Globular Clusters in Sombrero

Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodalitythanks: Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration.

Alan Alves-Brito, George K.T. Hau, Duncan A. Forbes, Lee R. Spitler

Jay Strader, Jean P. Brodie, Katherine L. Rhode
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
PUC, Departamento de Astronomia y Astrofisica, Av. Vicuna Mackenna 4860, Santiago, Chile
European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
Harvard-Smithsonian Centre for Astrophysics, 60, Garden St., Cambridge, MA 02144, USA
UCO/Lick Observatory, University of California, Santa Cruz, CA 95064, USA
Department of Astronomy, Indiana University, Bloomington, IN 47405, USA
E-mail: abrito@astro.puc.cl (AAB)
Accepted 1988 December 15. Received 1988 December 14; in original form 1988 October 11
Abstract

We present a large sample of over 200 integrated-light spectra of confirmed globular clusters (GCs) associated with the Sombrero (M104) galaxy taken with the DEIMOS instrument on the Keck telescope. A significant fraction of the spectra have signal-to-noise levels high enough to allow measurements of GC metallicities using the method of Brodie & Huchra (1990). We find a distribution of spectroscopic metallicities ranging from –2.2 [Fe/H] +0.1 that is bimodal, with peaks at [Fe/H] –1.4 and –0.6. Thus the GC system of the Sombrero galaxy, like a few other galaxies now studied in detail, reveals a bimodal spectroscopic metallicity distribution supporting the long-held belief that colour bimodality reflects two metallicity subpopulations. This further suggests that the transformation from optical colour to metallicity for old stellar populations, such as GCs, is not strongly non-linear. We also explore the radial and magnitude distribution with metallicity for GC subpopulations but small number statistics prevent any clear trends in these distributions.

keywords:
globular clusters: general, galaxies: individual: Sombrero (M104: NGC 4594), galaxies: star clusters.
pagerange: Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodalitythanks: Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. LABEL:lastpagepubyear: 2002

1 Introduction

Understanding how galaxies were formed and have evolved remains one of the basic problems to be solved in astrophysics. In this context, extragalactic globular clusters (GCs) play an important role because their formation is associated with the physical processes occurring before galaxies were entirely assembled (see Brodie & Strader 2006 for a review).

It has been recognised for some time that massive galaxies have bimodal GC colour distributions (Ashman & Zepf 1993). This suggests two modes, or phases, of GC formation. Indeed, several models have been proposed to explain the different modes in terms of variations in the epoch of GC formation, stellar population properties and the timescale of galaxy assembly (Ashman & Zepf 1992; Zepf & Ashman 1993; Forbes et al. 1997; Cote et al. 1998; Beasley et al. 2002). As most GCs appear to be very old (see review by Brodie & Strader 2006), the bimodality in colour is normally assumed to translate directly into a bimodality in metallicity. However, doubt has recently been cast on this interpretation by some (e.g. Yoon et al. (2006; Blakeslee, Cantiello & Peng 2010). Depending on the degree to which the transformation of colour into metallicity is non-linear, it is possible for an instrinsically unimodal metallicity distribution to appear bimodal in colour space. If correct, this would have direct implications for the observed blue tilt (a trend for redder colours with higher luminosities in the blue GC subpopulation) and the correlation of the mean GC colour with galaxy luminosity. It would also radically change current ideas for two modes of GC formation.

As noted by Blakeslee et al. (2010), ”Very little is actually known about the detailed metallicity distributions of GCs in giant ellipticals.”. Two giant ellipticals with optical spectroscopic metallicities derived for their GC systems include M49 with 47 measurements (Strader et al. 2007) and NGC 5128 with over 200 GC spectroscopic metallicities (Beasley et al. 2008). In both cases the distribution of GC spectroscopic metallicities are bimodal. The GC systems of these galaxies also have bimodal optical colour distributions, as do most but not all galaxies (see e.g. Foster et al. 2010). Interestingly, the infrared study of GCs in NGC 5128 by Spitler et al. (2008), which is more sensitive to metallicity than optical colours, also revealed colour bimodality in the 146 GCs they studied. Along similar lines, Kundu & Zepf (2007) used optical-infrared colours of 80 GCs in M87 to show their distribution was bimodal. Thus these giant ellipticals with optical spectra and/or infrared colours of GCs show metallicity bimodality.

Recently attempts have been made to derive spectroscopic metallicities using the infrared Calcium Triplet (CaT) lines (at 8498, 8542, and 8662 ) for the GC systems of two giant ellipticals (Foster et al. 2010, 2011). In the case of NGC 1407, the CaT metallicity distribution of 144 GCs is better described as unimodal, whereas Cenarro et al. (2007) suggested that the distribution was bimodal based on metallicities from optical wavelength spectra of just 20 GCs. For NGC 4494, the CaT metallicity distribution again appears unimodal. Unfortunately, there is no published work based on optical wavelength metallicities for the GC system in this galaxy. Clearly a large sample study of GC metallicities derived from both blue and infrared absorption lines is needed to resolve these issues (see Foster et al. 2010 for a complete discussion of potential factors affecting the CaT derived metallicities). In summary, it appears that at least some elliptical galaxies reveal the presence of two metallicity subpopulations in their GC systems but the number of systems studied remains small.

For late-type spiral galaxies, only two are well-studied (i.e. the Milky Way and M31) and both reveal bimodal spectroscopic metallicity distributions for their GC systems (e.g. Zinn 1985; Barmby et al. 2000 but see also Caldwell et al. 2011). No early-type spirals have published spectra for large numbers of GCs.

The nearest spiral galaxy with a large GC system is the Sombrero galaxy (M104, NGC 4594), which lies a distance of 9.0 0.1 Mpc (see Table 4 of Spitler et al. 2006 for a summary). Although classified as an edge-on Sa galaxy, it has a bulge-to-total ratio of 0.8 (Kent 1988) and hence might be better described as a massive bulge plus an extended disk. This galaxy hosts some 1900 GCs that extend to a projected radius of 50 kpc (Rhode & Zepf 2004; Spitler et al. 2006) and one Ultra Compact Dwarf (Hau et al. 2009). A number of previous studies have obtained spectra of Sombrero GCs (Bridges et al. 1997; Larsen et al. 2002; Held et al. 2003; Bridges et al. 2007), however the number of spectra of sufficient signal-to-noise (S/N) to measure individual GC metallicities was very limited. The Keck spectra of Larsen et al. (2002) confirmed that the dozen luminous GCs they studied were all old.

In this paper we present Keck integrated spectra for over 200 globular clusters in M104. This is the largest sample of GCs in the Sombrero galaxy homogeneously analysed to date. Our main goal is to obtain radial velocities to confirm association with the Sombrero galaxy and to obtain spectroscopic metallicities. A future paper will investigate the kinematic properties of the GC system.

2 Observations and data reduction

GC candidates were selected from two published photometric studies. In the inner regions we used the HST/ACS mosaic of Spitler et al. (2006), which covers approximately the central 10′ 7′ of the galaxy with minimal contamination. Beyond this area, we used the ground-based catalogue of Rhode & Zepf (2004). This latter catalogue has higher contamination but extends to the apparent edge of the GC system at a projected radius of 19′ and so is necessary to complement the wide field-of-view (16′ 5′) of the DEIMOS spectrograph. The central dust lane of NGC 4594 was excluded from our target selection.

Target selection was made using both magnitude and colour. The colour selection using the filters was performed using previously published GCs as a guide (Bridges et al. 1997; Larsen et al. 2002; Held et al. 2003; Bridges et al. 2007). Four masks were designed, with a total of 404 GC candidates. The median candidate had with both colour subpopulations well-represented. The masks included candidates with a wide radial range (extending to ′) and a moderate range in position angle, with the NE and SW quadrants of the galaxy well-covered.

All four masks were observed during a single run from 2006 April 26–29. Total exposure times for each mask ranged from 3–4.5 hr, divided into individual exposures of 30 min. All spectroscopic observations were made with the 900 l/mm grating, blazed at 5500 Å. Slits were milled to a width of 1.0″, yielding a resolution of 2.1 Å  (FWHM). Seeing was variable during the run, ranging from 0.6–1.1″.

The DEIMOS data were reduced using the DEEP2 spec2d package, adapted for our instrument setup. The nominal spectral coverage for an object in the center of the mask was –6900 , but the throughput toward the blue was low, so the useful spectral range was somewhat smaller. The wavelength scales were calibrated using arc spectra and fitting a 4th degree polynomial to the wavelength solution. The spectra were divided into two regions (“blue” and ”red”) and the wavelength solutions calculated separately, with an RMS scatter of 0.08   in the blue and 0.06   in the red, corresponding to roughly 5 and 3 kms respectively. The presence of bright sky lines in the red spectra also allowed a correction for any instrument flexture between the science data taken during the night and the arcs taken during the day. Examples of the final spectra are given in Fig. 1.

Figure 1: Example GC spectra obtained by the DEIMOS spectrograph. Shown are rest wavelength spectra around the metallicity sensitive indices of CH or G band (a), Mgb (b) and Fe5270 (c) for different GC magnitudes, as indicated in the figure.

3 Results and discussion

3.1 Radial Velocity Measurements

Heliocentric radial velocities were obtained using the IRAF111IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation. task fxcor. Fxcor performs Fourier cross-correlation of input object spectra against a specified template spectrum. For the cross-correlation of the DEIMOS spectra we used the spectrum of the K giant star Arcturus as the template.

