Star forming regions linked to RCW 78 and the discovery of a new IR bubble

Star forming regions linked to RCW 78 and the discovery of a new IR bubble

C.E. Cappa Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto Argentino de Radioastronomía, CCT-La Plata, CONICET, C.C.5., 1894, Villa Elisa, Argentina Member of Carrera del Investigador, CONICET, Argentina
   M. Rubio Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile    G.A. Romero Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Member of Carrera del Investigador, CONICET, Argentina
   N.U. Duronea Instituto Argentino de Radioastronomía, CCT-La Plata, CONICET, C.C.5., 1894, Villa Elisa, Argentina    V. Firpo Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Instituto de Astrofísica de La Plata, CCT-La Plata, CONICET, Paseo del Bosque s/n, La Plata, Argentina
Received September 15, 1996; accepted March 16, 1997
Key Words.:
ISM: star formation – ISM: individual object: RCW 78


Aims:With the aim of investigating the presence of molecular and dust clumps linked to two star forming regions identified in the expanding molecular envelope of the stellar wind bubble RCW 78, we analyzed the distribution of the molecular gas and cold dust.

Methods:To accomplish this study we performed dust continuum observations at 870 m and CO(2-1) line observations with the APEX telescope, using LABOCA and SHeFI-1 instruments, respectively, and analyzed Herschel images at 70, 160, 250, 350, and 500 m.

Results:These observations allowed us to identify cold dust clumps linked to region B (named the Southern clump) and region C (clumps 1 and 2) and an elongated Filament. Molecular gas was clearly detected linked to the Southern clump and the Filament. The velocity of the molecular gas is compatible with the location of the dense gas in the expanding envelope of RCW 78. We estimate dust temperatures and total masses for the dust condensations from the emissions at different wavelengths in the far-IR and from the molecular line using LTE and the virial theorem. Masses obtained through different methods agree within a factor of 2-6. CC-diagrams and SED analysis of young stellar objects confirmed the presence of intermediate and low mass YSOs in the dust regions, indicating that moderate star formation is present. In particular, a cluster of IR sources was identified inside the Southern clump.

The IRAC image at 8 m revealed the existence of an infrared dust bubble of 16″ in radius probably linked to the O-type star HD 117797 located at 4 kpc. The distribution of the near and mid infrared emission indicate that warm dust is associated with the bubble.


1 Introduction

It is well established that objects at the first stages of star formation are inmersed in dust and cold dense gas from their natal cloud. Dense molecular material can be found in the expanding envelopes surrounding Hii regions and stellar wind bubbles (SWB) (Zavagno et al. 2005, and references therein). Thus, the dense gas shells that encircle these structures are potential sites for the formation of new stars. In fact, many studies have shown the presence of active areas of star formation in the environs of these structures (e.g. Deharveng et al. 2010; Zhang & Wang 2012).

Two physical processes have been proposed for the onset of star formation in the outer dense shells of these expanding structures: the collect and collapse and the radiatively driven implossion (RDI) mechanisms. In the collect and collapse model the dense shell originated in the expansion of the ionized region becomes unstable and fragments, leading to the formation of massive stars (Elmegreen & Lada 1977), while the RDI process involves the compression of pre-existent overdensities in the molecular gas due to the expansion of the ionized region, leading to the formation of low and intermediate mass stars (Sandford et al. 1982; Lefloch & Lazareff 1994).

Observational evidence of these star forming processes includes the existence of dense and neutral gas layers surrounding the ionized regions and the presence of high density clumps. Protostars are enshrouded in dense and cold molecular clumps and dust cocoons present in the envelopes, in regions characterized by high extinction (Deharveng et al. 2008a). Optically thin sub-millimeter continuum emission from dust allows dust emission peaks associated with the dense molecular clumps to be found. In this context, kinematical information of the molecular gas linked to the dust clumps can help to confirm the association of the dust cocoons with the dense molecular layer surrounding SWBs. CO is an optically thin tracer that can reveal areas of high molecular gas column density and allows to study the kinematics of the molecular clumps, although it may fail to probe the densest molecular cores because it freezes onto dust grains at high densities (Massi et al. 2007).

Figure 1: Upper panel: DSS-R image of RCW 78. The cross marks the position of the WR star. The box encloses the two star forming regions analyzed in this paper. Bottom panel: The two star forming regions at 60 m (IRAS data). The grayscale goes from 200 to 500 MJy sr, and the contour lines are from 240 to 300 MJy sr in steps of 20 MJy sr, and from 350 to 500 MJy sr in steps of 50 MJy sr. Regions B and C are indicated. The different symbols mark the location of candidate YSOs identified in Sect. 6: IRAS (star), CHII (triangle), 2MASS sources (crosses), and Spitzer sources (filled circles).

Our targets in this study are two star forming regions probably located in the expanding envelope of the ring nebula RCW 78 (Cappa et al. 2009, from hereon CRMR09). To shed some light on its star-formation capabilities, we have investigated the presence of dust clumps coincident with star forming regions in the molecular layer that surrounds the bubble.

Figure 2: 870 m continuum emission map obtained with LABOCA. The grayscale goes from -10 to 250 mJy beam. Contour levels correspond to 25, 50, 75, 100, 200, and 300 mJy beam. Regions B and C are indicated.

To unveil the presence of molecular and cold dust clumps coincident with these star forming regions, we performed CO(2-1) line and sub-millimeter dust continuum observations using the Atacama Pathfinder Experiment telescope (APEX)111APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory., located at Llano de Chajnantor, in the north of Chile. The distribution of cold dust was also investigated using Herschel222Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. images. The dust continuum observations will allow the identification of dust clumps linked to the star forming regions, while molecular line data provide kinematical information useful to confirm the association of the dense clumps with the neutral layer around the bubble, as well as to estimate masses and densities.

2 RCW 78 and the two star forming regions

RCW 78 is a ring nebula of about 35′ in diameter related to the Wolf-Rayet star HD 117688 (= WR 55 = MR 49). The optically brightest part of RCW 78 is about 10′6′ in size and offset to the northwest of the star, while fainter regions are present to the northeast, east, and south (e.g. Chu & Treffers 1981, CRMR09). The upper panel of Fig. 1 shows the optical image of the nebula.

Chu & Treffers (1981) found that the velocity of the ionized gas towards the brightest section of RCW 78 is in the range –53 to –38 km s. Georgelin et al. (1988) identify H emission at –41.4 km s, compatible with Chu & Treffers’s results, and extended diffuse emission at –22 km s, most probably unrelated to RCW 78. Circular galactic rotation models (e.g. Brand & Blitz 1993) predict that gas having velocities between –53 to –38 km s lies at kinematical distances of 3.5-7.0 kpc. Taking into account the -value for WR 55 from the 2MASS catalogue (Cutri et al. 2003), an absolute magnitude = –5.92 mag for WN7-9 (Crowther et al. 2006), and interstellar extinction values from Marshall et al. (2006), a distance in the range 4.5-5.0 kpc can be derived for the WR star, compatible with the kinematical distance of the ionized gas. Following CRMR09, we adopt a distance = 5.01.0 kpc.

CRMR09 presented a study of the molecular gas associated with the ring nebula RCW 78 with the aim of analyzing its distribution and investigating its energetics. The study was based on CO(1-0) and CO(2-1) observations of the brightest section of the nebula, carried out with the SEST telescope, and on complementary CO(1-0) data of a larger area obtained with the NANTEN telescope with an angular resolution of 27.

These authors reported the detection of molecular gas having velocities in the range –56 to –33 km s mainly associated with the western bright region of RCW 78, as well as an Hi envelope of the molecular gas, which is described in the same paper. The bulk of the molecular emission appears concentrated in two structures having velocities in the range –52.5 to –43.5 km s and from –43.5 km sto –39.5 km s. Gas in the former velocity range is clearly linked to the western section of the nebula. CRMR09 believe that material in the second velocity interval, which partially coincides with the dust lane present at R.A.(J2000) = –62 22, is also associated with RCW 78 based on the presence of H emission probably belonging to the nebula at these velocities (cf. Chu & Treffers 1981). This material may be connected to the receding part of an expanding shell linked to the nebula. Finally, material in the range –39 to –33 km s was only identified in a small region towards the brightest part of RCW 78, using SEST data.

Later on, Duronea et al. (2012) (from hereon DAT12) performed a study of the molecular gas linked to the western and brightest section of the nebula. They based their analysis on NANTEN data having higher velocity resolution than CRMR09 and found molecular material linked to the western part of the nebula with velocities in the range –54 to –46 km s conforming an expanding ring-like structure whose inner face is being ionized by the WR star.

