Universal correlations in the nuclear symmetry energy, slope parameter, and curvature

Universal correlations in the nuclear symmetry energy, slope parameter, and curvature

Jeremy W. Holt holt@physics.tamu.edu Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA    Yeunhwan Lim ylim@tamu.edu Cyclotron Institute, Texas A&M University, College Station, TX 77843, USA
July 27, 2019

From general Fermi liquid theory arguments, we derive correlations among the symmetry energy (), its slope parameter (), and curvature () at nuclear matter saturation density. We argue that certain properties of these correlations do not depend on details of the nuclear forces used in the calculation. We derive as well a global parametrization of the density dependence of the symmetry energy that we show is more reliable, especially at low densities, than the usual Taylor series expansion around saturation density. We then benchmark these predictions against explicit results from chiral effective field theory.

Nuclear Symmetry energy; EFT; Skyrme EDF

The nuclear isospin-asymmetry energy, which characterizes the energy cost of converting protons into neutrons in an interacting many-body system, is an important organizing concept linking the properties of atomic nuclei to the structure and dynamics of neutron stars. In particular the isospin-asymmetry energy governs the proton fraction of dense matter in beta equilibrium, the thickness of neutron star crusts, and the typical radii of neutron stars Lattimer and Prakash (2000, 2001); Steiner et al. (2005); Lattimer and Lim (2013); Steiner and Gandolfi (2012); Gandolfi et al. (2012). For these reasons the nuclear isospin-asymmetry energy is a primary focus of experimental investigations at current and next-generation rare-isotope facilities such as the Radioactive Isotope Beam Factory (RIBF), the Facility for Antiproton and Ion Research (FAIR), and the Facility for Rare Isotope Beams (FRIB).

In recent years, theoretical Xu et al. (2010); Kortelainen et al. (2010); Hebeler et al. (2010); Gandolfi et al. (2012); Holt and Kaiser (2017) and experimental Shetty et al. (2007); Tsang et al. (2009); Centelles et al. (2009); Chen et al. (2010); Carbone et al. (2010) studies have reduced the uncertainties on the isospin-asymmetry energy at and below the density scales of normal nuclei, but more challenging is to derive constraints at the higher densities reached in the cores of neutron stars. Given the experimental difficulties of creating and studying high-density, low-temperature matter in the lab, an alternative strategy has been to extract the coefficients in the Taylor series expansion of the isospin-asymmetry energy about nuclear matter saturation density. For instance, the slope parameter has been shown to correlate strongly with neutron skin thicknesses in nuclei Centelles et al. (2009); Roca-Maza et al. (2011); Viñas et al. (2014), nuclear electric dipole polarizabilities Reinhard and Nazarewicz (2010); Tamii et al. (2011); Piekarewicz et al. (2012); Roca-Maza et al. (2015); Hashimoto et al. (2015); Tonchev et al. (2017), and the difference in charge radii of mirror nuclei Brown (2017); Yang and Piekarewicz (2018). Determining the isospin-asymmetry energy curvature is more challenging Vidaña et al. (2009); Ducoin et al. (2011); Santos et al. (2014) with larger associated uncertainties.

A feature observed in many experimental and theoretical investigations is a nearly linear correlation between the value of the isospin-asymmetry energy at nuclear matter saturation density, its slope, and curvature (for a recent comprehensive analysis, see Ref. Tews et al. (2017)). In Ref. Holt and Kaiser (2017) it was shown that even chiral nuclear potentials at next-to-leading order (NLO), which are rather simplistic and contain no three-body forces, exhibit a correlation slope consistent with previous microscopic calculations at N2LO and N3LO in the chiral expansion. This suggests that certain aspects of the correlation are ultimately associated with low-energy physics well described even at next-to-leading order in the chiral expansion. In the present work we will demonstrate that this is indeed the case and that the slope of the correlation can be derived without referring to detailed properties of the nucleon-nucleon potential. The overall scale is then set by a few constants that can in principle be extracted from the properties of low-density homogeneous matter. We also show that the same arguments can be used to derive the slope of the correlation between the symmetry energy and its curvature at nuclear matter saturation density.