We were able to measure radial velocities for 258 GC candidates. Data for all of the objects for which we could measure a radial velocity are presented in Table A. In this table, columns 1 and 2 indicate the object’s ID (taken from either Spitler et al. 2006 or Rhode & Zepf 2004, indicated as S or RZ respectively); column 3 the mask number; columns 4–5 give the J2000.0 equatorial coordinates; columns 6–8 give the major- (X), minor-axis (Y) and the projected distances (R), respectively, from the centre of the galaxy; columns 9–10 give the radial velocities and their errors. The final velocity listed is the mean of the blue and red velocities, corrected to heliocentric. The uncertainties quoted are derived from the width of the cross-correlation peak, normalized using the distribution of the differences between the blue and red velocities as a function of magnitude, with a minimum value of 8 kms. These uncertainties primarily reflect the random component of the error; we estimate our systematic error, due primarily to zero-point uncertainties, to be 20 kms.

To obtain the galactocentric coordinates (X,Y) and projected distances for our sample we adopted a distance to Sombrero of 9.0 Mpc (Spitler et al. 2006). At this distance, 1 arcmin corresponds to 2.62 kpc. We used a central position of = 123999.43, = 1137’23”. The position angle for the X-coordinate is taken as 90 (e.g., de Vaucouleurs et al. 1991). Hence, we are able to probe the Sombrero GC system out to 30 kpc.

Figure 2: Radial velocities of GC candidates. Velocity as a function of V band magnitude (a) and colour (b) are shown, along with the radial velocity distribution (c). The horizontal lines in (a) and (b) mark the mean v value (solid line) and the 1 dispersion (dotted lines).

Figure 2 shows the radial velocities as a function of V magnitude, colour, and the radial velocity distribution for the 258 GC candidates. The mean velocity of the GC candidate sample is v = 1075 359 kms. This is similar to the systemic velocity of Sombrero itself (1024 kms; Smith et al. 2000). Furthermore, the radial velocity distribution for the bulk of the objects is roughly Gaussian, which is expected for a bound GC system. Thus we can conclude that the bulk of the objects with measured velocities are probable members of the Sombrero GC system. The tail of objects with very low and high radial velocities in this figure are likely foreground stars and background galaxies respectively. Given the clear gap between the bulk of the objects and those with high velocities, we have chosen to restrict our sample to v 2000 kms (the highest measured velocity, at kms, is likely spurious). We note that the GC candidates show no obvious trend of velocity with either magnitude or colour.

Figure 3 displays the radial velocities versus the projected galactocentric distance for GC candidates. The bulk of objects have velocities around 1100 kms irrespective of galactocentric distance, although the dispersion decreases with radius. Such behaviour is similar to that seen by Bridges et al. (2007) in their study of the Sombrero GC system.

We exclude a further 14 objects with low velocities that lie at large projected distances (these are likely to be foreground stars). There are also five objects at large distances with somewhat higher velocities than the spread in velocities at that radius. These objects may be GCs with anomalous velocities. For the purposes of this spectroscopic metallicity analysis we adopt a conservative approach and exclude them from selection. For a kinematic analysis, in which outliers can have a large effect on results, a more sophisticated selection process will be required.

To quantify the velocity dispersion we binned our sample into three different radii (0 R 10 kpc, 10 R 20 kpc and R 20 kpc), which was a purely arbitrary choice. We measure = 249 km in the first bin, = 183 km in the second, and = 131 km in the third one. The excluded objects lie at least 2 away from the mean velocity in each bin.

After excluding the probable foreground stars, background galaxies and high velocity objects we have a sample of 239 velocity confirmed GCs associated with the Sombrero galaxy.

Figure 3: Radial velocities for the Sombrero GC candidates against projected galactocentric distance. The final sample of confirmed GCs are shown by filled circles. Excluded objects are represented by crosses. The filled triangles indicate the median and dispersion of the radial velocities in different radial bins, as marked by the vertical dotted lines. The pair of solid lines shows a R dependence to guide the eye.

We have reliable radial velocities for 37 GCs with previously published data. We compare our new velocities to those from the literature in Fig. 4, in which the different studies are coded by symbol type. Nearly all of the repeats are from the 2dF and WHT studies of Bridges et al. (1997; 2007). There is no evidence for a zeropoint offset in the velocity scales, with median differences (in the stated sense of newold) of and kms for the two studies respectively. In addition, the distribution of velocities differences generally seems consistent with that expected from the stated uncertainties, excepting a small number of outliers. The radial velocities from Larsen et al. (2002) are systematically higher than ours ( in the median), but with only four GCs in common, this conclusion is not strong.

Figure 4: Radial velocity difference between our new measurements and values in the literature for the 37 GCs in common. The symbols represent the different literature datasets: filled circles (2dF, Bridges et al. 2007); open circles (WHT, Bridges et al. 1997); open stars (Keck, Larsen et al. 2002); skeletal stars (WIYN, Bridges et al. 2007).

3.2 Metallicity Analysis

In order to derive spectroscopic metallicities for our moderate resolution and moderate signal-to-noise (see Fig. 1) data we adopt a similar approach to that of Perrett et al. (2002) and Brodie & Huchra (1990) who studied the GCs of M31. Aiming to measure the metallicities of extragalactic GCs, Brodie & Huchra (1990, hereafter BH90) defined a set of calibrations based upon six different absorption-line indices, which were strongly sensitive to metallicity. Their metallicity calibrations were tied to the Milky Way GC system and therefore the assumption that the GCs are mostly old (i.e. 10 Gyr).

Originally, BH90 measured the metallicity of globular clusters by taking the weighted mean of the six elemental absorption-line indices, which lead to estimated metallicities with an accuracy of approximately 15 per cent. However, Perrett et al. (2002) used the same method employed by BH90 but extended their analysis to 12 absorption-line indices. Comparing the line indices with published (and independent) metallicities of GCs in M31, Perrett et al. (2002) found that the CH (G Band), Mgb and Fe53 line indices were the best metallicity calibrators. Consequently, they calculated the final metallicities of their sample by adopting an unweighted mean of these best [Fe/H]-indicators.

As we are dealing with uncalibrated flux spectra, we have preferentially used the relatively narrow metallicity indices CH, Mgb and Fe5270, as they are less sensitive to index calibration errors. In addition, CH and Mgb constitute some of the strongest features in the integrated spectra of late-type objects. However, it is worth emphasizing that due to the different slit positions in the masks, the DEIMOS spectra cover different wavelengths, and thus it was not possible to calculate the three indices for all GCs.

The feature passbands, pseudocontinua and [Fe/H]-calibrations adopted in this work are exactly as defined in BH90. The three indices were measured automatically by employing a modified version of the LECTOR code, which was made available by Alexandre Vazdekis. The code takes into account the index-band definitions (see Table 1) and the radial velocities to calculate the line indices and their errors accordingly. In Fig. 1 we show the location of the three indices on example spectra.

In Table B we list the GC magnitudes, colours, raw indices and spectroscopic metallicities obtained by following the prescription above. The values given in brackets (when possible) correspond to the estimated uncertainty on the indices and metallicities. The former corresponds to the Poisson noise errors, while the latter was estimated by propagating these errors and those associated with the metallicity calibrations themselves (see last column of Table 1) in quadrature. Note, however, that these uncertainties could be underestimated since we are not taking into account other possible sources of error. In Fig. 5 we show the Poisson errors as a function of magnitude for each index. As expected, the uncertainties are higher for the fainter objects, since they have lower S/N.

Index Blue Feature Red Width [Fe/H] calibration
CH 4268.25-4283.25 4283.25-4317.00 4320.75-4335.75 33.25 [Fe/H] = 11.415(CH) –2.455 ( = 0.26)
Mgb 5144.50-5162.00 5162.00-5193.25 5193.25-5207.00 31.25 [Fe/H] = 14.171(Mgb) –2.216 ( = 0.35)
Fe5270 5235.50-5249.00 5248.00-5268.75 5288.00-5319.25 20.75 [Fe/H] = 20.367(Fe5270) –2.086 ( = 0.33)
Table 1: Definition of BH90 indices and metallicity calibrations.
Figure 5: Index error versus GC magnitude. Three indices are shown with CH (top), Mgb (middle) and Fe5270 (bottom).

In Fig. 6 we plot the derived [Fe/H] metallicity from each individual index against the B–R colour. In old stellar populations, colour is a good proxy for metallicity. This figure shows that all three indices reveal similar trends with respect to B–R colour. The scatter for the Mg and Fe5270 indices are similar. The scatter for the CH index is somewhat larger this is because it is a wider index and located at bluer wavelengths for which DEIMOS is less sensitive. We combine the individual [Fe/H] values, weighted by their errors, to form a final metallicity of each GC.

Figure 6: Colour-metallicity relations based on B-R colours and CH (top), Mgb (middle) and Fe5270 (bottom) indices.

For the subsequent metallicity analysis, we have restricted our sample to the brightest objects (i.e. V 22 mag) and those with Poisson errors 0.15 dex (see Fig. 5). After excluding these lower S/N GCs, the remaining 112 GCs have a metallicity range of 2.2 [Fe/H] +0.1. Interestingly, Spitler et al. (2006) found the and colours to give similar metallicity ranges of –2.1 [Fe/H] 0.3 and –2.3 [Fe/H] +0.4, respectively, based on data from the HST/ACS. Hence, within the uncertainties, the spectroscopic metallicities we derive here are in good agreement with the photometric ones. For example, the mean spectroscopic metallicity of [Fe/H] –1.2 agrees well with that estimated previously by Bridges et al. (1997, 2007) and Larsen et al. (2002). Furthermore, the mean difference in [Fe/H] for the four globular clusters in common with those studied in Larsen et al. (2002) is only –0.14 0.07 dex (our - theirs), which is small within the uncertainties.

