The Palermo Swift-BAT Hard X-ray Catalogue

The Palermo Swift-BAT Hard X-ray Catalogue

II. Results after 39 months of sky survey
G. Cusumano INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    V. La Parola INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    A. Segreto INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    V. Mangano INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    C. Ferrigno INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy Institut für Astronomie und Astrophysik Tübingen (IAAT) ISDC Data Centre for Astrophysics, Chemin d’Écogia 16, CH-1290 Versoix, Switzerland    A. Maselli INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    P. Romano INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    T. Mineo INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    B. Sbarufatti INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, I-90146 Palermo, Italy    S. Campana INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy    G. Chincarini Università degli studi di Milano-Bicocca, Dipartimento di Fisica, Piazza delle Scienze 3, I-20126 Milan, Italy INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy    P. Giommi ASI Science Data Center, via Galileo Galilei, 00044 Frascati, Italy    N. Masetti INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna, Italy    A. Moretti INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy    G. Tagliaferri INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, 23807 Merate, Italy
Key Words.:
X-rays: general - Catalogs - Surveys
offprints: G. Cusumano, cusumano@ifc.inaf.it
Abstract

Context:

Aims:We present the Palermo Swift-BAT hard X-ray catalogue obtained from the analysis of the the data relative to the first 39 months of the Swift mission.

Methods:We have developed a dedicated software to perform data reduction, mosaicking and source detection on the BAT survey data. We analyzed the BAT dataset in three energy bands (14–150 keV, 14–30 keV, 14–70 keV), obtaining a list of 962 detections above a significance threshold of 4.8 standard deviations. The identification of the source counterparts was pursued using three strategies: cross-correlation with published hard X-ray catalogues, analysis of field observations of soft X-ray instruments, cross-correlation with the SIMBAD databases.

Results:The survey covers 90% of the sky down to a flux limit of erg cm s  and 50% of the sky down to a flux limit of erg cm s  in the 14–150 keV band. We derived a catalogue of 754 identified sources, of which % are extragalactic, % are Galactic objects, % are already known X-ray or gamma ray emitters whose nature has not been determined yet. The integrated flux of the extragalactic sample is of the Cosmic X-ray background in the 14–150 keV range.

Conclusions:

1 Introduction

The study of Galactic and extragalactic sources at energies greater than 10 keV is fundamental to investigate non thermal emission processes and to study source populations that are not detectable in the soft X-ray energy band because their emission is strongly absorbed by a thick column of gas or dust. Another major aim of deep and sensitive surveys in the hard X-ray domain is to resolve the diffuse X-ray background (CXB) and identify which class of sources gives the larger contribution: while the CXB at energies lower than 10 keV has been almost entirely resolved (80–90%, Moretti et al., 2003; Worsley et al., 2005, 2006; Brandt & Hasinger, 2005), only a 1.5% of the CXB at higher energies can be associated with resolved sources (Ajello et al., 2008b)

Up to now, the observation of the hard X-ray sky has not been performed with imaging grazing incidence telescopes because the reflectivity above 10 keV rapidly falls down due to the steep decrease of the critical angle with energy. The first surveys in the hard X-ray domain were performed with detectors equipped with collimator-limited field of view: UHURU (2–20 keV; Forman et al., 1978) and HEAO1 (0.2 keV – 10 MeV; Wood et al., 1984). Later, sky images for energies greater than 10 keV have been produced using coded mask detectors (e.g. Fenimore & Cannon, 1978; Skinner et al., 1987): in such detectors the entrance window of the telescope is partially masked and the “shadows” of the cosmic sources are projected onto a position-sensitive detector. Dedicated algorithms are then used to reconstruct the position and intensity of the sources in the field of view and, therefore, reproduce the image of the observed sky. In the last two decades space observatories equipped with this type of telescopes have surveyed the sky reporting detections of numerous sources emitting in the hard X-ray domain: Spacelab/XRT (Skinner et al., 1987), MIR/KVANT/TTM (Sunyaev et al., 1991), GRANAT/ART-P (Pavlinsky et al., 1992, 1994), GRANAT/SIGMA (Cordier et al., 1991; Sunyaev et al., 1991) and BeppoSAX/WFC (Jager et al., 1997). Today, the IBIS-ISGRI camera (Ubertini et al., 2003; Lebrun et al., 2003) on the INTEGRAL observatory (Winkler et al., 2003) with its field of view of (fully coded) is carrying out a hard X-ray survey focussing mostly on the Galactic plane in the 20–150 keV energy band with sensitivity higher than previous observatories. The main results of this survey and the relevant source catalogues are reported in several papers (e.g. Bird et al., 2004, 2006, 2007; Bassani et al., 2006; Krivonos et al., 2007, 2005; Sazonov et al., 2007; Churazov et al., 2007).

The Burst Alert Telescope (BAT; Barthelmy et al., 2005) on board the Swift observatory (Gehrels et al., 2004), with its large field of view ( half coded) and large detector area (a factor of 2 greater than ISGRI) offers the opportunity for a large increase of the sample of objects that contribute to the luminosity of the sky in the hard X-rays allowing for a substantial improvement of our knowledge of the AGN and of the cosmic hard X-ray background. The first results on the BAT survey have been presented in Markwardt et al. (2005); Ajello et al. (2008a, b); Tueller et al. (2008). The latter presents a catalogue of sources detected in the first 9 months of the BAT survey data, identifying 154 extragalactic sources (129 at ).

In order to exploit the BAT survey archive, we developed the dedicated software BatImager (Segreto et al., 2009), independent from the one developed by the Swift-BAT team111http://heasarc.gsfc.nasa.gov/docs/swift/analysis/. In this paper we present the results obtained from the analysis of 39 months of BAT sky survey. The paper is organized as follows: in Sect. 2 we describe the BAT telescope; in Sect. 3 we describe the data set and screening criteria; in Sect. 4 we present a brief description of the code used for the analysis and illustrate our analysis strategy. In Sect. 5 we describe the survey properties. The catalogue construction and the results are reported in Sect. 6. The last Section summarizes our results. The spectral properties of our extragalactic sample will be discussed in a forthcoming paper (La Parola et al. 2009, in preparation).

The cosmology adopted in this work assumes km s Mpc, k=0, , and . Quoted errors are at confidence level, unless otherwise specified.

2 The BAT telescope

The BAT, one of the three instruments on board the Swift observatory, is a coded aperture imaging camera consisting of a 5200 cm array of mm CdZnTe elements mounted on a plane 1 meter behind a 2.7 m coded aperture mask of 5 5 mm elements distributed with a pseudo-random pattern. The telescope, operating in the 14–150 keV energy range with a large field of view (1.4 steradian half coded) and a point spread function (PSF) of 17 arcmin, is mainly devoted to the monitoring of a large fraction of the sky for the occurrence of Gamma Ray Bursts (GRBs). The BAT provides their position with the accuracy (1–4 arcmin) that is necessary to slew the spacecraft towards a GRB position and bring the burst location inside the field of view of the narrow field instruments in a couple of minutes. While waiting for new GRBs, it continuously collects spectral and imaging information in survey mode, covering a fraction between 50% and 80% of the sky every day. The data are immediately made available to the scientific community through the public Swift data archive222http://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/swift.pl.

3 Survey data set and screening criteria

We have analysed the first 39 months of the BAT survey data archive, from 2004 December to the end of 2008 February. The BAT survey data are in the form of Detector Plane Histograms (DPH). These are three dimensional arrays (two spatial dimensions, one spectral dimension) which collect count-rate data in (tipically) 5-minutes time bins for 80 energy channels.

The data were retrieved from the Swift public archive and screened out from bad quality files, excluding those files where the spacescraft attitude was not stable (i.e., with a significant variation of the pointing coordinates). The resulting dataset was pre-analized (see Sect. 4), in order to produce preliminary Detector Plane Images (DPI, obtained integrating the DPH along the spectral dimension) from where the bright sources (S/N ) and background were subtracted; very noisy DPHs, i.e. with a standard deviation significantly larger than the average value where subtracted. The list of bright sources detected in each DPH was used to identify and discard the files suffering from inaccurate position reconstruction. After cross-correlating the position of these sources with the ISGRI catalogue, the GRB positions and the newly discovered Swift sources documented in literature (Markwardt et al., 2005; Ajello et al., 2008a; Tueller et al., 2008), we discarded the files where:

  • the bright sources in the BAT field of view are detected at more than 10 arcmin from their counterpart position (due to a star tracker loss of lock).

  • the reconstructed image of at least one bright source has a strongly elongated shape (maybe due to an unrecognized slew).

After the screening based on these criteria, the usable archive has a total nominal exposure time of 72.7 Ms, corresponding to 91.2% of the total survey exposure time during the period under investigation.

4 Methodology

In order to perform a systematic and efficient search for new hard X-ray sources, we have developed the BatImager, a dedicated software which produces an all-sky mosaic directly from a list of BAT data files. A complete and detailed description of the software and its performance is presented in Segreto et al. (2009). Here we only report the details of the procedure which are relevant to this work.

4.1 The code

The BatImager integrates each single DPH in a selected energy range, producing the corresponding DPI. A preliminary cleaning of the disabled and noisy pixels is performed, and the DPI is cross correlated with the mask pattern, in order to identify and subtract bright sources (with S/N ). Then the background, modelled on a large scale from the analysis of the shadowgram residuals by performing a Principal Component Analysis (Kendall, 1980), is subtracted. A further search for bad pixels is performed, obtaining the final map of all pixels to be excluded in the following steps. A further correction is applied to take into account differences in the detection efficiency of single detector pixels, through a time/energy dependent efficiency map, built stacking all the processed DPI and equalizing the average residual contribution for each pixel. The original DPI, corrected for the efficiency map and cleaned for the bad pixels, is processed again, with all the contributions from the background and the bright sources identified in the previous steps computed simultaneously, in order to correct for cross-contamination effects. These contributions are subtracted from the DPI, that is then converted into a sky image, using the Healpix projection (Górski et al., 2005). This projection provides an equal-area pixelization on a sphere and allows the generation of an all-sky map, avoiding the distortion introduced by other types of sky projections far from the projection center. This sky map is then corrected for the occultation of Sun, Earth and Moon. The sky maps produced from each DPI are added together, with the intensity in a given sky direction computed from the contribution from all the sky images, each inversely weighted for its variance in that direction. As described above, the bright sources and background were already subtracted from each single DPI; therefore this all-sky mosaic contains only the residual sky contribution. In order to correct for residual systematic effects (e.g. imperfect modelling of the source illumination pattern or of the background distribution), the all-sky S/N map is sampled on a scale significantly larger than the PSF: the local average S/N is subtracted and its measured variance used to normalize the local S/N distribution. Finally, we obtain a S/N map with zero average and unitary variance that can be used for a blind source detection.