We take as a starting point the nuclear symmetry energy , which is defined as the difference in the energy per nucleon between neutron matter and symmetric nuclear matter at a given density:


where is the total baryon number density, is the total baryon number, and is the isospin asymmetry parameter. A Maclaurin expansion of the nuclear equation of state around symmetric nuclear matter


is in general Kaiser (2015); Wellenhofer et al. (2016) noncovergent due to the appearance of nonanalytic logarithm terms that appear beyond a mean field description of the nuclear equation of state:


However, all contributions beyond the quadratic term , which we call the isospin-asymmetry energy, have been shown to be small at low temperatures when realistic nuclear forces are employed Bombaci and Lombardo (1991); Lee et al. (1998); Zuo et al. (1999, 2002); Frick et al. (2005); Drischler et al. (2014); Wellenhofer et al. (2016). It is therefore a good approximation to identify the nuclear symmetry energy with the isospin-asymmetry energy . In practice it is the latter quantity that can be inferred from laboratory measurements of finite nuclei.

Figure 1: (color online) Symmetry energy vs. its slope parameter from the seven chiral nuclear potentials considered in this work. The bands are obtained by keeping all terms up to (red dotted), (blue dashed), and (black solid) in Eq. (11).

It is common to expand the density dependence of the isospin-asymmetry energy in a Taylor series around nuclear saturation:


where . The parameters and can then be extracted from properties of finite nuclei Dutra et al. (2012), but their uncertainties are much larger than that associated with the isospin-asymmetry energy. For this reason correlations between the nuclear symmetry energy, the slope parameter, and curvature are routinely investigated within a range of theoretical models Chen et al. (2009); Danielewicz and Lee (2009); Vidaña et al. (2009); Xu et al. (2010); Ducoin et al. (2011); Santos et al. (2014); Tews et al. (2017).

In Fermi liquid theory the nuclear isospin-asymmetry energy is rigorously defined at all densities in terms of the isotropic component of the isovector-scalar quasiparticle interaction according to


where is the Fermi momentum and the nucleon effective mass is related to the Fermi liquid parameter through


These Fermi liquid parameters are obtained by performing a Legendre polynomial decomposition of the central quasiparticle interaction


in the relative angle . Expanding Eq. (5) we obtain


The relationship in Eq. (8) can be used to derive a correlation between the symmetry energy slope parameter and the symmetry energy at nuclear matter saturation density:


where  fm is nuclear matter saturation density, is the Fermi momentum at saturation density, and is the noninteracting part of the isospin-asymmetry energy at saturation density. To study the additional correlation between and associated with the density derivative terms on the right-hand side of Eq. (12), we perform a Taylor series expansion of the quantity around a small reference density set by :


where .

In principle the choice of reference Fermi momentum is arbitrary, but we note several constraints. First, logarithmic contributions to the isospin-asymmetry energy of the form arise from the one-pion-exchange Fock diagram Kaiser (2002) and formally require that  fm in order for the Taylor series to be convergent at nuclear matter saturation density. Second, should be small enough that a reliable calculation of the Fermi liquid parameters and may be achieved within chiral effective field theory whose formal expansion parameter at the reference density would be , where  MeV is a typical momentum-space cutoff scale in realistic chiral nucleon-nucleon potentials. The effect of the less certain three-body forces, which start contributing to the homogeneous matter equation of state at a density  fm Hebeler and Schwenk (2010); Wlazłowski et al. (2014); Tews et al. (2016), should also be minimized. From these considerations we choose the reference Fermi momentum  fm MeV, which satisfies , where is the Fermi momentum of nuclear matter at saturation density. We will show later that this value, which corresponds to the density  fm, is large enough that keeping the first three terms in the Taylor series expansion in Eq. (10) provides a good description of the isospin-asymmetry energy somewhat above nuclear saturation density, even though formally the series fails to converge in that regime.

Only the terms in Eq. (10) proportional to and result in additional correlations between and . Our strategy is therefore to absorb the dependence of the vs.  correlation on the choice of nuclear interaction into the coefficient , which we expect to be very similar for different nuclear force models. Combining Eqs. (10) and (12) and defining , we find the unique solution


where . This rearrangement simultaneously minimizes the residual importance of and after we have included their effect on the vs.  correlation through the term . For instance, if  fm, then and . We therefore expect to give the dominant contribution to the last term on the right-hand side of Eq. (11).

Figure 2: (Color online) Symmetry energy vs. its curvature parameter from the seven chiral nuclear potentials considered in this work. The bands are obtained by keeping all terms up to (red dotted), (blue dashed), and (black solid) in Eq. (13).