3.3 Metallicity Distribution

In order to test for the presence of bimodality in the GC metallicity distribution we have employed the KMM algorithm. The KMM algorithm (see Ashman, Bird & Zepf 1994 for details) returns the likelihood ratio test statistic and calculates the probability P of a distribution being unimodal (single Gaussian) or bimodal (double Gaussian model). It is independent of data binning.

For a homoscedastic fit to the colours we find that the colour distribution for our sample of 239 spectroscopically-confirmed GCs in the Sombrero galaxy is bimodal at a confidence level of greater than 99.7 per cent (see Fig. 7). The blue and red peaks are at = 1.19 and 1.46 mag, respectively. Thus we are sampling a bimodal colour distribution of GCs.

Figure 7: Colour-magnitude diagram (top) and the colour histogram (bottom) for 112 GCs. The blue points and red crosses represent blue and red GC subpopulations cut at B–R = 1.30 respectively.

In Fig. 8 we show the relationship between GC colour and our derived mean spectroscopic metallicity. The figure shows a good correlation between colour and metallicity with no obvious indication that the relationship is non-linear. A least-square linear fit to the data gives [Fe/H] = (–4.83 0.27) + (2.85 0.20)(B-R) with = 0.33 dex, for 1 (B-R) 1.65. The rms dispersion in the relation is comparable to that for the conversion of the raw BH90 indices into metallicity. We also show the linear relation of Barmby et al. (2000) who used the BH90 indices for GCs in M31. For comparison, we have also overplotted the colour-metallicity relations predicted by the old age simple stellar population (SSP) models of the Teramo-SPoT group (Raimondo et al. 2005) and Maraston (1998). All provide a reasonable description of the data, albeit with small offsets from the least-square best fit.

For a KMM fit to the spectroscopic metallicities, we find bimodality with a probability 90 per cent, where the metal-poor subpopulation is peaked at [Fe/H] = –1.44 and the metal-rich one at [Fe/H] = –0.60. These values can be compared to [Fe/H] = –1.38 and -0.49 quoted by Spitler et al. (2006) based on optical colours and [Fe/H] –1.7 and –0.7 from Held et al. (2003) from spectra.

Figure 8: Colour-metallicity relation (top) and metallicity histogram (bottom) based on spectroscopic metallicities. The least-squares linear fit is shown by a black solid line. The red dotted line indicates the linear colour-metallicity relation found by Barmby et al. (2000) for the GC system of M31. The colour-metallicity relations predicted by SSP models are also shown, i.e. Teramo-SpOT (Raimondo et al. 2005; blue short dashed line) and Maraston (1998; green long dashed line).

3.4 Radial Metallicity Profile

Currently very few galaxies have published radial metallicity profiles for GCs based on spectroscopy. In both the Milky Way (Harris 2001) and M31 (Alves-Brito et al. 2009), the GCs follow a similar pattern, i.e. a strong metallicity gradient in the inner few kpc, which then flattens to a null gradient in the outer halo. Similar metallicity profiles are inferred for GCs in large elliptical galaxies from their colours (see Forbes et al. 2011 and references therein). These metallicity profiles suggest an inner region in which gas dissipation has played an important role, and an outer halo region that is dominated by the accretion of small galaxies and their GCs.

In Fig. 9 we show the radial metallicity profile for the GCs in the Sombrero galaxy out to 30 kpc. There is no clear indication of metallicity gradients in either GC subpopulation. However, our data are not uniformly distributed in radius and are quite limited beyond 20 kpc. We note that the transition from a strong inner gradient to a null gradient in the massive ellipticals M87 (Harris 2009) and NGC 1407 (Forbes et al. 2011) were seen at around 70 kpc. Given that the luminosity of Sombrero is more comparable to these galaxies than the Milky Way or M31, we might expect the transition radius to occur beyond our field-of-view.

Figure 9: Metallicity as a function of projected galactocentric distance. Symbols are as in Fig. 6.

3.5 Blue Tilt

It has been shown in several extragalactic GC systems that the blue GC subpopulation colour distribution tends to become redder for higher luminosities (i.e., a blue tilt). While this effect has been found in galaxies of different morphological types (e.g. Harris et al. 2006; Strader et al. 2006; Mieske et al. 2006; Lee et al. 2008; Harris 2009; Peng et al. 2009; Mieske et al. 2010; Forbes et al. 2010; Faifer et al. 2011), the Milky Way is a galaxy that do not reveal a blue tilt to date (e.g., Strader & Smith 2008). According to the scenario proposed by Bailin & Harris (2009), the more massive GCs are also more heavy-element enriched. Thus, the fact that the Milky Way sample includes fewer massive GCs and more lower mass GCs than other datasets, could account for the lack of tilt in the Milky Way.

On the other hand, Forbes et al. (2010) have recently shown that there is a blue tilt in the blue GC subpopulation of the Milky Way analog NGC 5170. For the Sombrero galaxy, Spitler et al. (2006) have shown photometrically that its blue GCs reveal a blue tilt not only at the brightest magnitudes (highest mass) but that it may also extend to relatively low mass GCs too. The blue tilt is generally assumed to be a mass-metallicity trend that is due to a self-enrichment process (Strader & Smith 2008; Bailin & Harris 2009).

We present in Fig. 10 the spectroscopic metallicity-magnitude diagram for Sombrero GCs. It shows that the brightest GCs have magnitudes comparable to Omega Cen which would have V 19.5 if located at the distance of Sombrero. Although the brightest blue GCs are more metal-rich than average, our number statistics are too low to make any definitive statements about a spectroscopic ‘blue tilt’ in the Sombrero galaxy GC system. In the self-enrichment models mentioned above the tilt is present for GCs with masses above a million solar masses or V 19.5.

Figure 10: Metallicity-magnitude diagram. Symbols are as in Fig. 7.

4 Summary and conclusions

Globular clusters are widely recognised as extremely useful tracers of the formation and evolution of their host galaxies. Here we present Keck spectra for over 200 GCs with radial velocities that confirm their association with the Sombrero galaxy. For many of the GCs the spectra are of sufficient quality to derive Brodie & Huchra (1990) style metallicities from several indices.

We find that the GCs span a broad metallicity range from [Fe/H] = –2.2 to +0.1. This is comparable to previous estimates based on photometric metallicities. For a restricted high quality subsample of 112 GCs, we find a good correlation between individual GC metallicity and B–R colour. The resulting spectroscopic metallicity distribution is clearly bimodal with peaks at [Fe/H] –1.4 and –0.6, with a statistical probability of 90 per cent. Thus despite claims that colour bimodality may not reflect metallicity bimodality in extragalactic GC systems, it would appear that the GC system of the Sombrero galaxy joins that of some other giant elliptical galaxies in revealing spectroscopic bimodality. Furthermore we find a transformation between optical colour and metallicity that does not require a non-linear relation.

We also investigate the GC radial metallicity profile out to 30 kpc and a spectroscopic version of the colour-magnitude diagram, but our small number statistics prevent any strong statements about trends in the GC subpopulations.

Acknowledgments

AAB acknowledges CNPq (PDE, 200227/2008-4) and FONDECYT (3100013) for financial support. Likewise, GKTH, DF and LP thank ARC for financial support. JD acknowledges support from NSF grants AST-0917706 and AST-0909237. We are greatful to Caroline Foster and Bill Harris for useful discussions and suggestions. We thank an anonymous referee for useful comments and suggestions. Support for this work was provided by award 1310512, issued by JPL/Caltech. The analysis pipeline used to reduce the DEIMOS data was developed at UC Berkeley with support from NSF grant AST-0071048. This work was supported by the National Science Foundation through grant AST-0808099. We thank Steve Zepf for his help supplying an object list of globular candidates, and Arunav Kundu for help with astrometry.