A search for candidate young stellar objects (YSOs) performed by CRMR09 using the IRAS, MSX, and Spitzer point source catalogues, resulted in the detection of a number of candidates in two particular areas, suggesting the existence of two star forming regions (named regions B and C in CRMR09, and showed in the bottom panel of Fig. 1). These two areas coincide with molecular gas belonging to the neutral gas envelope detected around RCW 78, and then, the possibility that the expansion of the bubble has triggered star formation activity in the dense expanding envelope can not be discarded.

The star forming regions are centered at RA, Dec.(J2000) = (133415, –62 26) (named Region B in CRMR09) and at RA, Dec.(J2000) = (133505, –62°25′30″) (Region C). Both regions are strong emitters at 60 m, as can be seen in the bottom panel of Fig. 1. The O8Ib(f) star HD  117797 (RA, Dec.(J2000) = (133411.98, –62 25 18) (Walborn 1982), located at 4 kpc appears projected onto Region B, which also coincides with the open cluster of A- and F-type stars C1331-622 placed at 820 pc (Turner & Forbes 2005). Region C was previously catalogued as a star forming region by Avedisova (2002).

3 Observations

3.1 Continuum dust observations

3.1.1 LABOCA image

To accomplish this project we mapped the sub-millimeter emission at 870 m (345 GHz) in a field of 8′8′ in size centered at RA, Dec.(J2000) = (133430, –62°26′) with an angular resolution of 192 (HPBW), using the Large Apex Bolometer Camera (LABOCA) (Siringo et al. 2009) at 870 m (345 GHz) operating with 295 pixels at the APEX 12-m sub-millimeter telescope.

The field was observed during 1.9 hr in December 2009. The atmospheric opacity was measured every 1 hr with skydips. Atmospheric conditions were very good ( 0.25). Focus was optimized on Mars once during observations. Mars was used as primary calibrator, while the secondary calibrator was IRAS13134–6264. The absolute calibration uncertainty is estimated to be 10%,

Data reduction was performed using CRUSH software333 sharc/crush/index.html. The continuum emission map obtained with LABOCA is shown in Fig. 2. The noise level is in the range 10-15 mJy beam. Emission corresponding to Regions B and C is indicated. Signal to noise for Region B is = 10, with the higher value corresponding to the bright southern condensation. For Region C, = 40 at the peak position.

3.1.2 Herschel images

The far-infrared (FIR) images from Herschel Space Observatory were also used to trace cold dust emission. We use archival data at 70 and 160 m taken with the Photodetector Array Camera and Spectrometer (PACS; Poglitsch et al. 2010) and data at 250, 350, and 500 m obtained with the Spectral and Photometric Imaging REceiver (SPIRE; Griffin et al. 2010) observed by Herschel for the Hi-GAL key program (Hi-GAL:Herschel Infrared GALactic plane survey, Molinari et al. 2010, OBSIDs: 1342203055 and 1342203086). Both Herschel imaging cameras were used in parallel mode at 60 arsec/s satellite scanning speed with the purpose to obtain simultaneous 5-band coverege 2°2° field. The field we use is approximately centered at [l,b] = [–59°,0°].

Figure 3: Dust emission at 870 m corresponding to Regions B and C. Upper left panel: Dust emission for the Filament and the Southern clump (Region B) in contours and grey scale. The image is smoothed to 25″. The greyscale goes from 10 to 150 mJy beam, and the contours correspond to 20 to 100 mJy beam in steps of 20 mJy beam. The position of candidate YSOs is indicated: 2MASS sources (crosses) and Spitzer sources (filled circles) (see Sect. 6). The position of the IRAS source is indicated by a star. Upper right panel: Overlay of the IRAC emission at 8 m in grayscale and the 870 m image in contours. The grayscale goes from 28 to 50 MJy ster. Bottom left panel: Dust emission for Clumps 1 and 2 (Region C) in contours and grey scale. The image is smoothed to 25″. The greyscale goes from 10 to 500 mJy beam, and contours correspond to 40 to 200 mJy beam in steps of 40 mJy beam, and 300 and 400 mJy beam. Bottom right panel: Overlay of the IRAC emission at 8 m in grayscale and the 870 m image in contours. The grayscale goes from 28 to 50 MJy ster. The different symbols have the same meaning as in the upper panels. The position of the candidate CHII region is marked by a triangle.

Data reduction from archival data from Level 2 stage for PACS and SPIRE maps was carried out using the Herschel interactive processing environment (HIPE v10, Ott & Herschel Science Ground Segment Consortium 2010) using the reduction scripts from standard processing. We made a non-oversampled mosaic for PACS images and used a map merging script to merge two observations, one for each scan direction, performed in SPIRE parallel mode to produce a single map. To reconstruct the three SPIRE maps, we run destriper gain corrections (HIPE v10, updated version by Schulz 2012) using the updated Level 1 SPIRE data.

To convert intensities from monochromatic values of point sources to monochromatic values of extended sources, assuming that an extended source has a spectral index alpha = 4 (2 for the blackbody emission plus 2 for the opacity of the dust), the obtained fluxes of each source were multiplied by 0.98755, 0.98741 and 0.96787 for 250, 350 and 500 m, respectively.

The angular resolutions at 70, 160, 250, 350 and 500 m are 85, 135, 18″, 25″, and 36″, respectively.

3.2 Molecular observations

The molecular gas distribution in the area of Region B was investigated by performing CO(2-1) line observations (at 220.398677 GHz) of a region of 3282 during December 2009, with the APEX telescope using the APEX-1 receiver, whose system temperature is = 150 K.

The half-power beam-width of the telescope is 285. The data were acquired with a FFT spectrometer, consisting of 4096 channels, with a total bandwidth of 1000 km s and a velocity resolution of 0.33 km s. The map was observed in the position switching mode. The off-source position free of CO emission is located at RA, Dec.(J2000) = (133310.3, –62°2′41″).

Calibration was performed using Mars and X-TrA sources. Pointing was done twice during observations using X-TrA, o-Ceti and VY-CMa. The intensity calibration has an uncertainty of 10%.

The integration time per point was 14 sec. The observed line intensities are expressed as main-beam brightness-temperatures , by dividing the antenna temperature by the main-beam efficiency , equal to 0.75 for APEX-1.

The spectra were reduced using the CLASS software (GILDAS working group)444 A linear baseline fitting was applied to the data. The typical rms noise temperature was 0.1 K (). AIPS and CLASS software were used to perform the analysis.

3.3 Complementary data

The millimeter and sub-millimeter data were complemented with infrared data retrieved from the Midcourse Space Experiment (MSX) (Price et al. 2001), Spitzer images at 3.6, 4.5, 5.8, and 8.0 m from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) (Benjamin et al. 2003), and images at 24 m from the MIPS Inner Galactic Plane Survey (MIPSGAL) (Carey et al. 2005).

Additional images of the Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010) satellite at 3.4, 4.6, 12.0, and 22.0 m with angular resolutions of 61, 64, 65, and 120 in the four bands were retrieved from IPAC555 Also, an image at 1.4 GHz from the Southern Galactic Plane Survey (SGPS) published by DAT12 was used. The image has an angular resolution of 17 and an rms sensitivity below 1 mJy beam (Haverkorn et al. 2006).

Figure 4: Upper left panel. Composite image showing the IRAC emission of Region B at 4.5 m (in blue), 5.8 m (in green), 24 m (in red), and 870 m (white contours). Contour levels correspond to 20, 40, 60, 80, and 120 mJy beam. Upper right panel. Composite image showing the Herschel emission of Region B at 160 m (in green) and 350 m (in red), and the same contour levels of the image on the left. Bottom left panel. Composite image showing the IRAC emission of Region C at 4.5 m (in blue), 5.8 m (in green), 24 m (in red), and 870 m (in white contours). Contour levels correspond to 20, 40, 80, 120, 160, 200, 300, and 400 mJy beam. Bottom right panel. Composite image showing the Herschel emission of Region C at 160 m (in green) and 350 m (in blue), and the same contour levels of the image on the left.
Figure 5: CO profile obtained by averaging the observed spectra in a region of 2535 centered at RA, Dec.(J2000) = (133415, –62°25′45″). This region includes the Filament and the Southern clump. Intensity is expressed as main-beam brightness-temperature.

