Testing CPT Symmetry with CMB Measurements: Update after WMAP5

Testing CPT Symmetry with CMB Measurements: Update after WMAP5

Jun-Qing Xia11affiliation: Institute of High Energy Physics, Chinese Academy of Science, P. O. Box 918-4, Beijing 100049, P. R. China; xiajq@mail.ihep.ac.cn. , Hong Li22affiliation: Department of Astronomy, School of Physics, Peking University, Beijing, 100871, P. R. China. , Gong-Bo Zhao33affiliation: Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. & Xinmin Zhang11affiliation: Institute of High Energy Physics, Chinese Academy of Science, P. O. Box 918-4, Beijing 100049, P. R. China; xiajq@mail.ihep.ac.cn.

In this Letter we update our previous result on the test of CPT symmetry with Cosmic Microwave Background (CMB) measurements. A CPT violating interaction in the photon sector gives rise to a rotation of the polarization vectors of the propagating CMB photons. Recently the WMAP group used the newly released polarization data of WMAP5 to measure this rotation angle and obtained deg (). However, in their analysis the BOOMERanG 2003 data is not included. Here we revisit this issue by combining the full data of WMAP5 and BOOMERanG 2003 angular power spectra for the measurement of this rotation angle and find that deg at a confidence level.

Subject headings:
Cosmology: theory (Cosmology:) cosmic microwave background (Cosmology:) cosmological parameters

1. Introduction

The fundamental CPT symmetry which has been proved to be exact in the framework of the standard model of particle physics and Einstein gravity could be dynamically violated in the expanding universe. This type of cosmological CPT violation mechanism investigated in the literature Li:2001st (); Li:2002wd (); Li:2004hh () has an interesting feature that the CPT violating effect at present time is small enough to satisfy the current laboratory experimental limits, but large enough in the early universe to account for the generation of the matter anti-matter asymmetry. More importantly, it could be accumulated to be observable in the cosmological experiments Feng:2004mq (); Li:2007 (). With the accumulation of high quality data on the CMB measurements, cosmological observations become a powerful tool to test this fundamental symmetry.

For a phenomenological study in the photon sector the CPT violation can be parameterized in terms of an effective lagrangian Carroll:1989vb (); Carroll:1990zs ():


where is a Chern-Simons term, is an external vector and is the dual of the electromagnetic tensor. This Lagrangian is not generally gauge invariant, but the action is gauge independent if . This may be possible if is constant in spacetime or the gradient of a scalar field in the quintessential baryo-/leptogenesis Li:2001st (); Li:2002wd (); quin_baryogenesis () or the gradient of a function of the Ricci scalar in gravitational baryo-/leptogenesis Li:2004hh (); R (). The Chern-Simons term violates Lorentz and CPT symmetries, and also the and symmetries when the background field does not vanish.

For the CMB measurements the Chern-Simons term induces a rotation of the polarization Li:2007 (); Xia:2007qs () with the rotation angle given by


where denotes the time component of and is the comoving distance of the CMB photon emitted at the last scattering surface and indicates the present time. In Eq.(2) we have assumed is a constant. For a more general case please see our previous companion paper Xia:2007qs ().

For the standard theory of CMB, the TB and EB cross-correlation power spectra vanish. In the presence of the CPT violating term (Eq.(1)) the polarization vector of each photon is rotated by an angle , and one expects to observe nonzero TB and EB power spectra, even if they are zero at the last scattering surface. Denoting the rotated quantities with a prime, one gets Feng:2004mq (); Lue:1998mq ():


while the CMB temperature power spectrum remains unchanged.

In Xia et al. (2007), using the full data of BOOMERanG 2003 and the WMAP3 angular power spectra we have performed the analysis on the determination of the rotation angle and find that deg (). This result improves the measurement given by our previous paper Feng:2006dp () and the paper by Cabella et al. (2007)111For the implications of this measurement on the possible new physics, please also see papers LiuCPT (); KosteleckyCPT (); GengCPT (); Ni:2007ar (); FinelliCPT ().. Recently the Wilkinson Microwave Anisotropy Probe (WMAP) experiment has published the 5-year results for the CMB angular power spectra which include the TB and EB information WMAP51 (); WMAP52 (). They use the polarization power spectra of WMAP5, TE/TB () and EE/BB/EB (), to determine this rotation angle WMAPCPT (), and find that deg ().