Figure 1: Hardness ratio [defined as R(30–150)/R(14–30)] of the sources detected with BatImager as a function of the best detection significance. Different symbols refer to the energy range where each source was detected at the highest S/N. The solid line is the average hardness ratio value.

4.2 Detection strategy

We have created all-sky maps in three energy bands: 14–150 keV, 14–70 keV, 14–30 keV. The source detection in the all-sky map is performed by searching for local excesses in the significance map. The source position and its peak significance are then refined with a fit restricted within a region of a few pixels where the excess dominates over the noise distribution. Only detections with peak significance greater than 4.8 sigma are included in our list of detected sources. We found that this threshold represents the optimal value that maximizes the number of detectable sources, maintaining at the same time an acceptable number of spurious detections: taking into account the total number of pixels in the all sky map, the PSF and the Gaussian distribution of the noise, we expect 23 spurious detections above our threshold in each energy band, due to statistical fluctuations. Therefore, the total number of spurious detections will be between 23 and 69 (2.4% to 7.2% of the total number of our detections, see below), the best case occurring if each noise fluctuation above the threshold appears simultaneously in all three bands, the worst case occurring if each fluctuation appears only in one energy band. A few sources () detected with a significance slightly lower than our threshold were included in the detection list because their S/N is significantly larger than the negative excess (in modulus) of the local noise distribution.

The resulting detection catalogues (one for each of the three energy bands) have been cross-correlated and merged in a single catalogue: when source candidates closer than 10 arcmin are present in the sky maps of different energy bands, they were reported in the merged catalogue as a single source candidate. We obtain a final number of 962 source candidates (detected in at least one of the three energy bands). We adopt as best source position the one corresponding to the energy range with the highest detection significance.

We have evaluated the hardness ratio of the detected sources as Rate(30–150 keV)/Rate(14–30 keV) (the hard rate is evaluated as the difference between the count rates in the 14–150 and in the 14–30 energy bands). In Figure 1 we plot the hardness ratio as a function of the significance for each detected source, showing the energy range where the detection has the highest significance. Repeating the detection process in three energy bands optimizes the S/N for each source, and this yields better values for the source position, whose uncertainty scales inversely with the significance. Moreover, a significant subsample of sources was detected in only one of the three energy bands ( 56 in the 14–150 keV energy band, 38 in the 14–30 keV energy band, 78 in the 14–70 keV energy band) demonstrating that searching in different energy bands maximizes the number of detectable sources.

Figure 2 shows that the distribution of the detected sources (orange squares) vs. Galactic latitude flattens for , which we shall hereon consider our operational definition of the Galactic plane.

Figure 2: Distribution of the detected sources vs. Galactic latitude. Each bin corresponds to a solid angle of sr.

4.3 Identification strategy

The identification of the counterpart of the BAT detections was performed following three different strategies.

A. The position of each of the 962 detected excesses was cross-checked with the coordinates of the sources included in the INTEGRAL General Reference Catalogue333http://isdc.unige.ch/?Data+catalogs (v. 27), that contains 1652 X-ray emitters, and with the coordinates of the counterpart of the 48 new identifications of BAT sources already published (Markwardt et al., 2005; Tueller et al., 2008; Ajello et al., 2008a, b) and not included in the above catalogue. We adopted as counterpart a source within a radius arcmin from the BAT position (4 standard deviations error circle for a source detection at 4.8 standard deviations, Segreto et al., 2009). With this method we obtain 458 identifications, 295 with . The choice of the error radius is strategic to maximize the associations and keep the number of spurious associations to a negligible level. The number of spurious identifications due to chance spatial coincidence has been evaluated using the following expression:

(1)

where, A is the selected error circle area, A is the total sky area under investigation, and are the number of BAT detections and of candidate counterparts in A. The above formula assumes both source distributions to be uniform over the sky. In order to take into account the higher density of sources on the Galactic plane we have divided the sky into two regions: (the Galactic plane, with , ) and (, ). The number of expected spurious identifications is 2.1 within and 1.3 elsewhere. As the assumption of uniform distribution could be only a crude approximation, we have verified the evaluation of expected spurious associations with an alternative method: we produced a set of 962 coordinate pairs by inverting the position of the detected excesses with respect to the Galactic reference system and cross-correlated these positions with the INTEGRAL General Reference Catalogue extended with the published BAT identifications. We obtained 3 spurious associations, in full agreement with the value obtained in Eq.1.

B. We have searched for observations from Swift/XRT containing the remaining (504) unidentified excesses in their field. We found Swift/XRT observations for 186 BAT source candidates. Source detection inside these X-ray images was performed using XIMAGE (v4.4). When a source was detected inside a arcmin error circle (99.7% confidence level for a source detection at 4.8 standard deviations, Segreto et al., 2009) we first checked for its hardness ratio in the 0.3–10 keV range (with 3 keV as a common boundary of the two ratio bands) and for its count rate above 3 keV. We identified a source as the counterpart of a BAT detection if at least one of the above conditions was satisfied: hardness ratio , count rate above 3 keV c s. In seven cases where two candidates, satisfying at least one of the threshold conditions, were found inside the BAT error circle, we chose as counterpart the closest source to the BAT position. With this method we identified 170 source counterparts. In order to evaluate the number of expected spurious identifications we collected a large sample of XRT observations of GRB fields, using only late follow-ups (where the GRB afterglow has faded) with the same exposure time distribution as the XRT pointings of the BAT sources. We searched for sources within a 6.3 arcmin error circle centered at the nominal pointing position in each of these fields, excluding any GRB residual afterglow, and satisfying at least one of the above threshold conditions. We detected 7 sources, therefore, the number of expected spurious identifications is consistent with the number of multiple XRT detections inside the BAT error circle. We also searched for field observations with other X-ray instruments (XMM-Newton, Chandra, BeppoSAX), finding 25 identifications, out of 30 pointings. Given the low number of available fields, the number of expected spurious identifications within this sample is irrelevant.

C. For the remaining unidentified sky map excesses (309) we searched for spatial coincidence inside an error circle of 4.2 arcmin radius ( confidence level for a source detection at 4.8 standard deviations, Segreto et al., 2009) with sources included in the SIMBAD catalogues. The size of the search radius was fixed to 4.2 arcmin in order to have a negligible number of spurious identifications (see below). We restricted our search to the following SIMBAD object classes: Cataclysmic variable (CV), High mass X-ray binaries (HXB), Low mass X-ray binaries (LXB), Seyfert 1 (Sy1), Seyfert 2 (Sy2), Blazar and BL Lac (Bla, BLL), LINERs (LIN), for a total of 22425 objects in the SIMBAD database. This strategy allowed us to identify 92 detections, with only one source at low Galactic latitude (). The number of expected spurious identifications was evaluated with the two methods described for the strategy A. According to Eq.1 we expect 0.03 spurious identifications within (20 BAT detections and 391 Simbad sources in the classes of interest) and 2.7 elsewhere (289 BAT detections and 22034 Simbad sources); using the set of 309 coordinate pairs obtained inverting with respect to the Galactic center the positions of the sources in our sample we find 3 spurious associations, consistent with the first method. The cross correlation between unidentified sky excess and the SIMBAD catalogue of QSOs was treated separately because the coincidence error circle of 4.2 arcmin radius results in a high number of spurious associations (9 out of 17 associations). A radius of 2 arcmin allowed us to identify 9 sources as QSOs, and to optimize the ratio between the total number of associations and the expected number of spurious associations ().

In Fig. 3 we report the offsets of each BAT source with respect to its identified counterpart as a function of the detection significance (S/N). The offset vs. the detection significance can be modeled with a power-law plus a constant. The best fit equation we obtained is the following:

(2)

The constant in Eq. 2 represents the sistematic due to a residual boresight misalignment. At the detection threshold of 4.8 standard deviations the average offset is arcmin.

Fig. 4 shows the distribution of the identified sources for each identification strategy as a function of the offset between the BAT position and the counterpart position. The peak of the distribution is at lower offset for strategy A because the sample of the sources identified with this strategy contains the brightest objects. The peak of the distribution relevant to strategy B is at a lower offset with respect to the distribution of strategy C because the XRT follow-up observations were performed on the more significant still unidentified source candidates.

Figure 3: Offset between the BAT position and the counterpart position as a function of the detection significance. A few values are far from the overall distribution: those marked with a star (sources number 535, 564, 565, 570, 571, 574, 584 and 586 in Table 2) are in crowded field and the reconstructed sky position suffers from the contamination of the PSF of the nearest sources; the one marked with a circle is an extended source (Coma Cluster). The solid line represents the fit to the data (excluding the few outliers) with a power law.

Figure 4: Distribution of the identified sources for each identification strategy (Sect. 4.3) as a function of the offset between the BAT position and the counterpart position.

All the identifications obtained with the three strategies (754) were merged in the final catalogue reported in Table 2 (see Section 6) where a flag indicates the identification method for each source. Figure 2 shows the distribution of all identified sources (black diamonds) as a function of the Galactic latitude.

A set of 208 detections could not be associated with a counterpart. These source candidates have detection significance between 4.8 and 14 standard deviations and flux in the 14–150 keV band between and erg cm s. 33 sources out of 208 are detected in all the three enegy bands and 63 in two energy bands. The unidentified detections are distributed quite uniformly in the sky (Figure 2, green circles), with 190 sources out of 208 located above the Galactic plane ().

Figure 5: Fraction of the sky covered by the Swift-BAT and INTEGRAL-ISGRI surveys vs. limiting flux.

Figure 6: Map of the limiting flux (in mCrab) of the 39-months BAT-survey data in the 14–150 keV band, projected in Galactic coordinates, with the ecliptic coordinates grid superimposed (the thick lines represents the ecliptica axes). The scale on the colorbar is in mCrab.

5 Sky coverage and limiting flux

Figure 5 shows the sky coverage, defined as the fraction of the sky covered by the survey as a function of the detection limiting flux. The limiting flux for a given sky direction is calculated by multiplying the local image noise by a fixed detection threshold of standard deviations. This threshold, higher than the one adopted for source detection (Sect. 4.2), was used to compare the BAT sky coverage with those produced with the INTEGRAL data survey. The large BAT field of view, the large geometrical area together with the Swift pointing distribution, covering the sky randomly and uniformly according to the appearance of GRBs, has allowed the achievement of an unprecedented sensitive and quite uniform sky coverage. The 39 months BAT survey covers 90% of the sky down to a flux limit of erg cm s(1.1 mCrab), and 50% of the sky down to erg cm s(0.8 mCrab). In the same figure the BAT sky coverage is compared with that of INTEGRAL/ISGRI after 44 months of observation (Krivonos et al., 2007).

Figure 6 shows the limiting flux map in galactic Aitoff projection, with the ecliptic coordinates grid superimposed. The minimum detection limiting flux is not fully uniform on the sky: the Galactic center and the ecliptic plane are characterized by a worse sensitivity due to high contamination from intense Galactic sources and to the observing constraints of the Swift spacecraft. The highest flux sensitivity is achieved near the ecliptic poles where a detection flux limit of about erg cm s  is reached ( mCrab).