References

  • Alves-Brito et al. 2009 (2009) Alves-Brito A., Forbes D. A., Mendel J. T., Hau G. K. T., Murphy M. T., 2009, MNRAS, 395, 34
  • Ashman & Zepf (1992) Ashman K. M., Zepf, S. E., 1992, ApJ, 384, 50
  • Ashman & Zepf (1993) Ashman K. M., Zepf S. E., 1993, MNRAS, 264, 611
  • Ashman, Bird & Zepf (1994) Ashman K. M., Bird C. M., Zepf S. E. 1994, AJ, 108, 2348
  • Bailin & Harris (2009) Bailin J., Harris W.E. 2009, ApJ, 695, 1082
  • Barmby et al. (2000) Barmby, P., Huchra, J. P., Brodie, J. P., Forbes, D. A., Schroder, L. L., & Grillmair, C. J. 2000, AJ, 119, 727
  • Blakeslee et al. (2010) Blakeslee J.P., Cantiello. M., Peng E.W. 2010, ApJ, 710, 51
  • Beasley et al. (2002) Beasley, M. A., Baugh, C. M., Forbes, D. A., Sharples, R. M., & Frenk, C. S. 2002, MNRAS, 333, 383
  • Beasley et al. (2008) Beasley M. A., Bridges T., Peng, E., Harris W.E., Harris G.L., Forbes D.A., Mackie G., 2008, MNRAS, 386, 1443
  • Bridges et al. 1997 (1997) Bridges T. J., Ashman K. M., Zepf S. E., Carter D., Hanes D. A., Sharples R. M., Kavelaars J. J., 1997, MNRAS, 284, 376
  • Bridges et al. 2007 (2007) Bridges T. J., Rhode K. L., Zepf S. E., Freeman K. C., 2007, ApJ, 658, 980
  • Brodie & Strader (2006) Brodie J. P., Strader J., 2006, ARA&A, 44, 193
  • Brodie & Huchra (1990) Brodie J. P., Huchra J. P., 1990, ApJ, 362, 503
  • Caldwell et al. (2011) Caldwell, N., Schiavon, R., Morrison, H., Rose, J. A., & Harding, P. 2011, AJ, 141, 61
  • Cenarro et al. (2007) Cenarro, A. J., Beasley, M. A., Strader, J., Brodie, J. P., & Forbes, D. A. 2007, AJ, 134, 391
  • Cote et al. (1998) Cote, P., Marzke, R. O., & West, M. J. 1998, ApJ, 501, 554
  • Faifer et al. (2011) Faifer, F. R., Forte, J. C., Norris, M.A., Bridges, T., Forbes, D. A., Zepf, S. E., Beasley, M., Gebhardt, K., Hanes, D. A., Sharples, R. M. 2011, arXiv1105.1755F
  • Forbes et al. (1997) Forbes, D. A., Brodie, J. P., & Grillmair, C. J. 1997, AJ, 113, 1652
  • Forbes et al. 2010 (2010) Forbes D.A., Spitler L.R., Harris W. E., Bailin J., Strader J., Brodie J. P., Larsen S. S. 2010, MNRAS, 403, 429
  • Forbes et al. (2011) Forbes, D. A., Spitler, L. R., Strader, J., Romanowsky, A. J., Brodie, J. P., & Foster, C. 2011, MNRAS, 306
  • Foster et al. (2010) Foster, C., Forbes, D. A., Proctor, R. N., Strader, J., Brodie, J. P., & Spitler, L. R. 2010, AJ, 139, 1566
  • Foster et al. (2011) Foster, C. et al. 2011, MNRAS, submitted
  • Harris 2001 (2001) Harris, W.E., in: Star Clusters, Saas-Fee Advanced Course 28. Edited by L Labhardt and B. Binggeli. Published by Springer-Verlag, Berlin, 2001, p.223
  • Harris et al. 2006 (2006) Harris W.E., Whitmore B.C., Karakla D., Okón W.; Baum W. A., Hanes D.A., Kavelaars J.J. 2006, ApJ, 636, 90
  • Harris 2009 (2009) Harris W.E. 2009, ApJ, 703, 939
  • Hau et al. (2009) Hau, G.K.T., et al. 2009, MNRAS, 394, L97
  • Held et al. 2003 (2003) Held E.V., Moretti A., Federici L., Cacciari C., Rizzi L., Testa V. 2003, in: Extragalactic Globular Cluster Systems: Proceedings of the ESO Workshop, Edited by M. Kissler-Patig. Springer-Verlag, p. 161
  • Kent (1988) Kent S., 1988, AJ, 96, 514
  • Kundu (2007) Kundu A., Zepf, S., 2007, ApJ, 660, L109
  • Larsen et al. 2002 (2002) Larsen S.S., Brodie J.P., Beasley M.A., Forbes D.A., 2002, AJ, 124, 828
  • Lee et al. (2008) Lee M.G., Park H.S., Kim E., Hwang H.S., Kim S.C., Geisler D. 2008, ApJ, 682, 135
  • Maraston (1998) Maraston, C. 1998, MNRAS, 300, 872
  • Maieske et al. 2006 (2006) Mieske S., Jordán A.; Côté P., Kissler-Patig M., Peng E. W., Ferrarese L., Blakeslee J. P., Mei S., Merritt D., Tonry J. L., West M.J. 2006, ApJ, 653, 193
  • Maieske et al. 2010 (2010) Mieske, S., Jordán, A., Côté, P., Peng, E. W., Ferrarese, L., Blakeslee, J. P., Mei, S., Baumgardt, H., Tonry, J. L., Infante, L., West, M. J. 2010, ApJ, 710, 1672
  • Peng et al. 2009 (2009) Peng E. W., Jordán A., Blakeslee J.P., Mieske S., Côté P., Ferrarese L., Harris W. E., Madrid J.P., Meurer G. R. 2009, ApJ, 703, 42
  • Perrett et al. (2002) Perrett K.M., Bridges, T.J., Hanes D.A., Irwin M.J., Brodie J.P., Carter D., Huchra J.P., Watson F.G., 2002, AJ, 123, 2490
  • Raimondo05 (2005) Raimondo G., Brocato E., Cantiello M., Capacciolo M., 2005, AJ, 130, 2625
  • Rhode & Zepf (2004) Rhode K., Zepf S.E. 2004, AJ, 127, 302
  • Smith et al. (2000) Smith, R. J., Lucey, J. R., Hudson, M. J., Schlegel, D. J., Davies, R. L. 2000, MNRAS, 313, 469
  • Spitler et al. 2006 (2006) Spitler L. R., Larsen S., Strade J., Brodie J. P., Forbes D., Beasley M., 2006, AJ, 132, 1593
  • Strader et al. 2005 (2005) Strader J., Brodie J. P., Cenarro A.J., Beasley M., Forbes D. 2005, AJ, 130, 131
  • Strader et al. 2006 (2006) Strader J., Brodie J. P., Spitler L. R., Beasley M., 2006, AJ, 132, 2333 AJ, 132, 1593
  • Strader et al. (2007) Strader J., Beasley M.A., Brodie J.P. 2007, AJ, 133, 2015
  • Spitler et al. (2008) Spitler, L. R., Forbes, D. A., & Beasley, M. A. 2008, MNRAS, 389, 1150
  • Strader & Smith (2008) Strader J., Smith G.H. 2008, AJ, 136, 1828
  • Vazdekis (1999) Vazdekis A. 1999, ApJ, 513, 224
  • Yoon et al. (2006) Yoon, S.-J., Yi, S. K., & Lee, Y.-W. 2006, Science, 311, 1129
  • Zepf & Ashman (1993) Zepf, S. E., Ashman, K. M. 1993, MNRAS, 264, 611
  • Zinn (1985) Zinn, R. 1985, ApJ, 293, 424

