The origin of dust polarization in molecular outflows
Key Words.:
molecular outflows, dust polarization , radiative transfer simulations, synthetic observations, magnetic field morphologyreissl@uni-heidelberg.de, klessen@uni-heidelberg.de 22institutetext: Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, LeibnizstraÃe 15, 24098 Kiel, Germany
sreissl@astrophysik.uni-kiel.de, wolf@astrophysik.uni-kiel.de 33institutetext: I. Physikalisches Institut, Universität zu Köln, Zülpicher StraÃe 77, 50937 Köln, Germany
seifried@ph1.uni-koeln.de 44institutetext: Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany
banerjee@hs.uni-hamburg.de
Abstract
Context:
Aims:Polarization measurements of dust grains aligned with the magnetic field direction are a established technique to trace large-scale field structures. In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in such a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected from theoretical predictions and self-consistent magnetohydrodynamical (MHD) simulations to be present in the specific case of protostellar outflows. Hence, such a outflow environment is the perfect environment for our study.
Methods:We present synthetic polarisation maps in the infrared and millimeter regime of simulations of protostellar outflows performed with the newly developed radiative transfer and polarisation code POLARIS. The code, as the first, includes a self-consistent description of various alignement mechanism like the imperfect Davis-Greenstein (IDG) and the radiative torque (RAT) alignment. We investigate for which effects the grain size distribution, inclination, and applied alignement mechanism have.
Results:We find that the IDG mechanism cannot produce any measurable polarization degree () whereas RAT alignment produced polarization degrees of a few . Furthermore, we developed a method to identify the origin of the polarization. We show that the helical magnetic field in the outflow can only be observed close to the outflow axis and at its tip, whereas in the surrounding regions the hourglass field in the foreground dominates the polarization. Furthermore, the polarization degree in the outflow lobe is lower than in the surroundings in agreement with observations. We also find that the orientation of the polarization vector flips around a few due to the transition from dichroic extinction to thermal re-emission. Hence, in order to avoid ambiguities when interpreting polarization data, we suggest to observed in the far-infrared and mm regime. The actual grain size distribution has only little effect on the emerging polarization maps. Finally, we show that with ALMA it is possible to observe the polarized radiation emerging from protostellar outflows.
Conclusions:
1 Introduction
Magnetic fields are responsible for protosteller outflows one of the most
prominent signs of star-formation (Pudritz & Norman 1983).
Such outflows are more easily to detect than the
embedded protostellar disks, from where they are expected to be launched.
Hence, the observation of an outflow is a strong indicator for the presence of
a
rotating disk. Moreover, the launching
mechanism of the outflow is closely linked to the disk rotation since the
magnetic field lines are frozen at the disk scale and dragged along the
direction of rotation. The magnetic field morphology in this scenario is
expected to have a strong toroidal component
(e.g. Blandford & Payne 1982; Pudritz & Norman 1983; Shibata & Uchida 1985; Tomisaka 1998; Banerjee et al. 2006) forming a helical field
morphology together
with the large-scale poloidal field of the surrounding medium.
Hence, a detection of a helical
field component in an outflow would be an additional indicator for the
presence of a rotating disk embedded in the center.
From an observational point of view it needs to be verified by proper modeling
if the helical field morphological would actually be detectable in the
interior of outflow lobes or whether the surrounding hourglass-field dominates
light polarization. While recent observations of CO polarization
measurements seem to confirm the hypothesis of a helical field
(Ching et al. 2016), the interpretation of such data
remains still unclear since the magnetic field morphology in the ambient
environment represents a possible source of ambiguity. The large-scale
magnetic field is expected to be hourglass shaped and is therefore orientated
perpendicular to the toroidal component along the
line-of-sight (LOS) hiding the embedded helical field morphology
(e.g. Girart et al. 2006, 2009).
Focusing on the aspect of the magnetic morphology this can be
probed by dust polarization measurements. Historically, the alignment of
non-spherical dust grains has long been suggested as a explanation
for the observed polarization of stellar radiation
(Hiltner 1949; Hall 1949; Martin 1971).
Different theories of grain alignment agree that rotating non-spherical dust
grains tend to align with the magnetic field direction
(see Lazarian 2007). Unpolarized light will gain polarization by
dichroic extinction in the mid-infrared (mid-IR) and thermal dust
re-emission from far-infrared (far-IR) to sub-millimeter (sub-mm) and
millimeter
(mm) wavelength (e.g. Frau et al. 2011) making it possible to infer
the projected magnetic field morphology. Hence, polarization measurements
provide a promising tool to determine the morphology and
subsequently to investigate of the role of magnetic fields in the
evolution
(Hildebrand et al. 2000; Crutcher 2004; Girart et al. 2012) of
star-forming systems. The difficulty is that the reliability of polarization
measurements and their interpretation depends on a wide range of physical
parameters that are still discussed (see Andersson et al. 2015, for
review).
With the dedicated instruments such as the Atacama
Large Millimeter Array
(ALMA, Brown et al. 2004), and the high-resolution Airborne Wideband
Camera-plus instrument of the airborne Stratospheric Observatory For Infrared
Astronomy (HAWC+/SOFIA, Dowell et al. 2013), the measurement of dust
polarization of cloud cores and disks potentially becomes feasible. Hence,
questions about the potential of multi-wavelength polarization measurements to
identify specific components of larger structures with complex magnetic field
morphology.
Indeed, there are already a number of observations measuring the magnetic field
of molecular outflows and the magnetic field in the center of molecular cloud
cores. The results, however, seem to contradict each other. Whereas
Davidson et al. (2011) and Chapman et al. (2013) report magnetic fields which are
preferentially aligned with outflows, Hull et al. (2013, 2014) find magnetic
fields to be strongly misaligned with respect to the outflow axis. Hence,
simulations of synthetic observations are essential to asses to what accuracy
the structure of magnetic fields in star forming cores can be inferred from
actual observations. Even for a well-defined field structure as present in
Reissl et al. (2014) the resulting polarization pattern is extremely
complex and thus not easy to interpret. This holds even more in case that
turbulent motions are involved. Hence, we argue that possible conclusions drawn
from such observations have to be considered with great care.
The problems tied to the correct interpretation of dust
polarization observations that need to be addressed are:
-
The measured polarization will naturally only be a projection of the underlying magnetic field morphology since it is averaged along a particular LOS. The question remains to what extend - if at all - the 3D structure of the underlying magnetic field can be deduced by dust polarization measurements.
-
It is not clear a priori whether the polarization is observed in dichroic extinction or re-emission since both competing mechanisms are at work simultaneously. This ambiguity whether the projected magnetic field is perpendicular or parallel to the measured polarization vector is often neglected in the literature.
-
The observed degree of polarization strongly depends on the composition and size of the dust grains. Hence, uncertainties emerge from unconstrained dust properties, in particular in dense star forming regions.
-
There are different theories which can account for the alignment of dust grains under certain conditions. Each dust alignment theory comes with its characteristic polarization pattern making the analysis of polarization measurements highly dependent on the choice of the considered theory.
In order to claim a correlation between the observed orientation of linear
polarization and a particular magnetic field structure, it requires careful RT
modeling to ensure that the observed wavelengths are actually suitable to probe
the regions of interest with aligned dust grains in the first place. However,
for RT simulation modeling dust polarization maps often just the density
weighted-magnetic field is added up along the LOS
(e.g. Soler et al. 2013) or the degree of polarization is adjusted to
match observational data (Padovani et al. 2012). Thus, these attempts are
of limited predictive capability since they oversimplify the complex physics of
radiation-dust interaction and dust grain alignment physics.