6 The 39-months catalogue

The complete catalogue of the sources identified in the first 39 months of BAT survey data is reported in Table 2. The table contains the following information:

  • Palermo BAT Catalogue (PBC) name of the source (column 2), built from the BAT coordinates with the precision of 0.1 arcmin on RA.

  • Counterpart identification (column 3) and source type (column 4) coded according to the nomenclature used in SIMBAD.

  • RA and Dec of the BAT source in decimal degrees (columns 5, 6).

  • Error radius (column 7), offset with respect to the counterpart position (column 8) and significance (column 9), as obtained in the energy band with the highest significance (a flag in column 14 indicates the energy range with the maximum significance).

  • Flux in the widest band of detection, averaged over the entire survey period (column 10). For most of the sources this is 14–150 keV. In the other cases a flag in column 14 indicates the appropriate band. In order to convert count rates into fluxes we derived a conversion factor for each of the three bands using the corresponding Crab count rate and the Crab spectrum used for BAT calibration purposes, as reported in the BAT calibration status report444http://swift.gsfc.nasa.gov/docs/swift/analysis/bat_digest.html#calstatus.

  • Hardness ratio defined as Rate[30–150 keV]/Rate[14–30 keV], where the hard rate is evaluated as the difference between the count rates in the 14–150 and in the 14–30 energy bands (column 11).

  • Redshift of the extragalactic sources (column 12), from the SIMBAD database (or NED, for the few cases that were not reported in SIMBAD).

  • Log of the rest frame luminosity in the 14–150 keV band for extragalactic objects (column 13), calculated using the luminosity distance for sources with redshift , and using the distance reported in the Nearby Galaxies Catalogue (NBG, Tully, 1988) or NED, for the few cases that were not reported in the NBG catalogue, for sources with redshift .

  • Flag column (column 14) with information on: energy band with the highest significance (A), energy band used for the calculation of the flux (B), flag for already known hard X-ray sources (C), position with respect to the Galactic plane (, D), strategy used for the identification (E, see Sect. 4.3)

6.1 Statistical properties of the catalogue

Table 1 details the distribution of the 754 sources in our catalogue among different object classes: % of the catalogue is composed of extragalactic objects, % are Galactic objects, % are already known X-ray or gamma ray emitters whose nature is still to be determined. Figure 7 shows the distribution of all the sources in our catalogue, colour-coded according to the object class, with the size of the symbol proportional to the 14–150 keV flux (for those sources not detected in the 14–150 keV band the flux in the widest band of detection has been extrapolated to the 14–150 keV range using the BAT Crab spectrum).

Class # of sources % in the Catalog
LXB 76 10.1%
HXB 64 8.5%
Pulsars 10 1.3%
SN/SNR 5 0.7%
Cataclysmic variables 46 6.1%
Stars 5 0.7%
Molecolar Cloud 1 0.1%
Galactic (total) 207 27.5%
Seyfert 1 galaxies 235 31.2%
Seyfert 2 galaxies 131 17.4%
LINERs 7 0.9%
QSO 14 1.8%
Blazars 71 9.4%
Galaxy clusters 18 2.4%
Normal galaxies 27 3.6%
Unclassified AGN 16 2.1%
Extragalactic (total) 519 68.8%
Other types 28 3.7%
Table 1: Classification of the known sources detected in the BAT survey. Other types includes all sources that have a catalogued counterpart but have not been classified yet.

We have compared this distribution with the third ISGRI catalogue (Bird et al., 2007). The results are plotted in Figure 8. We find a dramatic improvement in the detection of extragalactic objects, both in the nearby Universe (normal galaxies, LINERs) and at higher distances (Seyfert galaxies, QSO, clusters of galaxies). As expected from the sky coverage achieved by the BAT survey data (Figure 5), most of our identified sources have a flux below erg s cm and are located outside the Galactic plane. We also detect many Galactic sources that are not included in the ISGRI catalogue, most of which are cataclysmic variables and X-ray binaries. This can be explained in part with the different pointing strategy of the two instruments. Hovewer, Figure 2 shows that, although most of our newly identified sources (red triangles) are above the Galactic plane, where the ISGRI exposure is low, we also detect a few sources on the Galactic plane most of which we identify as X-ray binaries (1E 1743.1–2852, GRO 1750–27, SAX J1810.8–2609 and XTE J1856+053). We have verified that their detections are due to a transient intense emission observed in the large FoV of BAT.

We detect emission from 18 clusters of galaxies. We verified that for 17 of them the spectral distribution in the 14–150 keV band is consistent with the tail of a thermal emission with kT keV without evidence for the presence of a hard non-thermal emission. Only for Abell 2142 we find evidence for a power law component that could be ascribed to the AGN content of the cluster.

Figure 7: Map of the sources we detect in the BAT survey data (Galactic coordinates). Different colors denote different object classes, as detailed in the legend. The size of the symbol is proportional to the source flux in the 14-150 keV band.

Figure 8: Comparison between the sources in our catalogue and those reported in the third ISGRI catalogue (Bird et al., 2007). Top: Galactic sources. Bottom: Extragalactic sources.

6.2 The extragalactic subsample

The catalogue contains 519 extragalactic objects. Figure 9 shows the distribution of the redshift within our sample for the main classes of extragalactic objects. Most of the emission-line AGNs are located at , but we also detected a few Seyfert 1 galaxies at larger redshift (up to ). Seyfert 2 galaxies are detected up to . Blazars are detected up to , and QSOs are detected up to .

Figure 9: Redshift distribution of the extragalactic sources in the BAT survey catalogue for different classes of extragalactic sources.

We verified the completeness of our sample of 366 emission line galaxies (i.e. the significance limit down to which we are including in the sample all objects above a given flux limit) using the test (Schmidt, 1968; Huchra & Sargent, 1973). This method was developed to test the evolution of complete samples of objects, but can be also used to test the completeness of non-evolving samples. For each source, is the volume enclosed by the object distance, while is the volume corresponding to the maximum distance where the object could be still revealed in the survey (and thus depends on the limiting flux in the direction of the object). In case of no evolution the expected value of , averaged over the entire sample, is 0.5. We assume the hypothesis of no evolution and uniform distribution in the local Universe. For each source in the sample, and for each significance level tested for completeness (), we compute the quantity as , where is the flux of the source and its 1 standard deviation uncertainty. is obtained averaging over the number N of all sources in the sample detected with a significance higher than , and its error is . Figure 10 shows the results of this test: the distribution becomes constant at , with a mean value of , consistent with the expected value of 0.5. Thus we can confidently assume that our sample is complete down to our adopted significance threshold of .

Figure 10: vs significance for our sample of extragalactic sources. The solid line is the expected value (0.5), the dashed line is the average value for , the shaded area covers the error for the average value.

6.3 distribution

The distribution was evaluated by summing the contribution of all the detected sources firmly identified with extragalactic objects (Table 2) and all the unidentified detections. We selected only sources with : Figure 2 (orange squares) shows that the detection distribution is uniform above this Galactic latitude limit. The cumulative distribution is weighted by the area in which these sources could have been detected. The following formula has been applied:

where is the total number of detected sources with fluxes greater than , is the flux of the -th source and is the sky coverage associated to the flux (Figure 5).

In order to avoid the presence of systematic errors in the determination of the arising because of spurious source detections and to the large relative uncertainty on the sky coverage at the lower end of the flux scale, we limited the construction of the to fluxes greater than erg cm s. The resulting distribution contains 330 sources ( 14 unidentified) and covers a flux range up to erg s cm.

We applied a linear least-square fit to derive the slope of the distribution assuming a power law in the form , where is set to erg cm s. The fit gives a value of and a normalization of sources with flux greater than erg cm s, corresponding to a density of deg . The single power-law model is found to give an acceptable description of the data (; 31 dof) with a slope consistent with an Euclidean distribution.

The presence of spurious detections in the sample of unidentified sources could introduce a systematic effect both in the slope and in the normalization of the . We expect between 23 and 69 spurious detections due to statistical fluctuations (see Sect.4.2), that correspond to a percentage between and % in the sample of the unidentified sources. This means that 2-5 unidentified sources among those used in the fit of the could be spurious.We have checked that their contribution does not introduce any significant systematics in the best fit values.

The integrated flux is erg cm s deg corresponding to 1.4% of the intensity of the X-ray background in the 14–170 keV energy band as measured by HEAO-1 (Gruber et al., 1999).

We have compared this law with the one derived from the INTEGRAL data (Krivonos et al., 2007) in the keV band. To convert our into the keV band we use the Crab spectral parameters derived by the INTEGRAL analysis (Laurent et al., 2003). We find a slope of and a normalization of sources with flux higher than 1 mCrab, corresponding to a density of deg. These parameters are in full agreement with those reported by Krivonos et al. (2007).

Figure 11: log(N)-log(S) distribution for the BAT extragalactic sources.

7 Conclusions

We have analyzed the BAT hard X-ray survey data of the first 39 months of the Swift mission. To this purpose we developed a dedicated software (Segreto et al., 2009) that performs data reduction, background subtraction, mosaicking and source detection on the BAT survey data. This software is completely independent from the one developed by the Swift-BAT team. It is a single tool that provides all the products relevant to the BAT survey sources (e.g. images, spectra, lightcurves).

The large BAT field of view, the large geometrical area, and the Swift pointing strategy have allowed to obtain an unprecedented, very sensitive and quite uniform sky coverage that has provided a significant increase of sources detected in the hard X-ray sky. The survey flux limit is erg cm s(1.1 mCrab) for 90% of the sky and erg cm s(0.8 mCrab) for 50% of the sky.

We have derived a catalogue of 754 identified sources detected above a significance threshold of 4.8 standard deviations. The association of these sources with their counterparts has been performed in three alternative strategies: cross-correlation with the INTEGRAL General Reference Catalogue and with previously published BAT catalogues (Markwardt et al., 2005; Tueller et al., 2008; Ajello et al., 2008a); analysis of soft X-ray field observations with Swift-XRT, XMM-Newton, Chandra, BeppoSAX; cross-correlation with the SIMBAD catalogues of Seyfert Galaxies, QSOs, LINERs, Blazars, Cataclysmic Variables, X-ray binaries. The expected total number of spurious identifications is negligible. A set of 208 detections are not associated with a counterpart, yet. These candidate sources will be object of a follow-up campaign with Swift-XRT in the immediate future.