In Fig. 1 we show the values of the symmetry energy and its slope parameter at nuclear matter saturation density for a set of seven realistic nuclear potentials Entem and Machleidt (2003); Coraggio et al. (2013, 2014); Sammarruca et al. (2015) at different orders in the chiral expansion and different values of the momentum-space cutoff : {N1LO_450, N1LO_500, N2LO_450, N2LO_500, N3LO_414, N3LO_450, N3LO_500}. Since the equation of state of pure neutron matter is well converged in many-body perturbation theory up to nuclear matter saturation density using modern chiral effective field theory forces with  MeV Holt and Kaiser (2017), we compute in Fig. 1 the symmetry energy assuming a symmetric nuclear matter saturation density  fm and a saturation binding energy of  MeV. The error bars on the data points arise from varying the saturation density within the above range. We can also extract the isospin-asymmetry energy directly from a calculation of the quasiparticle interaction in Fermi liquid theory starting from chiral two- and three-body forces as described in Refs. Holt et al. (2011, 2012, 2013, 2017). In Fig. 1 we show as well the correlation bands obtained by keeping in Eq. (11) only the term (red-dotted lines), the and terms (blue-dashed lines), and all three terms , , and (black solid lines) by fitting the density-dependent isospin-asymmetry energy from Eqs. (8) and (10) over the range  fm fm for each of the seven chiral nuclear forces considered in this work. We see that indeed the model-independent prediction for the slope of the vs.  correlation, , is well satisfied by all N1LO, N2LO, and N3LO chiral nuclear forces. We also observe that the size of the uncertainty band is set already from the uncertainties in and that the inclusion of and leads primarily to a shift of the band.

Figure 3: (Color online) Combination of the Fermi liquid parameters associated with the isospin-asymmetry energy as a function of Fermi momentum. The solid lines are fit functions of the form given in Eq. (10) over the range  fm fm.
Figure 4: (Color online) Left: nuclear isospin-asymmetry energy as a function of density from various Skyrme force models. Right: nuclear isospin-asymmetry energy as a function of density from various chiral nuclear forces. Note that in both figures we have introduced a vertical offset to better distinguish the different curves.

We can extend this analysis to derive an additional correlation between the symmetry energy incompressibility and :


By again minimizing the explicit dependence on and we obtain the unique solution


where . Now for  fm, we obtain and therefore we expect the residual importance of and to be greater than in the vs.  correlation. Nevertheless, we have derived a second universal slope parameter for the vs.  correlation that is independent of details of the nuclear force employed.

In Fig. 2 we show the values of the symmetry energy and curvature at nuclear saturation density using the same set of chiral potentials. The largest source of uncertainty (represented by the error bars on the correlation points) is the assumed value the symmetric nuclear matter incompressibility  MeV Youngblood et al. (1999); Shlomo et al. (2006). We show as well the correlation bands obtained by keeping in Eq. (13) only the term (red-dotted lines), the and terms (blue-dashed lines), and all three terms , , and (black solid lines). Again we see that the slope of the correlation is well determined from our model-independent analysis and that the overall spread in the uncertainty band is set with the inclusion of only the term in Eq. (13).

In Fig. 3 we show the Fermi momentum dependence of the quantity for the seven chiral potentials considered in this work. We note that the N3LO_500 chiral potential exhibits the poorest convergence in many-body perturbation theory, which may account for its different low-density behavior. When fitting the theoretical results with the functional form given in Eq. (10), we include only the points for which  fm. For smaller values of the Fermi momentum, we found that third-order perturbative contributions (not included explicitly in this work) become important. We see that indeed the functional form in Eq. (10) is able to well reproduce the Fermi momentum dependence of the Fermi liquid parameters up to  fm. We find for the values of the expansion coefficients:  fm,  fm, and  fm averaged over the seven chiral potentials. Combined with the expansion parameter , we see that the explicit calculations suggest a convergent series at nuclear matter saturation density.

Finally we observe that the ansatz for the density dependence of the isospin-asymmetry energy in Eqs. (8) and (10) produces the first four terms in the general expansion


Combining Eq. (14) with the definition of the symmetry energy parameters in Eq. (4), we obtain


These expressions are of course independent of the choice of reference Fermi momentum . In Fig. 4 we show the accuracy of this global parametrization (solid lines) compared to the normal Taylor series expansion about nuclear saturation density (dashed lines) in Eq. (4). We show results for both a representative set of Skyrme mean field models (on the left) as well as the seven chiral interactions (on the right). We note that a vertical offset is used in order to separate the curves. In general the Taylor expansion in Eq. (4) does not reproduce well the low-density behavior of the isospin-asymmetry energy, especially in the case of chiral nuclear interactions. Each Skyrme force model contains a density-dependent interaction with corresponding contribution to the symmetry energy


where and are independent of density. For example, UNEDF1 Kortelainen et al. (2012), SLy4 Chabanat et al. (1998), NAPR Steiner et al. (2005), and SkI4 Reinhard and Flocard (1995) have the values , while the Sk450 Lim and Holt (2017) interaction has the two parameters . Thus, the fitting function in Eqs. (14) and (15) is quite flexible, and we suggest that it may provide a more useful global parametrization of the nuclear isospin-asymmetry energy.