For this reason it is required to perform fully self-consistent radiative
transfer simulations on linear polarization of radiation incorporating dust
grain composition and a well-motivated grain alignment efficiency. In order to
do so, we make use of the newly developed 3D RT code POLARIS
(Reissl et al. 2016), the only code that is currently available capable of
polarization calculations on non-spherical partially aligned dust grains. We
study the polarization of mid-IR to mm
radiation due to aligned dust grains. Here, we will present a first analysis of
synthetic polarization observations
obtained from a post-processed MHD simulation
(see Seifried et al. 2011, 2012). The simulation models the self-consistent
formation of a protostellar disk and its associated molecular outflow driven
in the Class 0 stage.
The structure of the paper is as follows: First, we present the properties of
the chosen MHD simulation in Sect. 2. We then show details of the
applied dust model in Sect. 3. In Sect. 4 the
considered theories of dust grain alignment are introduced followed by the
description of the RT techniques in Sect. 5. We show the
synthetic intensity and polarization maps as a function of different RT
simulation parameters in Sect. 6. In Sect. 7 we
present a method to determine the origin of polarization by means of tracing
distinct rays in RT calculations. We deal with the influence of dust grain
size on polarization in Sect. 8 and simulate actual
polarization observations in Sect. 9. Finally, we
discuss and summarize the results in Sects. 10 and
11, respectively.
2 MHD - Outflow Simulation

The MHD simulation considered in this paper results in the formation of
protostars, their surrounding disk, and the protostaller outflow following the
collapse of the parental protostellar core. These simulations are performed
with the astrophysical code
FLASH (Fryxell et al. 2000) using a robust MHD solver developed by
Bouchut et al. (2007). To follow the long-term evolution of the protostellar disk
and its associated outflow we make use of sink particles (Federrath et al. 2010).
For more details on the numerical methods applied we refer the reader to
Seifried et al. (2011, 2012).
In this paper we analyze the results of a particular simulation considering
the collapse of a 100 molecular cloud core without initial
turbulence, which is
in diameter and initially rotating rigidly around the -axis with a rotation
frequency of s. The ratio of rotational to
gravitational
energy is . The magnetic field is
initially aligned with the rotation axis, i.e. parallel to the -axis and has
a strength chosen such that the normalized mass-to-flux ratio is
(Spitzer 1978)
(1) |
This corresponds to a initial central magnetic field strength of . Hence, the core is magnetically super-critical and the magnetic field can
not significantly counteract the initial gravitational collapse of the core.
Again, we refer to (Seifried et al. 2011, 2012, - the simulation is called
within these papers) for more details on the
initial conditions.
During the collapse of the core, a rotationally supported disk builds up around
the first protostar. The disk starts to fragment after
forming a small cluster of altogether six protostars. A magneto-centrifugally
driven
protostellar outflow is launched after the formation of the first sink
particle, which is well-collimated with a collimation factor of by the
end of the simulation. The outflow continues expanding in a roughly
self-similar fashion keeping the overall morphological properties.
In this work we analyze this outflow at an age of
. By this time the outflow lobe has
a height of above and below the disk midplane and a maximum
outflow speed of about , which is well above the escape velocity. Note, that this maximal
value
is attained close to the disk and that most of the gas in the outflow is a few
slower. The six protostars cover a range of luminosities
between and . We model the
luminosities taking also the accretion onto the surface of the protostars into
account which provides a significant part to the total luminosity in this stage
of star formation (see Offner et al. 2009, for details).
The mid-plane gas number density , dust temperature
, as well as the 3D magnetic field morphology of the considered
snapshot are shown in Fig.
1. Investigating the magnetic field structure within the outflow
lobes, we find that the toroidal magnetic field component clearly dominates over
the poloidal component while the field outside the outflow lobe is hourglass
shaped. Furthermore, we observed the occurrence of several shocks within the
outflow locally leading to rather unordered gas motions and magnetic field
orientations.
3 Constraints to dust modeling
The interpretation of observational polarization data strongly depends on the
parameter of the considered dust grain model. While we know for sure that
grains in the interstellar medium (ISM) are not spherically symmetric, their
actual shape,
composition and size distribution is uncertain.
A satisfactory model, the so called MRN model (Mathis et al. 1977),
reproducing the galactic extinction curve, is a three parameter model with a
power-law size distribution and a dust grain size range
of
with values of ,
, and . In subsequent
studies, the upper
limit was extended to be of - size
(e.g. Clayton et al. 2003; Draine & Li 2007). To account for
characteristic extinction and absorption features, an ensemble of dust
materials is used consisting of a mixture of carbonaceous (graphite) and
silicate (olivene) materials (e.g. Zubko 1995; Zhukovska et al. 2016).
Additionally, in the case of IDG alignment
we considered ferromagnetic particles encapsulated in the dust grains enhancing
paramagnetic alignment by a factor of
(Jones & Spitzer 1967; Djouadi et al. 2007; Belley et al. 2009). An
oblate dust grain with an fixed aspect ratio represents a particularly
promising
approach for simulating the interstellar polarization and extinction data
(Lee & Draine 1985; Kim & Martin 1995; Hildebrand & Dragovan 1995) so,
here we use an average value of .
Since, the different grain materials have unique dielectric and paramagnetic
properties
this also results in a unique alignment behavior. Analyzing the linear
polarization and circular polarization shows that a higher alignment efficiency
is to be expected for silicate grain while carbonaceous grains seem to
remain unaffected by the presence of a magnetic field
(e.g Martin & Angel 1976; Mathis 1986). Hence, we consider
carbonaceous grains to be randomized, while silicate grains are partially
aligned in our model (Clayton et al. 2003; Draine & Li 2007).
The dust properties required for the self-consistent dust grain heating
calculations and polarization simulations are the efficiencies of light
polarization parallel () and perpendicular () to
the
grain symmetry axis (see e.g. Martin 1971). The efficiencies
can
be pre-calculated by a numerical method representing the dust grains shape as
an
array of material specific discrete dipoles (Draine & Flatau 2000). In
order to remain consistent with the constraints of interstellar dust parameter
we used the DDSCAT 7.2 code (see Draine & Flatau 2013) to calculate
values of for an aspect ratio of in a regime of wavelength and grain sizes limits of and . Here, the number of dipoles in
our calculations ranges from to remain in the
numerical limit () of the DDSCAT code, where
is the complex
refractive index. For the input to DDSCAT we use the refractory indices of
(Draine & Lee 1984; Laor & Draine 1993; Weingartner & Draine 2000). Dust grain
with sizes with radii larger than are outside the reach of DDSCAT.
In order to overcome the numerical limit we combined existing data from
DDSCAT with data obtained by the MIEX code (Wolf & Voshchinnikov 2004)
using mie-scattering to smoothly extrapolate our dust model up to an upper
cut-off radius of . We consider the upper radius
in our outflow environment to be larger than in the ISM and make the
model with as our default mode.
The POLARIS RT simulations are performed with the cross-sections for a dust
grain of average size with
(2) |
where is the geometrical cross-section, is the fraction of distinct dust grain materials, and stands for the cross sections of extinction (), absorption () and scattering (), respectively. The same averaging is applied for the cross sections for dichroic extinction, for thermal re-emission , and circular polarization with
(3) |
Here, the cross sections are weighted by the Rayleigh reduction factor (see e.g. Greenberg 1968; Lazarian 2007, for details), to account for imperfect grain alignment. corresponds to perfect alignment along the direction of the magnetic field and to randomly orientated dust grains, respectively. The angle is defined by the direction of the incident light and the magnetic field direction. Consequently, no linear polarization emerges along a LOS parallel to the magnetic field direction since the dust grain would appear to be spherical (see Reissl et al. 2014, for details).