The extragalactic sources represents % of our catalogue ( 519 objects), % are Galactic objects, % are already known X-ray or gamma ray emitters whose nature is still to be determined. Compared with the 3rd ISGRI catalogue (Bird et al., 2007), we identify 176 more Seyfert galaxies, 26 more normal galaxies, 13 more galaxy clusters, 13 more QSO, 57 more Blazars and 5 more LINERs. The redshift limit for the detected emission line AGNs is , with 31 objects with . Blazars and QSOs are detected up to and , respectively. Among the Galactic sources we significantly increase the number of cataclysmic variables detected in the hard X-ray band ( 29 new objects). We also detect 22 X-ray binaries that are not included in the ISGRI catalogue, even though the total number of X-ray binaries we detect is lower than the sample included in the ISGRI catalogue.

Based on the extragalactic sources sample and on the achieved sky coverage, we have evaluated the distribution for fluxes higher than erg cm s. The slope is consistent with an Euclidean distribution. We estimate that the total number of extragalactic sources at and flux greater than erg cm s  is . Converting this into the 17–60 keV band, our results are in full agreement with those reported by Krivonos et al. (2007) for the INTEGRAL survey. The integrated flux of this extragalactic sample is of the Cosmic X-ray background in the 14–150 keV range (Gruber et al., 1999; Churazov et al., 2007; Frontera et al., 2007; Ajello et al., 2008c).

Forthcoming papers will be focussed on the detection of transient sources, spectral properties of the extragalactic sample, updates of the catalogue.

Acknowledgements.
G. C. acknowledges B. Sacco and M. Ajello for useful discussions that helped to inprove this paper. This research has made use of NASA’s Astrophysics Data System Bibliographic Services, of the SIMBAD database, operated at CDS, Strasbourg, France, as well as of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work was supported by contract ASI/INAF I/011/07/0.

