Suppression of \Upsilon(1S), \Upsilon(2S), and \Upsilon(3S) quarkonium states in PbPb collisions at \sqrt{\smash[b]{s_{{}_{\mathrm{NN}}}}}=2.76\,\text{TeV}
Abstract

The production yields of (1S), (2S), and (3S) quarkonium states are measured through their decays into muon pairs in the CMS detector, in PbPb and pp collisions at the centre-of-mass energy per nucleon pair of 2.76. The data correspond to integrated luminosities of 166 and 5.4 for PbPb and pp collisions, respectively. Differential production cross sections are reported as functions of rapidity up to 2.4, and transverse momentum up to 20. A strong centrality-dependent suppression is observed in PbPb relative to pp collisions, by factors of up to and 8, for the (1S) and (2S) states, respectively. No significant dependence of this suppression is observed as a function of or . The (3S) state is not observed in PbPb collisions, which corresponds to a suppression for the centrality-integrated data by at least a factor of at a 95% confidence level. The observed suppression is in agreement with theoretical scenarios modeling the sequential melting of quarkonium states in a quark gluon plasma.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)


CERN-EP/2016-248 2019/\two@digits7/\two@digits13

CMS-HIN-15-001                                         


Suppression of (1S), (2S), and (3S) quarkonium states in PbPb collisions at


The CMS Collaboration111See Appendix A for the list of collaboration members



Abstract

Please replace the default abstract using the abstract command.


Published in Physics Letters B as doi:10.1016/j.physletb.2017.04.031.

© 2019 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

1 Introduction

At large energy density and high temperature, strongly interacting matter is predicted by lattice QCD calculations to consist of a deconfined system of quarks and gluons [1]. This state, often referred to as “quark gluon plasma” (QGP) [2], constitutes the main object of studies using high energy heavy ion collisions.

The formation of QGP in nuclear collisions is studied in a variety of ways. One of its most striking signatures is the sequential suppression of quarkonium states, both in the charmonium (, , , etc.) and the bottomonium (, , etc.) families. Historically, this phenomenon was proposed as direct evidence of deconfinement because, in the deconfined medium, the binding potential between the constituents of a quarkonium state, a heavy quark and its antiquark (), should be screened by the colour charges of the surrounding light quarks and gluons [3, 4]. The suppression of quarkonium production is predicted to occur above the critical temperature of the medium () and to depend on the  binding energy. Since the  is the most tightly bound state among all quarkonia, it is expected to have the highest dissociation temperature. Estimates of dissociation temperatures are given in Ref. [5]: , and for the , , and  states, respectively. Other medium effects, such as regeneration from initially uncorrelated quark-antiquark pairs [6, 7] or absorption by comoving particles [8, 9] can modify quarkonium production in heavy ion collisions. Furthermore, nuclear effects such as modifications of parton distributions inside nuclei [10] or energy loss processes in nuclear matter [11] are expected to affect the production of quarkonia independently of any QGP formation. An admixture of several of the above-mentioned effects in the context of bottomonium production is investigated in Refs. [12, 13] and a recent review on quarkonium production can be found in Ref. [14].

The suppression of  production in heavy ion collisions relative to pp yields scaled by the number of binary nucleon-nucleon (NN) collisions was first measured by CMS [15] in the midrapidity range , then by ALICE at forward rapidities  [16]. Both measurements were done at the CERN LHC in PbPb collisions at a centre-of-mass energy per nucleon pair, , of 2.76. A larger suppression of the  and  was first suggested [17] then observed [18] by CMS. In pPb collisions at , ALICE [19] and LHCb [20] reported  yields that are slightly suppressed along the p-going forward direction, possibly indicating the importance of nuclear effects. Lacking pp reference data at , the pp yields were estimated by interpolating results at 2.76, 7, and 8 [19], or by scaling data at 8 [20]. The  and  were reported by CMS to be slightly more suppressed than the  ground state in pPb collisions [21]. At the BNL RHIC, STAR reported no significant suppression of the overlapping (1S+2S+3S) states in dAu collisions at , while observing a suppression in central AuAu collisions at the same energy [22]. Altogether, these results are interpreted as a sequential suppression of the three states in nucleus-nucleus collisions [12, 13], with the tighter bound states disappearing less in the QGP.