Appendix A Positions and velocities

ID Alt ID Mask R.A. Dec. X Y R V V
(J2000) (J2000) (arcmin) (arcmin) (arcmin) kms kms
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
RZ1157 1 12 40 36.93 -11 41 17.55 9.224 -3.907 10.020 1581 49
RZ1191 1 12 40 36.35 -11 40 58.07 9.082 -3.582 9.763 1264 8
RZ1192 1 12 40 36.34 -11 39 33.72 9.079 -2.177 9.336 1202 10
RZ1210 1 12 40 36.03 -11 38 19.15 9.001 -0.933 9.049 1191 117
RZ1255 1 12 40 34.76 -11 38 10.23 8.689 -0.785 8.724 849 8
RZ1290 1 12 40 33.82 -11 36 19.31 8.689 8.724 3844 57
RZ1308 1 12 40 33.20 -11 40 39.82 8.306 -3.278 8.930 1146 26
RZ1312 1 12 40 33.05 -11 37 00.33 8.269 0.379 8.277 1118 96
RZ1405 1 12 40 30.34 -11 36 27.93 7.601 0.919 7.657 1147 46
RZ1470 1 12 40 28.75 -11 36 58.42 7.211 0.411 7.222 1147 46
RZ1506 1 12 40 27.73 -11 36 22.31 6.959 1.013 7.032 8
RZ1532 2 12 40 27.22 -11 39 54.60 6.835 -2.525 7.287 448 8
RZ1533 2 12 40 27.21 -11 40 30.03 6.833 -3.116 7.510 1254 9
RZ1567 1 12 40 26.38 -11 39 26.44 6.629 -2.056 6.940 1068 8
RZ1591 2 12 40 25.84 -11 40 18.94 6.496 -2.931 7.127 1060 12
RZ1632 2 12 40 24.88 -11 39 08.52 6.259 -1.758 6.501 -111 10
RZ1638 1 12 40 24.74 -11 39 50.67 6.225 6.694 1068 8
RZ1661 1 12 40 23.88 -11 37 42.03 6.014 -0.316 6.022 506 17
RZ1690 1 12 40 23.30 -11 36 26.20 5.870 0.947 5.946 942 8
RZ1724 2 12 40 22.64 -11 41 03.78 5.709 -3.679 6.791 1115 20
RZ1733 1 12 40 22.31 -11 38 51.87 5.627 -1.480 5.819 1027 14
RZ1780 1 12 40 21.02 -11 38 38.41 5.311 -1.256 5.457 1460 11
RZ1836 1 12 40 19.90 -11 37 45.86 5.034 -0.380 5.049 1494 8
RZ1841 1 12 40 19.62 -11 38 58.04 4.966 -1.583 5.212 1022 32
RZ1923 S366 1 12 40 17.92 -11 38 32.06 4.549 -1.150 4.692 1173 8
RZ1934 2 12 40 17.73 -11 40 44.60 4.502 -3.360 5.617 1293 9
RZ1946 S214 1 12 40 17.36 -11 37 19.20 4.412 0.063 4.412 797 13
RZ1983 S228 3 12 40 16.63 -11 39 44.93 4.231 -2.365 4.847 946 19
RZ1990 S230 1 12 40 16.49 -11 38 18.33 4.198 -0.921 4.298 1006 9
RZ1997 S204 3 12 40 16.23 -11 39 11.67 4.135 -1.811 4.514 1498 26
RZ1998 2 12 40 16.19 -11 42 30.46 4.124 -5.124 6.577 218 13
RZ2014 S271 3 12 40 15.78 -11 37 39.30 4.022 -0.271 4.031 888 16
RZ2021 S047 1 12 40 15.58 -11 36 20.94 3.972 1.035 4.105 1116 8
RZ2024 2 12 40 15.53 -11 41 01.50 3.960 -3.641 5.380 93 9
RZ2037 S236 1 12 40 15.33 -11 38 40.17 3.910 -1.286 4.116 1470 8
RZ2038 S009 2 12 40 15.31 -11 40 12.70 3.907 -2.828 4.823 1240 8
RZ2055 2 12 40 15.04 -11 40 44.31 3.841 -3.355 5.100 1131 13
RZ2059 S211 2 12 40 14.99 -11 39 07.04 3.829 -1.734 4.203 1217 8
RZ2082 2 12 40 14.65 -11 41 55.43 3.745 -4.540 5.885 917 20
RZ2084 S197 1 12 40 14.63 -11 36 35.32 3.739 0.795 3.823 1226 11
RZ2106 S195 3 12 40 14.18 -11 38 25.64 3.630 -1.044 3.777 1075 15
RZ2109 S077 1 12 40 14.11 -11 38 38.38 3.611 -1.256 3.824 1406 8
RZ2144 S021 2 12 40 13.56 -11 39 34.44 3.477 -2.190 4.110 901 8
RZ2194 2 12 40 12.66 -11 41 29.43 3.254 -4.107 5.240 1096 16
RZ2237 4 12 40 11.74 -11 41 56.47 3.029 -4.558 5.473 931 13
RZ2242 S063 2 12 40 11.64 -11 38 14.44 3.003 -0.857 3.123 1434 8
RZ2276 S234 1 12 40 11.15 -11 37 45.37 2.884 -0.372 2.908 1199 10
RZ2289 S069 3 12 40 10.98 -11 35 54.64 2.842 1.473 3.201 732 13
RZ2303 S033 3 12 40 10.76 -11 40 00.64 2.789 -2.627 3.832 1239 10
RZ2305 S248 2 12 40 10.71 -11 39 08.62 2.775 -1.760 3.286 1229 10
RZ2307 S055 3 12 40 10.67 -11 36 45.30 2.766 0.628 2.836 759 11
RZ2316 4 12 40 10.52 -11 45 20.41 2.729 -7.957 8.412 1096 11
RZ2342 4 12 40 10.07 -11 42 11.61 2.618 -4.810 5.476 1150 20
RZ2344 4 12 40 10.05 -11 44 19.78 2.613 -6.946 7.421 832 21
RZ2363 S016 1 12 40 09.72 -11 36 22.55 2.533 1.008 2.726 1467 8
RZ2381 S019 1 12 40 09.35 -11 35 16.10 2.440 2.115 3.229 1195 8
RZ2390 S492 3 12 40 09.19 -11 35 54.00 2.402 1.483 2.824 1373 38
RZ2410 S093 1 12 40 08.83 -11 34 07.00 2.313 3.267 4.003 1323 11
RZ2428 4 12 40 08.53 -11 43 24.36 2.239 -6.022 6.425 958 12
RZ2439 S143 1 12 40 08.30 -11 38 17.18 2.184 -0.902 2.363 1037 12
RZ2474 4 12 40 07.67 -11 44 48.30 2.028 -7.422 7.694 1102 28
Table 2: IDs, positions and velocities for the sample.
Table 3: continued

IDs, positions and velocities for the sample. ID Alt ID Mask R.A. Dec. X Y R V V (J2000) (J2000) (arcmin) (arcmin) (arcmin) kms kms (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) RZ2475 4 12 40 07.68 -11 46 04.80 2.031 -8.697 8.931 1075 9 RZ2491 S059 3 12 40 07.49 -11 35 51.47 1.985 1.526 2.503 1162 12 RZ2493 S180 3 12 40 07.45 -11 36 13.12 1.975 1.165 2.293 897 32 RZ2502 S030 1 12 40 07.26 -11 36 44.65 1.928 0.639 2.031 1359 8 RZ2503 2 12 40 07.25 -11 40 25.42 1.924 -3.040 3.598 770 10 RZ2532 S177 2 12 40 06.75 -11 38 26.82 1.802 -1.064 2.093 1134 8 RZ2549 S487 1 12 40 06.32 -11 35 12.58 1.696 2.174 2.757 862 39 RZ2567 S142 3 12 40 05.90 -11 39 25.10 1.594 -2.035 2.585 1364 11 RZ2568 4 12 40 05.86 -11 46 03.00 1.583 -8.667 8.810 613 19 RZ2572 2 12 40 05.71 -11 42 18.06 1.545 -4.918 5.154 1176 13 RZ2593 4 12 40 05.27 -11 43 15.23 1.437 -5.870 6.044 1186 21 RZ2611 S235 3 12 40 04.93 -11 35 27.44 1.354 1.926 2.355 888 22 RZ2623 2 12 40 04.68 -11 40 53.74 1.292 -3.512 3.742 1113 18 RZ2637 S099 2 12 40 04.45 -11 40 18.53 1.234 -2.925 3.175 1106 11 RZ2658 4 12 40 03.76 -11 45 35.63 1.066 -8.210 8.279 1723 8 RZ2659 S512 4 12 40 03.73 -11 40 16.43 1.059 -2.891 3.079 1436 41 RZ2664 4 12 40 03.65 -11 43 05.47 1.039 -5.708 5.801 1295 15 RZ2672 4 12 40 03.55 -11 46 03.45 1.014 -8.674 8.733 299 12 RZ2687 4 12 40 03.31 -11 43 37.54 0.954 -6.242 6.315 912 16 RZ2694 S239 1 12 40 03.24 -11 34 06.79 0.939 3.270 3.402 1113 48 RZ2720 4 12 40 02.60 -11 40 29.50 0.780 -3.108 3.205 826 21 RZ2747 S382 4 12 40 02.20 -11 39 47.09 0.682 -2.401 2.497 1253 62 RZ2769 S373 4 12 40 01.69 -11 39 37.78 0.556 -2.246 2.314 1384 27 RZ2770 S171 4 12 40 01.68 -11 35 23.65 0.555 1.989 2.065 1403 30 RZ2790 2 12 40 01.39 -11 40 52.10 0.482 -3.485 3.518 898 20 RZ2796 S175 2 12 40 01.25 -11 40 07.71 0.449 -2.745 2.782 1115 19 RZ2829 4 12 40 00.64 -11 42 23.95 0.298 -5.016 5.025 958 32 RZ2830 4 12 40 00.66 -11 44 09.49 0.302 -6.775 6.782 1476 16 RZ2832 4 12 40 00.59 -11 44 55.97 0.286 -7.550 7.555 1122 8 RZ2835 S153 2 12 40 00.52 -11 39 52.63 0.270 -2.494 2.508 1400 13 RZ2847 S336 4 12 40 00.39 -11 39 05.47 0.236 -1.708 1.724 1278 18 RZ2862 4 12 40 00.11 -11 44 24.69 0.167 -7.028 7.030 1109 22 RZ2863 4 12 40 00.16 -11 32 27.71 0.180 4.921 4.925 1271 8 RZ2869 S222 1 12 40 00.04 -11 35 33.61 0.151 1.823 1.829 1190 14 RZ2883 S300 1 12 39 59.75 -11 35 29.14 0.080 1.898 1.899 1508 12 RZ2885 S138 4 12 39 59.71 -11 35 24.95 0.069 1.968 1.969 1257 18 RZ2915 S169 3 12 39 58.96 -11 35 44.10 -0.113 1.648 1.652 555 16 RZ2916 S015 4 12 39 58.94 -11 35 22.63 -0.118 2.006 2.010 1030 8 RZ2953 4 12 39 58.29 -11 33 18.06 -0.280 4.082 4.092 1259 17 RZ2967 S217 1 12 39 58.04 -11 35 30.83 -0.340 1.869 1.900 1144 9 RZ2968 S045 4 12 39 58.04 -11 34 26.75 -0.341 2.937 2.957 971 11 RZ2980 4 12 39 57.62 -11 41 15.10 -0.445 -3.868 3.894 1240 16 RZ2996 S137 4 12 39 57.48 -11 35 04.28 -0.478 2.312 2.361 1101 16 RZ3020 S104 4 12 39 56.83 -11 35 13.63 -0.636 2.156 2.248 951 10 RZ3026 4 12 39 56.71 -11 32 52.22 -0.668 4.513 4.562 885 25 RZ3027 4 12 39 56.66 -11 42 32.66 -0.681 -5.161 5.206 1183 19 RZ3029 2 12 39 56.63 -11 39 55.73 -0.688 -2.546 2.637 1166 21 RZ3057 4 12 39 56.00 -11 41 30.84 -0.844 -4.131 4.216 878 27 RZ3058 4 12 39 55.89 -11 42 28.72 -0.871 -5.095 5.169 1040 8 RZ3061 S011 4 12 39 55.83 -11 34 48.38 -0.883 2.577 2.724 995 8 RZ3075 1 12 39 55.44 -11 33 24.19 -0.981 3.980 4.099 1115 9 RZ3081 S174 4 12 39 55.36 -11 34 32.68 -1.000 2.839 3.010 1090 18 RZ3110 S165 1 12 39 54.60 -11 35 19.50 -1.187 2.058 2.376 939 8 RZ3160 S131 4 12 39 53.34 -11 39 52.22 -1.497 -2.487 2.903 1416 8 RZ3174 4 12 39 52.90 -11 30 59.40 -1.605 6.393 6.592 1087 34 RZ3191 S071 3 12 39 52.37 -11 35 40.44 -1.736 1.709 2.436 1098 14 RZ3193 1 12 39 52.26 -11 33 15.16 -1.763 4.131 4.491 1070 44 RZ3201 S048 2 12 39 52.16 -11 38 01.55 -1.787 -0.642 1.899 1209 8 RZ3218 S501 2 12 39 51.92 -11 38 24.33 -1.846 -1.022 2.110 1318 38 RZ3221 4 12 39 51.92 -11 32 22.43 -1.847 5.010 5.339 1034 21