4 The distribution of the cold dust and molecular gas

4.1 Cold dust distribution

4.1.1 Region B

The upper panels of Fig. 3 display the emission at 870 m in contours and grayscale for Region B (left panel), and an overlay of the cold dust emission in contours and the IRAC emission at 8 m (right panel). The continuum at 870 m mainly originates in thermal emission from cold dust, while the emission at 8 m is attributed to polycyclic aromatic hidrocarbons (PAHs) excited by UV photons.

The emission at 870 m consists of a filamentary structure elongated along the N-S direction (from hereon the “Filament”), which ends to the south with a prominent bright condensation (from hereon named “Southern clump”).

The Southern clump, centered at RA, Dec.(J2000) = (133410.6, –62°27′), is 25″ in radius (0.60 pc at 5.0 kpc) and coincides with the brightest area at 8 m. In Fig. 4 (left panel), we display the same LABOCA contours of Fig. 3 superimposed onto a composite image of the IRAC emissions at 4.5 m (in red), 5.8 m (in green), and 24 m (in blue). The emission at 5.8 and 8 m are coincident. A number of point-like sources can be identified within this clump at 4.5 m, which are described in Sect. 6. Finally, emission linked to the clump is also detected at 24 m, coincident with the sources at 4.5 m. The right panel of Fig. 4 shows the emissions at 160 (in red) and 350 m (in green) m. The image shows the excellent spatial correlation between the Herschel and LABOCA emissions. The clump is brighter at 160 m than at 350 m. The emissions at 250 and 350 m are similar.

The analysis of the IRAS point source catalogue, which has an angular resolution of 02 to 2′, allowed the identification of the source IRAS13307-6211 (candidate to YSO/Class 0) as the counterpart at 60 and 100 m of the Southern clump. The fluxes and coordinates of this IRAS source are included in Table 1 (see below). The position of the IRAS source is indicated in Fig. 3 with a star.

The radio continuum emission distribution at 1.4 GHz shows an extended source (R 17) centered at RA, Dec.(J2000) = (13347.5, –62°26′15″) slightly to the north of the Southern clump and to the west of the Filament, named CF1 by DAT12. In spite of the low angular resolution of the radio continuum data (100″) in comparison with the new IR data, the location of the source suggests that it may be related to the IR bubble described in Sect. 5, as stated by DAT12. However, the extension of the radio source towards the south suggests a contribution from the Southern clump.

At 870 m, the Filament is about 45 in length (6.5 pc at 5 kpc), while its width, as meassured at 2-level emission varies between 20″ and 35″ (0.5 and 0.8 pc, respectively), being wider in the middle region. Several relatively faint maxima can be identified by eye in the Filament. They are centered at RA, Dec.(J2000) = (133416, –62°26′40″) (at 6-level emission) and RA, Dec.(J2000) = (133416, –62°25′15″) (at 4-level emission). These fainter emission regions do not have a clear counterpart at 8 m. Indeed, no emission is present either at 4.5 and 5.8 m or at 24 m (Fig. 4), suggesting that excitation sources lack in the filament. The strong emission region at 24 m centered at RA, Dec.(J2000) = (133412, –62°25′) is analyzed in Sect. 5 in connection to the small IR bubble.

As regards the Herschel emission, the right panel of Fig. 4 shows that the emission at 160 m has a remarkable resemblance with the southern section of this Filament (Dec.(J2000) –62°24′), while emission at 350 m is detected all over the Filament. At this last wavelength, the Filament extends further to the north than our LABOCA observations. There is a very good correlation with the LABOCA emission, although the Herschel emission is more extended in size.

At Dec.(J2000) –62°22′20″, the emission at 8 m is particularly low. In fact, Peretto & Fuller (2009) identified an infrared dark cloud (IRDC) at RA, Dec.(J2000) = (133416.04, –62°22′52.2″), less than 10″ in size, coincident with a relatively bright section of the Filament at 870 m.

Figure 6: Overlay of the integrated emission of the CO(2-1) line within selected velocity intervals (indicated in the upper part of each panel) in contours and the LABOCA image at 870 m in greyscale. Panel a.: Contour lines are from 0.5 to 3.5 K km s in steps of 0.5 K km s. Panel b.: Contours are from 1.5 to 12.0 K km s in steps of 1.5 K km s, and 14.0 K km s. Panel c.: Contours are from 0.5 to 3.5 K km s in steps of 0.5 K km s. Panel d.: Overlay of the CO contours of panel b) and the IRAC 8 m emission (in grayscale). Panel e.: CO spectrum towards the brightest region of the Southern clump.

4.1.2 Region C

The emission at 870 m corresponding to Region C is displayed in the bottom panels of Fig. 3. The left panel shows this emission in contours and grayscale, while the right panel displays an overlay of the images at 870 and 8 m. The image reveals two dust clumps. The brightest one is about 2310 in size (3.31.5 pc at 5 kpc) (from hereon named Clump 1), while the smaller one is 10 07 in size (1.51.0 pc) (from hereon Clump 2).

The brightest section of Clump 1 coincides with strong emission at 8 m centered at RA, Dec.(J2000) = (13354.1, –62°25′45″) (Fig. 3, right panel), with a bright source detected at 24 and 5.8 m, and with a point-like source at 4.5 m and 3.6 m (Fig. 4, left panel). At 8 and 5.8 m, the emission most probably originates in PAHs. Clearly, the emission at 24 m suggests the presence of warm dust and an excitation source in the center of Clump 1. The MSX source G307.9563+00.0163, classified as CHII (see Table 1) is projected onto the center of Clump 1 (whose position is marked by a triangle).

Fig. 4 (right panel) shows an overlay of the Herschel emission at 160 and 350 m and the emission at 870 m (in contours). The correlation between Herschel and LABOCA emissions is excellent.

Clump 1 coincides with a radio continuum source detected at 1.4 GHz, centered at RA, Dec.(J2000) = (13353, –62°25′38″) indicating the presence of ionized gas. The presence of radio continuum emission implies that a source of UV photons has created a compact Hii region in the inner part of this clump.

A second and fainter source is detected at 8 m at RA, Dec.(J2000) = (13350.7, –62°25′385), close to the border of the 870 m bright region. This source has counterparts at 3.6, 4.5, and 5.8 m. As regards Clump 2, it is detected at both 160 and 350 m. On the contrary, the emission is very faint in the mid IR at 5.8 and 8 m. This small region displays weak radio continuum emission at 1.4 GHz.

4.2 The molecular gas

To illustrate the molecular gas components towards the Filament and the Southern clump, we show the CO(2-1) spectrum averaged in a region of 2535 centered at RA, Dec.(J2000) = (133415, –62°25′45″) in Fig. 5. At least four velocity components are detected in the line of sight.

The bulk of the molecular emission peaks at –53 km s, while fainter gas components are detected at –63 and –37 km s. All velocities in this paper are referred to the LSR. The molecular component at –37 km sdisplays a double peak structure, while some small scale structure is depicted by the component at –63 km s. Molecular gas at –8 km s can be barely identified. Finally, molecular emission was detected at +20 km s. Molecular gas at –53 and –37 km s was found to be linked to RCW 78 by CRMR09. As pointed out before, based on morphological arguments, molecular gas at –53 km s is clearly linked to RCW 78, while the association of the component at –37 km smight be uncertain according to DAT12.

To investigate the spatial distribution of the molecular gas in the line of sight to the Filament and the Southern clump, we analyzed the CO datacube. Fig. 6 displays an overlay of the integrated emission (= in selected velocity intervals and the LABOCA 870 m emission for comparison.

The emission in the range –64.8 to –62.1 km s, which is displayed in panel a), is unconnected to the continuum emission detected at 870 m.

Panel b) shows gas with velocities in the range –55.1 to –51.5 km s. An overlay of the molecular emission in contours and the dust emission obtained with LABOCA reveals the excellent correlation between the molecular gas at these velocities and the dust emission, with the brightest CO emission region coincident with the Southern clump and its counterpart detected at 8 m (panel d). The CO individual channel maps show that the peak CO emission coincident with the Southern clump is detected in the range –55.1 to –51.5 km s, while emission having velocities v –52 km s is detected north of –62°24′, coincident with the northern section of the Filament. The CO spectrum (panel e) was obtained towards the center of the Southern clump and shows that this velocity component is quite narrow ( 1.3 km s). The molecular filament, which coincides with the Filament detected at 870 m, can be identified in Fig. 5 by CRMR09 (see the panel for the velocity interval between –56.5 to –53.5 km s) and in Fig. 4 by DAT12, where it is more apparent.