This Letter reports the production yields of , , and  for PbPb and pp data at the same , using integrated luminosities of 166 and 5.4, respectively. The two sets of data correspond to approximately the same number of NN collisions. The pp sample collected in 2013 contains 20 times more events than the 2011 data used previously [15, 17, 18], allowing further differential studies with respect to the  meson rapidity and transverse momentum. Muon reconstruction is improved in PbPb collisions relative to Ref. [18], yielding a 35% increase in the number of measured  candidates. In total, the improved reconstruction and a relaxed muon- selection provide almost twice the number of  candidates used in Ref. [18]. The yields in PbPb and pp events are used to extract nuclear modification factors, .

2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. A silicon tracker, a crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter reside within the magnetic field volume.

Muons are detected in the pseudorapidity interval using gas-ionization detectors made of three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers, embedded in the steel flux-return yoke of the solenoid. The silicon tracker is composed of pixel detectors (three barrel layers and two forward disks on either side of the detector, made of 66 million pixels) followed by microstrip detectors (ten barrel layers, and three inner and nine forward disks on either side of the detector, with strips of pitch between 80 and 180). The transverse momentum of muons matched to tracks reconstructed in the silicon detector is measured with a resolution better than % for values smaller than 100 [24]. This high resolution is the result of the 3.8 T magnetic field and the high granularity of the silicon tracker.

In addition, CMS has extensive forward calorimetry, including two steel and quartz-fibre Cherenkov hadron forward (HF) calorimeters, that cover the range . These detectors are used in the present analysis to select events and to determine the centrality of PbPb collisions, as described in the next section.

3 Data selections

3.1 Event selection and centrality

To select purely inelastic hadronic PbPb collisions, contributions from ultraperipheral collisions and noncollision beam backgrounds are removed, as described in Ref. [25]. Events are preselected if they contain a primary vertex built from at least two tracks, and at least three signals (one in the case of pp collisions) in HF towers on each side of the interaction point with deposited energies of at least 3 in each tower. To further suppress beam-gas events, the distribution of hits in the pixel detector along the beam direction is required to be compatible with particles originating from the event vertex. These criteria select % of the inelastic hadronic PbPb collisions [25], yielding an efficiency-corrected number of minimum bias (MB) events for the MB sample corresponding to this analysis. The pp data correspond to an integrated luminosity of 5.4, known to an accuracy of 3.7% coming from the uncertainty in the calibration based on a van der Meer scan [26].

The measurements are based on events that were first selected by the Level-1 trigger, a hardware-based system that uses information from the muon detectors and calorimeters. The presence of at least two muons was required, with no selection applied on their momenta. The events were then further filtered using a software-based high-level trigger, and rejected if muons were poorly reconstructed, hence likely to be misidentified. The pp and PbPb data were collected using the same trigger logic.

The centrality of PbPb collisions is defined as the fraction of the total number of inelastic hadronic collisions, with 0% representing collisions with the largest overlap of the two nuclei. This fraction is determined from the distribution of total energy in both HF calorimeters. Variables related to the centrality, such as the number of nucleons participating in the collision () and the nuclear overlap function ([27], are estimated using a Glauber model simulation described in Ref. [25]. The value of at a given centrality is equal to the number of binary NN collisions divided by the NN cross section and can be interpreted as the NN-equivalent integrated luminosity per heavy ion collision.

It is to be noted that the PbPb hadronic cross section () computed with this Glauber simulation corresponds to an integrated luminosity of , compatible within 1.2 sigma with the experimental value of based on the van der Meer scan. The mean values of and are presented in Table 2 for the narrow centrality bins used in the  analysis, the wider bins used in the  analysis, and the centrality-integrated estimate. The most peripheral bins are rather wide and, since quarkonium yields scale with the number of nucleon-nucleon collisions, most bottomonia are produced close to the most central edge of the bins, namely 70% and 50%. The values shown in the following figures and reported in Table 2 are computed by averaging over all MB events in a given centrality bin, and are therefore not corrected for any bias introduced by requiring the presence of the . Also presented is the root-mean-square (RMS) of the distribution in each bin. The uncertainty on  is computed by varying the Glauber parameters and the event selection inefficiency, as described in Ref. [25]. In this Letter, is used to show the centrality dependence of the measurements, while directly enters into the nuclear modification factor calculation:   where is the number of produced per PbPb collision in a given kinematic range and the corresponding cross section in pp collisions.

Centrality (%) (RMS) (mb)
Table 2: Average values of the number of participating nucleons (, with the root-mean-square of its distribution in each bin), and nuclear overlap function (, with its systematic uncertainty) for the centrality bins used in the (upper rows) and (middle) analyses. The centrality-integrated values are given in the last row.

