 y 1
2FGLJ1657.9+4809 J165746.88+480833.1 NVSSJ165746+480832 1.18(0.04) 2.81(0.05) 2.51(0.14) BZQ C - ? y 0
2FGLJ1830.1+0617 J183005.93+061916.0 BZQJ1830+0619 1.16(0.06) 3.02(0.06) 2.4 (0.11) BZQ C - 0.745 y 0
2FGLJ1937.2-3955 J193716.21-395801.4 BZUJ1937-3958 1.23(0.04) 2.92(0.06) 2.6 (0.11) BZQ C M 0.965? y 1
2FGLJ1954.6-1122 J195441.15-112322.6 BZUJ1954-1123 1.13(0.04) 3.06(0.05) 2.5 (0.1) BZQ C - 0.683 y 1
2FGLJ2029.4+4924 J202939.87+492622.2 NVSSJ202939+492621 0.88(0.03) 2.49(0.03) 2.24(0.04) UND C v ? y 0
2FGLJ2149.6+0326 J214941.86+032251.6 NVSSJ214941+032250 0.91(0.04) 2.53(0.05) 2.01(0.15) BZB C M ? y 0
2FGLJ2159.9+1023 J215955.02+103041.9 - 1.22(0.04) 2.96(0.06) 2.26(0.18) BZQ C - ? n 1
2FGLJ2352.0+1753 J235205.83+174913.8 NVSSJ235205+174914 0.94(0.04) 2.47(0.07) 2.07(0.26) BZB C M ? y 1
Table 9List of all candidate blazars associated to the 2FB sources. The explanation of the content of the columns can be found in the notes of Table LABEL:tab:catalogsample2fb.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
225497
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description