Besides the WMAP measurement, the BOOMERanG 2003 data also provide the TB and EB polarization power spectra B031 (); B032 (); B033 (), which have been shown to give an interesting constraint on this rotation angle Feng:2006dp (); Xia:2007qs (). Thus it will be interesting and necessary to combine the full data of these two experiments for the analysis, which is the aim of this Letter.

2. Method and Results

In our study we make a global analysis on the CMB data with the public available Markov Chain Monte Carlo package CosmoMC222http://cosmologist.info/. Lewis:2002ah (), which has been modified to allow the rotation of the power spectra discussed above, with a new free parameter . We assume the purely adiabatic initial conditions and impose the flatness condition motivated by inflation. In our analysis the most general parameter space is: , where and are the physical baryon and cold dark matter densities relative to the critical density, is the ratio of the sound horizon to the angular diameter distance at decoupling, is the optical depth to re-ionization, and characterize the primordial scalar power spectrum, is the tensor to scalar ratio of the primordial spectrum. For the pivot of the primordial spectrum we set Mpc. In our calculation we have assumed that the cosmic rotation angle is constant at all multipoles and does not depend on . Furthermore, we think that this rotation angle is not too large and imposed a conservative flat prior .

In our calculations we combine the full data of WMAP5 and BOOMERanG 2003 (B03). We calculate the likelihood of CMB power spectra using the routine for computing the likelihood supplied by the WMAP333Legacy Archive for Microwave Background Data Analysis (LAMBDA), http://lambda.gsfc.nasa.gov/. and BOOMERanG groups. Furthermore, we make use of the Hubble Space Telescope (HST) measurement of the Hubble parameter h km s Mpc by multiplying a Gaussian likelihood function Hubble (). We also impose a weak Gaussian prior on the baryon density () from the Big Bang Nucleosynthesis BBN (). Simultaneously we will also use a cosmic age tophat prior as 10 Gyr 20 Gyr.

Figure 1.— One dimensional distributions on the rotation angle from CMB data. The blue dashed line shows our previous limit on from WMAP3 and B03. The red dash-dot line shows the limit from the full data of WMAP5. The black solid line is from the full data of WMAP5 and B03. The horizontal dotted line shows .

Firstly we do a consistency test by comparing two methods used by us and WMAP group. The WMAP group fixed the parameters except for and in their analysis WMAPCPT (). The polarization spectra they considered are TE/TB/EE/BB/EB at and TE/TB at . In our analysis, we vary all of the parameters in the parameter space and use the full WMAP5 data including the CMB TT power spectrum. With the WMAP5 data only we find that our result on is consistent with that given by the WMAP group WMAPCPT (). Therefore, in the study below, we follow our method to do the calculation with the combination of the WMAP5 and B03 data.

In Fig.1 we plot our one dimensional constraints on the rotation angle from the CMB data. The blue dashed line shows our previous result on rotation angle from WMAP3 and B03 data. The red dash-dot line shows the limit on the full data of WMAP5. And the black solid line is our final result from the full data of WMAP5 and B03 data. The best fit value of the rotation angle is deg. Marginalizing over the posterior distributions of other parameters, we find that the mean value of the rotation angle is:


This constraint is tighter than all of the previous results on , say, the error bar is decreased by a factor of 2, which is profited from the accurate WMAP5 polarization data. On the other hand, this negative rotation angle is slightly preferred by the TC and GC information of B03. In the B03 data, the TC power at and are both negative, whereas it is positive at . The GC power at , and are all negative. Based on the Eq.(3), we can see that the TC and GC power spectra of B03 really help to obtain this negative rotation angle.

3. Summary

In this Letter we have determined the rotation polarization angle with the combined CMB data from BOOMERanG 2003 and the newly released WMAP5 data, and obtained deg (), which shows a mild detection of a nonzero rotation angle and a weak evidence for cosmological CPT violation. With the near future CMB measurements our result on the CPT violation could be confirmed or the CPT symmetry can be verified with a higher precision. For example, with the Planck444http://sci.esa.int/science-e/www/area/index.cfm?fareaid=17/. and the Spider measurements spider () the standard deviation of the rotation angle will be significantly reduced to deg Xia:2007gz () and deg Xia:Spider (), respectively.