3.2 Muon selection

Muons are reconstructed using a global fit to a track in the muon detectors that is matched to a track in the silicon tracker. The offline muon reconstruction algorithm used for the PbPb data has been improved relative to that used previously [18]. The efficiency has been increased by running multiple iterations in the pattern recognition step, raising the number of reconstructed  candidates by approximately 35%. Background muons from cosmic rays and heavy-quark semileptonic decays are rejected by imposing a set of selection criteria on each muon track. These criteria are based on previous studies of the performance of the muon reconstruction algorithm [28]. The track is required to have a hit in at least one pixel detector layer, and a respective transverse (longitudinal) distance of closest approach of less than 3 (15) from the measured primary vertex, primarily to reject cosmic ray muons and muons from hadron decays in flight. To ensure a good measurement, more than 10 hits are requested in the tracker, and the per number of degrees of freedom of the trajectory fits is limited to be smaller than 10 when using the silicon tracker and the muon detectors, and smaller than 4 when using only the tracker. Pairs of oppositely charged muons are considered when the fit probability of the tracks originating from a common vertex exceeds 1%.

For the  and  analyses, the transverse momentum of each muon () is required to be above 4, as in previous publications [15, 17, 18], while one of them is relaxed down to 3.5 for the  analysis. Reducing this threshold raises the  yield by approximately 40%, and its statistical significance by up to 50%, depending on the and of the dimuon system. Relaxing the criterion on the second muon was also considered then discarded, since it did not significantly raise the acceptance for the  states. The resulting invariant mass distributions are shown on Fig. 1 for the entire pp and PbPb data samples.

Figure 1: Dimuon invariant mass distributions in pp (left) and centrality-integrated PbPb (right) data at , for muon pairs having one greater than 4 and the other greater than 3.5. The solid (signal + background) and dashed (background only) lines show the result of fits described in the text.

4 Analysis

4.1 Signal extraction

To extract the , , and  meson yields, unbinned maximum likelihood fits to the invariant mass spectra are performed between 7.5 and 14. The results for the -, - and centrality-integrated case are displayed as solid lines on Fig. 1. Each  resonance is modelled by the sum of two Crystal Ball (CB) functions [29] with common mean but different widths to account for the pseudorapidity dependence of the muon momentum resolution. The CB functions are Gaussian resolution functions with the low-side tail replaced by a power law describing final-state radiation. This choice was guided by simulation studies, as well as analyses of large pp event samples collected at  [30]. Given the relatively large statistical uncertainties, the only signal model parameters that are left free in the fit are the mean of the  peak, and the ,  and  meson yields. The other parameters, such as the width of the  peak are fixed in every bin to the corresponding value obtained from simulations. The mean and width of the CB functions describing the  and  peaks are set by the fitted  peak mean and the fixed  width, respectively, multiplied by the world-average mass ratio [31]. The parameters describing the tail of the CB function are fixed to values obtained from simulations, kept common in the three  states, then allowed to vary when computing the associated systematic uncertainties. The background distribution is modelled by an exponential function multiplied by an error function (the integral of a Gaussian) describing the low-mass turn-on, with all parameters left free in the fit.

With one muon having greater than 4 and the other greater than 3.5, this fitting procedure results in  meson yields and statistical uncertainties of and in centrality-integrated PbPb and pp collisions, respectively. With both muons’ transverse momenta above 4, it yields for  and for  (hence unobserved) in PbPb collisions, and for  and for  states in pp collisions.

4.2 Acceptance and efficiency

To correct yields for acceptance and efficiency in the two data samples, the three  states have been simulated using the pythia 6.412 generator [32] and embedded in PbPb events simulated with hydjet 1.8 [33], producing Monte Carlo (MC) events with the same settings as in Ref. [18], including radiative tails handled by photos [34]. Acceptance is defined as the fraction of  in the range that decay into two muons, each with , and 4 and 3.5 or 4 for the  and / states, respectively. For the  state, the acceptance over the analyzed phase space averages to 35%. For all three  states, the acceptance is constant over most of the rapidity range, with a drop at large . When the  meson has  , the lower  decay muon often falls below the required momentum to reach the muon detector, resulting in a drop in acceptance for intermediate . For  and  states, where for both muons is required to be above 4, the acceptance is 28 and 33%, respectively. Within this acceptance, the average reconstruction and trigger efficiencies are 68, 74 and 75% for the , , and  states, respectively. The slightly lower efficiency for the  state arises from including lower- muons, which have smaller reconstruction efficiencies, in particular at midrapidity.