References

  • Ajello et al. (2008a) Ajello, M., Greiner, J., Kanbach, G., Rau, A., Strong, A. W., & Kennea, J. A. 2008a, ApJ, 678, 102
  • Ajello et al. (2008b) Ajello, M., et al. 2008b, ApJ, 673, 96
  • Ajello et al. (2008c) Ajello, M., et al. 2008c, ApJ, 689, 666
  • Barthelmy et al. (2005) Barthelmy, S. D., et al. 2005, Space Science Reviews, 120, 143
  • Bassani et al. (2006) Bassani, L., et al. 2006, ApJ, 636, L65
  • Beckmann et al. (2006) Beckmann, V., Soldi, S., Shrader, C. R., Gehrels, N., & Produit, N. 2006, ApJ, 652, 126
  • Bird et al. (2007) Bird, A. J., et al. 2007, ApJS, 170, 175
  • Bird et al. (2006) Bird, A. J., et al. 2006, ApJ, 636, 765
  • Bird et al. (2004) Bird, A. J., et al. 2004, ApJ, 607, L33
  • Brandt & Hasinger (2005) Brandt, W. N., & Hasinger, G. 2005, ARA&A, 43, 827
  • Cappelluti et al. (2007) Cappelluti, N., et al. 2007, ApJS, 172, 341
  • Churazov et al. (2007) Churazov, E., et al. 2007, A&A, 467, 529
  • Cordier et al. (1991) Cordier, B., et al. 1991, Advances in Space Research, 11, 169
  • Fenimore & Cannon (1978) Fenimore E. E & Cannon T. M.  1978, Appl. Opt. 17, 337
  • Forman et al. (1978) Forman, W., Jones, C., Cominsky, L., Julien, P., Murray, S., Peters, G., Tananbaum, H., & Giacconi, R. 1978, ApJS, 38, 357
  • Frontera et al. (2007) Frontera, F., et al. 2007, ApJ, 666, 86
  • Gehrels et al. (2004) Gehrels, N., et al. 2004, ApJ, 611, 1005
  • Górski et al. (2005) Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. 2005, ApJ, 622, 759
  • Gruber et al. (1999) Gruber, D. E., Matteson, J. L., Peterson, L. E., & Jung, G. V. 1999, ApJ, 520, 124
  • Huchra & Sargent (1973) Huchra, J., & Sargent, W. L. W. 1973, ApJ, 186, 433
  • Jager et al. (1997) Jager, R., et al. 1997, A&AS, 125, 557
  • Kendall (1980) Kendall M. G., 1980, Multivariate analysis, ed. Grin & co. London
  • Krivonos et al. (2007) Krivonos, R., Revnivtsev, M., Lutovinov, A., Sazonov, S., Churazov, E., & Sunyaev, R. 2007, A&A, 475, 775
  • Krivonos et al. (2005) Krivonos, R., Vikhlinin, A., Churazov, E., Lutovinov, A., Molkov, S., & Sunyaev, R. 2005, ApJ, 625, 89
  • Laurent et al. (2003) Laurent, P., et al. 2003, A&A, 411, L185
  • Lebrun et al. (2003) Lebrun, F., et al. 2003, A&A, 411, L141
  • Markwardt et al. (2005) Markwardt, C. B., Tueller, J., Skinner, G. K., Gehrels, N., Barthelmy, S. D., & Mushotzky, R. F. 2005, ApJ, 633, L77
  • Moretti et al. (2003) Moretti, A., Campana, S., Lazzati, D., & Tagliaferri, G. 2003, ApJ, 588, 696
  • Pavlinsky et al. (1994) Pavlinsky, M. N., Grebenev, S. A., & Sunyaev, R. A. 1994, ApJ, 425, 110
  • Pavlinsky et al. (1992) Pavlinsky, M. N., Grebenev, S. A., & Sunyaev, R. A. 1992, Soviet Astronomy Letters, 18, 116
  • Sazonov et al. (2007) Sazonov, S., Revnivtsev, M., Krivonos, R., Churazov, E., & Sunyaev, R. 2007, A&A, 462, 57
  • Schmidt (1968) Schmidt, M. 1968, ApJ, 151, 393
  • Segreto et al. (2009) Segreto A. et al. 2009, A&A, submitted
  • Skinner et al. (1987) Skinner, G. K., Ponman, T. J., Hammersley, A. P., & Eyles, C. J. 1987, Ap&SS, 136, 337
  • Skinner et al. (1987) Skinner, G. K., Willmore, A. P., Eyles, C. J., Bertram, D., & Church, M. J. 1987, Nature, 330, 544
  • Sunyaev et al. (1991) Sunyaev, R. A., et al. 1991, Advances in Space Research, 11, 177
  • Tueller et al. (2008) Tueller, J., Mushotzky, R. F., Barthelmy, S., Cannizzo, J. K., Gehrels, N., Markwardt, C. B., Skinner, G. K., & Winter, L. M. 2008, ApJ, 681, 113
  • Tully (1988) Tully, R.B., Nearby Galaxies Catalogue (NBG), 1988, Cambridge University Press
  • Ubertini et al. (2003) Ubertini, P., et al. 2003, A&A, 411, L131
  • Ubertini et al. (1999) Ubertini, P., Bazzano, A., Cocchi, M., Heise, J., in’t Zand, J. J. M., Muller, J. M., Natalucci, L., & Smith, M. J. S. 1999, Astrophysical Letters Communications, 38, 301
  • Winkler et al. (2003) Winkler, C., et al. 2003, A&A, 411, L1
  • Wood et al. (1984) Wood, K. S., et al. 1984, ApJS, 56, 507
  • Worsley et al. (2006) Worsley, M. A., Fabian, A. C., Bauer, F. E., Alexander, D. M., Brandt, W. N., & Lehmer, B. D. 2006, MNRAS, 368, 1735
  • Worsley et al. (2005) Worsley, M. A., et al. 2005, MNRAS, 357, 1281
  • Zdziarski et al. (2000) Zdziarski, A. A., Poutanen, J., & Johnson, W. N. 2000, ApJ, 542, 703
PBC name ID Type RA Dec Error radius Offset SNR Flux Hardness ratio Redshift Flag
(deg) (deg) (arcmin) (arcmin) (erg cm s) (erg s A B C D E
1 PBC J0006.3+2012 Mrk 335 Sy1 1.58873 20.20689 3.10 0.480 11.46 0.0254 43.34 3  1  n  h  a
2 PBC J0009.3-0034 2MASX J00091156-0036551 Sy2 2.34193 -0.57510 3.89 3.558 5.35 0.0730 44.17 1  1  n  h  b
3 PBC J0010.4+1059 Mrk 1501 BLA 2.61064 10.99384 2.59 1.579 10.02 0.0893 44.65 3  1  n  h  a
4 PBC J0018.3+8135 S5 0014+81 BLA 4.58770 81.59197 3.34 2.682 6.75 3.3660 48.12 1  1  n  h  a
5 PBC J0023.0+6138 IGR J00234+6141 CV* 5.77389 61.64727 3.91 3.795 7.53 2  1  y  l  a
6 PBC J0024.9+6407 TYCHO SNR SNR 6.23328 64.13138 3.26 2.824 6.99 3  1  y  l  a
7 PBC J0025.0+6248 IGR J00245+6251 gB 6.27016 62.80854 4.16 4.688 4.85 1  1  y  l  a
8 PBC J0025.6+6823 IGR J00256+6821 AG? 6.40185 68.39235 3.47 1.834 6.37 0.0120 42.50 1  1  n  h  a
9 PBC J0028.9+5917 V709 Cas DQ* 7.22675 59.29191 1.41 0.724 43.64 3  1  y  l  a
10 PBC J0029.3+1317 RBS 0068 Sy1 7.33068 13.28351 4.19 1.677 4.80 0.1450 44.77 3  3  n  h  c
11 PBC J0033.2+6130 IGR J00335+6126 Sy1 8.31342 61.50171 3.17 4.006 9.62 0.1050 44.72 1  1  y  l  a
12 PBC J0035.8+5951 1ES 0033+59.5 BLA 8.96774 59.85079 2.68 0.972 12.36 0.0860 44.57 2  1  y  l  a
13 PBC J0036.3+4539 2MASX J00362092+4539532 Sy1 9.09174 45.66243 3.96 0.238 6.09 0.0477 43.77 3  1  n  h  b
14 PBC J0037.2+6120 IGR J00370+6122 HXB 9.30329 61.34838 2.88 0.800 11.69 3  1  y  l  a
15 PBC J0041.6+2534 NGC 214 GiG 10.42025 25.56853 3.74 5.061 7.52 0.0150 42.78 1  1  n  h  c
16 PBC J0041.7-0920 ABELL 0085 ClG 10.43030 -9.34827 4.06 1.393 5.04 0.0521 43.80 2  1  n  h  a
17 PBC J0042.6+4111 4U 0037+39 X 10.65773 41.19100 3.95 1.840 5.24 1  1  n  h  a
18 PBC J0042.7+3017 RX J0042.6+3017 Sy1 10.69393 30.29990 3.45 1.274 6.58 0.1400 44.76 3  1  n  h  b
19 PBC J0042.8-2331 NGC 235A Sy2 10.71398 -23.52057 1.86 1.272 19.90 0.0222 43.58 3  1  y  h  a
20 PBC J0048.7+3157 Mrk 348 BLA 12.19016 31.95353 1.11 0.379 57.54 0.0151 43.72 3  1  y  h  a
21 PBC J0051.8-7318 RX J0052.1-7319 HXB 12.96843 -73.30997 2.93 1.661 12.02 3  1  n  h  a
22 PBC J0051.9+1725 Mrk 1148 Sy1 12.99701 17.43206 2.21 1.089 13.01 0.0642 44.42 3  1  n  h  c
23 PBC J0054.6+2521 RBS 0130 Sy1 13.67128 25.36165 4.37 4.668 4.52 0.1550 44.85 2  2  n  h  c
24 PBC J0055.3+4612 XSS J00564+4548 CV* 13.83279 46.21383 2.43 1.815 16.50 2  1  n  h  c
25 PBC J0056.5+6043 gam Cas Be* 14.14344 60.72316 1.21 1.063 51.18 2  1  y  l  a
26 PBC J0059.8+3150 Mrk 352 Sy1 14.96095 31.83543 2.35 0.761 13.14 0.0149 43.08 3  1  y  h  a
27 PBC J0100.6-4752 ESO 195-IG 021 Sy1 15.15736 -47.87433 3.32 0.594 6.81 3  1  n  h  c
28 PBC J0105.7-1415 RBS 0149 Sy1 16.44535 -14.25433 3.43 2.181 6.48 0.0670 44.11 3  1  n  h  c
29 PBC J0106.8+0637 2MASS J01064523+0638015 Sy2 16.71979 6.62860 4.29 1.904 4.64 0.0409 43.55 1  1  n  h  b
30 PBC J0108.8+1320 3C 033 Sy2 17.21265 13.34690 2.87 0.733 11.28 0.0596 44.16 1  1  n  h  c
31 PBC J0111.1-1616 6dFGS gJ011114.3-161555 Sy1 17.78875 -16.27258 0.00 1.387 6.69 0.0500 43.81 2  2  n  h  b
32 PBC J0111.5-3804 NGC 424 Sy2 17.89226 -38.07623 2.75 1.379 11.40 0.0115 42.67 3  1  n  h  a
33 PBC J0113.7+1314 Mrk 975 Sy1 18.43550 13.23966 3.75 2.492 5.67 0.0494 43.81 3  1  n  h  b
34 PBC J0113.8-1450 Mrk 1152 Sy1 18.45009 -14.84880 2.90 0.534 9.63 0.0522 44.03 3  1  n  h  a
35 PBC J0114.3-3240 IC 1663 Sy2 18.57513 -32.66833 3.50 2.576 6.65 0.0118 42.57 1  1  n  h  b
36 PBC J0114.4-5524 NGC 454 Sy2 18.60750 -55.40798 3.19 0.813 9.23 0.0120 42.65 1  1  y  h  a
37 PBC J0117.1-7326 SMC X-1 HXB 19.28694 -73.44229 0.75 0.276 331.27 2  1  y  h  a
38 PBC J0118.0+6517 3A 0114+650 HXB 19.51938 65.29603 1.04 0.334 90.80 3  1  y  l  a
