The Palermo Swift-BAT hard X-ray catalogue

The Palermo Swift-BAT hard X-ray catalogue

III. Results after 54 months of sky survey
G. Cusumano INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    V. La Parola INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    A. Segreto INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    C. Ferrigno INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy Institut für Astronomie und Astrophysik Tübingen (IAAT) ISDC Data Centre for Astrophysics, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland    A. Maselli INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    B. Sbarufatti INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    P. Romano INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    G. Chincarini Università degli studi di Milano-Bicocca, Dipartimento di Fisica, Piazza delle Scienze 3, I-20126 Milan, Italy INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy    P. Giommi ASI Science Data Center, via Galileo Galilei, 00044 Frascati, Italy    N. Masetti INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna, Italy    A. Moretti INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy    P. Parisi INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna, Italy Dipartimento di Astronomia, Università di Bologna, Via Ranzani 1, I-40127 Bologna, Italy    G. Tagliaferri INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy
Key Words.:
X-rays: general - Catalog - Surveys
offprints: G. Cusumano, cusumano@ifc.inaf.it
Abstract

Context:

Aims:We present the Second Palermo Swift-BAT hard X-ray catalogue obtained by analysing data acquired in the first 54 months of the Swift mission.

Methods:Using our software dedicated to the analysis of data from coded mask telescopes, we analysed the BAT survey data in three energy bands (15–30 keV, 15–70 keV, 15–150 keV), obtaining a list of 1256 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts is pursued using two strategies: the analysis of field observations of soft X-ray instruments and cross-correlation of our catalogue with source databases.

Results:The survey covers 50% of the sky to a 15–150 keV flux limit of erg cm s and erg cm s for and , respectively. The Second Palermo Swift-BAT hard X-ray catalogue includes 1079 (%) hard X-ray sources with an associated counterpart (26 with a double association and 2 with a triple association) and 177 BAT excesses (%) that still lack a counterpart. The distribution of the BAT sources among the different object classes consists of Galactic sources, extragalactic sources, and sources with a counterpart at softer energies whose nature has not yet been determined. About half of the BAT associated sources lack a counterpart in the ROSAT catalogues. This suggests that either moderate or strong absorption may be preventing their detection in the ROSAT energy band. The comparison of our BAT catalogue with the Fermi Large Area Telescope First Source Catalogue identifies 59 BAT/Fermi correspondences: 48 blazars, 3 Seyfert galaxies, 1 interacting galaxy, 3 high mass X-ray binaries, and 4 pulsars/supernova remnants. This small number of correspondences indicates that different populations make the sky shine in these two different energy bands.

Conclusions:

1 Introduction

The Burst Alert Telescope (BAT; Barthelmy et al., 2005) onboard the Swift observatory (Gehrels et al., 2004) is a coded-aperture imaging camera operating in the 15–150 keV energy range with a large field of view (1.4 steradian half coded) and a point spread function (PSF) of 17 arcmin (full width half maximum). The telescope is mainly devoted to the monitoring of a large fraction of the sky for the occurrence of gamma ray bursts (GRBs). While waiting for new GRBs, BAT continuously collects spectral and imaging information about the sky, covering a fraction of between 50% and 80% of the sky every day, providing the opportunity for a substantial gain in our knowledge of the Galactic and extragalactic sky in the hard X–ray domain and increasing the sample of objects that contribute to the luminosity in this energy range. The first results of the BAT survey were presented in Markwardt et al. (2005), Ajello et al. (2008a), Ajello et al. (2008b), Tueller et al. (2008), Tueller et al. (2010), Cusumano et al. (2010), and Maselli et al. (2010). The First Palermo Swift-BAT hard X-ray catalogue (Cusumano et al., 2010) contains a list of 754 hard X-ray sources with an associated counterpart detected in the first 39 months of the Swift mission. Among them, % are extragalactic, % are Galactic objects, % are already known X-ray or -ray emitters whose nature has not yet been determined.

In this paper, we provide the Second Palermo Swift-BAT hard X-ray catalogue obtained from the analysis of the data relative to the first 54 months of the Swift mission and including 1256 BAT high-energy sources. The paper is organised as follows: in Sect. 2, we describe the screening and the analysis of the BAT survey data and the global survey properties; in Sect. 3, we illustrate our analysis strategy; in Sect. 4, we describe the counterpart association strategy; the 54-month catalogue and its properties are described in Sects. 5 and 6. Then, in Sect. 7 we summarise our results.

The cosmology adopted in this work assumes km s Mpc, k=0, , and . Quoted errors are at confidence level, unless otherwise specified.

2 The BAT survey data

The results presented in this paper were obtained by analising the first 54 months of BAT survey data, from 2004 December to the end of 2009 May. The data were retrieved from the Swift public archive111http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl in the form of detector plane histograms (DPH): three-dimensional arrays (two spatial dimensions, one spectral dimension) that collect count-rate data in 5-minute time bins for 80 energy channels.

To process the survey data, we developed and applied a code that performs screening, mosaicking, and source detection on data from coded mask instruments. This code is described in detail in Segreto et al. (2010). To screen out poor quality files from the data set, we rejected the DPHs:

  • with unstable spacecraft attitude (i.e., with a significant variation in pointing coordinates).

  • produced near the SAA and characterized by a count rate much higher than the average value.

  • affected by inaccurate position reconstruction. This was verified through a pre-analysis procedure where the position of the sources detected in single DPHs was checked against a list of hard X-ray sources and transients (see Cusumano et al., 2010 for details).

  • that were very noisy, i.e., with a standard deviation in the count rate (subtracted of both bright sources and background) significantly larger (a factor of 2) than that expected from statistics.

After the screening based on these criteria, the usable archive has a total nominal exposure time of 100 Ms, corresponding to % of the total survey exposure time during the period under investigation.

Figure 1: Fraction of the sky (top: , bottom: ) covered by the BAT survey as a function of the 15–150 keV detection limiting flux for a detection threshold of 4.8 standard deviations. Different colours refer to different survey epochs. The insets show the limiting flux achieved for 50% of the sky as a function of time; the best fit is a power law consistent with t.

Figure 1 shows the sky coverage, defined as the fraction of the sky covered by the survey as a function of the 15–150 keV detection limiting flux, at different survey epochs starting from the beginning of the mission. The limiting flux of a given sky direction is calculated by multiplying the local image noise by a detection threshold of standard deviations. We derived the sky fraction for two sky regions (top panel: , bottom panel: ). The 54-month BAT survey covers 50% of the sky to a flux limit of erg cm s and erg cm s for and , respectively. The insets in Fig. 1 show the limiting flux achieved for 50% of the sky as a function of the cumulative observing time of the screened BAT survey data; the data are modelled well with a power law (Nt, where N= erg cm sand for and N= erg cm sand for ), both being consistent with the t behaviour expected if the statistical errors dominate over the systematic ones.

The minimum detection limiting flux is not fully uniform on the sky. Figure 2 shows the limiting flux map in Galactic Aitoff projection, with the ecliptic coordinates grid superimposed. The Galactic centre and the ecliptic plane are characterized by a poorer sensitivity because of high contamination from intense Galactic sources and to the observing constraints on the Swift spacecraft. The highest flux sensitivity is achieved close to the ecliptic poles, where a detection flux limit of erg cm s is reached; the lowest flux sensitivity is in the region of the Galactic centre with a detection flux limit of erg cm s.

Figure 2: Map of the limiting flux of the 54-month BAT survey in the 15–150 keV band, projected in Galactic Aitoff coordinates, with the ecliptic coordinates grid superimposed. The colour bar shows the scale in erg cm s.

We produced all-sky maps in three energy bands (15–30 keV, 15–70 keV and 15–150 keV) using the HEALPIX-based all-sky spherical grid projection (Górski et al., 2005) with a pixel size of 2.5 arcmin radius.

For each of these energy ranges, we derived a signal-to-noise ratio (S/N) map as the ratio of the mosaic intensity to the associated statistical error. Figure 3 shows the distribution of the significance in the 15–150 keV energy range. This distribution is well described by a Gaussian curve with zero mean and unitary variance, except for the positive tail caused by hard X-ray emitters. The same result was also obtained for the significance maps in the other two energy ranges.

Figure 3: Distribution of pixel significance in the BAT all-sky map. The continuous curve is the result of a Gaussian fit obtained by excluding the distribution tail. The best-fit model parameters are consistent with a mean and standard deviation of 0.0 and 1.0, respectively.

3 Detection strategy

The source detection was performed by searching for local excesses in the S/N maps, then refining their position and peak significance using a local bidimensional fit. Detections with peak significance greater than 4.8 standard deviations were included in our list of detected sources.

Adopting this threshold, we expected spurious detections on each all-sky map: this number was evaluated by applying the detection algorithm to several all-sky maps obtained from simulated empty field observations. Therefore, the total number of spurious detections was between 15 and 45 ( to of the total number of our detections, see below), the best case occurring if each noise fluctuation above the threshold appeared simultaneously in all the three bands, the worst case occurring if each fluctuation appeared only in one energy band.

The final catalogue is built by cross-correlating and merging the detection catalogues obtained in the three energy bands: source candidates detected in the sky maps of different energy bands were merged and reported in the final catalogue as a single source candidate if their positions were consistent within the relevant error box (95% containment radius, Segreto et al., 2010).

We obtained a list of 1256 source candidates detected in at least one of the three energy bands: 806 sources were detected in all the three energy bands, 230 in two energy bands, and 220 in only one of the three energy bands (74, 59, and 87 in the 15–150 keV, 15–30 keV, and 15–70 keV map, respectively). We assume the most accurate source coordinates to be those obtained in the sky map with the highest detection significance.

4 Association strategy

To find the most likely counterpart to the detected BAT hard X-ray excesses, we applied two different strategies: an analysis of archival soft X-ray observations (strategy A) and a cross-correlation with a list of possible counterparts (strategy B).