4 Dust grain alignment
The alignment of the rotation axis of a dust grain parallel to the direction of the
magnetic field lines is due to paramagnetic effects within the grain material
itself (e.g. Davis & Greenstein 1951; Barnett 1917). However, in the ISM
perfect alignment is suppressed by gas-dust collisions and the
interaction with the local radiation field.
Here, we go beyond previous approaches in this field
(e.g. Kim & Martin 1995; Draine & Fraisse 2009; Padovani et al. 2012) and
include the the classical imperfect
Davis-Greenstein (IDG) alignment due to paramagnetic relaxation
(Davis & Greenstein 1951; Jones & Spitzer 1967; Purcell 1979) with
as well as the
radiative torque alignment (RAT) due to radiation-dust interaction
(Dolginov & Mitrofanov 1976; Draine & Weingartner 1996, 1997; Hoang & Lazarian 2007a, 2009) in the MC RT simulations. Additionally, we consider the
randomization of dust grains caused by thermal fluctuations in the dust grain
material for the grain alignment efficiency
(see Lazarian & Roberge 1997).
The IDG alignment is mainly determined by the parameter
(4) |
that represents an upper threshold for the dust grain alignment. The IDG
accounts for the alignment of small dust grains because grains with an
effective
radius above do no longer significantly contribute to the
net polarization (see Jones & Spitzer 1967, for details). Ferromagnetic
inclusions can enhance the grain alignment efficiency by several orders of
magnitude (see e.g. Andersson et al. 2015, for review).
Irregular dust grains are expected to scatter left handed and right
handed circular light differently
(Dolginov & Mitrofanov 1976; Weingartner & Draine 2003). This additional radiative
torque (RAT) increases the aliment efficiency
(Hoang & Lazarian 2007a, b). The RAT alignment assumes
dust grains to align efficiently when the angular velocity
resulting from RATs becomes dominant over the angular
velocity caused by random gas bombardment so that
. Consequently, RAT alignment
is determined by the ratio of angular velocities. The minimum grain radius
at which dust grains start to align is determined by:
(5) |
Here, is the density of the dust grain material and is the local mean energy density of the radiation field. The wavelength specific anisotropy factor varies between for unidirectional radiation and for an isotropic radiation field. For details about the constant and the characteristic gas drag time and thermal emission drag time , respectively, we refer to Draine & Weingartner (1997). The radiative torque efficiency depends on the angle between the predominant direction of radiation and the magnetic field direction and allows to calculate the characteristic dust grain size at which dust grains start to align. For further details see Reissl et al. (2016).
5 Radiative transfer calculations

To create synthetic polarization maps we postprocess the data resulting from
the MHD simulations discussed in Sect. 2 in a three step approach.
At first, we update the initial MHD dust temperature in a Monte-Carlo (MC)
simulation
(see Lucy 1999; Bjorkman & Wood 2001; Reissl et al. 2016, for
details) using the
luminositis and position of the emerged cluster of protostars (see Sect.
2).
Secondly, the anisotropy parameter as well as the local
energy density required by the RAT alignment is calculated in a second
MC process. Here, we make again use of the method proposed in
Lucy (1999) using the path lengths and direction of all photons
crossing a cell to obtain:
(6) |
With that, we can finally calculate the polarization maps. The wavelength regime considered in
this paper covers the mid-IR to the far-IR, sub-mm and mm ().
A polarization pattern can also emerge because of scattering on dust grains. The quantity that quantifies the influence of scattering to the net polarization is the albedo where means that the polarization is completely dominated by scattering and stands for no scattering at all. Indeed, for the considered dust grain models with an upper cut-off radii of the albedo at a wavelength of . Hence, scattering can influence the polarization pattern especially near the disc region under such conditions. However, we start our investigation with an upper cut of radius of where at . Larger dust grains are just applied for synthetic polarization maps in the regime of wavelength where for all dust models. Hence, we neglect the influence of scattering within the scope of this paper.
The method of choice to represent the resulting polarization are the Stokes parameter . Here, stands for intensity, and for linear polarization and for circular
polarization. The radiative transfer in the Stokes formalism leads to a set of
equations (see Martin 1974, for details) considering the dust
grains as black body radiators that can be solved analytically. This allows
to calculate the contribution of each cell
(see Whitney & Wolff 2002) with the Planck function
along each path element with
(7) |
(8) |
(9) |
and
(10) |
Here, is the number density of the dust. The angle is
between the direction of light polarization and the magnetic field lines.
Note that because of the dependency circular polarization
can only emerge in regions where each following magnetic
field line and subsequently the preferential axis of grain alignment is
non-parallel to the previous one along the LOS (see e.g. Martin 1974).
The hourglass component in the outside region is such a magnetic field with rather
parallel field lines along the LOS. As a result of this we get most of
the circular polarization from within the outflow lobes in our RT
calculations. Here, the maximum of the degree of circular polarization can
amount up to . As shown in Reissl et al. (2014) the pattern of
circular polarization provides additional information to distinguish between
different well ordered magnetic field morphologies. However, due to the chaotic
nature of the helical field the results are
inconclusive and do not allow to identify the helical component by any
characteristic circular polarization pattern. Hence, we focus only on linear
polarization in this paper. However, circular polarization still needs to be
considered in the RT calculation because a permanent transfer from circular
polarization ( - parameter) to linear polarization ( - parameter) and vise
versa occurs.
The degree and
orientation of linear polarization is determined by
(11) |
where is the polarized intensity. Its position angle on the plane of the sky is defined by
(12) |
For a more detailed description we refer to Reissl et al. (2014, 2016).
6 Synthetic polarization maps


6.1 Linear polarization by RAT and IDG alignment
In this section we investigate how the polarization pattern depends on grain
alignment theory, inclination angle, and wavelength. Here, it is
essential to estimate the expected contributions of different grain alignment
theories to the net polarization separately. For the physical conditions
present in the
MHD simulation, both IDG and RAT alignment theory predict a similar behavior
with regard to the preferential axis of grain alignment. However, the alignment
efficiency and consequently the detectability of a polarization signal may
differ significantly for different alignment theories. Furthermore, the two
competing polarization mechanisms of dichroic extinction and thermal
re-emission
contribute both to linear polarization. Dichroic extinction dominates
polarization in the UV, optical, and near-IR regime and leads
to polarization parallel to the magnetic field direction. In contrast to
dichroic extinction, thermal re-emission results in light polarization
perpendicular to the magnetic field for a wavelength from the mid-IR to the
mm. It is expected that in an intermediate regime of wavelengths both effects
cancel each other out and that therefore the polarization vectors flip their orientation
by in the transition. Hence, in order to determine the intermediate
regime of wavelengths where dichroic extinction transitions to thermal
re-emission we simulated synthetic polarization maps. The maps are calculated
with an upper cut-off radius of and cover a
wavelength regime of .
The disk is seen edge-on.
In Fig. 2 an illustration of the expected grain
alignment is shown for a better interpretation of the following polarization
maps. For an inclination of the resulting maps of linear
polarization calculated with IDG and RAT alignment theory are shown in Fig.
3. Although the IDG and RAT alignment theories are based on
different physical principles, the resulting overall orientation of polarization
vectors over wavelength are comparable.However, we note that the degree of
linear polarization varies significantly between the two alignment theories with
RAT leading to mach larger polarization values.
With increasing wavelength, the contribution of thermal re-emission to
polarization becomes increasingly dominant over dichroic extinction. Since both
competing polarization effects contribute in directions perpendicular to each
other, it is possible that the net
polarization vector flips by or is even canceled out.
The wavelength at which thermal re-emission starts to appear in the
polarization maps for both IDG and RAT alignment is at . The outer most regions of the polarization maps are
less dense than the center and hence less affected by dichroic extinction. Therefore,
polarization by thermal re-emission appears first in the outer part of the
polarization maps an moves towards the center for longer wavelength. For a
wavelength of the outflow lobe is still
unaffected by the effect of flipping polarization vectors (Figs.