In summary we have derived correlations between the nuclear isospin-asymmetry energy, its slope parameter, and curvature within a Fermi liquid theory description of nuclear matter. We derived universal slope parameters for the vs.  and vs.  correlations that are nearly independent of details of the nuclear interaction. We have assumed only that the quasiparticle interaction in nuclear matter at the low density scale set by  fm should be well described by any realistic nucleon-nucleon potential fitted to scattering phase shifts. Future efforts to reduce the theoretical uncertainties on the Fermi liquid parameters at this low-density scale may then give more stringent constraints on the symmetry energy correlation curves.


Work supported by the National Science Foundation under grant No. PHY1652199.


  • Lattimer and Prakash (2000) J. M. Lattimer and M. Prakash, Phys. Rept. 333-334, 121 (2000).
  • Lattimer and Prakash (2001) J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).
  • Steiner et al. (2005) A. W. Steiner, M. Prakash, J. M. Lattimer,  and P. Ellis, Phys. Rept. 411, 325 (2005).
  • Lattimer and Lim (2013) J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013).
  • Steiner and Gandolfi (2012) A. Steiner and S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012).
  • Gandolfi et al. (2012) S. Gandolfi, J. Carlson,  and S. Reddy, Phys. Rev. C 85, 032801 (2012).
  • Xu et al. (2010) C. Xu, B.-A. Li,  and L.-W. Chen, Phys. Rev. C 82, 054607 (2010).
  • Kortelainen et al. (2010) M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M. V. Stoitsov,  and S. Wild, Phys. Rev. C 82, 024313 (2010).
  • Hebeler et al. (2010) K. Hebeler, J. M. Lattimer, C. J. Pethick,  and A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010).
  • Holt and Kaiser (2017) J. W. Holt and N. Kaiser, Phys. Rev. C 95, 034326 (2017).
  • Shetty et al. (2007) D. V. Shetty, S. J. Yennello,  and G. A. Souliotis, Phys. Rev. C 76, 024606 (2007).
  • Tsang et al. (2009) M. B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W. G. Lynch,  and A. W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).
  • Centelles et al. (2009) M. Centelles, X. Roca-Maza, X. Viñas,  and M. Warda, Phys. Rev. Lett. 102, 122502 (2009).
  • Chen et al. (2010) L.-W. Chen, C. M. Ko, B.-A. Li,  and J. Xu, Phys. Rev. C 82, 024321 (2010).
  • Carbone et al. (2010) A. Carbone, G. Colò, A. Bracco, L.-G. Cao, P. F. Bortignon, F. Camera,  and O. Wieland, Phys. Rev. C 81, 041301 (2010).
  • Roca-Maza et al. (2011) X. Roca-Maza, M. Centelles, X. Viñas,  and M. Warda, Phys. Rev. Lett. 106, 252501 (2011).
  • Viñas et al. (2014) X. Viñas, M. Centelles, X. Roca-Maza,  and M. Warda, Eur. Phys. J. A 50, 27 (2014).
  • Reinhard and Nazarewicz (2010) P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303 (2010).
  • Tamii et al. (2011) A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011).
  • Piekarewicz et al. (2012) J. Piekarewicz, B. K. Agrawal, G. Colò, W. Nazarewicz, N. Paar, P.-G. Reinhard, X. Roca-Maza,  and D. Vretenar, Phys. Rev. C 85, 041302 (2012).
  • Roca-Maza et al. (2015) X. Roca-Maza, X. Viñas, M. Centelles, B. K. Agrawal, G. Colò, N. Paar, J. Piekarewicz,  and D. Vretenar, Phys. Rev. C 92, 064304 (2015).
  • Hashimoto et al. (2015) T. Hashimoto et al., Phys. Rev. C 92, 031305 (2015).
  • Tonchev et al. (2017) A. Tonchev, N. Tsoneva, C. Bhatia, C. Arnold, S. Goriely, S. Hammond, J. Kelley, E. Kwan, H. Lenske, J. Piekarewicz, R. Raut, G. Rusev, T. Shizuma,  and W. Tornow, Phys. Lett. B 773, 20 (2017).
  • Brown (2017) B. A. Brown, Phys. Rev. Lett. 119, 122502 (2017).