39 PBC J0122.3+5004 MCG+08-03-018 G 20.58219 50.07506 3.98 2.649 5.64 0.0206 43.02 3  1  n  h  c
40 PBC J0123.1+3421 1ES 0120+340 BLA 20.78009 34.35617 3.54 0.623 6.16 0.2720 45.40 3  1  n  h  c
41 PBC J0123.8-5847 RBS 0194 Sy1 20.96559 -58.79782 1.90 0.905 16.98 0.0470 44.27 3  1  n  h  a
42 PBC J0123.9-3503 NGC 526 Sy1 20.97878 -35.05627 1.63 0.561 23.84 0.0192 43.53 1  1  y  h  a
43 PBC J0124.4+3346 NGC 0513 Sy2 21.11426 33.78088 3.14 1.093 10.19 0.0195 43.15 1  1  n  h  c
44 PBC J0126.0+1518 RHS 10 Sy1 21.50103 15.30966 4.23 0.661 4.74 0.1110 44.42 3  3  n  h  b
45 PBC J0128.0-1848 RBS 0203 Sy1 22.00957 -18.81051 3.27 1.053 6.96 0.0430 43.70 3  1  n  h  c
46 PBC J0132.0-3306 ESO 353- G 009 Sy2 23.01577 -33.09999 3.40 3.098 6.55 0.0165 42.81 3  1  n  h  b
47 PBC J0134.0-3630 NGC 612 rG 23.50479 -36.50449 1.74 0.977 22.04 0.0299 43.86 1  1  n  h  a
48 PBC J0134.5-0428 RBS 0216 Sy1 23.64721 -4.48073 3.54 2.873 6.18 0.0790 44.22 3  1  n  h  c
49 PBC J0138.6-4000 ESO 297- G 018 Sy2 24.67064 -40.01276 1.57 0.728 24.19 0.0252 43.81 3  1  y  h  a
50 PBC J0140.4-5320 2MASX J01402676-5319389 G 25.11661 -53.33582 4.23 0.527 4.75 1  1  n  h  c
51 PBC J0146.3+6144 4U 0142+614 Psr 26.57639 61.73474 1.73 1.083 24.85 1  1  y  l  a
52 PBC J0152.7-0327 MCG-01-05-047 Sy2 28.18907 -3.46139 2.58 1.257 10.07 0.0167 43.10 3  1  n  h  a
53 PBC J0154.7-2707 1RXS J015440.5-270659 AGN 28.67879 -27.13114 3.74 1.031 5.68 0.1510 44.72 3  0  n  h  b
54 PBC J0201.0-0648 NGC 788 Sy2 30.26176 -6.81509 1.51 0.901 30.27 0.0136 43.33 3  1  y  h  a
55 PBC J0202.9-2400 RBS 0273 Sy1 30.73681 -24.01470 3.61 1.677 5.99 0.1780 44.97 1  1  n  h  b
56 PBC J0206.3-0016 Mrk 1018 Sy1 31.57732 -0.27684 2.86 1.077 9.49 0.0426 43.91 3  1  y  h  a
57 PBC J0207.0+2929 RHS 13 rad 31.75435 29.49597 3.79 1.024 5.57 0.1100 44.44 3  1  n  h  b
58 PBC J0209.4-1010 NGC 835 Sy2 32.35103 -10.17373 4.35 2.272 4.55 0.0123 42.55 3  3  n  h  a
59 PBC J0209.4+5226 IGR J02097+5222 Sy1 32.36014 52.44562 1.96 1.213 21.26 0.0492 44.34 1  1  y  h  a
60 PBC J0214.5-0044 Mrk 590 Sy1 33.63866 -0.73508 3.56 1.902 5.31 0.0265 43.34 3  1  n  h  a
61 PBC J0214.7-6431 RBS 0295 Sy1 33.67610 -64.52047 4.13 1.259 4.91 0.0740 44.05 1  1  n  h  b
62 PBC J0216.1+5124 2MASX J02162987+5126246 Sy2 34.02882 51.41636 3.09 3.164 7.59 0.4220 45.97 3  1  n  h  a
63 PBC J0217.4+7349 1ES 0212+735 BLA 34.37040 73.83144 2.49 0.368 10.69 2.3670 48.02 1  1  y  h  a
64 PBC J0225.0+1848 RBS 315 BLA 36.25686 18.80895 2.61 1.867 9.91 2.6900 48.11 3  1  n  h  c
65 PBC J0225.4-6314 FRL 296 Sy1 36.37364 -63.24697 3.51 2.663 7.51 0.0598 43.99 1  1  n  h  c
66 PBC J0226.7-2819 2MASX J02262568-2820588 Sy1 36.67490 -28.32004 4.17 3.976 6.47 0.0600 43.89 3  1  n  h  b
67 PBC J0228.2+3119 Mrk 1040 Sy1 37.05453 31.32041 1.65 0.652 30.07 0.0163 43.49 3  1  y  h  a
68 PBC J0231.9-3640 IC 1816 Sy2 37.99192 -36.67282 3.26 1.393 9.39 0.0170 42.93 3  1  n  h  c
69 PBC J0232.7+2018 1ES 0229+200 BLA 38.18263 20.30858 2.89 1.685 8.44 0.1396 44.96 3  1  n  h  c
70 PBC J0234.3+3227 NGC 0973 Sy2 38.58036 32.46154 3.12 2.650 7.46 0.0150 42.94 1  1  y  h  a
71 PBC J0234.7-0846 NGC 985 Sy1 38.67776 -8.76888 2.31 1.651 12.08 0.0430 44.00 3  1  y  h  a
72 PBC J0235.3-2935 ESO 416-G002 Sy1 38.83300 -29.59368 2.70 1.553 11.58 0.0591 44.16 3  1  n  h  a
73 PBC J0238.2-5211 RBS 0335 Sy1 39.55099 -52.19260 2.56 1.128 10.22 0.0452 43.94 1  1  n  h  a
74 PBC J0238.8-4038 RBS 0339 Sy1 39.70396 -40.63831 2.83 0.348 8.72 0.0617 44.17 1  1  n  h  c
75 PBC J0240.6+6114 GT 0236+610 HXB 40.16095 61.24414 2.61 1.221 11.81 1  1  y  l  a
76 PBC J0241.2-0814 NGC 1052 Sy2 40.30301 -8.24776 2.58 2.018 12.29 0.0049 42.06 3  1  y  h  a
77 PBC J0241.5+0709 1ES 0238+069 Sy1 40.39875 7.16616 4.10 1.279 4.96 0.0272 43.32 1  1  n  h  c
78 PBC J0242.7-0000 NGC 1068 Sy2 40.67545 -0.01328 2.58 0.319 13.28 0.0037 41.80 3  1  y  h  a
79 PBC J0245.0+6228 1ES 0241+622 Sy1 41.25464 62.47726 1.46 0.658 27.75 0.0445 44.47 3  1  y  l  a
80 PBC J0245.3+1045 4C +10.08 BLA 41.32499 10.75687 4.39 2.203 4.48 0.0700 44.13 1  1  n  h  b
81 PBC J0248.9+2627 2MASX J02485937+2630391 G 42.24030 26.46388 3.26 2.850 7.48 0.0597 44.19 1  1  n  h  c
82 PBC J0250.8+5442 2MFGC 2280 AG? 42.70468 54.70889 3.34 0.957 6.74 0.0150 42.75 1  1  n  l  a
83 PBC J0250.8-3617 1RXS J025055.4-361640 QSO 42.70677 -36.29198 4.20 1.484 4.78 3  0  n  h  b
84 PBC J0251.6-1640 NGC 1125 Sy2 42.92255 -16.67006 4.13 1.196 4.91 0.0110 42.44 1  1  n  h  c
85 PBC J0252.4-0832 MCG-02-08-014 Sy2 43.10131 -8.53628 2.88 1.564 11.10 0.0167 43.03 3  1  y  h  a
86 PBC J0255.2-0011 NGC 1142 Sy2 43.80866 -0.19313 1.46 0.711 31.64 0.0288 44.11 1  1  y  h  a
87 PBC J0256.1+1925 XY Ari DQ* 44.04704 19.43307 2.33 0.781 16.54 3  1  n  h  c
88 PBC J0256.3-3211 ESO 417- G 006 Sy2 44.08810 -32.18462 2.43 0.127 13.92 0.0163 43.10 3  1  n  h  c
89 PBC J0300.2+1627 RHS 17 Sy1 45.06699 16.45644 4.01 3.430 5.13 0.0350 43.54 1  1  n  h  b
90 PBC J0303.8-0107 NGC 1194 Sy1 45.96340 -1.11725 2.76 0.941 12.84 0.0133 42.89 3  1  n  h  c
91 PBC J0311.3-2046 RBS 0392 Sy1 47.83725 -20.77998 2.84 0.706 8.67 0.0660 44.28 1  1  n  h  c
92 PBC J0318.2+6829 2MASX J03181899+6829322 Sy1 49.55286 68.49622 2.64 0.628 11.59 0.0901 44.59 3  1  y  h  a
93 PBC J0319.7+4129 NGC 1275 BLA 49.93641 41.49971 1.28 0.963 47.70 0.0175 43.69 2  1  y  h  a
94 PBC J0324.7-0300 NGC 1320 Sy2 51.17604 -3.01233 4.00 2.421 6.04 0.0092 42.27 3  1  n  h  c
95 PBC J0324.7+3409 1H 0323+342 Sy1 51.18716 34.15801 3.23 1.501 11.22 0.0629 44.16 1  1  y  h  a
96 PBC J0325.0-1223 MCG-02-09-040 Sy2 51.25023 -12.39860 0.00 3.438 5.26 0.0147 42.70 2  2  n  h  b
97 PBC J0325.1+4042 UGC 02724 Sy2 51.29144 40.71148 3.85 4.738 7.48 0.0477 43.88 3  1  n  h  c
98 PBC J0331.1+4353 GK Per CV* 52.79535 43.89860 1.22 0.401 53.70 2  1  y  h  a
99 PBC J0333.3+3717 IGR J03334+3718 Sy1 53.33251 37.28838 3.02 0.903 10.27 0.0547 44.10 3  1  y  h  a
100 PBC J0333.5-3608 NGC 1365 Sy1 53.38638 -36.13346 1.56 0.809 31.18 0.0055 42.47 3  1  y  h  a
101 PBC J0333.7-0459 NGC1358 Sy2 53.42520 -4.98349 4.16 6.382 4.86 0.0134 42.64 1  1  n  h  a
102 PBC J0334.2-1514 RHS 23 Sy1 53.57479 -15.24032 4.04 1.735 7.30 0.0351 43.44 3  3  n  h  a
103 PBC J0334.9+5310 EXO 0331+530 HXB 53.74935 53.17972 0.63 0.400 520.47 2  1  y  l  a
104 PBC J0336.5+3219 NRAO 140 BLA 54.12504 32.32561 3.04 1.048 11.96 1.2585 47.27 3  1  n  h  a
105 PBC J0342.0-2114 RBS 0462 Sy1 55.52306 -21.24664 2.05 0.658 14.84 0.0144 43.15 3  1  y  h  a
106 PBC J0345.3-3932 2MASX J03451250-3934293 Sy1 56.34057 -39.53379 3.68 3.053 7.63 0.0430 43.67 1  1  n  h  b
107 PBC J0349.4-1158 RBS 476 BLA 57.36619 -11.96986 3.33 1.702 10.12 0.1880 45.21 1  1  y  h  a
108 PBC J0350.5-5021 ESO 201-IG 004 G 57.62844 -50.35066 3.24 3.144 7.05 0.0364 43.63 1  1  y  h  a
109 PBC J0351.6-4030 RBS 0482 Sy1 57.92416 -40.50147 4.20 2.081 4.79 0.0582 43.84 1  1  n  h  c
110 PBC J0353.3-6830 RHS 24 BLA 58.33943 -68.50845 2.86 1.670 8.55 0.0870 44.34 1  1  y  h  a
111 PBC J0353.5+3713 UGC 02889 G 58.39326 37.21730 3.87 2.877 5.41 0.0187 42.92 3  1  n  h  c
112 PBC J0354.0+0250 RBS 0489 Sy1 58.51765 2.84711 3.68 1.938 5.83 0.0360 43.59 3  3  n  h  c
113 PBC J0355.3+3102 X Per HXB 58.84092 31.04448 0.77 0.282 221.60 3  1  y  h  a
114 PBC J0356.6-6252 2MASX J03561995-6251391 AG? 59.15925 -62.88090 4.11 2.406 4.94 3  3  n  h  c
115 PBC J0356.9-4040 2MASX J03565655-4041453 G 59.23843 -40.67678 3.16 1.162 8.69 0.0747 44.30 1  1  y  h  a
116 PBC J0359.5+5058 4C 50.11 Q? 59.88451 50.98018 4.07 1.053 9.34 3  1  n  l  c
117 PBC J0402.4-1803 ESO 549-G 049 Sy1 60.60231 -18.06520 2.93 1.092 8.26 0.0262 43.41 3  1  n  h  c
118 PBC J0402.8+0157 MCG+00-11-007 Sy2 60.71591 1.95081 0.00 1.238 5.68 0.0127 42.58 3  3  n  h  b
119 PBC J0405.6-1308 RX J0405.5-1308 BLA 61.42355 -13.14014 3.87 1.871 5.41 0.5710 46.15 3  1  n  h  c
120 PBC J0407.2+0341 3C 105 Sy2 61.81504 3.69596 2.59 0.706 12.14 0.0890 44.70 3  1  y  h  a
121 PBC J0407.9-1210 RBS 0511 BLA 61.97728 -12.18211 4.24 1.644 4.72 0.5740 46.12 3  3  n  h  a