3 left column). Here, the outer regions of the polarization maps
are dominated by thermal re-emission while the center regions are still
polarized due to dichroic extinction. In the case of RAT alignment (Figs.
3 left bottom panel) this leads to a characteristic ring-shaped
gap with a minimum degree of linear polarization where the contributions of
dichroic extinction and thermal re-emission cancel out each other. For the IDG
alignment (Figs. 3 left top panel) this effect is less
pronounced and hardly detectable because of the overall low degree of linear
polarization
in that area.The IDG alignment is highly suppressed in high density and
temperature regions
(see Eq. 4) and would thus allow no conclusion about the
underlying magnetic field morphology near the disk region.
At a wavelength of about (see Fig.
3 middle column) the outflow lobes are
completely enclosed by the region of thermal re-emission while the
polarization in the lobes itself results from dichroic extinction. This is due
to the dust temperature of at the surface of the outflow lobes (see Fig. 1 middle
panel) corresponding to a pack emission at . The outside regions with
contributes a neglectable amount of radiation at that wavelength regime.
Consequently, the dust grains in front of the outflow lobes are illuminated by
a strong background radiation emitted by the surface of the outflows and
dichroic extinction dominates the polarization.
Going to even longer wavelength for both RAT and IDG,
thermal dust re-emission dominates the entire map at resulting to a polarization pattern comparable to that
shown in Fig. 3 in the right columns. For larger wavelength on
the polarization vectors are
perpendicular to the projected magnetic field and their orientation remains
rather constant up to the regime of wavelength.
As shown by detailed analysis (see Sect. 7) even in the inner disk
region linear polarization is completely due to thermal remission. Hence, in
the
maps considering IDG and RAT alignment the orientation of the polarization
vectors represent the projected magnetic field morphology. In contrast to
RAT alignment the helical component remains slightly more apparent at the tops
and near the symmetry axis of the outflow lobes for IDG.
6.2 Impact of inclination angle
So far, we examined the polarization orientation and degree dependence on grain
alignment theory and wavelength for a fixed inclination angle of
between the outflow axis and the LOS. However, interpretation of polarization
measurements are also influenced by projections effects. In this section we
to investigate how the linear polarization pattern changes as a function of
the inclination towards the observer. Due to the ambiguities in the
mid-IR and sub-mm discussed in Sect. 6.1 and with regards to
the simulation of synthetic observations with the telescope array we
focus here on a wavelength of , where the polarization
is purely due to thermal re-emission, i.e. the polarization vector is
perpendicular to the field.
Fig. 4 shows polarization maps considering
IDG alignment in comparison to RAT alignment for the three different
inclination angles of (disk is face on), , and
, respectively. Again, note that the polarization degree differs by
more than one order of magnitude. For IDG alignment and an inclination angle of (Fig.
4 top left panel), the LOS towards the center of the maps is
parallel to the hourglass magnetic field (see Fig. 2).
Since no linear polarization can occur in the case of a LOS parallel to the
magnetic field (see Sect. 3), the linear polarization emerges
completely in the interior of the outflow lobes and the disk component. With
increasing inclination angle the contributions from the hourglass field start to
dominate the overall orientation of linear
polarization. For an inclination of (see middle top panel
of Figs. 4) the polarization pattern begins to resemble the
projected hourglass morphology. The helical component of the magnetic field,
however, remains apparent close to the symmetry axis and at the tips of
the outflows, e.g. the orientation of the polarization vectors is predominantly
vertical.
In the bottom row of Fig. 4 we show the linear polarization maps
considering RAT alignment. For an inclination angle of the
results are qualitatively the same as the ones for IDG alignment. However,
with
increasing inclination angle the contributions of the surrounding hourglass
shaped magnetic field becomes even earlier dominant than for IDG alignment.
Here,
just the regions close to tips of the outflow lobes match the helical magnetic
field component, i.e. the polarization vectors are vertically orientated.
When the subsequent magnetic field lines cross each other along the LOS, the
polarized emissions of a given dust grain is canceled out by the emission of
another one leading to an area of reduced linear polarization. This projection
effect of crossing field lines along the LOS becomes apparent in the maps with
RAT alignment (Fig. 4 bottom row) where two polarization holes
(bottom middle panel) and two extra lobes of minimum of linear polarization
(bottom right panel), respectively, become visible perpendicular to the symmetry axis of
the outflow lobes. Here, these extra lobes are not a result of reduced dust
density or temperature fluctuations, but are simply a projection effect and an indicator of the
underlying hourglass-shaped field morphology (see also Reissl et al. 2014).
The same effect can be observed for the polarization maps with IDG alignment in
the top middle panel and top right panel of Figs. 4. However,
the
already low degree of linear polarization due to inefficient grain alignment
outside the
outflow lobes makes these projection effects less relevant.
Despite the additional ferromagnetic inclusions considered for the IDG
alignment calculations, the maximum degree of linear polarization is of the
order of a few per cent. This makes RAT alignment the relevant alignment
process for observations in the presented outflow environment. Hence, recent
efforts of Hoang & Lazarian (2016) showed that it is possible to combine IDG and RAT
alignment. However, we conclude that IDG is neglectable in the considered
outflow environment and focus on RAT alignment alone in the following sections.



7 Origin of linear polarization
In the previous sections we discussed maps of linear polarization on the basis
of physically well motivated dust grain alignment theories and dust modeling.
In these efforts it remained unclear to what extend the outflow lobes and the
surrounding medium contribute to the synthetic maps of net polarization.
Consequently, the synthetic polarization maps of Figs. 3 and
4 remain still ambiguous regarding the question of what component
of the magnetic field is actually traced (hourglass in front of the
outflow lobes or in the helical field).
This problem is even more severe for actual observations. Here, the spatial
information of density and temperature as well as the magnetic field
morphology in any observed astrophysical system gets lost due to the
projection along a particular LOS. In contrast to observations, synthetic data
by RT calculations allows to trace different LOS through the 3D MHD
simulation and subsequently to determine the actual origin of polarization. In
the following we focus on the origin and the actual
detectability of polarization pattern characteristic for helical and hourglass
magnetic field structures. Hence, we implemented an heuristic algorithm to
analyze the polarization state of radiation along a distinct LOS .
This automatized heuristic approach works in three steps:
-
Identification of the distinct regions inside and outside the outflow lobes. Here, we detect the bow shock of the outflow lobes by analyzing the first derivative of the gas number density (Figs. 6 and 6 left panels in black dotted lines). This allows to distinguish between three regions along the LOS. The first outside region expands from to , the outflows itself from to , and the second outside region from to (indicated in Figs. 6 and 6 as red vertical lines).
-
Ray-tracing through the MHD simulation data in order to keep track of the accumulated polarized intensity (Figs. 6 and 6 left panels in green lines), the orientation angle of linear polarization (Figs. 6 and 6 right panels in blue lines) and the orientation angle (Figs. 6 and 6 right panels in black lines) of the magnetic field with respect to the symmetry axis of the outflow lobes.
-
Determining origin of polarization by analyzing the largest increase in as well as the relative orientation between magnetic field lines and linear polarization.
With this simple but effective scheme, the actual origin of linear
polarization can be determined. The first criterion is the increase or decrease,
respectively, of polarized intensity along each LOS. Here, it is
sufficient to compare the accumulated polarized intensity at the points
,
, , and to determine the area with
the largest increase.
The second criterion is the resulting polarization angle with respect to the
local magnetic field direction. Although the magnetic field direction in the
outflow lobes is not well ordered it appears indeed rather regular in
projection and can therefore be assumed to be perpendicular to the projected
magnetic field direction in both outside regions.