The molecular gas showed in panel c) (velocity interval from –38.9 to –35.9 km s) partially coincides with the Filament and may be also linked to the nebula. However, molecular gas at these velocities is absent in the profile obtained in the line of sight to the southern clump.

To sum up, our analysis confirms the presence of molecular gas in the range –55.1 to –51.5 km s clearly associated with Region B, while the association of molecular gas in the interval –38.9 to –35.9 km s remains to be confirmed.

The molecular gas at v +20 km s is concentrated towards RA, Dec.(J2000) = (133412, –62°25′) and will be discussed in Sect. 5.

As regards Region C, NANTEN data shows that this region coincides with molecular gas in the range –43.5 to –39.5 km s (see CRMR09 and DAT12). The connection of this region to the nebula is an open question since it is not clear presently that material at these velocities is linked to the nebula.

Figure 7: Left panel: spectrum at the center of the molecular gas at +20 km s (RA, Dec.(J2000) = (133417.2, –62°25′)). Intensity is expressed as main-beam brightness-temperatures. Middle panel: Overlay of the integrated emission of the CO(2-1) line within the velocity interval from +19.5 to +21.5 km s and the emission at 8 m from IRAC. Contours are 0.5 to 4.0 K km s in steps of 0.6 K km s. Right panel: Overlay of the integrated emission in the velocity interval from -37.7 to -37.0 km s and the emission at 8 m. Contours are 0.39, 0.46, 1.3, 2.0, and 2.6 K km s.

5 The small IR bubble

An inspection of the IRAC image at 8 m reveals a striking ring of about 16″ in radius centered at RA, Dec.(J2000) = (133412, –62°25′). The structure resembles some of the IR dust bubbles identified by Churchwell et al. (2006) at 8 m and Mizuno et al. (2010) at 24 m. The WISE images at 12 and 22 m show an extended source coincident with the IR bubble. A close inspection of the brightest part of this source reveals a faint ring coincident with the bubble, which is also identified at 24 m (DAT12) and in the Herschel image at 70 m. The image at 12 m includes the emission from prominent PAH features. Emission at 22 m (WISE) and 24 m (MIPSGAL) indicate the presence of warm dust (Wright et al. 2010). The MSX point source G307.8603+00.0439, listed in Table 1 of CRMR09 as a candidate CHII region is resolved as the IR bubble in the IRAC-8 m image (note that the angular resolution of the IRAC image is 9 times better than that of the MSX image).

In Fig. 7 we display a CO spectrum obtained slightly to the east of the IR bubble at RA, Dec.(J2000) = (133417.2, –62°25′), showing three intense velocity components. The emission near –53 km s corresponds to the molecular gas linked to the Filament and is unconnected to the IR bubble. The emission distribution at +20 and –37 km s is displayed in the central and bottom panels of the figure in contours, with the emission at 8 m in grayscale for comparison.

The bulk of the molecular emission in the range from +19.5 to +21.5 km s appears projected onto the small IR bubble, while weak emission is also present in the line of sight to the Southern clump. The circular galactic rotation model by Brand & Blitz (1993) predicts that gas at these velocities should be located outside the solar circle at distances of 11 kpc. An analysis of the spatial distribution of the Hi gas emission at positive velocities using the Southern Galactic Plane Survey (McClure-Griffiths et al. 2005) and that of the molecular gas based on the CO(1-0) line observations of the NANTEN telescope, reveals the existence of neutral atomic and molecular gas at large scale in the line of sight at v +20 km s (CRMR09).

The bottom panel exhibits the emission of the molecular gas having velocities in interval –37.7 to –37.0 km s. The image shows that the CO contours delineate the eastern borders of the IR bubble, suggesting that the nebula is interacting with the molecular material. The existence of molecular emission partially surrounding the IR bubble is compatible with the presence of PAHs emission, which suggests that a photodissociation region (PDR) developed in the borders of the molecular cloud. These facts, along with the existence of warm dust, suggest that an excitation source should be powering the bubble.

HD 117797 (O8Ib[f], Maíz-Apellániz et al. 2004), appears projected in the center of the IR bubble. Taking into account an absolute magnitude = –6.2 mag (Lang 1991) and an absorption = 2.4 mag derived from photometric data in the GOS catalog (Maíz-Apellániz et al. 2004), a distance of 4.0 kpc can be estimated. Since HD 117797 is the only massive star catalogued in this area, as a working hypothesis, we propose that HD 117797 is the exciting star of the IR bubble, placing it at 4 kpc. We believe that the O8Ib(f) star has created the bubble through the action of its stellar wind and UV photons.

The IR bubble resembles the rings identified by Mizuno et al. (2010) at 24 m, shearing some characteristics with them, in particular its size and its correlation with emission at 8 m. According to these authors, a large fraction of these rings would be planetary nebulae. However, the presence of the O8Ib(f) star in the center of the IR structure puts aside a planetary nebula interpretation.

The MSX source G307.8561+00.0463, at RA, Dec.(J2000) = (133410.2, –62°25′), classified as MYSO following (Lumsden et al. 2002; see CRMR09) appears projected onto the ring detected at 8 m. This source has a counterpart at 24 m. Since this source probably shows emission from warm dust in the bubble, it is not included in Table 1.

The MSX source G307.8620+00.0399 listed in table 1 from CRMR09 turned out to be a false detection.

Higher sensitivity and angular resolution molecular and radio continuum data are necessary to properly investigate if molecular gas is linked to the nebula and to reveal if ionized gas is present.

6 Identification of YSOs

As pointed out in Sect. 1, a search for candidate YSOs in the environs of Regions B and C was performed by CRMR09 using the IRAS, MSX, and Spitzer point source catalogues. The result of the search in the IRAS and MSX catalogues is included in Table 1.

To search for YSO candidates with better spatial resolution than IRAS and MSX, we used 2MASS sources having good photometric quality (), in the (H-K, J-H)-diagram in a region of 8′8′ centered at RA, Dec.(J2000) = (133433.75, –62°25′34″). We have found 32 candidates YSOs. Nine out of 32 candidate YSOs spatially coincide with regions emitting at 870 m. Their coordinates, names and J-, H-, and K-magnitudes and MIR-information from Spitzer appear in the middle part of Table 1. Only three sources have been detected in all IRAC bands (#5, #7, and #11). The upper panel of Fig. 10 shows the 2MASS CC-diagram with the candidate YSOs represented by blue squares. In spite of the small infrared excess of the sources, their location in the diagram is suggestive of being low mass young stellar objects.

Regarding the Spitzer database, we have performed a new search for candidates YSOs taking into account sources detected in the four IRAC bands following Allen et al. (2004) and Hartmann et al. (2005), which allows to discriminate IR sources according to a Class scheme: Class I are protostars surrounded by dusty infalling envelopes, Class II are objects whose emission is dominated by accretion disks, Class III are sources with an optically thin or no disk. An analysis of the nature of the Spitzer sources in the same region defined for the 2MASS sources revealed that 29 of 944 IR sources can be classified as candidate YSOs.

The bottom panel of Fig. 10 shows the position of the 29 Spitzer sources in the diagram [3.6]-[4.5] vs. [5.8]-[8.0]. These 29 sources are indicated by grey crosses. Note that because of the revision and reclassification of the candidates listed in CRMR09, the candidate YSOs identified from the Spitzer point source catalog listed in Table 1 of this paper differs from the ones published in CRMR09, which were mistakenly identified.

Twelve out of these 29 sources coincide with regions emitting at 870 m. Their IR photometry information is summarized in the bottom part of Table 1. Most of these sources have a counterpart in the 2MASS database. Four out of these 12 sources are represented by bare triangles superimpossed onto the crosses in the bottom panel of Fig. 10. They correspond to candidate YSOs without a 2MASS counterpart (#12, #13, #17, and #22), while filled triangles indicate sources with only K and H and K magnitudes (#14 and #20). All but one (#22) lie in the overlapping region between low-luminosity Class I sources and Class II sources (#12, #13, #17, and #20). The other six sources (indicated by asterisks) lie in the limit region between Class II and III sources in the [3.6]-[4.5] vs. [5.8]-[8.0] diagram, which is highly contaminated by evolved stars. Source #15 has the largest reddenned [5.8]-[8]-color in the sample.