4.1 Strategy A

We analysed all the available soft X-ray archival observations whose field of view covers the position of the BAT source candidates. We first considered the huge set of Swift-XRT observations, many of which were performed for this purpose. A total of 751 sky positions of the BAT source candidates were covered by XRT observations. We applied a blind detection algorithm to the XRT images using ximage v4.0. We assumed that an XRT source was the counterpart of a BAT detection if its position was within a 6 arcmin radius error circle (99.7% confidence level for a source detection at 4.8 standard deviations, Segreto et al., 2010) and its rate was higher than count s in the 0.2-10 keV energy range or higher than count s in the 3-10 keV energy range (criterion 1). These two thresholds were derived by assuming that a source is detected at about the survey limiting flux ( erg cm s, see Fig. 1) and extrapolating the XRT count rate to a power-law spectral energy distribution of photon index and an absorbing column cm cm and allow us to associate either faint or very absorbed sources with the BAT detection. We found that 595 BAT excesses could be associated with a single XRT source, while 60 BAT excesses could be associated with more than one XRT source (42 with a double association and 18 with a triple association). In the latter cases, we associate to the BAT excess the XRT source with either a 0.2-10 keV or 3-10 keV count rate at least a factor of 5 brighter than the other candidates in the field (criterion 2). This criterion leaves only 8 BAT excesses with a double XRT association, which are reported in the catalogue. The number of XRT counterpart candidates rejected after applying of this criterion is . For 96 of the BAT source candidates covered by an XRT observation, we were unable to detect any soft X-ray counterpart.

To evaluate the number of expected spurious associations, we collected a large sample (365) of XRT observations of GRB fields, using only late follow-ups (where the GRB afterglow had faded) with a similar exposure time distribution as the XRT pointings of the BAT sources. We searched for sources within a 6.0 arcmin error circle centred on the nominal pointing position in each of these fields (excluding any GRB residual afterglow) and satisfying criterion 1. We detected 33 sources that, normalized to the number of XRT follow-ups (), is consistent with the number (70) of XRT sources that survived criterion 1 but were rejected by criterion 2. Therefore, the number of expected spurious associations can be assumed to be negligible.

For the BAT positions not covered by XRT observations, we searched for pointed archival observations with other X-ray instruments, in the following order: Beppo-SAX, ASCA, Newton-XMM, Chandra, ROSAT. We did not use ROSAT observations performed during the ROSAT All Sky Survey campaign: the list of sources extracted from this campaign (Voges et al., 1999) was used in strategy B (see Sect. 4.2). A threshold criterion analogous to that applied to the Swift-XRT observations was used to select the most reliable association. The rate thresholds for criterion 1 for each instrument were derived by converting the Swift-XRT count rate threshold to the relevant equivalent count rate assuming a power law with a photon index and an absorbing column of . For ROSAT, only a 0.2–2.4 keV rate threshold was applied. A total of 288 of the BAT source candidates positions not observed with Swift-XRT were covered by observations of these other X-ray telescopes. We identified 275 unambiguous associations and 5 double possible associations. To resolve the ambiguity in these cases, we applied criterion 2 as for XRT, finding no BAT excesses for more than one possible source association. Since we applied the same threshold criteria as for Swift-XRT, we can confidently assume a negligible number of spurious associations.

Finally, the identification of the soft X-ray counterpart was performed by searching in the SIMBAD222http://simbad.u-strasbg.fr/simbad/ and NED333http://nedwww.ipac.caltech.edu/ databases within the soft X-ray error box. In the few cases where the soft X-ray counterpart is an unknown source, we report it in our catalogue as a new source with a name composed by the PBCX acronym (Palermo BAT Catalogue X-ray source) followed by its soft X-ray coordinates with the precision of 1.5 arcsec in RA and 1 arcsec in Dec.

With strategy A we were able to associate 920 BAT excesses to a single softer counterpart and 8 BAT excesses to a double softer counterpart. 328 BAT excesses still lacking an association.

Figure 4: Cumulative distribution of the number of BAT excesses not associated with strategy A having at least one of the strategy B list sources (see Sect 4) within a given distance (red stepped line). The green continuous line represents the number of spurious associations evaluated using Eq. 1, while the black dashed line is the mean number of spurious associations evaluated by using a control sample of sky positions generated by scrambling the coordinates of the BAT excesses. The blue stepped line represents the true associations obtained as the difference between the red stepped line and the green continuous line. The vertical dotted line marks the radius (6.8 arcmin) that produces 5% of spurious associations.

4.2 Strategy B

To find an association for the 328 BAT excesses still lacking an association, we adopted the following strategy. We compiled a list of possible counterparts (hereafter strategy B source list: SBSL) merging the following catalogues:

  • high and low mass X-ray binaries, cataclysmic variables, supernova remnants and pulsars, Seyfert galaxies, unclassified AGNs, cluster of galaxies, interacting galaxies, LINERs, and -ray sources, whose lists were extracted from the SIMBAD database on January 2010;

  • the Roma-BZCAT (Massaro et al., 2009);

  • the ROSAT All Sky Survey (RASS) Bright source catalogue (Voges et al., 1999).

The resulting catalogue contains 829 sources.

The number of BAT excesses for which at least one SBSL source was within a specified distance R is represented by the red stepped line in Fig. 4.

Assuming that of the BAT excesses have a counterpart in a generic catalogue of sources evenly distributed across the sky with a density , the number of expected spurious associations generated by the sources without a counterpart in the catalogue is expressed by

(1)

To a first approximation we assumed that SBSL is uniformly distributed across the sky, so we apply the above expression with . Since is not known in advance, we used the following procedure: we increased with a unitary step and evaluated the difference between and . after increasing the correlation radius, this curve flattens because no further true associations are obtained. This happens for . The blue stepped line in Fig. 4 shows and the green continuous line represents .

As a further check, we defined a control sample, by generating 1000 lists of sky positions: to preserve the Galactic coordinate distribution we scrambled the arrays of Galactic latitude and longitude of the BAT coordinate excesses and then extracted 133 couples of coordinates from these scrambled arrays. The mean number of spurious associations was then evaluated as a function of the association radius (Fig. 4, dashed line). This curve is in perfect agreement with the analytical one (green continuous line) out to 8 arcmin and increases in size more slowly at larger distance. We verified that this difference is due to the inhomogeneity in SBSL and in particular to the clustering of sources in regions covered by deep optical surveys.

The ratio of to is an estimate of the fraction of spurious association as a function of the association radius. We decided to accept a maximum of 5% of spurious associations that correspond to an association radius of 6.8 arcmin. With this strategy, we associate 151 BAT sources with counterparts (131 with a single counterpart, 18 with a double counterpart, and 2 with a triple counterpart). The expected number of spurious associations is 6.8 2.5.

As a result of these two association procedures, we found that 1079 BAT sources have at least an associated counterpart (1051 with a single counterpart, 26 with a double counterpart, and 2 with a triple counterpart) and that 177 sources still lack a counterpart. The probability of spurious association is negligible for sources associated with strategy A and 5% for those associated with strategy B.

In Fig. 5, we plot the offsets of each BAT source excess with respect to its associated counterpart versus (vs.) the detection significance (S/N). The offset of a few sources is far from the overall distribution: points indicated by a star (sources number 286, 328, 796, 856, 860, 869, 870, 902, 928, 949, 950, 954, 955, 956, 963, 977, and 979 in Table 2) are in crowded fields, and the reconstructed sky position is contaminated by the PSF of the nearest sources; those marked with a circle are extended sources (Coma cluster and Abell 2256). The distribution (excluding the outliers) can be modelled with a power law plus a constant giving the following best fit equation:

(2)

where the constant represents the systematic offset. At the detection threshold of 4.8 standard deviations, the average offset is 2.4 arcmin. The dashed red line in Fig. 5 represents the 95% radius containment radius evaluated as described in Segreto et al. (2010),

(3)

where S/N is the detection significance.

Figure 5: Offset between the BAT position and the counterpart position as a function of the detection significance. A few values are far from the overall distribution either because they are in crowded fields and their reconstructed sky position is contaminated by the PSF of the nearest sources (red stars) or because they are extended sources (green circles). The solid blue line represents the fit to the data (excluding the outliers) with a power law. The dashed red line represents the 95% containment radius.

5 The 54-month catalogue

The complete catalogue of the sources detected in the first 54 months of BAT survey data is reported in Table 2. The table contains the following information:

  • Second Palermo BAT catalogue (2PBC) name of the source (Col. 2), built from the BAT coordinates with the precision of 1.5 arcmin on RA and 1 arcmin on Dec.

  • Counterpart association (Col. 3) and source type (Col. 4) coded according to the nomenclature used in SIMBAD. For the blazars included in the Roma-BZCAT (Massaro et al., 2009), we report the nomenclature used in that catalogue: BZB for BL Lac objects, BZQ for flat-spectrum radio quasars, and BZU for blazars of uncertain type.

  • The RA and Dec of the BAT source in decimal degrees (Cols. 5, 6) measured in the energy band with the highest detection significance.

  • The 95% error radius (Col. 7) and offset with respect to the counterpart position (Col. 8).

  • Source significance (Col. 9) obtained in the energy band with the highest significance (a flag in Col. 19 indicates the energy range with the maximum significance).

  • Flux and errors (Cols. 10 and 11) in the 15–150 keV band averaged over the entire survey period. To produce spectra for the detected sources, we created all-sky maps in eight energy bands (15–20 keV, 20–24 keV, 24–35 keV, 35–45 keV, 45–60 keV, 60–75 keV, 75–100 keV, and 100–150 keV) from which we extracted the rates and their errors from the pixel corresponding to the most likely position of each BAT source (Sect. 3). These spectra were analysed using the BAT spectral redistribution matrix444http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/data/swift/bat/index.html and the fluxes in the 15–150 keV were evaluated by fitting the spectra with a simple power law.

  • Hardness ratio (HR, Col. 12) and error (Col. 13) obtained as the ratio of the counts in the 35–150 keV band to those in the 15–150 keV band.