We assume that the linear polarization originates from the interior of the
outflow lobes when the largest increase in polarized intensity is inside the
outflow lobe, and the orientation vector of linear polarization deviates from
the projected helical field direction by less than .
Here it needs to be emphasized, that this heuristic method is fine tuned to
probe the
outflow lobes in just this particular MHD simulation. The parameters of this
heuristic approach are optimized by proper testing by minimizing the the false
positive
results. A manual evaluation of randomly chosen LOSs for each of the
different inclination angles and wavelengths revealed that the accuracy of the
correct detection of the origin of linear polarization is larger than .
Consequently, the areas in the polarization maps where linear polarization
originates from the inside of the outflow lobes can be identified with high
precision. However, the number of LOSs probing the helical field might actually
be larger because of possible false negative detections.
Figs. 6 and 6 show the resulting plots of two
exemplary LOSs corresponding to the positions in the right bottom panel of Fig.
3 at a wavelength of . In the left
panel of Fig. 6 the polarized intensity emerges in
the first outer region () and jumps to a maximum near
the edge at of the outflow lobe, decreases in the interior
() with a strong correlation to jumps in dust number
density and reaches its absolute maximum at the border of the grid
at position .
In the first outside region () the orientation angle
(see 12) remains at an almost constant value of
roughly with respect to the magnetic field orientation
and increases
slightly near the first edge () of the outflow lobe as it is shown
in the right panel of Fig. 6. In the interior
() the polarization angle remains again almost constant
and trends back to as the radiation propagates towards the border
() of the model space. In this case the interior of the outflow
lobe is of minor influence to linear polarization with respect to degree and
orientation. Clearly, the does not probe the helical component of
the magnetic field morphology but only the hourglass foreground.
Along the second LOS shown in Fig. 6, the polarized intensity
shows the same trend as in Fig. 6 and the
orientation angle remains at around up to the
point of in the first outside region. However, in the center of
the outflow lobe the accumulated amount of rises to a global
maximum an remains almost constant throughout the second outer region
(). In contrast to , the orientation of linear
polarization rotates by
between and . Here, the linear
polarization matches the helical field component. In this case the resulting
linear polarization probes the interior of the outflows and hence the helical
magnetic field component.
The different polarization behavior between and may possibly
attributed to a more unordered, and hence, less pronounced helical field
component close to the borders of the outflow lobes. Furthermore, the gas
temperature is higher at the border. RAT alignment
efficiency is inversely proportional (see Eq. 5).
This may also contribute the difference along and .
Fig. 7 shows maps of intensity overlaid with vectors of
linear polarization and different inclination angles for in comparison with maps for . Here, we assumed only
RAT alignment and a typical distance of a nearby
star-forming region
(e.g. Preibisch & Smith 1997; Torres et al. 2007; Mamajek 2008). Hence, the maps have
a field of view of with a
resolution of corresponding to . Areas with a positive detection of the helical magnetic field
component according to the LOS analysis presented in this section are marked in
blue.
For the maps with (Fig. 7 top row)
the linear polarization traces the helical field component only for an
inclination angle of . This is due the fact that linear
polarization cannot emerge when the LOS is parallel to the magnetic field
direction (see Sect. 3). Hence, the flip of the polarization
vectors by for an inclination of and is not due to the fact that we probe the inner helical field. We
rather observe the outer hourglass field in extinction whereas in the
surrounding it is probed in re-emission. Consequently, nor areas
marked blue inn these panels.
In contrast to the maps with , the synthetic
observations at (Fig. 7 bottom row) the
polarization pattern here is due to thermal re-emission. Thus, any polarization
vector flip by is an indicator only of a different magnetic field
morphology. Indeed, the LOS analysis confirms, that the helical magnetic field
morphology of the outflow can be well traced in the outflow center quite
independent of inclination angle.
The contribution of the disk region to the maps shown in Fig.
7 is minuscule. For an inclination of the height
of the disk is beneath the assumed resolution. With decreasing inclination the
projected area of the disk increases. However, as the LOS analysis reveals,
the polarization is completely dominated by the outflows or the outside
regions but not for the disk. Hence, probing the
magnetic field morphology in the disk itself seems to be impossible for the
chosen MHD simulation and within the selected set of parameter presented in
this paper.
8 Grain size dependency

Dust grains in the ISM are very likely to be of submicron size
(see Sect. 3). In contrast to this, grains inside
protoplanetary disks and outflows can
differ significantly in size from grains in the diffuse ISM. Grain growth in
the disk
is expected to enrich the surrounding environment with dust grains of sizes up
to (e.g. Sahai et al. 2006; Hirashita & Li 2013). The
choice of upper dust grain size may significantly affect the
resulting synthetic intensity and polarization maps and subsequently the
predictions for future observational missions.
Hence, in this section we investigate the impact of the inclination angle
together with how the upper dust grain size effects intensity and linear
polarization.
The sizes of dust grains are most probably not evenly distributed in
all regions. Larger dust grains coagulating in the disk are expected to get
blown out along the outflow lobes. Near the tip of the outflow lobes, the dust
grain sizes are re-processed towards smaller radii because of high temperature
and pressure in this area. This complexity is beyond the scope of the current
analysis and so we here follow a simpler approach with a constant upper cut-off
radius of
throughout the model space. We
pre-calculated dust cross sections for two additional dust models with distinct
cut-off radii of in accordance to the standard
MRN model (see Sect. 3) and an extreme case with
. We repeated the postprocessing of the MHD data
for the RT pipeline as described in Sect. 5.
Fig 8 shows the resulting map of intensity at a wavelength of
overlaid with the vectors of linear polarization dependent on
inclination and the different dust grain models. As for Fig. 7,
we assume a distance of to the outflow system. Areas with a
positive detection of the helical magnetic field component according to the LOS
analysis presented in the previous section are marked in blue. These findings
agree independently of the applied dust grain model or inclination due to the
fact that only the regions close to the symmetry axis of the outflow lobes are
accessible by observations. The same applies for the orientation of linear
polarization. The pattern of the polarization vectors shown in Fig.
8 (see Fig. 7 bottom row) is in good agreement
with the results presented in Sect. 6.2. The overall polarization
pattern calculated with an upper dust grain size of
(Fig. 8 top row) and (Fig.
8 bottom row) are rather similar to each other. There
are differences regarding intensity and degree of linear polarization. In
contrast to the other maps with synthetic images with an upper dust grain size of (Fig. 8 right column) show a higher intensity with
an reduced degree of linear polarization. However, the finding that the helical
magnetic field component within the outflow lobes should in principle be
detectable for an wavelength of holds independent
of applied dust grain model (see also Fig. 7).

9 Synthetic observations
In contrast to the ideal scenarios of the prevision sections, realistic
observing conditions considering instrumental and atmospheric effects may
further
complicate
the interpretation of polarization data. In this section we translate our
synthetic
intensity and polarization data into observational maps. Here
the focus is on determining whether the areas where the helical field is
dominating linear polarization presented in Sect’s. 7 and
8 would still be detectable by actual observations.
With regard to the limitations of wavelength without a flip of polarization
vectors (see Sect. 6.1) as well the expected field of view (see
Fig. 7 bottom row) of the post-processed MHD
outflow simulation the (Brown et al. 2004) observatory
provides the necessary equipment to constrain the observable parameter of
linear polarization, and subsequently, that of the underlying magnetic field
morphology. We calculate polarization and intensity data for three
typical wavelength of , , and
for dust grains with an upper cut-off of radius of of the size distribution. We assume
a mosaic observation with an object-observer distance of . The
Stokes , , and maps were separately processed, making use of the
standard reduction software (McMullin et al. 2007) with the
simobserve and clean task. Here, we
apply a resolution of , an observation time of five hours, and
we included thermal noise as well as precipitable water vapor of
mimicking the atmosphere.