The 2MASS CC diagram of the upper panel of Fig.  10 indicates that Spitzer sources #16, #18, #21, and #23 (represented by red asterisks) are candidates to giant stars. The other two Spitzer sources with 2MASS counterparts (#15 and #19) are situated in the ”main sequence star” domain (represented by green filled squares in the upper panel). Note that reddenned main sequence stars and highly obscured YSOs can coincide in the locus of the 2MASS diagram (Robitaille et al. 2006, see Section Spitzer colors corresponding to source #15 are typical of photodissociation regions (PDR), suggesting its association with molecular gas.

2MASS candidate YSOs with Spitzer colors lie in the region occupied by foreground and background stars, as well as class Class III stars. They are indicated by bare rectangles in the right panel of Fig. 10. Sources without measurements at 5.8 and 8 m are not included.

Finally, a close inspection of the the IRAC images at 3.6 and 4.5 m reveals a cluster of IR sources coincident with the Southern clump. Fig. 8 shows a composite image with the emissions at 3.6 m in red, at 4.5 m in green, and at 5.8 m in blue, with the sources in the cluster. These sources have counterparts in the 2MASS catalogue and are listed in Table 2, which shows their positions, names, and 2MASS fluxes. The analysis of the 2MASS data allows the identification of one YSO (source #3 en Table 1 [=#3 in Table 2]), one giant star and some main sequence stars. On the other hand, the Spitzer catalog lists 41 sources projected onto the Southern clump. Only five of them have measurements in the four bands and can not be classified as YSOs. Measured fluxes with HIPE at 3.6 and 4.5 m for the 2MASS sources are indicated in cols. 8 and 9 of Table 2. Sources #3 and #8 of Table 2 coincide with point-like emission at 24 m, with fluxes of 340 and 48 mJy, respectively. These measurements are compatible with an YSO nature of source #3.

Figure 8: Composite image of the cluster within the Southern clump showing the IRAC emission at 3.6 (in blue), 4.5 (in green) and 5.8 m (in red). North is up and east to the left. The size of the image is 82″ in R.A. and 75″ in Dec. Data for the different sources are included in Table 2.

6.1 Characteristics of the YSOs based on their SEDs

To complete the photometric analysis, we inspected the spectral energy distribution (SED) of the 2MASS and Spitzer sources. We used the online666 tool developed by Robitaille et al. (2007), which can help to discriminate between evolved stars and reliable candidate YSOs. This tool fits radiation transfer models to observational data according to a minimization algorithm. We choose the models that accomplished the following condition:


where is the minimum value of the among all models, and is the number of input data fluxes.

To perform the fittings we used the photometric data listed in Table 1 along with visual extinction values in the range 5-12 mag (derived from the 2MASS CC-diagram), and distances in the range from 4.0 to 6.0 kpc. No observational data longwards than 10 m are available for these sources (e.g. MSX, Herschel), except for source #7, #19, and #22. The available optical flux for source #7 was obtained by averaging BVR data from the USNO B-1.0 catalog (Zacharias et al. 2004) and the NOMAD catalog (Monet et al. 2003).

Results of the analysis applied to the candidate YSOs are summarized in Table 3. Column 1 gives the number of the source according to Table 1; column 2, the value of for the best fitting, /; column 3, the number of input data fluxes used in the fitting, ; column 4, the number of models that satisfies eq. (1), N; column 5, the mass of the central source, ; column 6, the mass of the disk, ; column 7, the envelope and ambient density mass, ; column 8, the infall rate, ; column 9 gives the total luminosity, ; columns 10 and 11, the classification according to Allen et al. (2004) and Robitaille et al. (2007), respectively; and column 12, the age of the central object.

The information in Column 10 is an estimate of the evolutionary stage of the objects based on their physical properties. Based on ratios of these parameters, the sources can be separated in three categories, including from objects with significant infalling envelopes and possibly disks (Stage 0/I) to objects with optically thin disks (Stage III). The stages are defined by these cutouts: sources which have /M yr indicate Stage 0/I, /M yr and / correspond to Stage II, and, finally, /M yr and / for Stage III.

Fittings of sources #14 and #16 are consistent with Stage I. They have and the largest mass envelopes, indicating that they could be young objects inmersed in prominent envelopes.

Candidate main sequence stars are fitted by Stage III models. For the case of source #15, the models suggest that the object is an intermediate mass star (3–5 ). However, its position in the 2MASS CC-diagram casts doubts on this interpretation. The SED of #19 would correspond to a massive star (8 ) with an optically thick disk and an infalling envelope with undetected accretion.

The results of the fittings should be taken with caution, since the fitting tool has some limitations. As demostrated by Deharveng et al. (2012) and Offner et al. (2012) (see also Robitaille 2008), the inferred disk and envelope properties as well as the evolutionary status vary with the viewing angle, the gas morphology, the dust characteristics, and the multiplicity of the sources.

Figure 9: SED of the 2MASS source #7. Input data are indicated by filled circles. The triangle indicates an upper limit at 22 m (from WISE). The black line corresponds to the best fitting. The fittings which obey Eq. 1 appear indicated by gray lines. The dashed lines show the emission of the stellar photosphere including foreground interstellar extinction. Fittings for source #7 indicates a Stage III object, being the oldest source in the sample.

Finally, the fitting of a Kurucz photospheric model gives an additional way to evaluate the nature of sources with NIR colors corresponding to giants in the (H-K, J-H) diagram, which lie in the limit of the Class II-III region. The SED of the sources #18, #21, and #23 can be fitted by a photospheric model with an effective temperature of 5000 K, indicating that they are evolved stars. Consequently, they can be discarded as candidate YSOs and are not included in Table 3.

The whole sample show colors [3.6]-[4.5] 1.1, in agreement with moderate or low values of . This behavior is related to the accretion rate since the redder the source in [3.6]-[4.5] color, the higher the (Allen et al. 2004).

We applied the SED analysis to the 2MASS candidate YSOs. We were able to discern the evolutionary stage of source #7 only, for which we used fluxes from USNO, NOMAD, 2MASS, Spitzer and WISE databases. The fitting suggests that this would be the oldest source with an age of 710 yr. The derived SED is shown in Fig. 9.

To summ up, we have not found massive objects in our sample. Source #16 is consistent with Stages I/II, while #7 and #15 seem to be objects in Stage III with ages larger than 10 yrs.

6.2 Spatial distribution

The position of the YSOs listed in Table 1 is indicated in the bottom panel of Fig. 1 and in Fig. 3. The star and triangle mark the location of the IRAS source and the compact Hii region (CHII), respectively. The IRAS and MSX sources can not be considered as point-like sources. Circles and crosses correspond to Spitzer and 2MASS point sources, respectively.

The IR cluster, which includes source #3 from Table 1, coincide with the Southern clump, which is clearly a star forming region.

A number of sources appear projected onto the filament. Among these sources, source #15 may show the presence of molecular gas connected to it. The spatial coincidence of this source with both gas emission at –37 and +20 km s precludes from identifying the associated gas, if any. Finally, Spitzer sources #13 and #14 and the 2MASS sources #6, #7 and, #8 are projected onto the northern extreme of the Filament.

Source #8 is placed near the infrared dark cloud IRDC 307.873+0.079 (Wilcock et al. 2012). This IRDC has a major axis of 9″ in size and was detected at 250 m. Wilcock et al. (2012) suggested that it is an Hii region starting to form, however, no counterparts at wavelengths larger than 4.5 m are detected.

As regards Clump 1, the presence of a candidate CHII region and emission at 24 m suggests that there was star formation activity.