122 PBC J0414.9-0755 1E 0412-0803 Sy1 63.73178 -7.92127 3.18 0.860 7.25 0.0379 43.72 3  1  n  h  c
123 PBC J0418.3+3801 3C 111 Sy1 64.58928 38.02349 1.28 0.189 45.11 0.0485 44.69 3  1  y  h  a
124 PBC J0419.7-5456 NGC 1566 Sy1 64.94690 -54.93510 3.50 1.931 6.54 0.0049 41.84 1  1  n  h  c
125 PBC J0422.4-5613 ESO 157- G 023 Sy2 65.61693 -56.22189 3.57 0.586 6.75 0.0432 43.68 3  1  n  h  c
126 PBC J0423.6+0406 2MASX J04234080+0408017 Sy2 65.90762 4.11122 3.17 1.555 9.95 0.0461 43.89 3  1  n  h  c
127 PBC J0425.9-5712 RBS 0542 QSO 66.48853 -57.20998 2.55 0.742 10.30 0.1040 44.63 3  1  n  h  a
128 PBC J0430.4-5334 RBS 0547 Sy1 67.60258 -53.57330 4.06 3.411 5.04 0.0397 43.43 3  3  n  h  a
129 PBC J0431.1-6126 ABELL 3266 ClG 67.77518 -61.44218 2.85 2.259 8.61 0.0594 44.05 2  1  n  h  a
130 PBC J0433.1+0521 3C 120 BLA 68.29594 5.35671 1.52 0.144 30.98 0.0331 44.24 1  1  n  h  a
131 PBC J0436.3-1021 Mrk 618 Sy1 69.08099 -10.35313 3.33 1.534 6.77 0.0362 43.58 3  1  n  h  b
132 PBC J0437.8-4713 RBS 0560 Sy1 69.45275 -47.21727 3.87 3.939 5.40 0.0520 43.74 3  1  n  h  c
133 PBC J0438.2-1047 MCG -02-12-050 Sy1 69.56160 -10.79698 3.83 0.164 8.30 0.0359 43.51 3  1  n  h  c
134 PBC J0440.2-5937 ESO 118-33 Sy2 70.06174 -59.62806 4.14 3.815 4.80 0.0577 43.83 3  3  n  h  b
135 PBC J0440.9+4432 RX J0440.9+4431 HXB 70.24734 44.53536 4.37 0.300 7.12 1  1  n  l  a
136 PBC J0441.3-2707 RBS 0572 Sy1 70.33162 -27.12113 4.11 1.257 4.94 0.0835 44.22 1  1  n  h  b
137 PBC J0441.9-0824 RHS 25 Sy1 70.49783 -8.40521 4.34 2.643 4.56 0.0410 43.67 2  2  n  h  b
138 PBC J0443.7+2858 UGC 3142 Sy1 70.93417 28.97579 2.65 0.632 13.95 0.0218 43.53 1  1  y  h  a
139 PBC J0444.0+2814 2MASX J04440903+2813003 Sy2 71.02279 28.23483 2.33 1.339 11.94 0.0113 42.93 1  1  n  h  a
140 PBC J0444.7-2810 RX J0444.6-2810 Sy2 71.18002 -28.17853 2.93 1.465 8.23 0.1470 44.90 3  1  n  h  c
141 PBC J0451.6-0347 MCG -01-13-025 Sy1 72.92422 -3.79406 3.22 0.926 11.72 0.0130 42.79 3  1  y  h  a
142 PBC J0451.7-5811 RBS 0594 Sy1 72.94930 -58.18852 2.83 0.586 8.71 0.0910 44.46 3  1  n  h  c
143 PBC J0452.0+4931 RX J0452.0+4932 Sy1 73.00880 49.53013 1.79 1.032 18.93 0.0290 43.94 3  1  y  l  a
144 PBC J0453.3+0404 2MASX J04532576+0403416 Sy2 73.33683 4.08107 2.97 1.663 12.13 0.0296 43.63 3  1  n  h  c
145 PBC J0455.9-7532 ESO 033- G 002 Sy2 73.99588 -75.54008 2.70 0.047 9.37 0.0184 43.11 3  1  y  h  a
146 PBC J0457.0+4525 1RXS J045707.4+452751 X 74.27387 45.43040 3.07 2.038 10.32 3  1  n  l  c
147 PBC J0500.7-7041 IGR J05007-7047 HXB 75.18539 -70.69196 2.68 3.085 10.54 3  1  y  h  a
148 PBC J0502.3+0327 1E 0459.5+0327 Sy1 75.58974 3.46153 0.00 5.204 7.21 0.0159 42.88 3  3  n  h  c
149 PBC J0502.4+2443 V* V1062 Tau No* 75.61893 24.73218 3.88 1.467 9.13 2  1  n  h  c
150 PBC J0503.0+2300 1RXS J050258.5+225949 Sy1 75.75658 23.00426 3.64 0.839 5.93 0.0577 44.21 3  1  n  h  c
151 PBC J0504.2-7343 IGR J05053-7343 gam 76.06448 -73.72049 3.90 4.460 5.34 1  1  y  h  a
152 PBC J0505.7-2351 2MASX J05054575-2351139 Sy2 76.44971 -23.86203 1.75 0.701 19.69 0.0350 44.05 1  1  n  h  a
153 PBC J0506.6-1935 1RXS J050648.5-193651 Sy1 76.66824 -19.59548 4.14 2.219 4.89 0.0900 44.31 1  1  n  h  b
154 PBC J0508.1+1724 2MASX J05081967+1721483 Sy2 77.04440 17.40416 3.86 3.267 6.38 0.0177 43.13 3  1  n  h  c
155 PBC J0510.8+1629 4U 0517+17 Sy1 77.70303 16.49706 1.88 0.779 21.77 0.0178 43.61 3  1  y  h  a
156 PBC J0514.1-4002 1H 0512-401 LXB 78.54694 -40.04926 1.52 0.955 30.37 2  1  n  h  a
157 PBC J0516.1-0009 Mrk 1095 Sy1 79.04830 -0.15333 1.84 0.192 17.92 0.0336 44.09 3  1  y  h  a
158 PBC J0516.4-1034 MCG-02-14-009 Sy1 79.10258 -10.57948 3.95 1.372 7.63 0.0280 43.32 3  1  n  h  c
159 PBC J0519.4-3240 ESO 362- G 018 Sy1 79.86591 -32.67729 2.02 1.994 15.23 0.0126 43.01 1  1  n  h  a
160 PBC J0519.8-4546 PICTOR A Sy1 79.96823 -45.78220 1.87 0.506 20.44 0.0342 43.94 1  1  n  h  a
161 PBC J0520.4-7157 LMC X-2 LXB 80.11213 -71.95819 2.00 0.430 17.86 2  1  n  h  a
162 PBC J0523.0-3626 RBS 0644 BLA 80.75136 -36.43521 2.44 1.480 11.06 0.0553 44.17 3  1  n  h  a
163 PBC J0524.1-1211 LEDA 17233 Sy1 81.02939 -12.18665 3.45 1.213 9.13 0.0491 43.95 1  1  n  h  c
164 PBC J0525.4-4559 PKS 0524-460 BLA 81.36746 -45.98814 3.13 2.001 7.45 0.0424 43.74 1  1  n  h  c
165 PBC J0525.6+2413 RX J0525.3+2413 CV* 81.40698 24.22637 3.75 3.446 8.15 1  1  n  h  c
166 PBC J0529.3-3249 TV Col DQ* 82.33624 -32.82527 1.38 1.090 38.84 3  1  y  h  a
167 PBC J0530.9+1333 PKS 0528+134 BLA 82.73608 13.56583 4.28 2.031 5.38 2.0700 47.68 1  1  n  h  a
168 PBC J0532.7-6621 LMC X-4 HXB 83.19444 -66.36521 0.80 0.446 214.63 2  1  y  h  a
169 PBC J0534.5+2201 Crab Psr 83.62907 22.01721 0.55 0.283 4811.15 1  1  y  h  a
170 PBC J0534.7-5800 IGR J05346-5759 CV* 83.68449 -58.00522 2.84 1.140 11.38 2  1  y  h  a
171 PBC J0538.9+2618 1A 0535+262 HXB 84.72902 26.31300 0.81 0.189 174.49 2  1  y  l  a
172 PBC J0538.9-6404 LMC X-3 HXB 84.73983 -64.07533 2.86 0.441 11.83 1  1  n  h  a
173 PBC J0538.9-4406 PKS 0537-441 BLA 84.74760 -44.10882 4.25 2.134 4.72 0.8960 46.49 1  1  n  h  a
174 PBC J0539.8-6943 LMC X-1 HXB 84.95984 -69.73308 2.14 1.182 17.25 1  1  y  h  a
175 PBC J0539.8-2839 PKS 0537-286 BLA 84.96399 -28.66074 2.67 0.703 11.21 3.1040 48.19 1  1  y  h  a
176 PBC J0540.0-6921 PSR B0540-69.3 Psr 85.01019 -69.36603 1.97 1.934 20.13 1  1  y  h  a
177 PBC J0541.4-6825 XMMU J054134.7-682550 HXB 85.35213 -68.42186 1.63 1.074 22.37 2  1  n  h  a
178 PBC J0542.7+6052 BY Cam AM* 85.69649 60.87052 2.35 0.732 13.66 2  1  y  h  a
179 PBC J0543.4-4102 TX Col DQ* 85.85282 -41.03880 2.50 0.944 12.67 2  1  n  h  c
180 PBC J0543.6-2738 MCG -05-14-012 G 85.90178 -27.63827 3.35 1.095 9.08 1  1  n  h  c
181 PBC J0544.3+5905 2MASX J05442257+5907361 G 86.08633 59.09609 3.73 3.363 5.96 1  1  n  h  c
182 PBC J0550.7-3215 PKS 0548-322 BLA 87.68599 -32.25305 2.35 1.385 11.73 0.0689 44.41 3  1  n  h  a
183 PBC J0552.1-0727 NGC 2110 Sy2 88.04263 -7.46249 1.00 0.472 86.26 0.0075 43.37 1  1  n  h  a
184 PBC J0552.1+5927 1RXS J055229.5+592842 Sy1 88.04604 59.46057 4.31 2.568 8.05 0.0405 43.68 3  1  n  h  b
185 PBC J0554.8+4626 4U 0558+46 Sy1 88.71237 46.44129 1.36 0.472 32.12 0.0204 43.85 1  1  y  h  a
186 PBC J0555.9+3948 OA 198 BLA 88.98125 39.81504 4.02 4.743 5.12 2.3630 47.73 1  1  n  h  c
187 PBC J0558.0+5353 V405 Aur DQ* 89.50543 53.89895 2.03 0.086 18.96 2  1  n  h  c
188 PBC J0558.0-3821 H 0557-385 Sy1 89.51728 -38.35059 2.04 1.103 14.97 0.0339 43.87 3  1  n  h  a
189 PBC J0559.6-5028 1ES 0558-504 Sy1 89.90740 -50.47260 3.24 2.148 7.06 0.1370 44.79 3  1  n  h  a
190 PBC J0602.0+2828 IRAS 05589+2828 Sy1 90.52187 28.46945 2.03 0.985 19.04 0.0330 44.09 3  1  y  l  a
191 PBC J0606.0-8636 ESO 5-4 Sy2 91.52424 -86.61494 2.56 1.076 10.23 0.0063 42.27 1  1  n  h  a
192 PBC J0615.7+7100 Mrk 3 Sy2 93.93019 71.01530 1.21 1.445 48.89 0.0134 43.52 1  1  y  h  a
193 PBC J0617.1+0907 H 0614+091 LXB 94.28369 9.13322 0.85 0.296 161.95 3  1  y  l  a
194 PBC J0623.7-6435 RX J062308.0-643619 BLA 95.94460 -64.59756 4.38 4.069 4.51 0.1290 44.61 3  3  n  h  c
195 PBC J0623.8-3212 ESO 426- G 002 Sy2 95.95142 -32.20605 3.00 0.784 12.63 3  1  n  h  c
196 PBC J0623.8-6059 ESO 121-IG 028 Sy2 95.96694 -60.99261 2.30 1.205 12.14 0.0411 43.86 3  1  n  h  a
197 PBC J0625.2+7336 IGR J06253+7334 CV* 96.30939 73.60435 2.77 0.565 9.93 3  1  y  h  a
198 PBC J0630.9+6340 2MASX J06302561+6340411 Sy2 97.73368 63.66801 4.13 3.387 4.91 0.0500 43.78 3  3  n  h  b
199 PBC J0632.0-5403 1ES 0630-540 BLA 98.01952 -54.05547 3.68 1.405 5.83 0.1930 45.01 3  1  n  h  b
200 PBC J0632.6+6342 UGC 3478 Sy1 98.16300 63.71342 4.20 2.556 5.60 0.0124 42.50 1  1  n  h  a
201 PBC J0635.4-7514 PKS 0637-752 BLA 98.86375 -75.23612 3.99 2.441 5.25 0.6510 46.25 3  1  y  h  a
202 PBC J0636.6+3535 1RXS J063631.9+353573 CV* 99.17133 35.58371 3.79 1.967 7.86 3  1  n  h  b
203 PBC J0640.2-2554 ESO 490-IG026 Sy1 100.05178 -25.90328 2.16 0.581 16.98 0.0258 43.60 3  1  y  h  a