  • Yang and Piekarewicz (2018) J. Yang and J. Piekarewicz, Phys. Rev. C 97, 014314 (2018).
  • Vidaña et al. (2009) I. Vidaña, C. m. c. Providência, A. Polls,  and A. Rios, Phys. Rev. C 80, 045806 (2009).
  • Ducoin et al. (2011) C. Ducoin, J. Margueron, C. m. c. Providência,  and I. Vidaña, Phys. Rev. C 83, 045810 (2011).
  • Santos et al. (2014) B. M. Santos, M. Dutra, O. Lourenço,  and A. Delfino, Phys. Rev. C 90, 035203 (2014).
  • Tews et al. (2017) I. Tews, J. M. Lattimer, A. Ohnishi,  and E. E. Kolomeitsev, Astrophys. J. 848, 105 (2017).
  • Kaiser (2015) N. Kaiser, Phys. Rev. C 91, 065201 (2015).
  • Wellenhofer et al. (2016) C. Wellenhofer, J. W. Holt,  and N. Kaiser, Phys. Rev. C 93, 055802 (2016).
  • Bombaci and Lombardo (1991) I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).
  • Lee et al. (1998) C.-H. Lee, T. T. S. Kuo, G. Q. Li,  and G. E. Brown, Phys. Rev. C 57, 3488 (1998).
  • Zuo et al. (1999) W. Zuo, I. Bombaci,  and U. Lombardo, Phys Rev C 60, 024605 (1999).
  • Zuo et al. (2002) W. Zuo, A. Lejeune, U. Lombardo,  and J. F. Mathiot, Eur. Phys. J. A 14, 469 (2002).
  • Frick et al. (2005) T. Frick, H. Müther, A. Rios, A. Polls,  and A. Ramos, Phys. Rev. C 71, 014313 (2005).
  • Drischler et al. (2014) C. Drischler, V. Somà,  and A. Schwenk, Phys. Rev. C 89, 025806 (2014).
  • Dutra et al. (2012) M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone,  and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).
  • Chen et al. (2009) L.-W. Chen, B.-J. Cai, C. M. Ko, B.-A. Li, C. Shen,  and J. Xu, Phys. Rev. C 80, 014322 (2009).
  • Danielewicz and Lee (2009) P. Danielewicz and J. Lee, Nuclear Physics A 818, 36 (2009).
  • Kaiser (2002) N. Kaiser, Nucl. Phys. A697, 255 (2002).
  • Hebeler and Schwenk (2010) K. Hebeler and A. Schwenk, Phys. Rev. C 82, 014314 (2010).
  • Wlazłowski et al. (2014) G. Wlazłowski, J. W. Holt, S. Moroz, A. Bulgac,  and K. Roche, Phys. Rev. Lett. 113, 182503 (2014).
  • Tews et al. (2016) I. Tews, S. Gandolfi, A. Gezerlis,  and A. Schwenk, Phys. Rev. C 93, 024305 (2016).
  • Entem and Machleidt (2003) D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).
  • Coraggio et al. (2013) L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt,  and F. Sammarruca, Phys. Rev. C 87, 014322 (2013).
  • Coraggio et al. (2014) L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt, L. E. Marcucci,  and F. Sammarruca, Phys. Rev. C 89, 044321 (2014).
  • Sammarruca et al. (2015) F. Sammarruca, L. Coraggio, J. W. Holt, N. Itaco, R. Machleidt,  and L. E. Marcucci, Phys. Rev. C 91, 054311 (2015).
  • Holt et al. (2011) J. W. Holt, N. Kaiser,  and W. Weise, Nucl. Phys. A870-871, 1 (2011).
  • Holt et al. (2012) J. W. Holt, N. Kaiser,  and W. Weise, Nucl. Phys. A876, 61 (2012).
  • Holt et al. (2013) J. W. Holt, N. Kaiser,  and W. Weise, Phys. Rev. C 87, 014338 (2013).
  • Holt et al. (2017) J. W. Holt, N. Kaiser,  and T. R. Whitehead, arXiv:1712.05013  (2017).
  • Youngblood et al. (1999) D. H. Youngblood, H. L. Clark,  and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).
  • Shlomo et al. (2006) S. Shlomo, V. M. Kolomietz,  and G. Colò, Eur. Phys. J. A 30, 23 (2006).
  • Kortelainen et al. (2012) M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov,  and S. M. Wild, Phys. Rev. C 85, 024304 (2012).
  • Chabanat et al. (1998) E. Chabanat, P. Bonche, P. Haensel, J. Meyer,  and R. Schaeffer, Nucl. Phys. A635, 231 (1998).
  • Reinhard and Flocard (1995) P.-G. Reinhard and H. Flocard, Nucl. Phys. A584, 467 (1995).
  • Lim and Holt (2017) Y. Lim and J. W. Holt, Phys. Rev. C 95, 065805 (2017).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description