IRAS candidate
[] [] IRAS Fluxes[Jy] Classification
name 12 m 25 m 60 m 100 m
1 13 34 11.4 –62 27 03 13307-6211 0.8 2.0 20.5 85.4 YSO/Class 0
MSX candidate
[] [] MSX Fluxes[Jy]
name 8 m 12 m 14 m 21 m Classification
2 13 35 03.6 –62 25 45 G307.9563+00.0163 0.7808 0.7287 0.5542 3.093 CHii
2MASS candidates:
[] [] 2MASS Spitzer Fluxes[mag] Fluxes[mag]
name name
3 13 34 09.79 -62 27 07.2 13340978-6227072 14.095 13.364 12.872
4 13 34 12.71 –62 21 33.9 13341270-6221339 G307.8702+00.1015 15.059 14.486 14.006 13.726 13.746
5 13 34 16.24 -62 24 50.7 13341623-6224506 G307.8679+00.0464 12.955 12.594 12.232 12.034 11.607 11.518 11.776
6 13 34 16.61 -62 23 58.6 13341660-6223585 G307.8708+00.0605 14.400 13.773 13.291 12.602 12.620 12.076
7 13 34 16.85 -62 23 37.1 13341684-6223370 G307.8724+00.0665 14.788 13.712 12.976 12.313 12.254 12.061 12.331
8 13 34 17.01 -62 23 02.9 13341700-6223028 G307.8744+00.0757 15.716 14.881 14.341 13.99 13.75
9 13 34 51.07 -62 26 25.8 13345107-6226258 G307.9297+00.0093 14.949 14.263 13.771 13.703 13.99
10 13 34 59.61 -62 24 51.3 13345960-6224513 G307.9504+00.0323 14.561 14.14 13.809 13.964 13.55
11 13 35 01.30 -62 26 14.7 13350130-6226147 G307.9498+00.0090 12.844 12.415 12.035 11.43 11.479 11.594 11.698
Spitzer candidates:
[] [] Spitzer 2MASS Fluxes[mag] Fluxes[mag]
name name
12 13 34 10.35 –62 27 24.1 G307.8497+00.0063 13.472 12.733 12.344 11.320
13 13 34 14.14 –62 23 06.7 G307.8687+00.0756 14.070 13.376 12.696 12.109
14 13 34 16.20 –62 22 31.8 G307.8742+00.0845 13341619-6222319 14.534 13.304 12.587 12.458 12.301 11.902
15 13 34 19.25 –62 24 57.8 G307.8733+00.0435 13341932-6224580 14.572 14.081 13.741 12.985 12.739 11.386 9.771
16 13 34 21.51 –62 25 05.6 G307.8772+00.0407 13342151-6225058 14.693 13.133 12.466 12.008 11.968 11.932 11.288
17 13 34 22.47 –62 26 09.9 G307.8761+00.0227 13.621 13.084 12.564 11.757
18 13 34 44.26 –62 25 22.8 G307.9197+00.0286 13344426-6225229 12.565 11.663 11.311 11.172 11.151 11.020 10.635
19 13 34 46.15 –62 26 47.1 G307.9194+00.0049 13344615-6226472 10.933 8.543 7.225 6.596 6.289 5.765 5.346
20 13 34 46.74 –62 25 39.9 G307.9236+00.0232 13344675-6225401 14.204 13.166 12.642 11.946 11.10
21 13 34 49.29 -62 26 08.3 G307.9272+00.0146 13344931-6226084 13.729 12.648 12.194 12.008 11.828 11.964 11.569
22 13 34 56.99 –62 25 43.2 G307.9430+00.0189 13.002 11.925 10.894 10.473
23 13 35 02.93 –62 25 13.6 G307.9556+00.0251 13350291-6225137 14.425 13.030 12.503 12.061 12.019 12.034 11.643
Table 1: Candidate YSOs projected onto Regions B and C.
# [] [] 2MASS Fluxes[mJy](a) Fluxes[mJy] Comment
1 13 34 07.96 -62 27 06.3 13340796-6227062 0.8 0.9 (1.4) 0.3 0.2
2 13 34 08.53 -62 27 10.9 13340853-6227109 (0.2) (0.5) 2.4 1.7 1.2
3 13 34 09.79 -62 27 07.2 13340978-6227072 3.7 4.6 4.7 2.4 2.3 YSO
4 13 34 08.83 -62 26 58.7 13340882-6226586 1.9 5.3 5.9 2.6 1.4 giant
5 13 34 09.80 -62 26 58.4 13340980-6226583 (1.1) (2.8) 1.9 0.7 0.7
6 13 34 09.91 -62 26 50.0 13340991-6226499 (1.6) 2.0 3.9 1.8 1.1
7 13 34 10.01 -62 27 01.9 13341000-6227018 (0.8) (2.4) 3.2 1.6 1.2
8 13 34 10.28 -62 26 54.0 13341028-6226540 5.3 6.7 6.2 2.3 2.5 MS
9 13 34 10.86 -62 27 13.0 13341085-6227130 3.2 3.3 4.3 2.3 1.4
10 13 34 10.86 -62 26 53.8 13341086-6226537 4.3 4.0 3.0 0.6 0.5 MS
777 $1$$1$footnotetext: Values between brackets are uncertain. MS: main sequence star. Source #3 coincides with source #3 in Table 1. The other sources do not have a counterpart in Table 1.
Table 2: Cluster of IR sources within the Southern clump.
for the best fitting Number of input fluxes used in the fitting NNumber of models satisfiyng eq.(1) Mass of the central source Mass of the disk Envelope mass Infall mass rate LTotal luminosity Classification : classification according to Allen et al. (2004); : classification according to Robitaille et al. (2007) AgeAge of the central object.
[M] [M] [M] [M/yr] [L] Class Stage [10 yr]
7 15.75 12 37 4–5 5.5 – 1.5 1.81 –0.005 0 370–580 III III 7
14 1.4 6 23 1 – 7 4.2 – 0.3 0.02 – 43 3.5 10 – 2 18 – 480 II – III I 0.1
15 3.8 7 51 3 – 5 4 – 3 4 – 0.04 0 – 1 130 - 665 II- III III 3
16 0.3 7 28 2 – 8 410 – 0.4 0.02 –16 410 – 510 29 – 566 II I 0.1
19 23 7 1 8 0.015 1.3 0 2500 II-III III 1
888 ; ; ; ; ; ; ; ; ;
Table 3: Main parameters of the SEDs
Figure 10: Upper panel: [H-K, J-H] diagram of the 2MASS and Spitzer candidate YSOs. 2MASS candidate YSOs are indicated by blue squares. 2MASS colors of Spitzer candidates are indicated by asterisks and filled green squares. They are located in the ”giant” and ”main sequence” regions of diagram. The dashed lines show the reddening vectors corresponding to M0 III and B2 V stars. The crosses are placed at intervals of five magnitudes of visual extinction. Bottom panel: Location of candidates YSOs from the Spitzer database. Crosses represent the 29 sources which lie in Class I and II regions. Triangles, asterisks, and filled rectangles correspond to sources projected onto the Filament, the Southern clump and Clumps 1 and 2, respectively. Bare and filled triangles represent candidate YSOs which do not have a 2MASS counterpart or have been detected in one or two filters only, respectively. Spitzer sources with 2MASS colors are indicated by asterisks and filled rectangles. They occupy the ”main sequence” and ”giant” regions in the upper panel. 2MASS sources with Spitzer colors are indicated by bare squares. They lie in the Class III region where main sequence, giants, and pre-main sequence stars overlap.

7 Gas and dust parameters

7.1 Masses from submillimeter data

With the aim of estimating cold dust masses it is necessary to subtract the contribution of different gas phases from the emission at 870 m. Two processes may contribute to the emission at this wavelength in addition to the thermal emission from cold dust: molecular emission from the CO(3-2) line and free-free emission from ionized gas. The continuum emission contribution at 345 GHz due to ionized gas was estimated from the radio continuum image at 5 GHz published by CRMR09, considering that the radio emission at 5 GHz is thermal, using the expression . The contribution from the CO(3-2) line was roughly estimated from our CO data taking into account a ratio C0(3-2)/CO(2-1) = 1.0-1.6 (Myers et al. 1983) and an intensity ratio ) = 4-5 for our Galaxy. The total contribution of both mechanisms is about 10% for the Southern clump and the Filament and less than 5% for Clumps 1 and 2, and consequently, within the flux uncertainties.

Figure 11: SEDs for the Southern Clump (upper panel), the Filament (middle panel), and Clump 1 (bottom panel) obtained using data in the far IR.

Considering that the emission detected at 870 m originates in thermal dust emission, an estimate of the dust mass can be derived. Assuming that the dust emission is optically thin and following Deharveng et al. (2009), the dust mass can be obtained as:


In this expression, is the measured flux density integrated over the area described by the 2 level of the LABOCA map of the source, is the distance to the source, is the dust opacity per unit mass at 870 m, and is the Planck function for a temperature . We adopt = 1.38 cm g (Miettinen 2012).

Dust temperatures were obtained from the Herschel and LABOCA images. Fluxes for the Southern Clump at 70, 160, 250, 350, and 500 m were obtained with HIPE using annular apertures sky photometry. To measure the flux, the Filament was divided into 5 circular sections. For each area, we measured the average surface brightness. Flux uncertainty comes from uncertainties in surface brightness and flux calibration. The results are summarized in Table 4. Columns 2, 3, 4, 5, and 6 list the derived fluxes. Total fluxes are listed in this table for the Filament.