204 PBC J0640.5-4322 2MASX J06403799-4321211 G 100.13644 -43.37186 3.94 1.354 8.58 3  3  y  h  a
205 PBC J0641.3+3251 CGCG 145-004 G 100.34478 32.86021 3.05 2.339 7.74 0.0470 43.99 3  1  y  h  a
206 PBC J0652.1+7425 Mrk 6 Sy1 103.02712 74.42196 1.73 0.489 23.96 0.0186 43.50 3  1  y  h  a
207 PBC J0655.8+3958 UGC 03601 Sy1 103.95802 39.98190 3.31 1.090 11.78 0.0172 43.08 3  1  n  h  b
208 PBC J0658.3-0712 RX J065817.7-071228 X 104.57674 -7.20671 1.87 0.187 17.33 2  1  n  l  a
209 PBC J0658.4-5553 RX J0658.4-5557 ClG 104.61763 -55.89742 4.38 2.941 4.50 0.2960 45.44 2  2  n  h  c
210 PBC J0709.2-3601 PKS 0707-35 G 107.31702 -36.02909 2.88 0.557 8.48 0.1108 44.73 1  1  n  h  c
211 PBC J0710.2+5909 1H 0658+595 BLA 107.55034 59.16202 3.80 2.687 5.56 0.1250 44.65 1  1  n  h  b
212 PBC J0717.9+4405 RX J0718.0+4405 Sy1 109.49387 44.09904 2.76 0.597 9.07 0.0610 44.20 3  1  n  h  c
213 PBC J0718.7+6558 V* HS Cam AM* 109.68320 65.98037 4.02 3.284 5.10 1  1  n  h  b
214 PBC J0726.5-3553 LEDA 96373 Sy2 111.63921 -35.89796 3.23 1.515 10.17 0.0296 43.50 1  1  y  h  a
215 PBC J0726.6+3700 1RXS J072635.3+370006 QSO 111.66588 37.00967 3.87 1.054 5.39 0.1900 45.11 3  1  n  h  b
216 PBC J0727.3-2404 1RXS J072720.8-240629 X 111.82922 -24.08079 3.88 1.693 5.38 1  1  n  l  a
217 PBC J0728.9-2605 3A 0726-260 HXB 112.24020 -26.09179 2.43 1.353 15.10 2  1  n  l  a
218 PBC J0731.5+0955 BG CMi DQ* 112.88268 9.92797 2.51 0.992 13.74 2  1  y  h  a
219 PBC J0732.6-1331 SWIFT J0732.5-1331 CV* 113.16088 -13.53206 2.50 0.899 14.29 3  1  n  l  a
220 PBC J0739.6-3143 SWIFT J0739.7-3144 X 114.91034 -31.72996 3.10 1.185 13.83 3  1  y  l  a
221 PBC J0742.4+4948 Mrk 79 Sy1 115.60992 49.80320 2.08 1.107 19.83 0.0220 43.56 3  1  y  h  a
222 PBC J0743.1-2546 SWIFT J0743.0-2543 X 115.79167 -25.77863 2.93 1.589 10.41 1  1  y  l  a
223 PBC J0744.1+2915 MCG+05-19-001 Sy2 116.03722 29.25091 0.00 0.262 8.41 0.0159 42.78 3  3  n  h  b
224 PBC J0745.0-5258 V* V436 Car DQ* 116.26553 -52.97683 4.16 1.648 5.54 2  2  n  h  b
225 PBC J0746.4+2548 OI +273 BLA 116.61086 25.81589 2.48 0.184 10.78 2.9793 48.29 1  1  n  h  a
226 PBC J0747.4+6055 Mrk 10 Sy1 116.86690 60.93186 3.01 0.176 7.89 0.0292 43.48 1  1  n  h  c
227 PBC J0747.5-1920 4U 0739-19 ClG 116.87582 -19.34621 3.50 3.118 7.70 0.1028 44.49 2  3  n  l  a
228 PBC J0748.6-6744 EXO 0748-676 LXB 117.15228 -67.74304 0.82 0.624 179.29 1  1  y  h  a
229 PBC J0750.6+1231 OI +280 BLA 117.67001 12.52051 3.99 2.748 5.17 0.8890 46.60 1  1  n  h  c
230 PBC J0751.2+1445 SWIFT J0750.9+1439 DQ* 117.80929 14.75030 2.08 0.976 18.19 2  1  n  h  a
231 PBC J0752.1+1935 2MASX J07521780+1935423 Sy1 118.04833 19.58654 4.16 1.553 4.69 0.1172 44.64 3  3  n  h  b
232 PBC J0752.9+4557 1RXS J075243.6+455653 Sy1 118.22643 45.96241 3.84 1.931 5.46 0.0600 43.99 1  1  n  h  c
233 PBC J0759.7-3844 IGR J07597-3842 Sy1 119.93464 -38.73559 1.86 0.526 22.36 0.0400 44.16 1  1  y  l  a
234 PBC J0759.9+2324 MCG +04-19-017 Sy2 119.98394 23.41600 3.06 1.672 8.47 0.0296 43.56 3  1  n  h  c
235 PBC J0800.2+2637 IC 486 Sy1 120.05240 26.62090 3.34 1.902 9.12 0.0272 43.46 1  1  n  h  c
236 PBC J0802.0-4946 ESO 209-12 Sy1 120.52305 -49.77196 3.09 1.337 10.70 0.0395 43.75 3  1  y  h  a
237 PBC J0804.0+0506 Mrk 1210 Sy2 121.01718 5.10874 1.93 0.516 16.49 0.0135 43.20 1  1  n  h  a
238 PBC J0804.7+1048 MCG+02-21-013 Sy2 121.18034 10.80000 0.00 1.630 6.90 0.0343 43.54 1  1  n  h  b
239 PBC J0805.4+6146 VIPS 0069 BLA 121.36999 61.77803 3.99 2.607 5.16 3.0400 47.87 1  1  n  l  c
240 PBC J0811.3+7601 RBS 0693 Sy1 122.83299 76.03101 2.94 1.537 8.21 0.1000 44.53 3  1  y  h  a
241 PBC J0814.4+0421 2MASX J08142529+0420324 G 123.60365 4.36518 3.49 1.507 7.15 0.0330 43.55 1  1  n  h  c
242 PBC J0816.8+1800 2MASX J08165108+1802496 Sy1 124.20686 18.00771 4.18 2.439 4.85 0.1580 44.81 3  3  n  h  b
243 PBC J0818.1+0121 1RXS J081815.0+012215 Sy1 124.53683 1.36476 4.11 1.566 4.95 0.0800 44.32 3  1  n  h  c
244 PBC J0823.0-0454 FAIRALL 0272 G 125.75989 -4.91566 2.46 1.195 10.91 0.0218 43.42 1  1  n  h  a
245 PBC J0826.3-7033 1ES 0826-703 X 126.57810 -70.56373 3.51 2.180 7.02 2  1  n  h  c
246 PBC J0832.6+3706 RBS 707 Sy1 128.17430 37.11599 3.48 3.350 6.34 0.0920 44.38 1  1  n  h  c
247 PBC J0835.3-4511 Vela Pulsar Psr 128.83591 -45.18714 1.13 0.642 71.17 3  1  y  l  a
248 PBC J0838.3+4837 EI UMa DN* 129.58429 48.62525 2.05 0.608 18.79 3  1  n  h  c
249 PBC J0838.4-3558 FAIRALL 1146 Sy1 129.60313 -35.97490 2.57 1.623 10.16 0.0317 43.70 3  1  y  l  a
250 PBC J0838.6-4831 USNO-B1.0 0414-00125587 CV* 129.65353 -48.53153 3.50 2.086 10.76 1  1  n  l  b
251 PBC J0839.7-1214 3C 206 Sy1 129.93419 -12.24953 3.13 1.608 11.10 0.1978 45.28 3  1  y  h  a
252 PBC J0840.0+2948 4C 29.30 Sy2 130.01706 29.80382 3.75 0.872 6.38 0.0647 44.05 3  1  n  h  b
253 PBC J0841.4+7053 S5 0836+71 BLA 130.36632 70.88821 1.61 0.503 23.06 2.1720 48.19 1  1  y  h  a
254 PBC J0842.2+0759 RX J0842.1+0759 Sy1 130.55507 7.99940 3.67 1.679 6.63 0.1300 44.79 1  1  n  h  b
255 PBC J0843.6+3553 2MASX J08434495+3549421 Sy2 130.90590 35.88482 3.66 3.707 6.94 0.0535 43.86 3  1  n  h  b
256 PBC J0845.2-3530 SWIFT J0845.0-3531 X 131.30219 -35.50058 4.22 2.016 7.83 3  1  y  l  a
257 PBC J0855.6+7812 NGC 2655 LIN 133.91064 78.21089 4.22 0.766 4.58 0.0047 41.65 1  1  n  h  a
258 PBC J0855.9+0049 2MASX J08555426+0051110 Sy1 133.98479 0.82705 0.00 1.645 6.66 0.0523 43.94 2  2  n  h  b
259 PBC J0902.1-4033 Vela X-1 HXB 135.52834 -40.55265 0.57 0.123 2340.86 2  1  y  l  a
260 PBC J0902.2+6004 Mrk 18 G 135.55325 60.07507 3.62 4.913 6.94 0.0109 42.45 1  1  y  h  a
261 PBC J0902.6-4813 IGR J09026-4812 gam 135.66902 -48.22909 2.36 0.784 11.65 3  1  y  l  a
262 PBC J0902.6-6815 NGC 2788A AGN 135.67323 -68.25965 3.36 1.995 6.69 0.0137 42.61 3  1  n  h  a
263 PBC J0904.5+5535 2MASX J09043699+5536025 Sy1 136.14954 55.59506 3.57 0.373 8.43 0.0371 43.52 3  1  y  h  a
264 PBC J0908.8-0940 4U 0900-09 ClG 137.21297 -9.66736 2.51 1.858 12.47 0.0535 44.07 2  1  n  h  a
265 PBC J0909.2+0350 SDSS J090920.23+034940.0 QSO 137.31367 3.84553 3.61 1.630 5.99 1.7995 47.33 1  0  n  h  b
266 PBC J0911.4+4528 2MASX J09112999+4528060 Sy2 137.85933 45.47018 2.91 0.666 8.33 0.0268 43.28 3  1  n  h  a
267 PBC J0916.2-6218 SWIFT J0917.2-6221 Sy1 139.06474 -62.30518 2.36 1.379 14.20 0.0571 44.25 1  1  y  h  a
268 PBC J0918.4+1619 Mrk 704 Sy1 139.60696 16.32457 2.23 1.157 16.64 0.0292 43.69 3  1  n  h  a
269 PBC J0919.7+5523 RBS 0766 Sy1 139.94736 55.39048 4.14 2.135 4.89 0.1226 44.52 1  1  n  h  b
270 PBC J0919.9+3712 IC 2461 G 139.98050 37.20952 3.18 1.232 9.34 0.0075 42.28 1  1  n  h  c
271 PBC J0920.4-5512 H 0918-549 LXB 140.11418 -55.20506 1.26 0.126 48.05 3  1  y  l  a
272 PBC J0920.8-0803 MCG -01-24-012 Sy2 140.21539 -8.06621 1.96 1.477 16.03 0.0198 43.53 1  1  n  h  a
273 PBC J0923.7+2255 RBS 0770 Sy1 140.93579 22.92268 2.14 0.895 13.72 0.0326 43.85 3  1  n  h  a
274 PBC J0924.0-3141 1RXS J092418.0-314212 Sy1 141.00308 -31.68889 3.02 1.496 7.86 0.0422 43.82 1  1  n  h  c
275 PBC J0925.2+5216 Mrk 110 Sy1 141.31607 52.28065 1.57 0.567 29.58 0.0353 44.10 1  1  y  h  a
276 PBC J0926.1+1245 Mrk 705 Sy1 141.53746 12.76142 3.10 2.139 7.28 0.0280 43.45 3  1  n  h  a
277 PBC J0927.1+2301 NGC 2885 Sy1 141.79355 23.02175 4.08 1.856 4.99 0.0250 43.18 3  1  n  h  b
278 PBC J0930.6+4954 RBS 0782 BLA 142.65817 49.90274 4.29 3.701 4.64 0.1880 44.95 2  2  n  h  c
279 PBC J0934.7-2155 ESO 565-19 Sy2 143.68114 -21.92694 3.42 0.111 7.40 0.0157 42.97 1  1  n  h  c
280 PBC J0945.7-1419 NGC 2992 Sy1 146.42947 -14.33332 2.54 0.484 10.33 0.0077 42.51 1  1  y  h  a
281 PBC J0947.6+0725 3C 227 Sy1 146.91605 7.42536 2.87 1.318 8.51 0.0865 44.51 3  1  y  h  a
282 PBC J0947.6-3056 MCG-05-23-016 Sy2 146.92079 -30.94757 1.00 0.176 85.32 0.0082 43.34 3  1  y  h  a
283 PBC J0949.2+4036 4C 40.24 BLA 147.30640 40.60399 4.15 4.920 5.64 1.2520 46.80 3  3  n  h  c
284 PBC J0952.1-0648 NGC 3035 Sy1 148.03586 -6.80447 3.83 3.756 8.64 0.0145 42.72 1  1  n  h  b
285 PBC J0954.8+3724 IC 2515 Sy2 148.71001 37.41000 4.21 2.183 4.78