  • Redshift of the extragalactic sources (Col. 14) from the SIMBAD database (or NED, for the few cases that were not reported in SIMBAD).

  • Rest-frame luminosity (in units of log[erg s]) in the 15–150 keV band (Col. 15) calculated, when the redshift is available, using the expression

    (4)

    where is the observed flux in the 15–150 keV band, is the photon index obtained from the spectral fit, is the luminosity distance of the source, and is its redshift. For sources with redshift , we used the distance reported in the Nearby Galaxies Catalogue (NBG, Tully, 1988) or NED, for the few cases that were not reported in the NBG catalogue.

  • Variability index (Col. 16). In this second catalogue, we added a characterization of the time behaviour of the BAT-detected sources: the light curve of each source was binned at 7 days and the variability was investigated using a simple test. The rate in the jth 7-day time bin () is evaluated by weighting the rates of the light curve at maximum resolution by the inverse square of the corresponding statistical error

    (5)

    where are the rates observed in the light curve at maximum resolution, and are the corresponding statistical errors. The error in is . The variability index is defined as

    (6)

    where and . A systematic error of with was added in quadrature to the statistical error of each bin, to obtain a variability index V for Crab, Vela Pulsar, and PSR 0540-69.

  • Flag column (Col. 17) with information on: energy band with the highest significance (A), flag for already known hard X-ray sources (B), position with respect to the Galactic plane (C), and strategy used for the identification (D, see Sect. 4)

  • Flag column (Col. 18) with information on the cross correlation between the BAT sources and the ROSAT, INTEGRAL, and Fermi catalogues. A BAT source is associated with a ROSAT source if the BAT counterpart lies within the 3 error box of a source reported in the RASS bright and faint source catalogues (Voges et al., 1999, 2000). The cross-correlations of the BAT catalogue with the ISGRI sources and the Fermi sources were performed using the INTEGRAL General Reference Catalogue V.31555http://www.isdc.unige.ch/integral/data/catalog and the Fermi Large Area Telescope First Source Catalogue 666http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/(Abdo et al., 2010), respectively, requiring that the sources had the same associated counterpart.

6 Statistical properties of the catalogue

Table 1 compares the numbers of counterparts associated with the sources detected in the 54-month all-sky mosaic among the different object classes, with similar results for the 39-month catalogue. Percentages are evaluated for both catalogues relative to the total number of BAT-detected sources. The sample consists of Galactic sources, extragalactic sources, and sources with a counterpart at softer energies whose nature has not yet been determined. We also found that of sources have no association at other wavelengths. The distribution of the associated sources among the different classes is almost identical to that of the 39-month catalogue. There is a significant difference for the fraction of unassociated sources, which is a factor lower than in the 39-month catalogue. This is because a Swift-XRT follow-up campaign was requested for the unassociated sources of the 39-month catalogue and the ROSAT catalogue was used in the association strategy of the 54-month catalogue. In contrast, we have a much higher fraction of unclassified sources (), most of which are ROSAT sources of unknown nature. Figure 6 shows the map of the detected sources, colour-coded according to the object class and size-coded according to the 15–150 keV source flux (A), the hardness ratio (B), and the variability index (C), respectively.

Class # in 54m (%) # in 39m (%)
LXB 85 (6.6) 76 (7.9)
HXB 83 (6.5) 64 (6.6)
Pulsars 11 (0.9) 10 (1.0)
SNR 7 (0.5) 5 (0.5)
Cataclysmic variables 56 (4.4) 46 (4.8)
Stars 7 (0.5) 5 (0.5)
Star clusters 1 (0.1) 0 (0.0)
Galactic (total) 250 (19.5) 207 (21.5)
Seyfert 1 galaxies 307 (23.9) 235 (24.4)
Seyfert 2 galaxies 165 (12.8) 131 (13.6)
LINERs 15 (1.2) 7 (0.7)
QSO 25 (1.9) 14 (1.5)
Blazars 97 (7.5) 71 (7.4)
Interacting galaxies 2 (0.16) 0 (0.0)
Galaxy clusters 23 (1.8) 18 (1.9)
Normal galaxies 67 (5.2) 27 (2.8)
Unclassified AGN 34 (2.6) 16 (1.7)
Extragalactic (total) 735 (57.1) 519 (54.0)
Unclassified sources 124 (9.6) 28 (2.9)
Unassociated sources 177 (13.8) 208 (21.6)
Table 1: Classification of the counterparts associated with the sources detected in the 54-month BAT survey. Unclassified sources includes all sources that have a catalogued counterpart but have not yet been classified.

Figure 7 shows the HR distribution for each class of objects. As expected, the HR distribution for BZB is softer than for BZQ: this difference arises because the 15–150 keV band samples the high energy tail of the synchrotron peak for BZB and the rising part of the Compton peak for BZQ. Blazars of uncertain classification (BZU) show an intermediate HR distribution. Clusters of galaxies fall in a very narrow region of soft HR: we verified that their spectral distribution is consistent with the tail of a thermal emission with kT keV, except for one object (CIZA J0635.0+2231), with HR=0.26, where we find evidence of hard non-thermal emission that may be related to the AGN content of the cluster. The catalogue lists 67 objects classified as normal galaxies. The HR distribution of these sources peaks at in a similar way to the other classes of active galaxies. This suggests that these objects may also contain an active nucleus.

The HR distribution of the sources with uncertain classifications and of unassociated sources suggests that most of these are of extragalactic nature.

Figure 6: Map of the sources (in Galactic coordinates) detected in the BAT survey data. The object class is colour-coded according to the legend. The size of the symbol is proportional to (A) the 15–150 keV source flux, (B) the hardness ratio obtained as the ratio of the counts in the 35–150 keV band to those in the 15–150 keV band, (C) the variability index (as defined in Sect. 5).

Figure 8 shows the distribution of the redshift (top panel) and luminosity (bottom panel) of the Seyfert 1 and Seyfert 2 galaxies included in the 54-month catalogue. The median of the redshift distribution is higher for Seyfert 1s (z̃=0.040) than for Seyfert 2s (z̃=0.025). The luminosity distribution shows that Seyfert 1s are intrinsically more luminous than Seyfert 2s.

Figure 7: Hardness ratio (35-150 keV)/(15-150 keV) distributions for the different classes of objects detected in the 54 months of BAT survey.

Figure 8: Redshift distribution (top) and luminosity distribution (bottom) of the Seyfert galaxies.

6.1 The 54-month BAT catalogue and the INTEGRAL-ISGRI catalogue

We compared the sources detected in the 54-month BAT all-sky mosaic with those detected by INTEGRAL-ISGRI and reported in the INTEGRAL General Reference Catalogue V.31. The results are plotted in Fig. 9. For each object class, we report the sources detected by each of the two telescopes, highlighting those detected only by BAT. While ISGRI dedicated most of the first years of its mission to a deep scan of the Galactic plane, BAT has taken advantage of its larger (with respect to ISGRI) field of view and different pointing strategy to achieve a uniform exposure of the whole sky. Within the Galactic sample, the number of low mass and high mass X-ray binaries is marginally higher in the ISGRI catalogue, although 10 sources are detected only with BAT. These sources have a transient behaviour and are captured by BAT thanks to its larger field of view or because they are located in regions of low ISGRI exposure. BAT also detects a much larger sample (nearly a factor of 2) of cataclysmic variables, which are located mostly outside the Galactic plane. The BAT extragalactic sample is a factor of between 2 and 3 larger than the ISGRI sample, depending on the object class. This is expected because of the lower limiting flux reached by BAT outside the Galactic plane.

6.2 The 54-month BAT catalogue and the Fermi Large Area Telescope First Source Catalogue

We compared our BAT catalogue with the Fermi Large Area Telescope First Source Catalogue (Abdo et al., 2010) by searching for BAT sources whose position falls inside the error box of each Fermi sources777http://fermi.gsfc.nasa.gov/ssc/data/access/lat/1yr_catalog/.

We found 59 BAT/Fermi correspondences to be associated with the same counterpart: 16 BZBs, 27 BZQs, 5 BZUs, 3 Seyfert galaxies, 1 interacting galaxy, 3 high mass X-ray binaries, and 4 pulsars/supernova remnants. Moreover, there are 4 BAT/Fermi correspondences with different counterpart association, and 10 BAT/Fermi correspondences for which the Fermi source has not been associated with any counterpart. These 14 sources have been flagged with ’?’ in Col. 18 of Table 2.

The largest sample of common sources is the blazar sample. In line with our association strategy, we considered only Fermi blazars with a correspondence in the BZCAT. Figure 10 shows the redshift distributions of the selected common samples, superimposed on the redshift distributions of the whole Fermi and BAT blazar samples. The median of the redshift distribution for BZB is a factor of 2 higher for the Fermi sample than the BAT one, while the common sample has value in between these two. The median of the BAT and Fermi BZQ redshift distributions are very similar. The most distant blazar, 87GB 224928.1+22014 at z, is detected only by BAT.

Figure 9: Comparison between the sources in our catalogue and those detected with ISGRI and reported in the INTEGRAL General Reference Catalogue V31. Top: Galactic sources. Bottom: extragalactic sources.

Figure 10: Redshift distribution of the BZB (top) and BZQ (bottom) sources. The red line, the black dashed line, and the shaded blue area refer to blazars detected by Fermi, Swift–BAT, and common to both catalogues, respectively. The insets show the total number of blazars in each sample.

7 Conclusions

We have analysed the BAT hard X-ray survey data of the first 54 months of the Swift mission. The 5 15–150 keV survey flux limit achieved on 50% of the sky is erg cm s(0.43 mCrab).