The individual components of the efficiency are crosschecked using collision data and muons from meson decays, with a technique called tag-and-probe, similar to the one described in Ref. [30]. The method consists of fitting the candidates in data and MC samples, with and without applying the probed selection criterion on one of the muons. The muon reconstruction, identification, and trigger efficiencies in the muon detectors are probed by testing the selection response in a sample collected with single-muon triggers. The small discrepancies observed between the results for data and simulation are used to determine - and -dependent single-muon correction factors that are applied to muons in the simulation. The net correction factors to the  meson yields range from 3 to 18%, the largest being located at low or at large . The tracker efficiency, larger than 99%, is also evaluated with this method by checking the presence of a track for muons that are primarily reconstructed in the muon detectors. The corresponding uncertainty is evaluated to be 0.3 and 0.6% for each muon, for the pp and PbPb data, respectively.

4.3 Systematic uncertainties

The uncertainty from the fitting procedure is estimated by performing seven changes in the fitting functions. Five of them consist of releasing one by one the originally fixed signal-shape parameters, to accommodate for possible imperfections in the simulation. The other two changes consist of adding to the default background function a first- or second-order Chebychev polynomial. The maxima of the five signal and of the two background variations are summed in quadrature, yielding systematic uncertainties from 4 to 25% in the PbPb data and from 1 to 10% in the pp data, for the  meson yield. For the less significant  signal, the uncertainties range from 13 to 71% in PbPb, and from 1 to 15% in pp data.

The systematic uncertainty from the acceptance and efficiency estimation includes changes of the generated and spectra, as well as variations of the distribution of  candidates across event centrality, within limits imposed by the data themselves. These are propagated into bin-by-bin systematic uncertainties of 0.7 and 1.1% on average, in pp and PbPb collisions, respectively.

Single-muon efficiencies obtained from the tag-and-probe method are assigned a systematic uncertainty from varying requirements for the tag selection, the dimuon mass range, and the distributions of the invariant mass peak and the underlying backgrounds. The maximum deviation in each and interval is retained as the systematic uncertainty on the single-muon correction factors. Next, the single-muon correction factors are changed within their statistical uncertainties derived from data. To do so, one hundred variations of the single-muon efficiencies are computed, resulting in one hundred dimuon efficiency correction factors in each analysis bin. The RMS of the resulting efficiencies, summed in quadrature with the systematic uncertainty in the efficiency correction factors, represent the overall uncertainty in muon efficiency. The resulting systematic uncertainties range from 3.2 to 7.7% from midrapidity in pp collisions to the most forward bins in PbPb collisions. In addition, the uncertainty in the tracking efficiency of 0.3 and 0.6% for each track is considered as fully correlated and thus doubled for dimuon candidates, and taken as a global uncertainty (common to all points).

The relative uncertainties in the integrated luminosity of pp data (3.7%) or the number of PbPb MB events (3%) are also considered as global uncertainties. The uncertainties in the values are given in Table 2.

5 Results

5.1 Cross sections

Figures 2 and 3 show the differential cross sections as functions of (per unit of rapidity) and , respectively, in pp (left) and PbPb (right) collisions. Measured yields are corrected for the acceptance and efficiency, then divided by the width of the bin in consideration. To put the pp and PbPb data on a comparable scale, the corrected yields are normalized by the measured integrated luminosity in pp collisions, and by the product of the number of corresponding MB events and the centrality-integrated  value for PbPb collisions. The statistical uncertainties in pp collisions allow a measurement for the three states using the same binning: five bins in  with edges at 0, 2.5, 5.0, 8.0, 12.0, and 20.0, and six equal bins in from 0 to 2.4. In PbPb collisions, that same binning can be used for the  analysis, but wider bins are necessary in the  case: three bins in  with edges at 0, 5, 12 and 20, and two bins in . The  state is not observed in PbPb collisions, and an upper limit is obtained for the -, - and centrality-integrated yield. The corresponding global (fully correlated) uncertainties (not shown in the plots) include the uncertainty due to the integrated luminosity in pp data, the uncertainties due to and the number of MB events in PbPb data, and the uncertainty in the tracking efficiency in both cases.