IDs, positions and velocities for the sample. ID Alt ID Mask R.A. Dec. X Y R V V (J2000) (J2000) (arcmin) (arcmin) (arcmin) kms kms (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) RZ3222 S026 1 12 39 51.88 -11 36 27.15 -1.854 0.930 2.075 1450 8 RZ3226 S112 4 12 39 51.80 -11 39 24.71 -1.876 -2.028 2.763 1149 8 RZ3236 S420 2 12 39 51.62 -11 36 07.66 -1.920 1.256 2.294 759 10 RZ3244 S084 2 12 39 51.51 -11 36 28.83 -1.946 0.902 2.145 1269 8 RZ3261 S433 2 12 39 51.24 -11 38 17.57 -2.013 -0.909 2.209 791 21 RZ3265 S028 3 12 39 51.16 -11 38 33.57 -2.034 -1.176 2.349 824 8 RZ3274 S073 3 12 39 50.99 -11 38 23.26 -2.075 -1.004 2.305 1184 15 RZ3283 S188 1 12 39 50.86 -11 36 07.09 -2.105 1.265 2.456 1105 8 RZ3319 S401 2 12 39 50.12 -11 38 04.26 -2.287 -0.687 2.389 1056 32 RZ3320 S013 3 12 39 50.13 -11 38 28.89 -2.288 -1.098 2.537 1314 8 RZ3354 S364 4 12 39 49.34 -11 37 57.18 -2.479 -0.569 2.544 1275 15 RZ3355 S310 2 12 39 49.34 -11 38 46.37 -2.480 -1.389 2.843 840 24 RZ3363 4 12 39 49.22 -11 32 08.87 -2.510 5.236 5.806 1168 40 RZ3396 S129 3 12 39 48.09 -11 38 02.49 -2.787 -0.658 2.864 703 11 RZ3398 4 12 39 48.07 -11 30 44.46 -2.793 6.642 7.206 1654 14 RZ3408 S294 2 12 39 47.83 -11 38 00.85 -2.851 -0.630 2.920 1110 17 RZ3431 S060 3 12 39 47.26 -11 38 08.23 -2.993 -0.753 3.086 1557 8 RZ3434 1 12 39 47.22 -11 33 33.56 -3.002 3.824 4.862 1053 27 RZ3441 S115 2 12 39 47.03 -11 36 05.73 -3.047 1.288 3.308 1065 8 RZ3486 S079 1 12 39 46.13 -11 35 36.59 -3.269 1.774 3.719 888 8 RZ3489 S203 4 12 39 46.10 -11 36 12.98 -3.278 1.167 3.479 1068 8 RZ3491 S503 3 12 39 46.08 -11 37 55.67 -3.283 -0.544 3.327 867 17 RZ3512 S172 3 12 39 45.48 -11 37 12.52 -3.429 0.174 3.434 1191 32 RZ3517 S008 2 12 39 45.29 -11 36 00.50 -3.475 1.375 3.737 872 8 RZ3528 S377 1 12 39 45.01 -11 35 19.07 -3.545 2.066 4.103 1178 13 RZ3564 S237 2 12 39 44.19 -11 38 25.03 -3.747 -1.033 3.886 1337 17 RZ3575 S083 2 12 39 44.07 -11 37 29.64 -3.775 -0.110 3.777 1134 10 RZ3592 S247 1 12 39 43.73 -11 35 02.67 -3.859 2.339 4.513 610 8 RZ3601 S345 3 12 39 43.50 -11 35 54.98 -3.915 1.467 4.181 1096 19 RZ3616 S352 3 12 39 43.19 -11 36 42.93 -3.993 0.668 4.048 1430 20 RZ3632 S159 4 12 39 42.89 -11 34 18.06 -4.066 3.083 5.103 1066 8 RZ3643 S276 2 12 39 42.70 -11 36 15.64 -4.113 1.123 4.264 1104 12 RZ3662 S483 2 12 39 42.19 -11 35 26.25 -4.238 1.946 4.663 1434 19 RZ3667 S176 1 12 39 42.14 -11 35 23.38 -4.251 1.994 4.696 912 9 RZ3680 S012 2 12 39 41.97 -11 38 27.10 -4.292 -1.068 4.423 1060 8 RZ3704 S415 2 12 39 41.55 -11 37 09.80 -4.396 0.220 4.401 1061 17 RZ3745 S155 3 12 39 40.84 -11 37 12.71 -4.570 0.172 4.573 783 13 RZ3799 3 12 39 39.73 -11 35 38.98 -4.845 1.734 5.146 986 25 RZ3835 2 12 39 38.91 -11 35 12.16 -5.046 2.181 5.497 1318 8 RZ3872 3 12 39 38.16 -11 34 22.56 -5.230 3.008 6.033 250 20 RZ3873 2 12 39 38.14 -11 38 38.53 -5.236 -1.258 5.385 874 9 RZ3903 3 12 39 37.56 -11 36 39.63 -5.378 0.723 5.426 1114 19 RZ3937 2 12 39 36.84 -11 34 45.63 -5.555 2.624 6.143 993 8 RZ3951 3 12 39 36.50 -11 33 42.20 -5.638 3.681 6.733 1273 11 RZ3960 3 12 39 36.28 -11 33 05.77 -5.692 4.288 7.126 763 19 RZ4029 2 12 39 34.63 -11 36 18.90 -6.098 1.069 6.191 88 10 RZ4040 2 12 39 34.39 -11 34 40.16 -6.156 2.715 6.728 1345 12 RZ4100 2 12 39 32.86 -11 35 54.64 -6.534 1.474 6.698 874 71 RZ4129 2 12 39 32.07 -11 35 35.46 -6.727 1.794 6.962 791 21 RZ4134 3 12 39 31.93 -11 34 06.66 -6.762 3.274 7.513 908 25 RZ4140 2 12 39 31.75 -11 36 47.10 -6.806 0.599 6.833 271 19 RZ4143 3 12 39 31.69 -11 35 18.37 -6.821 2.078 7.131 906 24 RZ4160 2 12 39 31.48 -11 33 55.44 -6.872 3.461 7.694 1176 10 RZ4206 2 12 39 30.18 -11 36 13.74 -7.192 1.156 7.285 960 9 RZ4283 2 12 39 28.45 -11 35 54.55 -7.617 1.476 7.759 373 33 RZ4301 2 12 39 27.85 -11 36 38.57 -7.765 0.742 7.801 210 23 RZ4367 2 12 39 26.49 -11 35 22.96 -8.100 2.002 8.343 143 19 RZ4495 3 12 39 22.94 -11 34 11.63 -8.972 3.192 9.522 939 34 RZ4662 3 12 39 18.95 -11 34 02.44 -9.952 3.345 10.500 925 33 S001 2 12 40 10.04 -11 38 20.71 2.610 -0.961 2.781 1328 8