We have compiled all-sky maps for three energy bands (15–30 keV, 15–70 keV, and 15–150 keV) and searched for excesses above a significance threshold of 4.8 standard deviations. The final catalogue, obtained by cross-correlating and merging the lists of excesses detected in the three energy bands, contains 1256 source candidates. For each of them, we have searched for counterparts at lower energies using two different strategies. First we have analysed archival soft X-ray observations covering the position of the BAT excesses, applying count rate thresholds to select the most likely counterparts (strategy A). With this strategy, we have been able to associate 920 BAT excesses with a single softer counterpart; for 8 BAT excesses, we found two possible counterparts. The BAT excesses lacking any association after strategy A were cross-correlated with a list of possible counterparts compiled by merging several source lists (X-ray binaries, cataclysmic variables, supernova remnants, pulsars, cluster of galaxies, different classes of active galaxies, already known soft X-ray and -ray sources). This second strategy (strategy B) enabled us to associate 151 BAT sources with counterparts (18 with a double association, 2 with a triple association). The final catalogue contains 1079 BAT sources with at least one associated counterpart and 177 unassociated sources (). The latter will be the subject of a follow-up campaign with Swift-XRT in the immediate future. The sources among the different object classes consist of Galactic sources, extragalactic sources, and sources with a counterpart at softer energies whose nature has not yet been determined.

The counterpart of 563 of the 1079 BAT sources with at least one associated counterpart is coincident with a bright ROSAT source, while 83 BAT sources have a counterpart consistent with the position of a faint ROSAT source. The remaining BAT counterparts (640) do not have any ROSAT correspondence. This may be the signature of either moderate or strong absorption preventing detection in the ROSAT energy band.

Compared to the INTEGRAL-IBIS telescope, BAT has detected a much larger number of extragalactic sources. This difference is mainly due to the different fields of view of the two telescopes and their different observing strategies.

The comparison of our BAT catalogue with the Fermi Large Area Telescope First Source Catalogue (Abdo et al., 2010) has established that 59 BAT/Fermi sources are associated with the same counterpart: 16 BZBs, 27 BZQs, 5 BZUs, 3 Seyfert galaxies, 1 interacting galaxy, 3 high mass X-ray binaries, and 4 pulsars/supernova remnants. These small number of correspondences clearly indicates that the sky at these two different energy ranges is populated by different source types.

Acknowledgements.
This research has made use of NASA’s Astrophysics Data System Bibliographic Services, of the SIMBAD database, operated at CDS, Strasbourg, France, as well as of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was supported by contract ASI/INAF I/011/07/0.