We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We have performed our numerical analysis in the Shanghai Supercomputer Center (SSC). We thank Yi-Fu Cai, Carlo Contaldi, Eiichiro Komatsu and Tao-Tao Qiu for discussions. This work is supported in part by National Natural Science Foundation of China under Grant Nos. 90303004, 10533010 and 10675136 and by the Chinese Academy of Science under Grant No. KJCX3-SYW-N2. GZ is supported by National Science and Engineering Research Council of Canada (NSERC).


  • (Burles et al. 2001) Burles, S., et al. 2001, ApJ, 552, L1
  • (Cabella et al. 2007) Cabella, P., Natoli, P. Silk, J. 2007, Phys. Rev. D, 76, 123014
  • (Carroll et al. 1990) Carroll, S. M., Field, G. B. Jackiw, R. 1990, Phys. Rev. D, 41, 1231
  • (Carroll & Field 1991) Carroll, S. M. Field, G. B. 1991, Phys. Rev. D, 43, 3789
  • (Davoudiasl et al. 2004) Davoudiasl, H., Kitano, R., Kribs, C., Murayama, H. Steinhardt, P. J. 2004, Phys. Rev. Lett., 93, 201301
  • (De Felice et al. 2003) De Felice, A., Nasri, S. Trodden, M. 2003, Phys. Rev. D, 67, 043509
  • (Feng et al. 2005) Feng, B., Li, H., Li, M. Zhang, X. M. 2005, Phys. Lett. B, 620, 27
  • (Feng et al. 2006) Feng, B., Li, M., Xia, J. Q., Chen, X. Zhang, X. M. 2006, Phys. Rev. Lett., 96, 221302
  • (Finelli & Galaverni 2008) Finelli, F. Galaverni, M. 2008, arXiv:0802.4210
  • (Freedman et al. 2001) Freedman, W., et al. 2001, ApJ, 553, 47
  • (Geng et al. 2007) Geng, C. Q., Ho, S. H. Ng, J. N. 2007, JCAP, 0709, 010
  • (Hinshaw et al. 2008) Hinshaw, G., et al. 2008, arXiv: 0803.0732
  • (Jones et al. 2006) Jones, W. C., et al. 2006, ApJ, 647, 823
  • (Komastu et al. 2008) Komastu, E., et al. 2008, arXiv: 0803.0547
  • (Kostelecky & Mewes 2007) Kostelecky, A. Mewes, M. 2007, Phys. Rev. Lett., 99, 011601
  • (Lewid & Bridle 2002) Lewis, A. Bridle, S. 2002, Phys. Rev. D, 66, 103511
  • (Li et al. 2004) Li, H., Li, M. Zhang, X. M. 2004, Phys. Rev. D, 70, 047302
  • (Li et al. 2002) Li, M., Wang, X. L., Feng, B. Zhang, X. M. 2002, Phys. Rev. D, 65, 103511
  • (Li et al. 2007) Li, M., Xia, J. Q., Li, H. Zhang, X. M. 2007, Phys. Lett. B, 651, 357
  • (Li & Zhang 2003) Li, M. Zhang, X. M. 2003, Phys. Lett. B, 573, 20
  • (Liu et al. 2006) Liu, G. C., Lee, S. Ng, K. W. 2006, Phys. Rev. Lett., 97, 161303
  • (Lue et al. 1999) Lue, A., Wang, L. M. Kamionkowski, M. 1999, Phys. Rev. Lett., 83, 1506
  • (MacTavish et al. 2007) MacTavish, C. J., et al. 2007, arXiv: 0710.0375
  • (Montroy et al. 2006) Montroy, T. E., et al. 2006, ApJ, 647, 813
  • (Ni 2007) Ni, W. T. 2007, arXiv:0712.4082
  • (Nolta et al. 2008) Nolta, M. R., et al. 2008, arXiv: 0803.0593
  • (Piacentini et al. 2006) Piacentini, F., et al. 2006, ApJ, 647, 833
  • (Xia et al. 2007a) Xia, J. Q., et al. 2007a, arXiv: 0710.3325
  • (Xia et al. 2007b) Xia, J. Q., et al. 2007b, arXiv: 0708.1111
  • (Xia et al. 2008) Xia, J. Q., et al. 2008, in preparation
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description