Table 4: continued

IDs, positions and velocities for the sample. ID Alt ID Mask R.A. Dec. X Y R V V (J2000) (J2000) (arcmin) (arcmin) (arcmin) kms kms (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) S003 4 12 40 00.09 -11 36 09.13 0.164 1.231 1.242 392 8 S004 2 12 40 14.59 -11 38 27.99 3.729 -1.083 3.883 999 8 S007 1 12 39 48.62 -11 35 40.63 -2.657 1.706 3.158 1410 8 S017 4 12 40 00.05 -11 35 52.92 0.155 1.501 1.509 622 10 S027 3 12 40 00.29 -11 37 54.80 0.212 -0.530 0.571 982 8 S032 3 12 40 12.18 -11 37 34.53 3.138 -0.192 3.143 906 15 S034 1 12 39 54.56 -11 36 39.54 -1.196 0.724 1.398 1161 8 S035 2 12 40 01.05 -11 37 57.02 0.399 -0.567 0.693 1173 8 S037 1 12 40 06.19 -11 36 10.31 1.663 1.212 2.058 686 8 S039 4 12 39 54.75 -11 36 25.84 -1.149 0.952 1.493 1097 8 S043 4 12 39 59.31 -11 38 27.89 -0.028 -1.081 1.082 931 10 S044 3 12 39 52.36 -11 38 46.85 -1.738 -1.397 2.230 1585 8 S050 1 12 40 03.21 -11 36 04.36 0.931 1.311 1.608 814 8 S051 3 12 39 56.44 -11 38 01.66 -0.734 -0.644 0.976 1309 8 S057 3 12 39 56.92 -11 38 19.82 -0.616 -0.947 1.130 1017 8 S062 1 12 39 54.64 -11 36 02.54 -1.178 1.341 1.785 1037 8 S065 1 12 39 54.07 -11 36 04.86 -1.317 1.302 1.852 996 8 S066 2 12 39 59.41 -11 36 31.92 -0.003 0.851 0.851 1107 8 S070 2 12 39 47.23 -11 37 47.94 -2.999 -0.415 3.028 990 11 S072 1 12 39 53.92 -11 35 55.20 -1.354 1.463 1.994 1314 8 S075 2 12 39 52.93 -11 35 54.75 -1.598 1.471 2.172 1264 8 S076 3 12 40 04.96 -11 36 21.40 1.361 1.027 1.705 1454 20 S080 3 12 39 53.64 -11 37 01.01 -1.423 0.366 1.469 1257 12 S085 2 12 39 56.74 -11 36 40.57 -0.660 0.707 0.967 841 8 S095 4 12 39 48.94 -11 37 39.87 -2.577 -0.281 2.593 932 9 S097 2 12 40 03.02 -11 38 45.85 0.884 -1.381 1.640 846 9 S102 3 12 40 04.18 -11 35 41.20 1.171 1.697 2.061 885 24 S106 1 12 39 54.04 -11 36 35.45 -1.325 0.792 1.544 787 8 S111 2 12 39 52.72 -11 38 23.35 -1.648 -1.006 1.931 861 10 S113 4 12 39 58.30 -11 37 07.86 -0.277 0.252 0.374 1086 17 S125 2 12 40 01.20 -11 38 46.09 0.437 -1.385 1.452 897 10 S128 4 12 40 02.20 -11 38 50.00 0.682 -1.450 1.602 789 15 S133 3 12 39 59.10 -11 36 20.27 -0.078 1.045 1.048 908 23 S145 3 12 40 01.58 -11 36 16.87 0.529 1.102 1.223 900 18 S146 1 12 39 51.64 -11 34 22.05 -1.914 3.016 3.572 936 12 S151 1 12 39 59.92 -11 36 53.77 0.120 0.487 0.501 1081 11 S152 1 12 40 00.62 -11 37 05.54 0.293 0.290 0.413 1182 8 S161 1 12 40 11.54 -11 37 04.96 2.979 0.300 2.994 1448 11 S162 4 12 40 01.83 -11 38 23.58 0.593 -1.010 1.171 1128 14 S163 3 12 39 55.92 -11 36 44.44 -0.862 0.642 1.075 1101 23 S182 1 12 39 58.93 -11 36 54.75 -0.122 0.470 0.486 1018 8 S185 2 12 40 04.69 -11 38 28.74 1.296 -1.096 1.697 750 10 S194 3 12 39 58.02 -11 37 59.58 -0.345 -0.609 0.700 1073 9 S200 4 12 39 55.81 -11 38 19.88 -0.888 -0.947 1.299 1060 14 S209 4 12 39 58.79 -11 36 27.61 -0.155 0.923 0.936 947 17 S219 4 12 39 56.84 -11 36 45.52 -0.635 0.624 0.891 543 37 S220 2 12 39 46.94 -11 37 13.64 -3.071 0.156 3.075 1582 16 S223 1 12 40 04.69 -11 36 43.60 1.297 0.656 1.454 731 15 S229 3 12 40 02.45 -11 35 55.59 0.744 1.457 1.636 1098 25 S232 1 12 39 56.78 -11 35 53.89 -0.650 1.485 1.621 1264 9 S242 2 12 39 46.82 -11 36 28.10 -3.100 0.915 3.232 737 9 S256 3 12 40 00.05 -11 38 27.73 0.155 -1.079 1.090 1166 17 S263 2 12 40 01.88 -11 38 04.41 0.603 -0.690 0.916 700 11 S272 3 12 39 55.91 -11 36 27.05 -0.865 0.932 1.272 821 22 S273 4 12 39 54.63 -11 37 58.69 -1.179 -0.594 1.320 1477 14 S278 4 12 39 58.42 -11 38 59.79 -0.245 -1.613 1.632 1145 9 S280 2 12 40 02.13 -11 37 00.90 0.665 0.368 0.759 1438 8 S311 2 12 40 01.59 -11 37 59.51 0.533 -0.608 0.809 1214 10 S318 3 12 40 07.21 -11 37 03.66 1.915 0.322 1.942 1011 21 S335 3 12 39 53.98 -11 38 52.15 -1.340 -1.486 2.001 1082 10

Table 5: continued

IDs, positions and velocities for the sample. ID Alt ID Mask R.A. Dec. X Y R V V (J2000) (J2000) (arcmin) (arcmin) (arcmin) kms kms (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) S358 2 12 40 11.51 -11 39 18.11 2.974 -1.918 3.539 1120 12 S363 1 12 40 03.37 -11 36 31.16 0.971 0.864 1.300 1450 34 S368 1 12 40 05.39 -11 37 59.00 1.466 -0.600 1.584 1315 28 S369 4 12 39 59.75 -11 37 54.27 0.079 -0.521 0.527 1635 14 S370 1 12 39 51.27 -11 34 55.48 -2.006 2.459 3.173 1169 8 S376 3 12 40 10.47 -11 36 36.33 2.717 0.778 2.826 1433 18 S384 4 12 39 58.84 -11 38 11.39 -0.144 -0.806 0.819 990 22 S388 1 12 40 07.73 -11 38 14.33 2.043 -0.855 2.214 1224 15 S393 3 12 39 48.68 -11 35 39.54 -2.642 1.724 3.155 1448 20 S435 2 12 39 47.96 -11 36 58.39 -2.820 0.410 2.849 735 17 S438 3 12 40 13.73 -11 39 54.90 3.520 -2.531 4.336 817 21 S449 4 12 39 55.85 -11 39 58.24 -0.879 -2.587 2.733 896 24 S490 2 12 40 15.77 -11 39 04.91 4.021 -1.698 4.365 803 11 S502 3 12 40 10.77 -11 38 18.93 2.791 -0.932 2.942 1201 33 S529 1 12 40 03.53 -11 37 50.57 1.010 -0.459 1.110 2285 36 S600 2 12 39 41.37 -11 34 53.43 -4.439 2.493 5.091 1323 8 S605 2 12 39 58.33 -11 38 41.53 -0.269 -1.309 1.336 1066 24 S626 4 12 39 54.17 -11 38 13.60 -1.293 -0.843 1.544 1691 19

Table 6: continued

Appendix B Magnitudes, colours, indices and metallicities

In Table B1 we present magnitudes, colours, indices and metallicities for the globular cluster candidates. The table is ordered by ID.