References

  • Abdo et al. (2010) Abdo, A. A., et al. 2010, ApJS, 187, 460
  • Ajello et al. (2008a) Ajello, M., Greiner, J., Kanbach, G., Rau, A., Strong, A. W., & Kennea, J. A. 2008, ApJ, 678, 102
  • Ajello et al. (2008b) Ajello, M., et al. 2008, ApJ, 673, 96
  • Barthelmy et al. (2005) Barthelmy, S. D., et al. 2005, Space Science Reviews, 120, 143
  • Cusumano et al. (2010) Cusumano, G., et al. 2010, A&A, 510, A48
  • Gehrels et al. (2004) Gehrels, N., et al. 2004, ApJ, 611, 1005
  • Górski et al. (2005) Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. 2005, ApJ, 622, 759
  • Markwardt et al. (2005) Markwardt, C. B., Tueller, J., Skinner, G. K., Gehrels, N., Barthelmy, S. D., & Mushotzky, R. F. 2005, ApJ, 633, L77
  • Maselli et al. (2010) Maselli, A., Cusumano, G. E. Massaro, V. La Parola , A. Segreto , B. Sbarufatti  2010, A&A, submitted
  • Massaro et al. (2009) Massaro, E., Giommi, P., Leto, C., Marchegiani, P., Maselli, A., Perri, M., Piranomonte, S., & Sclavi, S. 2009, A&A, 495, 691
  • Segreto et al. (2010) Segreto, A., Cusumano, G., Ferrigno, C., La Parola, V., Mangano, V., Mineo, T., & Romano, P. 2010, A&A, 510, A47
  • Tueller et al. (2008) Tueller, J., Mushotzky, R. F., Barthelmy, S., Cannizzo, J. K., Gehrels, N., Markwardt, C. B., Skinner, G. K., & Winter, L. M. 2008, ApJ, 681, 113
  • Tueller et al. (2010) Tueller, J., et al. 2010, ApJS, 186, 378
  • Tully (1988) Tully, R.B., Nearby Galaxies Catalogue (NBG), 1988, Cambridge University Press
  • Voges et al. (1999) Voges, W., Aschenbach B., Boller, T. et al. 1999, A&A, 349, 389
  • Voges et al. (2000) Voges, W., Aschenbach B., Boller, T. et al. 2000, IAUC, 7432, 1
PBC name ID Type RA Dec Error radius Offset SNR Flux Hardness ratio Redshift Var Flag 1 Flag 2
(deg) (deg) (arcmin) (arcmin) (erg cm s) (erg s A B C D I R F
1 2PBC J0000.3+0416 0.092 4.270 4.99 5.03 1.34 1  N  h
2 2PBC J0000.9-0708 0.234 -7.134 4.42 5.58 1.59 2  N  h
3 2PBC J0001.8-7658 0.466 -76.982 4.46 5.50 1.91 3  N  h
4 2PBC J0002.5+0320 NGC 7811 Sy1 0.643 3.337 4.61 2.12 5.20 0.0255 43.12 1.44 3  N  h  b    b
5 2PBC J0004.1+7017 2MASX J00040192+7019185 AG? 1.035 70.298 4.90 1.54 5.17 0.0960 44.32 1.38 3  N  h  a I
6 2PBC J0006.3+2012 Mrk 335 Sy1 1.591 20.199 2.78 0.60 12.55 0.0254 43.33 1.80 3  Y  h  a    b
7 2PBC J0009.3-0034 2MASX J00091156-0036551 Sy2 2.338 -0.576 4.02 3.35 6.56 0.0732 44.03 1.61 1  N  h  b
[VV2003c] J000939.5-0032 Sy1 5.06 0.0400 43.48
8 2PBC J0010.4+1059 Mrk 1501 BZQ 2.606 10.990 2.56 1.65 14.58 0.0893 44.69 1.71 3  Y  h  a    b
9 2PBC J0014.3-1851 BZBJ0013-1854 BZB 3.579 -18.860 4.95 5.98 5.09 0.0940 44.13 1.63 3  N  l  b    b
10 2PBC J0017.4-8152 1RXS J001928.1-815247 X 4.365 -81.870 4.98 4.29 5.04 1.87 1  N  l  a    b
11 2PBC J0018.3+8135 S5 0014+81 BZQ 4.605 81.587 3.90 2.81 6.91 3.3870 48.30 1.55 3  Y  h  a    b
12 2PBC J0021.0-1908 1RXSJ002108.1-190950 X 5.264 -19.145 3.88 1.57 6.95 0.0952 44.40 1.97 1  N  h  b    b
13 2PBC J0023.0+6138 IGR J00234+6141 CV* 5.733 61.655 4.07 3.08 6.42 1.28 1  Y  l  a I
14 2PBC J0024.9+6407 TYCHO SNR SNR 6.291 64.171 2.65 1.06 13.64 1.58 2  Y  l  a I
15 2PBC J0025.6+6823 IGR J00256+6821 Sy2 6.394 68.401 3.61 2.30 7.89 0.0120 42.66 1.31 3  Y  h  a I
16 2PBC J0025.8-1900 2MASX J00254238-1900106 Sy1 6.470 -19.006 4.81 2.45 4.84 0.2450 45.10 1.67 3  N  h  b    b
1RXS J002605.4-185456 X 6.18
17 2PBC J0026.7-5309 1RXS J002640.2-530944 X 6.685 -53.163 4.83 0.61 4.82 0.0628 43.92 1.69 1  N  h  b    b
18 2PBC J0028.9+5917 V709 Cas DQ* 7.213 59.296 1.40 0.50 50.93 1.78 2  Y  l  a I  b
19 2PBC J0029.3+1317 RBS 0068 Sy1 7.303 13.265 3.79 0.27 7.24 0.1450 44.76 1.34 3  Y  h  a    b
20 2PBC J0030.5-5902 7.647 -59.042 4.14 6.23 1.93 3  N  h
21 2PBC J0033.2+6130 IGR J00333+6122 Sy1 8.434 61.466 2.90 3.07 11.63 0.1050 44.64 1.53 1  Y  l  a I
22 2PBC J0034.1-7906 2MASX J00341665-7905204 Sy1 8.543 -79.113 4.91 1.45 5.17 0.0740 43.81 1.47 2  N  h  b    b
23 2PBC J0034.6-0424 2MASX J00343284-0424117 G 8.653 -4.403 4.42 0.96 5.58 1.14 3  N  h  a
24 2PBC J0035.8+5951 1ES 0033+59.5 BZB 8.955 59.849 2.17 0.96 20.08 2.59 2  Y  l  a I  b  F
25 2PBC J0036.3+4539 2MASX J00362092+4539532 Sy1 9.065 45.640 4.18 1.76 6.14 0.0477 43.74 1.54 3  N  h  b
26 2PBC J0037.2+6120 IGR J00370+6122 HXB 9.229 61.384 2.73 2.27 12.95 2.45 1  Y  l  a I  b
27 2PBC J0038.5+2336 Mrk 344 G 9.628 23.607 4.79 0.40 4.89 0.0250 43.14 1.48 1  N  h  a
28 2PBC J0040.5+2542 10.143 25.715 5.04 4.94 1.38 2  N  h
29 2PBC J0040.9-7915 2MASX J00404625-7914244 Sy1 10.237 -79.258 4.48 1.17 5.46 0.0333 43.02 1.56 2  N  h  b    b
30 2PBC J0041.6+2534 NGC 214 LIN 10.395 25.571 3.65 4.57 7.75 0.0150 42.68 1.49 1  Y  h  a
31 2PBC J0041.7-0920 ABELL 0085 ClG 10.436 -9.363 4.14 2.06 6.24 0.0521 43.61 1.59 2  Y  h  a
32 2PBC J0042.6+4111 RX J004241+41155 LXB 10.668 41.174 4.35 5.60 5.74 1.35 2  Y  h  a
33 2PBC J0042.7+3017 1RXS J004240.8+301742 Sy1 10.696 30.312 3.21 1.70 9.66 0.1400 44.83 1.59 3  N  h  b    b
34 2PBC J0042.8-2331 NGC 235A Sy2 10.720 -23.536 2.08 0.27 21.66 0.0222 43.71 1.67 3  Y  h  a
35 2PBC J0042.9-1135 10.745 -11.592 4.65 5.13 1.77 2  N  h
36 2PBC J0046.1-4007 ATESP J004620-400547 G 11.527 -40.123 4.18 3.09 6.15 0.2263 45.17 1.33 3  N  h  a I
37 2PBC J0048.7+3157 Mrk 348 BZU 12.185 31.954 1.19 0.62 76.47 0.0151 43.84 2.95 3  Y  h  a I
38 2PBC J0050.8+7648 1RXS J005107.0+765042 X 12.720 76.816 4.29 1.93 5.86 1.31 1  N  h  b    b
39 2PBC J0051.8-7318 SNR B0049-73.6 SNR 12.913 -73.315 2.86 3.62 11.90 2.81 2  Y  h  a    b
40 2PBC J0051.9+1725 Mrk 1148 Sy1 13.010 17.437 2.40 1.82 16.51 0.0642 44.42 1.89 3  Y  h  a    b
41 2PBC J0052.6-7220 SXP 327 XB* 13.155 -72.336 4.65 3.11 5.14 1.59 1  N  h  a
42 2PBC J0053.2-0844 NGC 291 Sy1 13.322 -8.736 4.91 3.65 5.16 0.0189 42.88 1.45 1  N  h  a
43 2PBC J0054.6+2521 RBS 0130 Sy1 13.710 25.415 4.32 0.86 5.80 0.1550 44.83 1.81 2  Y  h  a    b
44 2PBC J0055.3+4612 XSS J00564+4548 CV* 13.838 46.202 2.23 0.83 18.91 1.36 2  Y  h  a
45 2PBC J0056.5+6043 gam Cas Be* 14.174 60.714 1.29 0.16 62.76 2.11 2  Y  l  a I  b
46 2PBC J0056.8-6002 14.207 -60.049 4.89 5.19 1.80 2  N  h
47 2PBC J0057.2+6401 14.317 64.032 4.19 6.11 1.89 3  N  l
48 2PBC J0058.0-1648 14.520 -16.816 4.96 5.07 1.81 3  N  h
49 2PBC J0059.8+3150 Mrk 352 Sy1 14.977 31.847 2.30 1.25 17.91 0.0149 43.16 1.94 1  Y  h  a    b
50 2PBC J0100.6-4752 ESO 195-IG 021 Sy1 15.182 -47.875 3.33 1.50 9.08 0.0494 43.83 1.72 3  Y  h  a
51 2PBC J0101.4-0307 1RXS J010123.5-030846 X 15.357 -3.124 4.70 1.44 5.04 1.50 1  N  h  b    b
52 2PBC J0102.7-7241 XTE J0103-728 HXB 15.683 -72.687 3.26 3.58 9.40 1.69 2  N  h  b       F
RX J0104.1-7244 HXB 6.79
53 2PBC J0105.3+3602 16.326 36.039 4.98 5.04 1.42 1  N  h
54 2PBC J0105.5-4211 MCG-07-03-007 G 16.375 -42.192 3.87 1.57 7.01 0.0302 43.33 1.63 3  N  h  a
55 2PBC J0105.7-1415 RBS 0149 Sy1 16.433 -14.256 3.62 1.48 7.86 0.0670 44.16 1.25 3  Y  h  a    b