Initially, the observability of the outflow lobes in
the resulting , , and maps was heavily disturbed by the very bright
inner disk regions due to the dominating influence of the overall PSF. Since
these regions are very compact, most of the emission is in the longest
baseline.
Hence, we limit the
visibility (in the uv-plane) in order to take care of these bright disk regions.
Finally, we combined the , , and maps to create
synthetic maps of intensity and linear polarization with Eq’s. 11 and
12.
Fig. 9 shows the resulting flux density maps overlaid with the
scaled vectors of linear polarization for our simulated data.
In the synthetic observations with a wavelength of (Fig. 9 left column), the detectable intensity covers
just the disk region and the very edges of the outflow lobes. This is
related to the point spread function (PSF), dominated by the brightest
contributions located in the inner disk and the followup cleaning process
(see McMullin et al. 2007). However, these detectable regions still coincide
with the regions determined with the LOS analysis (see Sect. 7).
Although the instrument seems to be barely suitable to detect a
polarization signal emerging from our post-processed MHD simulation at , it is in principle possible to detect a polarization
signal from within the outflow lobe since the detectability increases even
further for even longer wavelength. At a wavelength of
(Fig. 9 middle column) the interior of the outflow lobe and
subsequently the helical magnetic field morphology is partially observable for
low inclination angles. Even with an increase in inclination angle up to
the helical field would still be partly accessible by polarization
measurements with . For (see Fig. 9
right column) the observable intensity completely covers the outflow lobes.
The only exception is an inclination angle of . Here, the blue area
of the LOS analysis is is marginally larger then the intensity observable with
. However,
as Fig. 9 shows in the right bottom panel a wavelength of provides the
optimal configuration to discriminate the helical magnetic field morphology
embedded in the outflow lobes from the surrounding hourglass field. This is due
to the largest area found with the LOS analysis coinciding with intensity and
the polarization pattern minimally influenced by the PSF in the outflow lobes.
10 Discussion
10.1 Dichroic extinction versus thermal re-emission
The examination of multi-wavelength polarization measurements highlights one of
the major obstacles for the interpretation from dust polarization measurements.
The polarization effects of dichroic extinction and thermal re-emission
contribute simultaneously to linear polarization with the preferential
polarization axes perpendicular to each other. Both contributions to
polarization can be calculated exactly (see Sect. 5). Here, the
most relevant parameters are the cross section of dichroic extinction
and absorption . In the applied dust
model of Sect. 3 the cross dominates
toward shorter wavelength while for absorption increase
with wavelength. Hence, one can expect an flip of towards longer
wavelength.
Dust temperature and number density also vary along the LOS and
different regions of the system dominate the overall polarization calculation
as a function of
wavelength resulting in an additional offset of the projected magnetic field
direction. As a result of this, a characteristic area where both effects cancel
each other out manifests as a eminently obvious ring structure of minimal
polarization shown in the left column of Fig. 3.
Polarization maps of that type are prone to misinterpretation.
Several physical effects such as regions with a reduced dust density, a large
amount of crossing magnetic field lines along the LOS, or a randomization of
dust grain orientation by a high velocity stream
(e.g. Rao et al. 1998), may also account for a reduction in the
degree of linear polarization.
An even more ambiguous polarization pattern represents the result shown in the
middle column of Figs. 3 and 7. A helical
magnetic field morphology in the interior of the outflow lobe is expected from
theoretical predictions. Hence, by comparing the alignment behavior shown in
Fig. 2 with the orientation vectors of linear polarization
in the middle panels of Figs. 3 one might easily conclude to
probe the distinct helical field of the overall magnetic field morphology.
However, the LOS analysis introduced in Sect. 7 reveals a
different picture. The particular polarization map at a wavelength of matches just the hourglass component of the magnetic field
morphology throughout the polarization map as a result of two different
polarization effects. In the outer parts it is thermal reemission while close to
the outflow lobes the polarization vectors switch by due to
dichroic extinction. The helical magnetic field morphology can not be
traced up to a wavelength of about .
These ambiguities become irrelevant with decreasing inclination angles. A
polarization signal does not emerge from aligned dust grains when the LOS
and the magnetic field direction are parallel (see Eq. 3).
Consequently, the hourglass field cannot contribute to linear polarization with
a LOS along the outflow direction (compare Fig. 2 a.).
Hence, for low inclination angles the helical morphology of the magnetic field
is not hidden by the hourglass component and can be identified unambiguously.
In Chapman et al. (2013), they investigate the correlation between the
direction of the magnetic field lines in low-mass cores and the bipolar
outflows and not detectable of differently shaped magnetic fields.
The direction and degree of linear polarization observed is in good
agreement with that in presented in Sect. 6.1. Especially, the
decreasing degree of linear polarization towards the outflow (see Figs.
7 and 8) is consistent with
our result. This confirms the validity of the approach of creating synthetic
polarization maps by combining dust combining dust continuum RT with dust grain
alignment theory to create synthetic polarization maps.
10.2 Alignment-specific polarization pattern
The RT simulations reveal a marginal contribution of IDG alignment to the net polarization, making RAT clearly the dominant alignment mechanism in this outflow scenario. Since RAT alignment depends also on the alignment efficiency (see Eq. 5), where is the angle between radiation field and magnetic field, one could also expect to detect this characteristic in the resulting polarization pattern (see Andersson et al. 2011; Reissl et al. 2016). However, in the post-processing of the MHD simulation such an angle-dependent effect is not noticeable because of the local dust temperature distribution and its contribution to the overall radiation field. In contrast to a point-like source, the heated and dense surface of the outflow lobes acts like a light bulb that illuminates the model space from more than one direction (compare Fig. 2 left panel) and the radiation field is more diffuse as it would be for a point-like source. Hence the angle-dependency of becomes less relevant.
10.3 The role of dust grain size
For the maps in Fig. 8 (upper row) we used the standard MRN model with an cut off of . In this model RT calculations showed that the maximum size of RAT alignment (see Sect. 5) exceeded the upper cut of radius in a considerable amount of regions in the outflow simulation (). One could thus expect a lower degree of linear polarization. However, due to the lack of larger dust grains the model with (8 top row) is optically thinner compared to other models with larger cut off radii. This results in less extinction and consequently flux and polarization remains similar to the model with shown in Fig. 7 (bottom row). The model with is shown in Fig 8 (bottom row). Dust grains of maximal size are quite rare in the dust mixture because of the standard MRN power-law size distribution (see Sect. 3). However, the higher re-emission cross section of larger dust grains at mm wavelengths compensates their lower abundance. This results in a higher flux for the model with compared to the other models by a factor of . Additionally, with increasing cut-off radii the polarization along the LOS becomes also rapidly dominated by larger dust grains. However, in the range of wavelength where the cross section of re-emitted polarization has its minimum. Consequently, the peak value of linear polarization is reduced for a model with by a factor between and .
10.4 Constraints to observational equipment
The synthetic polarization maps show that the helical field morphology in the
interior of the outflow lobes is not easily accessible by polarization
measurements with aligned dust grains (see Figs. 7 and
8). This holds even more reconsidering the
limitations of actual observational equipment.
The instrument mounted on the airborne telescope
(Dowell et al. 2013) is capable of linear polarization
measurements. However, its field of view (between and
) and spectral coverage () makes it not suitable to observe the particular outflow scenario
presented in this paper (see also Sect. 10).