Figure 2: Differential cross section for  states as a function of their transverse momentum and per unit of rapidity in pp (left) and PbPb (right) collisions. The PbPb results are integrated over centrality and divided by the number of elementary NN collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% (pp) and 6.5% (PbPb) are not displayed.
Figure 3: Differential cross section for  states as a function of their rapidity and integrated over transverse momentum in pp (left) and PbPb (right) collisions. The PbPb results are integrated over centrality and divided by the number of elementary NN collisions. Statistical (systematic) uncertainties are displayed as error bars (boxes). Global relative uncertainties of 3.7% (pp) and 6.5% (PbPb) are not displayed.

5.2 Nuclear modification factors

Nuclear modification factors, , obtained by dividing the PbPb yields by the product of the  values and the pp cross sections, are shown on Fig. 4 as a function of the  meson (left) and (right). The global (fully correlated) uncertainty here includes the uncertainties in tracking efficiency, the integrated luminosity of the pp data, the number of MB PbPb events, and the centrality-integrated  value. The results show a suppression of a factor of and 8 for  and  states, respectively. No pronounced dependence on the  meson kinematics is observed, the values being constant within uncertainties as a function of both and .

Figure 4: Nuclear modification factor for  and  states in PbPb collisions as a function of (left) and (right). Statistical (systematic) uncertainties are displayed as error bars (boxes), while the global (fully correlated) uncertainty (7.5%) is displayed as a grey box at unity.

Figure 5 shows as a function of centrality, displayed as the average number of participating nucleons, . The global (fully correlated) uncertainties come from the uncertainty in the pp cross sections (which differ for each  state), the number of MB PbPb collisions and the PbPb tracking efficiency. The noticeable  centrality dependence, already observed in Ref. [18], is mapped out with more precision. As discussed in Section 3.1, points are displayed at the  value found by averaging over all MB events in each centrality class. In that respect, it should be noted that the large  suppression observed for the 50–100% centrality range spans a wide range of values, over which suppression could significantly change. The values integrated over centrality for the three  states are shown in the side panel of Fig. 5.

The lack of observation of the  state in PbPb data provides an upper limit on , using the Feldman–Cousins prescription [35]. The centrality-integrated values for the three states are:

with the first and second uncertainties being one standard deviation statistical and systematic, respectively.

These observations are consistent with a sequential melting scenario for the  states, as described in Refs. [12, 36, 37]. These models, which attribute most of the suppression to in-medium melting, do not predict a strong dependence of  on rapidity or transverse momentum. Cold nuclear matter effects such as PDF modifications and energy loss also do not exhibit such dependences, and their overall impact on  states is much smaller than the observed suppression [11]. In contrast, quarkonium regeneration should depend significantly on , but it is predicted to be small for bottom quarks [12]. The sequential suppression by comoving particles computed in Ref. [38] reproduces the  suppression centrality pattern, but any dependence on either  or remains to be assessed.

Figure 5: Nuclear modification factors for  and  meson production in PbPb collisions, as a function of centrality, displayed as the average number of participating nucleons. The upper limit derived on the nuclear modification factor for  is represented with an arrow in the centrality integrated panel at the far right. Statistical (systematic) uncertainties are displayed as error bars (boxes), while the global (fully correlated) uncertainties from the PbPb data (3.2%) or from the pp reference (6.3 and 6.9% for  and  states, respectively) are displayed at unity as empty, filled red, and filled black boxes, respectively.