56 2PBC J0106.8+0637 2MASX J01064523+0638015 Sy2 16.729 6.642 4.46 2.46 5.50 0.0409 43.57 1.41 1  Y  h  a
57 2PBC J0107.8-1137 2MFGC 829 G 16.970 -11.605 3.87 6.20 7.01 0.0466 43.68 1.26 3  N  h  a
58 2PBC J0108.3-5826 17.084 -58.437 4.83 4.82 1.45 3  N  h
59 2PBC J0108.8+1320 3C 033 Sy2 17.193 13.338 2.63 1.56 13.92 0.0596 44.33 1.45 1  Y  h  a
60 2PBC J0111.1-1616 2MASX J01111430-1615547 Sy1 17.785 -16.266 4.24 1.48 5.99 0.0500 43.78 1.44 2  N  h  b    b
61 2PBC J0111.5-3804 NGC 424 Sy2 17.898 -38.079 2.92 1.58 11.44 0.0115 42.76 1.69 3  Y  h  a    b
62 2PBC J0113.8-1450 Mrk 1152 Sy1 18.451 -14.845 2.92 0.47 11.46 0.0522 44.12 1.69 3  Y  h  a    b
63 2PBC J0113.7+1314 Mrk 975 Sy1 18.471 13.224 3.80 2.92 7.21 0.0494 43.87 1.27 3  N  h  b    f
64 2PBC J0114.3-3240 IC 1663 Sy2 18.554 -32.676 3.28 1.97 9.31 0.0118 42.69 1.71 1  Y  h  a
65 2PBC J0114.4-5524 NGC 454E Sy2 18.603 -55.401 2.81 0.23 12.31 0.0120 42.68 2.16 1  Y  h  a
66 2PBC J0115.9-6248 2MASX J01154060-6249246 Sy1 18.990 -62.802 4.78 2.34 4.90 0.0890 44.07 1.49 3  N  h  a    b
67 2PBC J0116.3+3102 KPG 28 GiP 19.095 31.043 4.68 4.06 5.09 1.87 1  N  h  b
NGC 452 GiP 1.79 0.0165 42.71
68 2PBC J0116.7-1236 19.199 -12.616 4.58 5.27 1.60 3  N  h
69 2PBC J0117.1-7326 SMC X-1 HXB 19.303 -73.441 0.75 0.56 402.77 69.51 2  Y  h  a I  b
70 2PBC J0118.0+6517 3A 0114+650 HXB 19.511 65.295 1.11 0.18 94.69 15.24 3  Y  l  a I  b
71 2PBC J0118.5+6343 V* V635 Cas HXB 19.633 63.731 1.46 0.56 46.24 11.57 2  N  l  a I
72 2PBC J0120.8-0829 2MASS J01204752-0826297 Sy1 20.201 -8.490 4.98 2.93 5.05 0.2296 45.09 1.51 3  N  h  b    b
FBQS J0120-0832 Sy2 4.85 0.2240 45.06
73 2PBC J0120.8-1444 MCG-03-04-054 G 20.203 -14.747 4.88 1.62 5.21 0.0393 43.52 1.40 1  N  h  a
74 2PBC J0122.3+5004 MCG+08-03-018 Sy2 20.629 50.068 3.95 0.95 6.75 0.0206 43.04 1.96 2  Y  h  a
75 2PBC J0122.7-7322 20.698 -73.373 4.07 6.43 1.58 2  N  h
76 2PBC J0123.1+3421 1ES 0120+340 BZB 20.782 34.361 3.60 0.85 7.93 0.2720 45.46 2.04 3  Y  h  a    b
77 2PBC J0123.8-5847 RBS 0194 Sy1 20.931 -58.796 1.81 0.68 28.74 0.0470 44.34 2.07 3  Y  h  a    b
78 2PBC J0123.9-3503 NGC 526 Sy1 20.977 -35.064 1.89 0.12 26.35 0.0192 43.64 2.02 1  Y  h  a I  b
79 2PBC J0124.4+3346 NGC 0513 Sy2 21.121 33.780 3.35 1.22 8.97 0.0195 43.28 1.66 1  Y  h  a
80 2PBC J0126.0+1518 RHS 10 Sy1 21.485 15.299 4.31 0.46 5.82 0.1110 44.51 1.30 1  N  h  b
81 2PBC J0127.5+1909 Mrk 359 Sy1 21.887 19.165 4.65 0.85 5.14 0.0168 42.74 1.37 3  N  h  a    b
82 2PBC J0128.0-1848 RBS 0203 Sy1 22.021 -18.782 3.35 1.61 8.98 0.0430 43.82 2.14 1  Y  h  a    b
83 2PBC J0128.5+1628 MCG+03-04-043 GiP 22.126 16.481 4.08 1.91 6.39 0.0386 43.61 1.58 1  N  h  a
84 2PBC J0128.6-6038 22.174 -60.647 5.01 4.99 1.80 3  N  h
85 2PBC J0129.7-4218 PBCX J012951.6-421936 X 22.434 -42.316 4.10 2.72 6.35 1.42 2  N  h  a
86 2PBC J0130.2-8108 22.574 -81.135 4.83 4.81 1.52 3  N  h
87 2PBC J0132.0-3306 ESO 353- G 009 Sy2 23.020 -33.112 3.69 3.10 7.58 0.0165 42.84 1.46 3  Y  h  a
88 2PBC J0132.5-7426 23.141 -74.445 4.77 4.92 1.42 2  N  h
89 2PBC J0134.0-3630 NGC 612 Sy2 23.511 -36.491 2.14 0.99 20.65 0.0299 43.97 1.80 1  Y  h  a
90 2PBC J0134.5-0428 RBS 0216 Sy1 23.692 -4.515 3.11 0.66 10.26 0.0790 44.39 1.78 1  Y  h  a    b
91 2PBC J0136.5+2056 3C 47 Sy1 24.139 20.934 4.74 2.51 4.97 0.4250 45.65 1.34 2  N  h  a    b
92 2PBC J0138.6-4000 ESO 297- G 018 Sy2 24.677 -40.006 1.66 1.07 34.83 0.0252 43.92 1.78 3  Y  h  a I
93 2PBC J0140.4-5320 2MASX J01402676-5319389 G 25.092 -53.350 3.33 1.51 9.09 0.0716 44.19 1.58 3  Y  h  a
94 2PBC J0146.3+6144 4U 0142+614 Psr 26.600 61.742 1.77 0.59 30.22 2.05 1  Y  l  a I  b
95 2PBC J0147.0+6122 V* V831 Cas HXB 26.767 61.373 5.04 1.08 4.94 1.99 3  N  l  a I  b
96 2PBC J0147.1-6609 ESO 80-5 Sy1 26.799 -66.156 4.93 2.82 5.13 0.0270 42.93 1.32 3  N  h  a    b
97 2PBC J0149.3-5017 2MASX J01492228-5015073 G 27.338 -50.293 4.63 2.49 5.16 1.45 3  N  h  a    f
98 2PBC J0152.7-0327 MCG-01-05-047 Sy2 28.212 -3.448 2.53 0.45 14.87 0.0167 43.21 1.58 3  Y  h  a I
99 2PBC J0154.1-5034 28.543 -50.570 4.67 5.10 1.49 1  N  h
100 2PBC J0154.7-2707 2MASS J01544031-2707012 QSO 28.670 -27.127 3.11 0.57 10.25 0.7900 46.70 1.77 3  Y  h  a    b
101 2PBC J0155.4+0227 1ES 0152+02.2 Sy1 28.851 2.450 4.62 1.24 5.18 0.0820 44.13 1.61 2  N  h  b    b
PC 0152+0215 EmG 3.80 0.0800 44.10
102 2PBC J0156.1-0615 29.036 -6.261 4.89 5.20 1.52 3  N  h
103 2PBC J0156.5-2040 29.135 -20.667 4.89 5.19 1.67 1  N  h
104 2PBC J0157.3+4715 29.328 47.261 4.31 5.83 1.22 3  N  h
105 2PBC J0200.1+2428 MCG+04-05-034 Sy2 30.043 24.470 4.91 2.00 5.16 0.0164 42.70 1.54 1  N  h  a
106 2PBC J0201.0-0648 NGC 788 Sy2 30.265 -6.814 1.54 0.70 40.89 0.0136 43.46 2.53 3  Y  h  a I
107 2PBC J0202.9-2400 RBS 0273 Sy1 30.758 -24.025 4.15 0.71 6.22 0.1780 44.93 2.13 1  Y  h  a    b
108 2PBC J0205.7-7147 RBS 279 Sy1 31.432 -71.793 4.62 4.39 5.20 0.2600 45.19 1.75 1  N  h  a    b
109 2PBC J0206.3-0016 Mrk 1018 Sy1 31.554 -0.286 2.84 0.81 12.06 0.0426 44.01 2.46 1  Y  h  a I  b
110 2PBC J0207.0+2929 RHS 13 rad 31.768 29.506 3.51 0.58 8.29 0.1100 44.66 1.53 1  Y  h  a    b
111 2PBC J0207.2+1515 V* TT Ari No* 31.806 15.263 4.79 5.26 4.88 1.51 1  N  h  a    b
112 2PBC J0207.9-7425 RX J0209.6-7427 X 31.990 -74.426 4.40 6.78 5.63 1.31 2  N  h  a
113 2PBC J0208.6-1737 32.158 -17.625 4.17 6.17 1.55 3  N  h
114 2PBC J0209.4-1010 NGC 835 Sy2 32.360 -10.153 4.33 1.12 5.78 0.0123 42.58 1.75 3  Y  h  a
NGC 833 LIN 1.83 0.0130 42.63
115 2PBC J0209.4+5226 LEDA 138501 Sy1 32.369 52.454 2.05 1.46 22.42 0.0492 44.42 1.64 3  Y  h  a I  b
116 2PBC J0211.1-4942 ESO 197-27 Sy2 32.791 -49.715 4.52 2.97 5.39 0.0465 43.49 1.66 3  N  h  b
117 2PBC J0214.0+5148 1RXS J021417.8+514457 BZB 33.506 51.807 4.82 4.36 4.83 0.0490 43.54 1.64 3  N  h  a    b
118 2PBC J0214.7-6431 RBS 0295 Sy1 33.661 -64.514 4.53 0.74 5.37 0.0740 43.88 1.77 1  N  h  b    b
119 2PBC J0214.5-0044 Mrk 590 Sy1 33.669 -0.758 3.72 1.83 7.48 0.0265 43.28 2.03 1  Y  h  a    b
120 2PBC J0215.6-1300 3C 62 Sy2 33.904 -13.005 4.44 0.77 5.54 0.1470 44.73 1.50 3  N  h  a
121 2PBC J0216.1+5124 2MASX J02162987+5126246 Sy2 34.057 51.423 3.49 2.07 8.37 0.0288 43.50 1.65 3  Y  h  a I
122 2PBC J0217.0-7250 34.274 -72.844 4.85 5.27 1.46 3  N  h
123 2PBC J0217.4+7349 1ES 0212+735 BZQ 34.325 73.823 2.60 0.91 14.17 2.3670 47.91 1.60 1  Y  h  a I  f  F
124 2PBC J0223.4+4549 V Zw 232 GrG 35.853 45.831 4.24 1.74 6.00 2.00 1  N  h  a
125 2PBC J0224.9-2316 RBS 314 QSO 36.237 -23.270 4.46 3.63 5.51 0.2322 45.15 1.32 3  N  h  a    b
126 2PBC J0225.0+1848 RBS 315 BLA 36.252 18.793 2.75 1.21 12.79 2.6900 48.04 1.35 3  Y  h  a    b
127 2PBC J0225.4-6314 FRL 296 Sy1 36.344 -63.246 3.83 1.98 7.12 0.0598 43.86 1.65 1  Y  h  a    b
128 2PBC J0226.7-2819 2MASX J02262568-2820588 Sy1 36.631 -28.338 3.70 1.41 7.55 0.0600 44.02 2.18 3  Y  h  a
129 2PBC J0228.1+1832 37.045 18.538 4.80 4.87 1.46 3  N  h