In Fig. 11 we display the SEDs and the best fitting obtained for the Southern Clump, the Filament, and the brightest section of Clump 1 after convolving the Herschel and LABOCA images to the angular resolution of the image at 500 m and taking into account the same apertures for all the wavelengths. Background emission was substracted from the Herschel images. The SEDs for the Southern clump and Clump 1 include the flux obtained at 870 m. Derived dust temperature are listed in col. 7 of Table 4. They are compatible with = 20-30 K, generally assumed for protostellar condensations (cf. Motte et al. 2003; Deharveng et al. 2009; Johnstone & Bally 2006; Fontani et al. 2004).

Fluxes (Jy)
70m 160m 250m 350m 500m (K)
Southern clump 15.13.0 19.41.9 10.54.1 4.41.7 1.70.7 272
Filament 48.85.0 51.25.6 25.02.6 10.01.0 313
Clump 1 85.63.0 88.21.9 45.24.1 22.11.7 7.50.7 332
Table 4: Fluxes from Herschel images

Table 5 lists the parameters derived for the Southern clump, the Filament, and Clumps 1 and 2, separately, from the molecular and LABOCA data. In the table we include the size of the source, the flux density, and dust and total masses. Fluxes included in this table correspond to the whole extension of each source. The dust mass for Clump 2 was obtained using = 20-30 K, while masses for the other structures were estimated using the dust temperature obtained from the SEDs. The total mass was estimated adopting a typical gas-to-dust mass of 100.

LABOCA results:
Size Derived from the emission at 870 m. For the Southern clump, the Filament, and Clump 1 we used derived from the SEDs. For Clump 2, the first value corresponds to = 30 K, and the second one to = 20 K Derived adopting a gas-to-dust ratio equal to 100.
[arcsec] [mJy] [M] [M]
Southern clump 50 1060300 1.3 130
Filament 27027 400100 0.43 43
Clump 1 180110 2520340 3.2 320
Clump 2 3048 23050 0.24-0.43 24–43
Molecular gas parameters:
[K km s] [10 ster] [pc] [10 cm] [10 cm] [M] [ cm]
Filament 3.7 0.10 0.96 2.40.4 10.00.4 640120 200
Southern clump 5.9 0.9 0.23 1.35 5.30.1 261 34010 500
Table 5: Dust and molecular gas parameters

7.2 Parameters of the molecular gas

The molecular mass associated with the Southern clump and the Filament can be evaluated from the CO line using local thermodynamic equilibrium (LTE).

Assuming LTE, the column density, , can be estimated from the CO(2-1) line data following the equations of Rohlfs & Wilson (2004)


where is the opacity of the CO(2-1) line, the frequency of the CO (1-0) line (110.201 GHz), = , and the frequency of the CO(2-1) line. Assuming that , the integral of Eq. 3 can be aproximated by


Then, the molecular mass is calculated using


where m is the solar mass ( 2 10 g), is the mean molecular weight, which is assumed to be equal to 2.8 after allowance of a relative helium abundance of 25% by mass (Yamaguchi et al. 1999), m is the hydrogen atom mass ( 1.67 10 g), is the solid angle subtended by the CO clump in ster, is the assumed distance expressed in cm, and (H) is the H column density, obtained using a “canonical” abundance / = 510 (Dickman 1978). Assuming that and the opacity of the CO(J=21) line can be derived using


where = , , and K. Since the optically thick CO(2-1) line was not observed, T could not be derived directly from our data. Hence, we have adopted T = 20-40 K for the Southern clump in agreement with values adopted by Brand et al. (2001), Deharveng et al. (2008b), and Pomarès et al. (2009). Similar values were adopted for the Filament. It is worth to point out that uncertainties of 50 in the values of T yields to total -uncertainties of up to 25.

The results for the Southern clump and the Filament are indicated in Table 5, which lists the integrated emission of CO within the velocity interval from –55.1 to –51.5 km s, the optical depth, the solid angle and the effective radius where the molecular emission is present, the column density of CO and molecular hydrogen, the molecular mass, and the ambient density. Errors in masses due to distance uncertainties (20%) are about 40%. The ambient density of the Southern Clump was estimated by distributing the total mass in a sphere of 1.35 pc in radius, while for the filament, we distributed the molecular mass in a region of 8 pc in lengh, 2.7 pc in width, and 2.7 pc along the line of sight.

Note that in the Southern clump, the molecular gas was detected in a larger area than the cold dust. The difference in the emission areas may be due to the presence of emission below the 2 limit in the LABOCA data and/or a higher gas-to-dust ratio in the outer areas of the Southern clump. In order to compare the masses derived from the dust continuum and from the molecular line, we need to integrate the emissions within the same area. Consequently, we evaluated the molecular mass using LTE in the same area where the dust continuum emission was detected (equal to the area of a circle of R = 0.6 pc). We obtained a total mass = 100 M.

We can obtain the virialized mass for this clump and compare it with and . Assuming a spherically symmetric cloud with a constant density distribution, the virial mass can be determined from (MacLaren et al. 1988)


where = 0.6 pc, and v = 1.5 km s is its velocity dispersion in km s. The latter is defined as the FWHM line width of the composite profile derived by using a single Gaussian fitting. The composite profile is obtained by averaging the spectra within . The virial mass turns out to be = 280 M. The agreement between the masses derived using the LTE model and the virial theorem is within a factor of 3, while the agreement of the molecular and virial masses with the mass derived from the dust continuum emission is within a factor of 2-6.

The mass of the Southern clump is similar to masses derived for other star forming regions (see for example, Mookerjea et al. 2004, Deharveng et al. 2009, Sánchez-Monge et al. 2008).

8 Conclusions

We have investigated the presence of molecular clouds and dust clumps linked to the star forming Regions B and C previously identified in CRMR09, by performing APEX observations of the continuum 870 m dust and CO(2-1) molecular line emissions, and analyzing IRAC and Herschel images in the near and far infrared.

The continuum sub-millimeter observations towards Region B allowed the identification of a Filament elongated in the N-S direction, ending in a bright condensation (named Southern clump). This Southern clump, which can be identified with IRAS 13307-6211, is 25″ in radius (or 0.6 pc at 5 kpc), and coincides with bright patches of emission at 5.8 and 8 m, and in the Herschel images at 70, 160, 250, 350, and 500 m. The presence of radio continuum emission probably linked to the clump and emission at 24 m suggests the existence of excitation sources inside. The identification of a cluster or IR sources detected in the 2MASS and IRAC images, which includes young stellar objects, showed that star formation is active in this region.

The Filament can be identified also in the Herschel images. On the contrary, it is not detected in the near IR. A number of candidate YSOs are projected onto the filament.

The distribution of the CO emission revealed that molecular gas with velocities in the interval –55.1 to –51.5 km s is the molecular counterpart of the dust Filament and the Southern clump. The velocity of the molecular gas is compatible with its location in the expanding envelope of RCW 78.

Towards Region C, two cold dust clumps were identified both in the LABOCA and Herschel images. The brightest section of the larger clump coincides with emission at 5.8 and 8 m. The presence of radio continuum emission at 1.4 GHz is indicative of ionized gas and a source of UV photons inside. Indeed, an MSX source classified as candidate CHII region reinforces the idea that moderate star formation has occured recently. It is not clear presently if this region is linked to RCW 78.

We estimated total masses for the dust condensations from the emission at 870 m and from the molecular line using LTE and the virial theorem. Masses for the Filament and the Southern clump obtained through different methods agree within a factor of 2-6. Dust temperatures derived from far IR data for the dust clumps and the Filament are about 30 K, compatible with those of protostellar condensations.

The 8 m-IRAC image revealed the existence of an infrared dust bubble of 16″ in radius centered at RA, Dec.(J2000) = (133412, –62°25′) with a clear counterpart at 24 m, suggesting the existence of warm dust in the ring. The bubble is probably linked to the O-type star HD 117797 located at 4 kpc and may be interacting with the molecular gas, although molecular gas linked to it can not be clearly identified from the present observations. The presence of the PAH emission seen at 8 m and of warm dust is compatible with the O-type star as the excitation source powering the bubble.