6 Summary

The , , and  yields have been measured in PbPb and pp collisions at with the CMS detector, using integrated luminosities of 166 and 5.4, respectively. For the first time, differential production cross sections are derived for individual  states as functions of their rapidity and transverse momentum in heavy ion collisions. The  and  states are suppressed in PbPb relative to pp collisions scaled by the number of nucleon-nucleon collisions, by factors of and 8, respectively, while the absence of a significant  signal corresponds to a suppression by a factor larger than at a 95% confidence level. While a strong centrality dependence of the suppression is found for the  and  states, no clear dependence is observed as a function of either transverse momentum or rapidity. The level of suppression measured in this analysis is compatible with theoretical models of a sequential melting of quarkonium states in a hot medium.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\@textsuperscript1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\@textsuperscript1, A. König, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady, N. Rad, B. Rahbaran, H. Rohringer, J. Schieck\@textsuperscript1, J. Strauss, W. Waltenberger, C.-E. Wulz\@textsuperscript1 Institute for Nuclear Problems, Minsk, Belarus
O. Dvornikov, V. Makarenko, V. Zykunov National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, E.A. De Wolf, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, A. Léonard, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang\@textsuperscript2 Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, G. Garcia, M. Gul, I. Khvastunov, D. Poyraz, S. Salva, R. Schöfbeck, A. Sharma, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, C. Beluffi\@textsuperscript3, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, P. Jez, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, C. Nuttens, K. Piotrzkowski, L. Quertenmont, M. Selvaggi, M. Vidal Marono, S. Wertz Université de Mons, Mons, Belgium
N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\@textsuperscript4, A. Custódio, E.M. Da Costa, G.G. Da Silveira\@textsuperscript5, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\@textsuperscript4, A. Vilela Pereira Universidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, S. Dogra, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, C.S. Moon, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China
W. Fang\@textsuperscript6 Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen\@textsuperscript7, T. Cheng, C.H. Jiang, D. Leggat, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, C.F. González Hernández, J.D. Ruiz Alvarez, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, S. Micanovic, L. Sudic, T. Susa University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, D. Tsiakkouri Charles University, Prague, Czech Republic
M. Finger\@textsuperscript8, M. Finger Jr.\@textsuperscript8 Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim\@textsuperscript9\@textsuperscript10, Y. Mohammed\@textsuperscript11, E. Salama\@textsuperscript12\@textsuperscript13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
A. Abdulsalam, I. Antropov, F. Arleo, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, O. Davignon, R. Granier de Cassagnac, M. Jo, S. Lisniak, P. Miné, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram\@textsuperscript14, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\@textsuperscript14, X. Coubez, J.-C. Fontaine\@textsuperscript14, D. Gelé, U. Goerlach, A.-C. Le Bihan, K. Skovpen, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, C.A. Carrillo Montoya, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\@textsuperscript15, D. Sabes, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret Georgian Technical University, Tbilisi, Georgia
T. Toriashvili\@textsuperscript16 Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\@textsuperscript8 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, S. Schael, C. Schomakers, J. Schulz, T. Verlage, H. Weber, V. Zhukov\@textsuperscript15 RWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
A. Albert, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
V. Cherepanov, G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl\@textsuperscript17 Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A.A. Bin Anuar, K. Borras\@textsuperscript18, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Dolinska, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo\@textsuperscript19, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, P. Gunnellini, A. Harb, J. Hauk, M. Hempel\@textsuperscript20, H. Jung, A. Kalogeropoulos, O. Karacheban\@textsuperscript20, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann\@textsuperscript20, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, C. Seitz, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, C. Wissing University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, M. Hoffmann, A. Junkes, R. Klanner, R. Kogler, N. Kovalchuk, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo\@textsuperscript17, T. Peiffer, A. Perieanu, J. Poehlsen, C. Sander, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, C. Baus, J. Berger, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, S. Fink, B. Freund, R. Friese, M. Giffels, A. Gilbert, P. Goldenzweig, D. Haitz, F. Hartmann\@textsuperscript17, S.M. Heindl, U. Husemann, I. Katkov\@textsuperscript15, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
N. Filipovic Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\@textsuperscript21, F. Sikler, V. Veszpremi, G. Vesztergombi\@textsuperscript22, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\@textsuperscript23, A. Makovec, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary
M. Bartók\@textsuperscript22, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Choudhury\@textsuperscript24, P. Mal, K. Mandal, A. Nayak\@textsuperscript25, D.K. Sahoo, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, M. Mittal, J.B. Singh, G. Walia University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, S. Keshri, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India
R. Bhattacharya, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India
P.K. Behera Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\@textsuperscript17, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, G. Kole, B. Mahakud, S. Mitra, G.B. Mohanty, B. Parida, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhowmik\@textsuperscript26, R.K. Dewanjee, S. Ganguly, M. Guchait, Sa. Jain, S. Kumar, M. Maity\@textsuperscript26, G. Majumder, K. Mazumdar, T. Sarkar\@textsuperscript26, N. Wickramage\@textsuperscript27 Indian Institute of Science Education and Research (IISER),  Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM),  Tehran, Iran