130 2PBC J0228.2+3119 Mrk 1040 Sy1 37.055 31.323 1.76 0.77 30.71 0.0163 43.53 1.74 3  Y  h  a I  b
131 2PBC J0231.9-3640 IC 1816 Sy2 37.954 -36.673 3.08 0.45 10.40 0.0170 43.07 1.45 1  Y  h  a
132 2PBC J0232.7+2018 1ES 0229+200 BZB 38.192 20.310 2.91 1.44 11.53 0.1396 45.02 1.87 3  Y  h  a    b
133 2PBC J0234.3+3227 NGC 0973 Sy2 38.558 32.499 2.83 1.36 12.11 0.0150 43.10 1.87 1  Y  h  a I
134 2PBC J0234.7-0846 NGC 985 Sy1 38.686 -8.778 2.40 1.79 16.47 0.0430 44.05 1.57 3  Y  h  a I  b
135 2PBC J0235.3-2935 ESO 416-G002 Sy1 38.829 -29.603 3.03 1.17 10.71 0.0591 44.22 1.69 1  Y  h  a    b
136 2PBC J0238.2-5211 RBS 0335 Sy1 39.588 -52.205 2.70 0.76 13.23 0.0452 44.01 1.72 1  Y  h  a    b
137 2PBC J0238.3-6116 IRAS F02374-6130 G 39.594 -61.278 4.07 2.56 6.42 1.65 3  N  h  a       F
138 2PBC J0238.8-4038 RBS 0339 Sy1 39.712 -40.653 3.28 0.62 9.33 0.0617 44.09 1.62 1  Y  h  a    b
139 2PBC J0240.6+6114 GT 0236+610 HXB 40.178 61.237 2.55 1.40 14.71 1.76 3  Y  l  a I  b  F
140 2PBC J0241.2-0814 NGC 1052 Sy2 40.294 -8.226 2.63 2.27 13.85 0.0049 42.15 1.70 1  Y  h  a I
141 2PBC J0241.5+0709 1ES 0238+069 Sy1 40.385 7.188 3.56 0.63 8.08 0.0272 43.40 1.81 3  Y  h  a    b
142 2PBC J0242.3+0533 2MASX J02421465+0530361 Sy1 40.584 5.553 4.63 2.94 5.18 0.0690 43.88 1.63 1  N  h  a I  b
143 2PBC J0242.7-0000 NGC 1068 Sy2 40.671 -0.017 2.58 0.20 14.34 0.0037 41.92 1.92 3  Y  h  a I  b  ?
144 2PBC J0243.9+5323 40.993 53.396 4.24 6.00 1.32 2  N  h
145 2PBC J0244.8-5816 BZBJ0244-5819 BZB 41.207 -58.283 4.74 3.15 4.97 0.2650 44.97 1.61 3  N  h  b    b
146 2PBC J0245.0+6228 1ES 0241+622 Sy1 41.230 62.488 1.53 1.22 41.73 0.0445 44.56 2.55 3  Y  l  a I  b
147 2PBC J0245.3+1045 2MASX J02451349+1047230 BZU 41.340 10.745 3.51 3.31 8.30 0.0770 44.31 1.43 1  Y  h  a    f
148 2PBC J0248.9+2627 2MASX J02485937+2630391 Sy2 42.234 26.472 3.58 2.44 8.00 0.0597 44.27 1.35 1  Y  h  a
149 2PBC J0250.3+4645 2MASX J02502722+4647295 G 42.584 46.766 3.65 1.94 7.73 1.63 1  N  h  a
150 2PBC J0250.8+5442 2MFGC 2280 Sy2 42.711 54.702 2.93 1.14 11.39 0.0150 43.02 1.79 1  Y  l  a I
151 2PBC J0251.6-6800 42.904 -68.004 4.85 5.27 1.41 3  N  h
152 2PBC J0251.6-1640 NGC 1125 Sy2 42.931 -16.647 4.84 0.77 4.80 0.0110 42.62 1.75 1  Y  h  a
153 2PBC J0252.4-0832 MCG-02-08-014 Sy2 43.087 -8.531 2.94 1.33 11.31 0.0167 43.10 1.57 3  Y  h  a I
154 2PBC J0252.3+4309 43.094 43.162 4.40 5.63 1.67 3  N  h
155 2PBC J0255.2-0011 NGC 1142 Sy2 43.813 -0.190 1.52 0.80 42.28 0.0288 44.21 2.49 3  Y  h  a I
156 2PBC J0256.1+1925 XY Ari DQ* 44.036 19.435 2.33 0.39 17.44 1.56 2  Y  h  a I
157 2PBC J0256.3-3211 ESO 417- G 006 Sy2 44.115 -32.185 2.40 1.28 16.43 0.0163 43.17 1.53 3  Y  h  a
158 2PBC J0258.9+1335 ACO 401 ClG 44.740 13.584 3.96 0.16 6.72 0.0748 43.86 1.14 2  N  h  a    b
159 2PBC J0300.0-1047 MCG-02-08-038 Sy1 45.018 -10.791 4.13 2.35 6.27 0.0320 43.36 1.70 3  N  h  b
KOS 025738.9-110122 AGN 2.07 0.0330 43.39
160 2PBC J0300.2+1627 RHS 17 Sy1 45.032 16.527 3.70 1.41 7.57 0.0350 43.64 1.47 2  Y  h  a    b
161 2PBC J0302.6+2828 45.658 28.471 4.98 5.04 1.74 2  N  h
162 2PBC J0303.8-0107 NGC 1194 Sy1 45.958 -1.117 2.41 0.82 16.31 0.0133 43.07 1.68 3  Y  h  a I
163 2PBC J0305.2-1739 46.315 -17.653 5.02 4.97 1.77 3  N  h
164 2PBC J0307.8-7249 ESO 31-8 Sy1 46.957 -72.821 4.01 1.30 6.59 0.0279 43.20 1.42 3  N  h  a    f
165 2PBC J0310.9+3239 2MASX J03104435+3239296 Sy1 47.736 32.651 4.69 2.69 5.07 0.1270 44.59 1.76 3  N  h  a    b
166 2PBC J0311.3-2046 RBS 0392 Sy1 47.819 -20.785 3.05 0.92 10.61 0.0660 44.36 1.78 3  Y  h  a    b
167 2PBC J0311.4-7649 PKS 0312-77 BZQ 47.853 -76.822 3.98 3.07 6.68 0.2230 45.04 1.47 3  N  h  a    b
168 2PBC J0311.9+5029 IRAS 03084+5017 IR 47.995 50.487 4.67 0.65 5.10 1.74 2  N  h  a    b
169 2PBC J0313.1+4119 2MASX J03130194+4120012 BZU 48.277 41.323 4.39 1.07 5.64 0.1360 44.73 1.78 3  N  h  a I  b
170 2PBC J0313.5-3506 1RXS J031325.0-350636 Sy1 48.382 -35.110 5.05 1.38 4.93 0.1140 44.26 1.65 3  N  h  b    b
171 2PBC J0315.9-1906 6dFGS gJ031552.1-190644 SyG 48.993 -19.102 4.70 1.61 5.05 0.0670 43.91 1.22 1  N  h  a
172 2PBC J0317.1+1545 49.293 15.754 4.62 5.19 1.88 1  N  h
173 2PBC J0317.2+0116 49.301 1.268 4.33 5.79 1.91 3  N  h
174 2PBC J0318.2+6829 2MASX J03181899+6829322 Sy1 49.541 68.479 2.84 1.17 12.02 0.0901 44.62 1.76 1  Y  h  a I
175 2PBC J0319.7+4129 NGC 1275 BZU 49.951 41.501 1.45 0.63 47.14 0.0175 43.61 2.46 2  Y  h  a I  b  F
176 2PBC J0324.7+3409 1H 0323+342 Sy1 51.186 34.177 3.15 0.74 10.02 0.0629 44.34 2.46 1  Y  h  a I  b  F
177 2PBC J0324.7-0300 NGC 1320 Sy2 51.236 -3.080 3.61 2.97 7.87 0.0092 42.45 1.36 1  Y  h  a    f
178 2PBC J0325.0-1223 MCG-02-09-040 Sy2 51.298 -12.354 4.36 0.55 5.71 0.0147 42.71 1.18 3  N  h  b
[VV2003c] J032504.9-1218 Sy2 3.49 0.0100 42.37
179 2PBC J0325.1+4042 LEDA 097012 G 51.326 40.707 3.23 1.09 9.57 0.0477 44.07 1.89 1  Y  h  a
180 2PBC J0325.6-0820 1RXS J032540.0-081442 X 51.408 -8.335 4.98 5.43 5.05 1.70 2  N  l  b    b
181 2PBC J0328.7-2843 PKS 0326-288 rG 52.182 -28.727 4.57 2.28 5.29 0.1080 44.42 1.08 1  N  h  a
182 2PBC J0331.1+4353 GK Per CV* 52.810 43.907 1.47 0.50 45.63 15.12 2  Y  h  a I  b
183 2PBC J0333.3+3717 IGR J03334+3718 Sy1 53.322 37.282 3.35 1.30 9.00 0.0547 44.17 1.57 3  N  h  a I  b
184 2PBC J0333.5-3608 NGC 1365 Sy1 53.381 -36.143 1.78 1.08 29.75 0.0055 42.58 2.07 3  Y  h  a I
185 2PBC J0334.2-1514 RHS 23 Sy1 53.585 -15.244 3.42 1.34 8.65 0.0351 43.56 1.71 1  Y  h  a    b
186 2PBC J0334.9+5310 EXO 0331+530 HXB 53.756 53.175 0.73 0.27 461.33 35.02 2  Y  l  a I
187 2PBC J0336.5+3219 NRAO 140 BZQ 54.129 32.305 2.57 0.23 14.54 1.2585 47.39 1.64 3  Y  h  a    b  ?
188 2PBC J0339.2-1742 1RXS J033913.4-173553 X 54.820 -17.701 5.04 6.19 4.94 0.0655 43.70 1.83 3  N  l  b    b
189 2PBC J0342.0-2114 RBS 0462 Sy1 55.533 -21.256 2.13 1.45 20.83 0.0144 43.25 1.58 3  Y  h  a I  b
190 2PBC J0345.3-3932 2MASX J03451250-3934293 Sy1 56.316 -39.569 3.87 0.77 7.01 0.0430 43.66 1.52 1  Y  h  a
191 2PBC J0347.0-3025 1RXS J034704.9-302409 Sy1 56.764 -30.425 4.52 1.66 5.38 0.0950 44.20 1.57 3  N  h  a    b
192 2PBC J0349.4-1158 RBS 476 BZB 57.369 -11.969 3.14 1.84 10.06 0.1880 45.21 1.42 3  Y  h  a    b
193 2PBC J0350.5-5021 ESO 201-IG 004 G 57.636 -50.349 3.22 3.15 9.61 1.73 1  Y  h  a
194 2PBC J0351.6-4030 RBS 0482 Sy1 57.922 -40.486 3.90 1.12 6.91 0.0582 43.87 1.26 1  Y  h  a    b
195 2PBC J0353.3-6830 RHS 24 BLA 58.246 -68.528 3.17 3.00 9.89 0.0870 44.31 1.61 3  Y  h  a I
196 2PBC J0353.5+3713 2MASX J03534246+3714077 G 58.402 37.206 3.80 2.12 7.22 0.0189 43.14 1.75 1  Y  h  a
197 2PBC J0354.0+0250 RBS 0489 Sy1 58.522 2.844 3.73 1.64 7.45 0.0360 43.59 1.77 1  Y  h  a    b
198 2PBC J0355.3+3102 X Per HXB 58.844 31.049 0.82 0.20 271.06 3.98 3  Y  h  a I  b
199 2PBC J0356.6-6252 2MASX J03561995-6251391 AG? 59.063 -62.881 3.91 1.33 6.88 1.72 3  Y  h  a