C.E.C. acknowledges the kind hospitality of Dr. M. Rubio and her family during her stays in Santiago, Chile. We acknowledge the many constructive comments and suggestions of the referee, which helped to improve this paper. This project was partially financed by CONICET of Argentina under project PIP 02488 and UNLP under project 11/G120. M.R. is supported by CONICYT of Chile through grant No. 1080335. V.F. would like to thank Ivan Valtchanov for his support and valuable assistance in Herschel data processing. This research has made use of the NASA/ IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The MSX mission is sponsored by the Ballistic Missile Defense Organization (BMDO).


  • Allen et al. (2004) Allen, L. E., Calvet, N., D’Alessio, P., et al. 2004, ApJS, 154, 363
  • Avedisova (2002) Avedisova, V. S. 2002, Astronomy Reports, 46, 193
  • Benjamin et al. (2003) Benjamin, R. A., Churchwell, E., Babler, B. L., et al. 2003, PASP, 115, 953
  • Brand & Blitz (1993) Brand, J. & Blitz, L. 1993, A&A, 275, 67
  • Brand et al. (2001) Brand, J., Cesaroni, R., Palla, F., & Molinari, S. 2001, A&A, 370, 230
  • Cappa et al. (2009) Cappa, C. E., Rubio, M., Martín, M. C., & Romero, G. A. 2009, A&A, 508, 759, CRMR09
  • Carey et al. (2005) Carey, S. J., Noriega-Crespo, A., Price, S. D., et al. 2005, in BAAS, Vol. 37, AAS Meeting Abstracts, 1252
  • Chu & Treffers (1981) Chu, Y.-H. & Treffers, R. R. 1981, ApJ, 250, 615
  • Crowther et al. (2006) Crowther, P. A., Hadfield, L. J., Clark, J. S., Negueruela, I., & Vacca, W. D. 2006, MNRAS, 372, 1407
  • Cutri et al. (2003) Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All Sky Catalog of point sources.
  • Deharveng et al. (2008a) Deharveng, L., Lefloch, B., Kurtz, S., et al. 2008a, A&A, 482, 585
  • Deharveng et al. (2008b) Deharveng, L., Lefloch, B., Kurtz, S., et al. 2008b, A&A, 482, 585
  • Deharveng et al. (2010) Deharveng, L., Schuller, F., Anderson, L. D., et al. 2010, A&A, 523, A6
  • Deharveng et al. (2012) Deharveng, L., Zavagno, A., Anderson, L. D., et al. 2012, A&A, 546, A74
  • Deharveng et al. (2009) Deharveng, L., Zavagno, A., Schuller, F., et al. 2009, A&A, 496, 177
  • Dickman (1978) Dickman, R. L. 1978, ApJS, 37, 407
  • Duronea et al. (2012) Duronea, N. U., Arnal, E. M., & Testori, J. C. 2012, A&A, 540, A121, DAT12
  • Elmegreen & Lada (1977) Elmegreen, B. G. & Lada, C. J. 1977, ApJ, 214, 725
  • Fontani et al. (2004) Fontani, F., Cesaroni, R., Testi, L., et al. 2004, A&A, 424, 179
  • Georgelin et al. (1988) Georgelin, Y. M., Boulesteix, J., Georgelin, Y. P., Le Coarer, E., & Marcelin, M. 1988, A&A, 205, 95
  • Griffin et al. (2010) Griffin, M. J., Abergel, A., Abreu, A., et al. 2010, A&A, 518, L3
  • Hartmann et al. (2005) Hartmann, L., Megeath, S. T., Allen, L., et al. 2005, ApJ, 629, 881
  • Haverkorn et al. (2006) Haverkorn, M., Gaensler, B. M., McClure-Griffiths, N. M., Dickey, J. M., & Green, A. J. 2006, ApJS, 167, 230
  • Johnstone & Bally (2006) Johnstone, D. & Bally, J. 2006, ApJ, 653, 383
  • Lang (1991) Lang, R. K. 1991, Astrophysical Data: Planets and Stars, ISBN 0-387-97109-2, 0, 0
  • Lefloch & Lazareff (1994) Lefloch, B. & Lazareff, B. 1994, A&A, 289, 559
  • Lumsden et al. (2002) Lumsden, S. L., Hoare, M. G., Oudmaijer, R. D., & Richards, D. 2002, MNRAS, 336, 621
  • MacLaren et al. (1988) MacLaren, I., Richardson, K. M., & Wolfendale, A. W. 1988, ApJ, 333, 821
  • Maíz-Apellániz et al. (2004) Maíz-Apellániz, J., Walborn, N. R., Galué, H. Á., & Wei, L. H. 2004, ApJS, 151, 103
  • Marshall et al. (2006) Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M., & Picaud, S. 2006, A&A, 453, 635
  • Massi et al. (2007) Massi, F., de Luca, M., Elia, D., et al. 2007, A&A, 466, 1013
  • McClure-Griffiths et al. (2005) McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., et al. 2005, ApJS, 158, 178
  • Miettinen (2012) Miettinen, O. 2012, A&A, 542, A101
  • Mizuno et al. (2010) Mizuno, D. R., Kraemer, K. E., Flagey, N., et al. 2010, AJ, 139, 1542
  • Molinari et al. (2010) Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100
  • Monet et al. (2003) Monet, D. G., Levine, S. E., Canzian, B., et al. 2003, AJ, 125, 984
  • Motte et al. (2003) Motte, F., Schilke, P., & Lis, D. C. 2003, ApJ, 582, 277
  • Myers et al. (1983) Myers, P. C., Linke, R. A., & Benson, P. J. 1983, ApJ, 264, 517
  • Offner et al. (2012) Offner, S. S. R., Robitaille, T. P., Hansen, C. E., McKee, C. F., & Klein, R. I. 2012, ApJ, 753, 98
  • Ott & Herschel Science Ground Segment Consortium (2010) Ott, S. & Herschel Science Ground Segment Consortium. 2010, in American Astronomical Society Meeting Abstracts, Vol. 216, American Astronomical Society Meeting Abstracts 216, 413.10
  • Poglitsch et al. (2010) Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2
  • Pomarès et al. (2009) Pomarès, M., Zavagno, A., Deharveng, L., et al. 2009, A&A, 494, 987
  • Price et al. (2001) Price, S. D., Egan, M. P., Carey, S. J., Mizuno, D. R., & Kuchar, T. A. 2001, AJ, 121, 2819
  • Robitaille (2008) Robitaille, T. P. 2008, in Astronomical Society of the Pacific Conference Series, Vol. 387, Massive Star Formation: Observations Confront Theory, ed. H. Beuther, H. Linz, & T. Henning, 290
  • Robitaille et al. (2007) Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328
  • Robitaille et al. (2006) Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256
  • Rohlfs & Wilson (2004) Rohlfs, K. & Wilson, T. L. 2004, Tools of Radioastronomy , ed. Springer-Verlag, Berlin-Heidelberg
  • Sánchez-Monge et al. (2008) Sánchez-Monge, Á., Palau, A., Estalella, R., Beltrán, M. T., & Girart, J. M. 2008, A&A, 485, 497
  • Sandford et al. (1982) Sandford, II, M. T., Whitaker, R. W., & Klein, R. I. 1982, ApJ, 260, 183
  • Siringo et al. (2009) Siringo, G., Kreysa, E., Kovács, A., et al. 2009, A&A, 497, 945
  • Turner & Forbes (2005) Turner, D. G. & Forbes, D. 2005, PASP, 117, 967
  • Walborn (1982) Walborn, N. R. 1982, AJ, 87, 1300
  • Wilcock et al. (2012) Wilcock, L. A., Ward-Thompson, D., Kirk, J. M., et al. 2012, MNRAS, 422, 1071
  • Wright et al. (2010) Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
  • Yamaguchi et al. (1999) Yamaguchi, R., Akira, M., & Yasuo, F. 1999, in Star Formation 1999, ed. T. Nakamoto, 383–384
  • Zacharias et al. (2004) Zacharias, N., Monet, D. G., Levine, S. E., et al. 2004, in Bulletin of the American Astronomical Society, Vol. 36, American Astronomical Society Meeting Abstracts, 1418
  • Zavagno et al. (2005) Zavagno, A., Deharveng, L., Brand, J., et al. 2005, in IAU Symposium, Vol. 227, Massive Star Birth: A Crossroads of Astrophysics, ed. R. Cesaroni, M. Felli, E. Churchwell, & M. Walmsley, 346–351
  • Zhang & Wang (2012) Zhang, C. P. & Wang, J. J. 2012, A&A, 544, A11
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description