S. Chenarani\@textsuperscript28, E. Eskandari Tadavani, S.M. Etesami\@textsuperscript28, A. Fahim\@textsuperscript29, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi\@textsuperscript30, F. Rezaei Hosseinabadi, B. Safarzadeh\@textsuperscript31, M. Zeinali University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald INFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris\@textsuperscript17, R. Venditti, P. Verwilligen INFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi\@textsuperscript17 INFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve INFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, L. Viliani\@textsuperscript17 INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera\@textsuperscript17 INFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
L. Brianza\@textsuperscript17, M.E. Dinardo, S. Fiorendi\@textsuperscript17, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni\@textsuperscript17, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Pigazzini, S. Ragazzi, T. Tabarelli de Fatis INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, G. De Nardo, S. Di Guida\@textsuperscript17, M. Esposito, F. Fabozzi, F. Fienga, A.O.M. Iorio, G. Lanza, L. Lista, S. Meola\@textsuperscript17, P. Paolucci\@textsuperscript17, C. Sciacca, F. Thyssen INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi\@textsuperscript17, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle INFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo INFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov\@textsuperscript32, P. Azzurri\@textsuperscript17, G. Bagliesi, J. Bernardini, T. Boccali, R. Castaldi, M.A. Ciocci\@textsuperscript32, R. Dell’Orso, S. Donato, G. Fedi, A. Giassi, M.T. Grippo\@textsuperscript32, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\@textsuperscript33, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini INFN Sezione di Roma , Università di Roma ,  Roma, Italy
L. Barone, F. Cavallari, M. Cipriani, D. Del Re\@textsuperscript17, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono\@textsuperscript17, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, L. Finco, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, F. Ravera, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, A. Staiano, P. Traczyk INFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, S. Lee, S.W. Lee, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea
A. Lee Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, T.J. Kim Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea
J. Almond, J. Kim, H. Lee, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu, M.S. Ryu Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali\@textsuperscript34, F. Mohamad Idris\@textsuperscript35, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\@textsuperscript36, A. Hernandez-Almada, R. Lopez-Fernandez, R. Magaña Villalba, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda University of Auckland, Auckland, New Zealand
D. Krofcheck University of Canterbury, Christchurch, New Zealand
P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\@textsuperscript37, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\@textsuperscript38\@textsuperscript39, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
L. Chtchipounov, V. Golovtsov, Y. Ivanov, V. Kim\@textsuperscript40, E. Kuznetsova\@textsuperscript41, V. Murzin, V. Oreshkin, V. Sulimov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology
A. Bylinkin\@textsuperscript39 National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
R. Chistov\@textsuperscript42, M. Danilov\@textsuperscript42, S. Polikarpov P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\@textsuperscript39, I. Dremin\@textsuperscript39, M. Kirakosyan, A. Leonidov\@textsuperscript39, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan Novosibirsk State University (NSU),  Novosibirsk, Russia
V. Blinov\@textsuperscript43, Y.Skovpen\@textsuperscript43, D. Shtol\@textsuperscript43 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\@textsuperscript44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, J.M. Vizan Garcia Instituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, P. Bloch, A. Bocci, A. Bonato, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco\@textsuperscript45, M. Dobson, B. Dorney, T. du Pree, D. Duggan, M. Dünser, N. Dupont, A. Elliott-Peisert, S. Fartoukh, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, M. Girone, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, J. Hammer, P. Harris, J. Hegeman, V. Innocente, P. Janot, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer\@textsuperscript17, M.J. Kortelainen, K. Kousouris, M. Krammer\@textsuperscript1, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\@textsuperscript46, F. Moortgat, S. Morovic, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi\@textsuperscript47, M. Rovere, M. Ruan, H. Sakulin, J.B. Sauvan, C. Schäfer, C. Schwick, M. Seidel, A. Sharma, P. Silva, P. Sphicas\@textsuperscript48, J. Steggemann, M. Stoye, Y. Takahashi, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns\@textsuperscript49, G.I. Veres\@textsuperscript22, M. Verweij, N. Wardle, H.K. Wöhri, A. Zagozdzinska\@textsuperscript37, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, P. Lecomte, W. Lustermann, B. Mangano, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Rossini, M. Schönenberger, A. Starodumov\@textsuperscript50, V.R. Tavolaro, K. Theofilatos, R. Wallny Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\@textsuperscript51, L. Caminada, M.F. Canelli, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, Y. Yang, A. Zucchetta National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU),  Taipei, Taiwan
Arun Kumar, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey
A. Adiguzel, S. Cerci\@textsuperscript52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos\@textsuperscript53, E.E. Kangal\@textsuperscript54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut\@textsuperscript55, K. Ozdemir\@textsuperscript56, D. Sunar Cerci\@textsuperscript52, B. Tali\@textsuperscript52, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, S. Bilmis, B. Isildak\@textsuperscript57, G. Karapinar\@textsuperscript58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya\@textsuperscript59, O. Kaya\@textsuperscript60, E.A. Yetkin\@textsuperscript61, T. Yetkin\@textsuperscript62 Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen\@textsuperscript63 Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold\@textsuperscript64, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev\@textsuperscript65, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, P. Dunne, A. Elwood, D. Futyan, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, R. Lucas\@textsuperscript64, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, J. Nash, A. Nikitenko\@textsuperscript50, J. Pela, B. Penning, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, C. Seez, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta\@textsuperscript66, T. Virdee\@textsuperscript17, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, USA