200 2PBC J0356.9-4040 2MASX J03565655-4041453 G 59.228 -40.695 3.01 0.32 10.88 0.0747 44.36 1.48 1  Y  h  a
201 2PBC J0358.7+1024 3C 098 Sy2 59.678 10.402 5.07 3.45 4.90 0.0304 43.17 1.63 3  N  h  a I
202 2PBC J0359.0-3017 2MASX J03590885-3018102 GiC 59.768 -30.286 4.43 1.38 5.56 0.0938 44.29 1.66 3  N  h  a
203 2PBC J0359.5+5058 4C 50.11 Q? 59.884 50.988 3.12 1.51 10.21 1.5100 47.31 1.87 1  Y  l  a    f
204 2PBC J0402.4-1803 ESO 549-G 049 Sy1 60.613 -18.055 2.84 0.56 12.04 0.0262 43.57 2.04 1  Y  h  a
205 2PBC J0402.8+0157 MCG+00-11-007 Sy2 60.710 1.991 3.82 1.59 7.15 0.0127 42.56 1.66 1  Y  h  a
206 2PBC J0405.6-1308 RX J0405.5-1308 BZQ 61.396 -13.143 3.50 0.42 8.34 0.5710 46.28 1.74 3  Y  h  a    b  F
207 2PBC J0407.2+0341 3C 105 Sy2 61.817 3.695 2.63 0.72 13.84 0.0890 44.72 1.74 1  Y  h  a I
208 2PBC J0407.6-6116 ESO 118-4 IG 61.901 -61.272 4.97 5.16 5.05 0.0483 43.51 1.44 1  N  h  b
209 2PBC J0407.9-1210 RBS 0511 BZU 61.959 -12.211 3.87 1.13 7.00 0.5740 46.23 1.89 3  Y  h  a    b
210 2PBC J0414.9-0755 1E 0412-0803 Sy1 63.741 -7.927 2.77 1.30 12.65 0.0379 43.78 1.61 3  Y  h  a    b
211 2PBC J0418.3+3801 3C 111 Sy1 64.586 38.019 1.46 0.46 46.35 0.0485 44.76 2.63 3  Y  h  a I  b  F
212 2PBC J0419.7-5456 NGC 1566 Sy1 64.997 -54.929 3.12 0.54 10.19 0.0049 41.99 1.64 3  Y  h  a    b
213 2PBC J0422.4-5613 ESO 157- G 023 Sy2 65.612 -56.228 3.17 0.39 9.91 0.0432 43.80 1.71 1  Y  h  a
214 2PBC J0423.6+0406 2MASX J04234080+0408017 Sy2 65.922 4.125 2.93 0.53 11.41 0.0461 44.03 1.54 3  Y  h  a I
215 2PBC J0425.7-1945 V* IW Eri CV* 66.426 -19.756 4.41 3.05 5.62 1.78 2  N  h  b    b
216 2PBC J0425.9-5712 RBS 0542 QSO 66.502 -57.200 2.27 0.06 18.31 0.1040 44.71 2.01 3  Y  h  a    b
217 2PBC J0429.7-6703 1RXS J042948.9-670314 X 67.427 -67.063 4.51 0.82 5.41 1.42 3  N  h  b    b
218 2PBC J0429.8-2109 6dFGS gJ042938.3-210944 AGN 67.471 -21.154 4.56 3.50 5.30 0.0703 43.92 1.98 3  N  h  b    f
219 2PBC J0430.4-5334 RBS 0547 Sy1 67.585 -53.620 4.68 2.93 5.08 0.0397 43.28 1.63 3  Y  h  a    b
220 2PBC J0431.1-6126 ABELL 3266 ClG 67.823 -61.428 3.08 1.46 10.40 0.0594 43.75 1.46 2  Y  h  a
221 2PBC J0433.1+0521 3C 120 BZU 68.307 5.360 1.63 0.71 36.26 0.0331 44.35 1.62 1  Y  h  a I  b
222 2PBC J0436.3-1021 Mrk 618 Sy1 69.096 -10.371 3.43 0.37 8.63 0.0362 43.69 1.17 1  Y  h  a    b
223 2PBC J0437.8-4713 RBS 0560 Sy1 69.434 -47.206 3.96 2.99 6.74 0.0520 43.72 1.48 3  Y  h  a    b
224 2PBC J0438.2-1047 MCG -02-12-050 Sy1 69.566 -10.800 3.28 0.46 9.30 0.0359 43.69 1.44 1  Y  h  a    b
225 2PBC J0440.2-5937 ESO 118-33 Sy2 70.055 -59.710 4.28 2.41 5.89 0.0577 43.89 1.51 1  N  h  b    f
226 2PBC J0440.6-6507 70.169 -65.126 4.63 5.18 1.18 3  N  h
227 2PBC J0440.8+2739 1RXS J044046.9+273948 X 70.221 27.651 4.46 1.54 5.51 1.80 3  N  h  b    b
228 2PBC J0440.9+4432 RX J0440.9+4431 HXB 70.236 44.550 3.39 1.27 8.79 1.75 1  Y  l  a    f
229 2PBC J0441.3-2707 RBS 0572 Sy1 70.343 -27.099 4.20 2.38 6.09 0.0835 44.19 1.40 1  Y  h  a    b
230 2PBC J0441.9-0824 2MASX J04415408-0826339 Sy1 70.402 -8.384 4.79 5.58 4.89 0.0410 43.42 1.74 1  N  h  b    b
231 2PBC J0443.7+2858 UGC 3142 Sy1 70.950 28.974 2.58 0.27 14.34 0.0218 43.63 1.99 1  Y  h  a I
232 2PBC J0444.0+2814 2MASX J04440903+2813003 Sy2 71.012 28.227 2.33 1.49 17.42 0.0113 43.15 2.35 1  Y  h  a
233 2PBC J0444.7-2810 RX J0444.6-2810 Sy2 71.132 -28.178 3.11 1.53 10.22 0.1470 44.98 1.79 3  Y  h  a    f
234 2PBC J0446.2+1827 MCG+03-13-001 Sy2 71.571 18.464 4.26 2.99 5.93 0.0155 42.94 1.80 1  N  h  b
235 2PBC J0448.8-5741 ESO 119-8 Sy2 72.218 -57.700 4.77 2.50 4.92 0.0232 43.03 1.62 1  N  h  b
236 2PBC J0449.7+4503 4U 0446+44 ClG 72.447 45.062 4.64 3.63 5.14 0.0210 42.72 1.59 2  N  l  a
237 2PBC J0451.1-6948 PBCX J045106.7-694802 X 72.790 -69.801 2.23 0.24 19.03 2.10 2  N  h  a
238 2PBC J0451.6-0347 MCG -01-13-025 Sy1 72.894 -3.801 3.25 1.77 9.47 0.0130 42.91 1.49 1  Y  h  a    b
239 2PBC J0451.7-5811 RBS 0594 Sy1 72.926 -58.196 2.91 0.84 11.51 0.0910 44.58 2.09 3  Y  h  a    b
240 2PBC J0452.0+4931 RX J0452.0+4932 Sy1 73.002 49.539 2.11 0.79 21.07 0.0290 43.99 2.10 3  Y  l  a I  b
241 2PBC J0453.3+0404 2MASX J04532576+0403416 Sy2 73.326 4.071 3.42 1.95 8.66 0.0296 43.63 1.87 1  Y  h  a I
242 2PBC J0455.3+1737 73.834 17.633 4.83 4.82 1.36 2  N  h
243 2PBC J0455.9-7532 ESO 033- G 002 Sy2 73.941 -75.537 2.73 0.89 12.97 0.0184 43.10 1.58 3  Y  h  a I  b
244 2PBC J0457.0+4525 1RXS J045707.4+452751 X 74.283 45.442 3.04 1.32 10.68 1.73 3  Y  l  a    b
245 2PBC J0459.8+2705 4C 27.14 rad 74.963 27.087 3.80 1.37 7.21 1.75 1  N  h  a
246 2PBC J0500.7-7041 IGR J05007-7047 HXB 75.244 -70.690 2.71 3.36 13.14 1.92 2  Y  h  a I
247 2PBC J0502.3+0327 1E 0459.5+0327 Sy1 75.578 3.523 4.13 2.47 6.26 0.0159 42.88 1.60 1  Y  h  a    b
248 2PBC J0502.4+2443 V* V1062 Tau No* 75.630 24.752 3.19 0.85 9.81 1.69 3  Y  h  a I
249 2PBC J0503.0+2300 1RXS J050258.5+225949 Sy1 75.736 23.032 4.11 2.09 6.31 0.0577 44.19 1.51 3  Y  h  a    b
250 2PBC J0504.2-7343 IGR J05053-7343 gam 76.129 -73.733 4.26 3.51 5.95 1.66 1  N  h  b I
1RXS J050434.2-734902 X 5.05
251 2PBC J0505.4-6734 76.357 -67.579 4.78 4.91 1.52 3  N  h
252 2PBC J0505.7-2351 2MASX J05054575-2351139 Sy2 76.444 -23.864 1.81 0.61 28.97 0.0350 44.19 1.54 1  Y  h  a I  f
253 2PBC J0506.6-1935 1RXS J050648.5-193651 Sy1 76.696 -19.674 3.74 3.58 7.43 0.0900 44.39 2.08 3  Y  h  b    b
254 2PBC J0508.1+1724 2MASX J05081967+1721483 Sy2 77.065 17.370 3.80 1.02 7.21 0.0177 43.13 1.81 3  Y  h  a    b
255 2PBC J0510.8+1629 4U 0517+17 Sy1 77.692 16.493 1.88 0.38 26.63 0.0178 43.70 2.10 1  Y  h  a I  b
256 2PBC J0512.0-1831 ESO 553-22 AGN 78.011 -18.517 4.67 1.81 5.09 0.0421 43.50 1.62 1  N  h  a
257 2PBC J0514.1-4002 1H 0512-401 LXB 78.539 -40.047 1.58 0.58 38.84 2.46 2  Y  h  a I  b
258 2PBC J0515.3+1856 78.837 18.938 4.13 6.27 1.73 3  N  h
259 2PBC J0516.1-0009 Mrk 1095 Sy1 79.049 -0.156 1.93 0.33 25.20 0.0336 44.19 1.33 3  Y  h  a I
260 2PBC J0516.3+1927 79.078 19.464 4.39 5.66 1.50 1  N  h
261 2PBC J0516.4-1034 MCG-02-14-009 Sy1 79.114 -10.531 3.94 2.35 6.78 0.0280 43.25 1.40 2  Y  h  a    b
262 2PBC J0519.4-3240 ESO 362- G 018 Sy1 79.888 -32.666 1.90 0.67 26.11 0.0126 43.20 1.66 1  Y  h  a I  b
263 2PBC J0519.8-4546 PICTOR A Sy1 79.953 -45.772 2.08 0.44 21.74 0.0342 43.95 1.48 3  Y  h  a I  b
264 2PBC J0520.4-7157 LMC X-2 LXB 80.062 -71.945 2.12 1.63 20.91 1.68 2  Y  h  a    b
265 2PBC J0520.8-2522 2MASX J05210136-2521450 Sy2 80.208 -25.368 4.86 2.61 5.25 0.0434 43.58 1.48 3  N  h  a    f
266 2PBC J0523.0-3626 RBS 0644 BZU 80.746 -36.459 2.38 0.23 16.74 0.0553 44.27 1.82 1  Y  h  a    b  F
267 2PBC J0524.1-1211 LEDA 17233 Sy1 81.049 -12.192 3.21 1.99 9.71 0.0491 44.11 1.21 3  Y  h  a
268 2PBC J0525.4-4559 PKS 0524-460 BZQ 81.307 -45.988 3.06 3.37 10.55 1.4790 47.17 1.35 1  Y  h  a    f
269 2PBC J0525.6+2413 RX J0525.3+2413 CV* 81.331 24.243 3.67 1.24 7.66 1.63 1  Y  h  a    b
270 2PBC J0526.2-2119 81.560 -21.328 4.50 5.43 …<