Additionally, the instruments limit of polarized intensity does not allow
to probe the interior of the outflow. In order to utilize the full field of view
in the available bands, our protostellar outflow object should also be
in a distance between and . However, there is no star
forming region within such a distance (Preibisch & Smith 1997). Furthermore, as
shown in Sect. 6.1, the regime of wavelengths, where the
transition of dominant polarization mechanism from dichroic extinction to
thermalre-emission takes place, coincide with the bands. Consequently,
the measurements with the instrument would be inconclusive with regard
to the actually traced magnetic field direction. We performed an additional LOS
analysis for all bands which reveal that the observed polarization
pattern would completely represent the projected outside hourglass magnetic
field morphology. The helical field inside the outflow lobe can not be detected
within the bands. The detectability of the helical magnetic field
morphology is just given in the far-IR, sub-mm and mm regime of wavelength (see
Sect.7).
In contrast to , the telescope can
actually probe the interior of the outflow lobes especially in the sub-mm
and mm regime. Here, the limitations lie in the influence of
the brightest regions in the disk regions and their influence to the
observability of the outflow lobes. While the outside regions can not completely
be covered even at a wavelength of the polarization of
the outflow lobe, especially that emerging from the helical magnetic field
component is accessible by for that wavelength. However, we used an
ideal non-turbulent MHD simulation for the RT calculations. Although ALMA
observations can probe the interior of the outflow lobes this task may be
challenged in more realistic environments with additional blending by
turbulent motions.
11 Summary and conclusions
We presented synthetic polarization maps from the mid-IR to the mm
wavelength regime of a post-processed MHD protostellar outflow simulation. The post-processing
was performed with the RT code POLARIS (Reissl et al. 2016). Here, we considered different grain alignment theories, inclination angles, and dust models in order to constrain the parameters that
allow to detect the helical magnetic field component in the outflow lobes
embedded in a larger hourglass shaped field of the surrounding medium.
The conclusions of this study are as follows:
-
With increasing wavelength the transition between dichroic extinction and thermal re-emission manifests itself in a flip of the orientation angles of in linear polarization. Additionally, areas where these transition takes place are depolarized and the magnetic field morphology is no longer accessible by observations. The polarization maps are completely dominated by thermal re-emission at and the orientation in polarization pattern stays fixed. The low polarization degree in the outflows is in accordance with the findings of Tomisaka (2011) and Chapman et al. (2013).
-
We developed a heuristic method to identify the origin of the polarisation. We show that the helical magnetic field structure inside the outflow lobe is observable only close to the symmetry axis of the lobe and at the tip of the outflow. Outside these regions the polarisation emerges from the hourglass magnetic field structure in the foreground of the outflow.
-
The alignment of dust grains does not result in polarization when the LOS is parallel to the magnetic field direction. This effect is independent of considered dust grain alignment theory and wavelength. However, this fact is of advantage in the particular case of the post-processed molecular outflows MHD simulation because it allows us to probe the interior of the outflow lobes for low inclination angles.
-
Synthetic polarization maps have been calculated considering different grain alignment theories. The polarization is dominated by RAT alignment that produces polarization degrees of a few to in agreement with observation. In contrast, the IDG alignment does not produce measurable polarization degrees.
-
Probing the interior of the outflow lobes depends on the maximum size of the dust grain distribution. We simulated polarization map with a power law size distribution considering different upper grain sizes. A composition with larger grains leads to higher intensity but also a lower polarization and vise versa. However, the overall pattern of linear polarization seems to be independent of the cut-off radius. We expect the best observability for an upper cut-off in the order of .
-
From the observational point of view the best conditions to probe the interior of the outflow lobes is under inclination angles close to or for a wavelengths from the far-IR () to the mm regime.
-
The interior of the outflow, i.e. the helical field structure, cannot be probed with , since in the available bands the polarisation is dominated by the hourglass field in the foreground of the outflows.
-
In contrast, ALMA observations should potentially allow to probe even the interior of the outflow lobes and subsequently to distinguish between the helical magnetic field in the outflow and the larger hourglass shaped field structure in the surrounding medium.
As shown in this paper, the origin of the polarization remains ambiguous at best and cannot be easily inferred from observations alone. However, progress is possible by creating physically well motivated synthetic polarization maps and designing methods of analysis allows to constrain the parameter of possible helical field detection for future observations.
Acknowledgements.
We wish to thank Gesa H. -M. Bertrang and Robert Brauer for useful discussions about RT and dust grain alignment. We also thank Eric Pellegrini and Thushara Pillai for their help with simulating synthetic data. For this project the authors S.R. and S.W. acknowledge the support of the DFG: WO 857/11-1. D.S. acknowledges funding by the DFG via the Sonderforschungsbereich SFB 956 Conditions and Impact of Star Formation as well as funding by the Bonn-Cologne Graduate School. The MHD simulations were performed at the supercomputer HLRB-II at the Leibniz Rechenzentrum in Garching. We also acknowledge support from the Deutsche Forschungsgemeinschaft in the Collaborative Research Center (SFB 881) The Milky Way System (subprojects B1, B2, and B8) and in the Priority Program SPP 1573 Physics of the Interstellar Medium (grant numbers KL 1358/18.1, KL 1358/19.2). RSK furthermore thanks the European Research Council for funding in the ERC Advanced Grant STARLIGHT (project number 339177).References
- Andersson et al. (2015) Andersson, B.-G., Lazarian, A., & Vaillancourt, J. E. 2015, ARA&A, 53, 501
- Andersson et al. (2011) Andersson, B.-G., Pintado, O., Potter, S. B., Straižys, V., & Charcos-Llorens, M. 2011, A&A, 534, A19
- Banerjee et al. (2006) Banerjee, R., Pudritz, R. E., & Anderson, D. W. 2006, MNRAS, 373, 1091
- Barnett (1917) Barnett, S. J. 1917, Phys. Rev
- Belley et al. (2009) Belley, F., Ferré, E. C., Martín-Hernández, F., et al. 2009, Earth and Planetary Science Letters, 284, 516