S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, USA
G. Benelli, E. Berry, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, O. Jesus, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, E. Spencer, R. Syarif University of California, Davis, Davis, USA
R. Breedon, G. Breto, D. Burns, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi University of California, Los Angeles, USA
C. Bravo, R. Cousins, A. Dasgupta, P. Everaerts, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, M. Derdzinski, R. Gerosa, A. Holzner, D. Klein, V. Krutelyov, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\@textsuperscript67, C. Welke, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, J. Bendavid, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, J.M. Lawhorn, A. Mott, H.B. Newman, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, V. Azzolini, T. Ferguson, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fairfield University, Fairfield, USA
D. Winn Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, M. Cremonesi, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, Y. Wu University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, L. Shchutska, D. Sperka, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, USA
S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, USA
A. Ackert, J.R. Adams, T. Adams, A. Askew, S. Bein, B. Diamond, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, K. Jung, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, P. Turner, N. Varelas, H. Wang, Z. Wu, M. Zakaria, J. Zhang The University of Iowa, Iowa City, USA
B. Bilki\@textsuperscript68, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\@textsuperscript69, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok\@textsuperscript70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, USA
I. Anderson, B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, M. Osherson, J. Roskes, U. Sarica, M. Swartz, M. Xiao, Y. Xin, C. You The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, C. Bruner, J. Castle, L. Forthomme, R.P. Kenny III, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, S. Sanders, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, A. Apyan, R. Barbieri, A. Baty, R. Bi, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, K. Krajczar, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, R. Bartek\@textsuperscript71, K. Bloom, D.R. Claes, A. Dominguez\@textsuperscript71, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, A. Malta Rodrigues, F. Meier, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, C. Harrington, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, USA
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, A. Kubik, A. Kumar, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, USA
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\@textsuperscript38, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, R. Hughes, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, D. Lange, J. Luo, D. Marlow, J. Mc Donald, T. Medvedeva, K. Mei, M. Mooney, J. Olsen, C. Palmer, P. Piroué, D. Stickland, A. Svyatkovskiy, C. Tully, A. Zuranski University of Puerto Rico, Mayaguez, USA
S. Malik Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, D.H. Miller, N. Neumeister, J.F. Schulte, X. Shi, J. Sun, F. Wang, W. Xie Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, E. Contreras-Campana, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, K. Nash, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, USA
O. Bouhali\@textsuperscript72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, E. Juska, T. Kamon\@textsuperscript73, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, F. De Guio, C. Dragoiu, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, J. Sturdy University of Wisconsin - Madison, Madison, WI, USA
D.A. Belknap, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods †: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3:  Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4:  Also at Universidade Estadual de Campinas, Campinas, Brazil
5:  Also at Universidade Federal de Pelotas, Pelotas, Brazil
6:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
7:  Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
8:  Also at Joint Institute for Nuclear Research, Dubna, Russia
9:  Also at Helwan University, Cairo, Egypt
10: Now at Zewail City of Science and Technology, Zewail, Egypt
11: Now at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
19: Also at University of Hamburg, Hamburg, Germany
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at University of Debrecen, Debrecen, Hungary
24: Also at Indian Institute of Science Education and Research, Bhopal, India
25: Also at Institute of Physics, Bhubaneswar, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Yazd University, Yazd, Iran
31: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
32: Also at Università degli Studi di Siena, Siena, Italy
33: Also at Purdue University, West Lafayette, USA
34: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, USA
42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
47: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Riga Technical University, Riga, Latvia
50: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
51: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Cag University, Mersin, Turkey
56: Also at Piri Reis University, Istanbul, Turkey
57: Also at Ozyegin University, Istanbul, Turkey
58: Also at Izmir Institute of Technology, Izmir, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Yildiz Technical University, Istanbul, Turkey
63: Also at Hacettepe University, Ankara, Turkey
64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
66: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
67: Also at Utah Valley University, Orem, USA
68: Also at Argonne National Laboratory, Argonne, USA
69: Also at Erzincan University, Erzincan, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Now at The Catholic University of America, Washington, USA
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
174571
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description