- Bjorkman & Wood (2001) Bjorkman, J. E. & Wood, K. 2001, ApJ, 554, 615
- Blandford & Payne (1982) Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883
- Bouchut et al. (2007) Bouchut, F., Klingenberg, C., & Waagan, K. 2007, Numerische Mathematik, 108, 7, 10.1007/s00211-007-0108-8
- Brown et al. (2004) Brown, R. L., Wild, W., & Cunningham, C. 2004, Advances in Space Research, 34, 555
- Chapman et al. (2013) Chapman, N. L., Davidson, J. A., Goldsmith, P. F., et al. 2013, ApJ, 770, 151
- Ching et al. (2016) Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2016, ApJ, 819, 159
- Clayton et al. (2003) Clayton, G. C., Wolff, M. J., Sofia, U. J., Gordon, K. D., & Misselt, K. A. 2003, ApJ, 588, 871
- Crutcher (2004) Crutcher, R. M. 2004, in The Magnetized Interstellar Medium, ed. B. Uyaniker, W. Reich, & R. Wielebinski, 123–132
- Davidson et al. (2011) Davidson, J. A., Novak, G., Matthews, T. G., et al. 2011, ApJ, 732, 97
- Davis & Greenstein (1951) Davis, Jr., L. & Greenstein, J. L. 1951, ApJ, 114, 206
- Djouadi et al. (2007) Djouadi, Z., Gattacceca, J., D’Hendecourt, L., et al. 2007, A&A, 468, L9
- Dolginov & Mitrofanov (1976) Dolginov, A. Z. & Mitrofanov, I. G. 1976, Ap&SS, 43, 291
- Dowell et al. (2013) Dowell, C. D., Staguhn, J., Harper, D. A., et al. 2013, in American Astronomical Society Meeting Abstracts, Vol. 221, American Astronomical Society Meeting Abstracts #221, 345.14
- Draine & Flatau (2000) Draine, B. T. & Flatau, P. J. 2000, DDSCAT: The discrete dipole approximation for scattering and absorption of light by irregular particles, astrophysics Source Code Library
- Draine & Flatau (2013) Draine, B. T. & Flatau, P. J. 2013, ArXiv e-prints
- Draine & Fraisse (2009) Draine, B. T. & Fraisse, A. A. 2009, ApJ, 696, 1
- Draine & Lee (1984) Draine, B. T. & Lee, H. M. 1984, ApJ, 285, 89
- Draine & Li (2007) Draine, B. T. & Li, A. 2007, ApJ, 657, 810
- Draine & Weingartner (1996) Draine, B. T. & Weingartner, J. C. 1996, ApJ, 470, 551
- Draine & Weingartner (1997) Draine, B. T. & Weingartner, J. C. 1997, ApJ, 480, 633
- Federrath et al. (2010) Federrath, C., Banerjee, R., Clark, P. C., & Klessen, R. S. 2010, ApJ, 713, 269
- Frau et al. (2011) Frau, P., Galli, D., & Girart, J. M. 2011, A&A, 535, A44
- Fryxell et al. (2000) Fryxell, B., Olson, K., Ricker, P., et al. 2000, ApJS, 131, 273
- Girart et al. (2009) Girart, J. M., Beltrán, M. T., Zhang, Q., Rao, R., & Estalella, R. 2009, Science, 324, 1408
- Girart et al. (2012) Girart, J. M., Patel, N., Vlemmings, W. H. T., & Rao, R. 2012, ApJ, 751, L20
- Girart et al. (2006) Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812
- Greenberg (1968) Greenberg, J. M. 1968, Interstellar Grains (the University of Chicago Press), 221
- Hall (1949) Hall, J. S. 1949, Science, 109, 166
- Hildebrand et al. (2000) Hildebrand, R. H., Davidson, J. A., Dotson, J. L., et al. 2000, PASP, 112, 1215
- Hildebrand & Dragovan (1995) Hildebrand, R. H. & Dragovan, M. 1995, ApJ, 450, 663
- Hiltner (1949) Hiltner, W. A. 1949, Natur, 163, 283
- Hirashita & Li (2013) Hirashita, H. & Li, Z.-Y. 2013, MNRAS, 434, L70
- Hoang & Lazarian (2007a) Hoang, T. & Lazarian, A. 2007a, in Bulletin of the American Astronomical Society, Vol. 39, American Astronomical Society Meeting Abstracts #210, 187
- Hoang & Lazarian (2007b) Hoang, T. & Lazarian, A. 2007b, in Bulletin of the American Astronomical Society, Vol. 39, American Astronomical Society Meeting Abstracts #210, 186
- Hoang & Lazarian (2009) Hoang, T. & Lazarian, A. 2009, ApJ, 697, 1316
- Hoang & Lazarian (2016) Hoang, T. & Lazarian, A. 2016, ApJ, 831, 159
- Hull et al. (2013) Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, ApJ, 768, 159
- Hull et al. (2014) Hull, C. L. H., Plambeck, R. L., Kwon, W., et al. 2014, ApJS, 213, 13
- Jones & Spitzer (1967) Jones, R. V. & Spitzer, Jr., L. 1967, ApJ, 147, 943
- Kim & Martin (1995) Kim, S.-H. & Martin, P. G. 1995, ApJ, 444, 293
- Laor & Draine (1993) Laor, A. & Draine, B. T. 1993, ApJ, 402, 441
- Lazarian (2007) Lazarian, A. 2007, J. Quant. Spectrosc. Radiat. Transfer, 106, 225
- Lazarian & Roberge (1997) Lazarian, A. & Roberge, W. G. 1997, ApJ, 484, 230
- Lee & Draine (1985) Lee, H. M. & Draine, B. T. 1985, ApJ, 290, 211
- Lucy (1999) Lucy, L. B. 1999, A&A, 344, 282
- Mamajek (2008) Mamajek, E. E. 2008, Astronomische Nachrichten, 329, 10
- Martin (1971) Martin, P. G. 1971, MNRAS, 153, 279
- Martin (1974) Martin, P. G. 1974, ApJ, 187, 461
- Martin & Angel (1976) Martin, P. G. & Angel, J. R. P. 1976, ApJ, 207, 126
- Mathis (1986) Mathis, J. S. 1986, ApJ, 308, 281
- Mathis et al. (1977) Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
- McMullin et al. (2007) McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 376, Astronomical Data Analysis Software and Systems XVI, ed. R. A. Shaw, F. Hill, & D. J. Bell, 127
- Offner et al. (2009) Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131
- Padovani et al. (2012) Padovani, M., Brinch, C., Girart, J. M., et al. 2012, A&A, 543, A16
- Preibisch & Smith (1997) Preibisch, T. & Smith, M. D. 1997, A&A, 322, 825
- Pudritz & Norman (1983) Pudritz, R. E. & Norman, C. A. 1983, ApJ, 274, 677
- Purcell (1979) Purcell, E. M. 1979, ApJ, 231, 404
- Rao et al. (1998) Rao, R., Crutcher, R. M., Plambeck, R. L., & Wright, M. C. H. 1998, ApJ, 502, L75
- Reissl et al. (2016) Reissl, S., Wolf, S., & Brauer, R. 2016, A&A, 593, A87
- Reissl et al. (2014) Reissl, S., Wolf, S., & Seifried, D. 2014, A&A, 566, A65
- Sahai et al. (2006) Sahai, R., Young, K., Patel, N. A., Sánchez Contreras, C., & Morris, M. 2006, ApJ, 653, 1241
- Seifried et al. (2011) Seifried, D., Banerjee, R., Klessen, R. S., Duffin, D., & Pudritz, R. E. 2011, MNRAS, 417, 1054
- Seifried et al. (2012) Seifried, D., Pudritz, R. E., Banerjee, R., Duffin, D., & Klessen, R. S. 2012, MNRAS, 422, 347
- Shibata & Uchida (1985) Shibata, K. & Uchida, Y. 1985, Astronomical Herald, 78, 240
- Soler et al. (2013) Soler, J. D., Hennebelle, P., Martin, P. G., et al. 2013, ApJ, 774, 128
- Spitzer (1978) Spitzer, L. 1978, Physical processes in the interstellar medium
- Tomisaka (1998) Tomisaka, K. 1998, ApJ, 502, L163
- Tomisaka (2011) Tomisaka, K. 2011, PASJ, 63, 147
- Torres et al. (2007) Torres, R. M., Loinard, L., Mioduszewski, A. J., & Rodríguez, L. F. 2007, ApJ, 671, 1813
- Weingartner & Draine (2000) Weingartner, J. C. & Draine, B. T. 2000, in Bulletin of the American Astronomical Society, Vol. 32, American Astronomical Society Meeting Abstracts, 1466
- Weingartner & Draine (2003) Weingartner, J. C. & Draine, B. T. 2003, ApJ, 589, 289
- Whitney & Wolff (2002) Whitney, B. A. & Wolff, M. J. 2002, ApJ, 574, 205
- Wolf & Voshchinnikov (2004) Wolf, S. & Voshchinnikov, N. V. 2004, Computer Physics Communications, 162, 113
- Zhukovska et al. (2016) Zhukovska, S., Dobbs, C., Jenkins, E. B., & Klessen, R. S. 2016, ApJ, 831, 147
- Zubko (1995) Zubko, V. G. 1995, in IAU Symposium, Vol. 163, Wolf-Rayet Stars: Binaries; Colliding Winds; Evolution, ed. K. A. van der Hucht & P. M. Williams, 355