ID Alt ID V B-R CH [Fe/H] Mgb [Fe/H] Fe5270 [Fe/H] [Fe/H]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
RZ1191 20.37 1.22 0.170 (0.007) -0.515 (0.079) 0.064 (0.005) -1.309 (0.073) 0.053 (0.004) -1.007 (0.085) -0.937 (0.045)
RZ1192 21.20 1.05 0.032 (0.009) -2.090 (0.113) 0.040 (0.006) -1.649 (0.080)
RZ1210 22.66 1.09 0.047 ( – ) -1.918 ( – ) 0.026 (0.010) -1.848 (0.149) 0.032 (0.011) -1.434 (0.217) -1.917 (–)
RZ1255 19.81 1.24 0.116 (0.006) -1.131 (0.075) 0.086 (0.003) -0.997 (0.049) 0.048 (0.003) -1.108 (0.074) -1.089 (0.038)
RZ1271 21.96 1.67 -0.320 (0.009) -6.108 (0.102) 0.229 (0.007) 1.029 (0.103) 0.116 (0.006) 0.277 (0.127) -1.444 (0.064)
RZ1290 22.35 0.97 -0.014 (0.013) -2.615 (0.149) -0.055 (0.017) -2.995 (0.237) -0.031 (0.011) -2.717 (0.220) -2.801 (0.118)
RZ1312 22.26 1.09 0.102 ( – ) -1.291 ( – ) 0.058 (0.010) -1.394 (0.140) 0.045 (0.007) -1.169 (0.146) -1.291 (–)
RZ1405 22.05 1.02 0.168 ( – ) -0.537 ( – ) 0.022 (0.009) -1.904 (0.132) 0.068 (0.009) -0.701 (0.187) -0.539 (–)
RZ1470 23.08 1.14 0.147 ( – ) -0.777 ( – ) -0.034 ( – ) -2.698 ( – ) -0.073 (0.009) -3.573 (0.183) -1.739 (–)
RZ1506 19.04 1.49 0.187 (0.007) -0.320 (0.076) 0.264 (0.005) 1.525 (0.071) 0.093 (0.002) -0.192 (0.050) 0.373 (0.038)
RZ1532 20.91 1.01 0.063 (0.008) -1.736 (0.089) 0.023 (0.005) -1.890 (0.065) 0.031 (0.004) -1.455 (0.074) -1.689 (0.044)
RZ1533 21.33 1.00 0.036 (0.009) -2.044 (0.100) – –
RZ1567 21.09 1.09 0.124 (0.009) -1.040 (0.100) 0.045 (0.006) -1.578 (0.085) 0.014 (0.005) -1.801 (0.104) -1.471 (0.056)
RZ1591 21.87 1.42 0.158 (0.009) -0.651 (0.100) 0.157 (0.005) 0.009 (0.077) 0.057 (0.005) -0.925 (0.100) -0.564 (0.054)
RZ1632 21.06 1.10 0.184 (0.007) -0.355 (0.080) 0.121 (0.004) -0.501 (0.062) 0.057 (0.004) -0.925 (0.075) -0.593 (0.042)
RZ1638 19.56 1.55 0.211 (0.006) -0.046 (0.073) 0.206 (0.003) 0.703 (0.047) 0.097 (0.003) -0.110 (0.057) 0.132 (0.034)
RZ1661 21.32 1.25 0.225 (0.009) 0.113 (0.106) 0.104 (0.006) -0.742 (0.092) 0.060 (0.005) -0.864 (0.110) -0.491 (0.059)
RZ1690 21.80 1.43 0.260 (0.009) 0.513 (0.105) 0.138 (0.007) -0.260 (0.105) 0.098 (0.008) -0.090 (0.172) 0.030 (0.075)
RZ1724 21.80 1.46 0.144 (0.009) -0.811 (0.107) 0.062 (0.006) -1.337 (0.092)
RZ1733 20.71 1.05 0.051 (0.009) -1.873 (0.098) 0.019 (0.005) -1.699 (0.095)
RZ1771 20.82 1.26 0.177 (0.009) -0.435 (0.100) 0.093 (0.005) -0.898 (0.085) 0.021 (0.006) -1.658 (0.116) -1.037 (0.058)
RZ1780 22.02 1.42 0.414 (0.008) 2.271 (0.092) 0.069 (0.007) -0.681 (0.137)
RZ1836 19.65 1.35 0.149 (0.006) -0.754 (0.074) 0.105 (0.003) -0.728 (0.049)
RZ1841 23.32 1.15 -0.390 ( – ) -6.907 ( – )
RZ1923 S366 22.21 1.46 0.024 (0.011) -2.181 (0.127) 0.095 (0.006) -0.151 (0.142)
RZ1934 20.23 1.24 0.120 (0.008) -1.085 (0.089) 0.083 (0.003) -1.040 (0.047)
RZ1946 S214 21.45 1.04 -0.004 (0.011) -2.501 (0.125) 0.065 (0.007) -1.295 (0.095)
RZ1983 S228 21.49 1.64 0.193 (0.008) -0.252 (0.096) 0.251 (– ) 1.341 (– ) 0.100 (0.005) -0.049 (0.112)
RZ1990 S230 21.56 1.35 0.055 (0.012) -1.827 (0.143) -0.005 (0.006) -2.188 (0.129)
RZ1997 S204 21.50 1.21 0.164 (0.009) -0.583 (0.105) 0.006 (0.006) -1.964 (0.130)
RZ1998 20.55 1.61 0.122 (0.008) -1.062 (0.091) 0.215 (0.006) 0.831 (0.089) 0.101 (0.003) -0.029 (0.062) -0.101 (0.047)
RZ2014 S271 21.74 1.29 0.289 (0.010) 0.844 (0.110) 0.142 (0.006) -0.204 (0.088) 0.047 (0.006) -1.129 (0.116) -0.179 (0.060)
RZ2021 S047 20.18 1.15 0.066 (0.008) -1.702 (0.096) 0.062 (0.004) -1.337 (0.060) 0.025 (0.004) -1.577 (0.073) -1.567 (0.045)
RZ2024 20.05 1.26 0.186 (0.006) -0.332 (0.064) 0.185 (0.003) 0.406 (0.047) 0.063 (0.002) -0.803 (0.053) -0.269 (0.031)
RZ2037 S236 21.67 1.15 -0.004 (0.011) -2.501 (0.122) 0.027 (0.006) -1.536 (0.127)
RZ2038 S009 19.38 1.30 0.109 (0.005) -1.211 (0.061) 0.074 (0.002) -1.167 (0.034)
RZ2055 21.37 1.20 0.098 (0.008) -1.336 (0.095) 0.098 (0.004) -0.827 (0.069) 0.036 (0.005) -1.353 (0.097) -1.206 (0.050)
RZ2059 S211 21.57 1.44 0.121 (0.009) -1.074 (0.107) 0.123 (0.005) -0.473 (0.074) 0.063 (0.004) -0.803 (0.090) -0.818 (0.052)
RZ2082 21.69 1.08 0.094 (0.010) -1.382 (0.119) 0.083 (0.005) -1.040 (0.080) 0.038 (0.005) -1.312 (0.106) -1.267 (0.059)
RZ2084 S197 21.44 1.17 0.085 (0.011) -1.485 (0.122) 0.045 (0.007) -1.578 (0.099) 0.035 (0.006) -1.373 (0.122) -1.472 (0.066)
RZ2106 S195 21.58 1.39 0.149 (0.010) -0.754 (0.111) 0.103 (0.006) -0.756 (0.091)
RZ2109 S077 20.59 1.38 0.142 (0.008) -0.834 (0.090) 0.116 (0.005) -0.572 (0.072) 0.054 (0.004) -0.986 (0.086) -0.811 (0.048)
RZ2144 S021 19.77 1.20 0.106 (0.006) -1.245 (0.065) 0.035 (0.002) -1.373 (0.048)
RZ2194 21.51 1.15 0.056 (0.009) -1.816 (0.102) 0.050 (0.005) -1.507 (0.078) 0.052 (0.005) -1.027 (0.100) -1.448 (0.054)
RZ2237 20.54 1.18 0.064 (0.011) -1.724 (0.123) 0.098 (0.007) -0.827 (0.099) 0.040 (0.006) -1.271 (0.128) -1.305 (0.067)
RZ2242 S063 20.41 1.07 0.018 (0.006) -2.250 (0.070) 0.013 (0.004) -2.032 (0.054) 0.012 (0.003) -1.842 (0.063) -2.051 (0.036)
RZ2276 S234 21.69 1.62 0.624 (0.008) 4.668 (0.090) 0.142 (0.006) 0.806 (0.129)
RZ2289 S069 20.49 1.04 -0.006 (0.010) -2.523 (0.109) 0.001 (0.005) -2.202 (0.070) 0.018 (0.004) -1.719 (0.081) -2.186 (0.050)
RZ2303 S033 19.98 1.18 0.057 (0.007) -1.804 (0.080)
RZ2305 S248 21.73 1.45 0.113 (0.009) -1.165 (0.107) 0.061 (0.005) -0.844 (0.107)
RZ2307 S055 20.31 1.49 0.172 (0.010) -0.492 (0.119) 0.110 (0.004) -0.657 (0.063) 0.062 (0.004) -0.823 (0.074) -0.628 (0.051)
RZ2316 20.31 1.41 0.162 (0.011) -0.606 (0.126) 0.135 (0.008) -0.303 (0.110) 0.064 (0.007) -0.783 (0.133) -0.579 (0.071)
RZ2342 21.55 1.05 -0.032 (0.008) -2.820 (0.088) 0.082 (0.005) -1.054 (0.071) 0.001 (0.005) -2.066 (0.097) -2.045 (0.049)
RZ2344 21.28 1.35 0.065 (0.011) -1.713 (0.124) 0.075 (0.010) -1.153 (0.141) 0.041 (0.008) -1.251 (0.160) -1.353 (0.082)
RZ2363 S016 19.43 1.21 0.088 (0.006) -1.450 (0.072) 0.060 (0.003) -1.366 (0.045)
RZ2381 S019 19.83 1.33 0.113 (0.007) -1.165 (0.081) 0.116 (0.004) -0.572 (0.054) 0.050 (0.003) -1.068 (0.066) -0.974 (0.039)
RZ2390 S492 22.62 1.43 1.548 (0.016) 15.220 (0.179) 0.149 (0.011) -0.105 (0.155) -0.003 (0.008) -2.147 (0.160)
RZ2410 S093 20.78 1.19 0.007 (0.010) -2.375 (0.115) 0.074 (0.006) -1.167 (0.081) 0.040 (0.005) -1.271 (0.107) -1.661 (0.059)
RZ2428 20.38 1.11 0.114 (0.005) -1.154 (0.061) 0.049 (0.008) -1.522 (0.116) 0.032 (0.009) -1.434 (0.177) -1.415 (0.073)
RZ2439 S143 21.17 1.10 0.085 (0.009) -1.485 (0.109) -0.011 (0.007) -2.372 (0.102) 0.031 (0.006) -1.455 (0.115) -1.752 (0.062)
Table 7: IDs, magnitudes, colours, indices and metallicites for the GC candidate sample.

IDs, magnitudes, colours, indices and metallicites for the sample. ID Alt ID V B-R CH [Fe/H] Mgb [Fe/H] Fe5270 [Fe/H] [Fe/H] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) RZ2475 20.02 1.19 0.090 (0.010) -1.428 (0.111) 0.052 (0.008) -1.479 (0.106) – – RZ2491 S059 20.44 1.29 0.120 (0.008) -1.085 (0.095) 0.066 (0.005) -1.281 (0.066) 0.032 (0.004) -1.434 (0.080) -1.255 (0.046) RZ2493 S180 21.39 1.21 0.016 (0.011) -2.272 (0.130) -0.017 (0.007) -2.457 (0.097) 0.053 (0.005) -1.007 (0.106) -1.923 (0.064) RZ2502 S030 19.93 1.42 0.198 (0.006) -0.195 (0.075) 0.139 (0.004) -0.246 (0.052) 0.079 (0.003) -0.477 (0.071) -0.309 (0.038) RZ2503 20.28 1.28 0.134 (0.006) -0.925 (0.074) 0.088 (0.003) -0.969 (0.047) 0.043 (0.003) -1.210 (0.063) -1.033 (0.036) RZ2532 S177 21.48 1.24 0.291 (0.012) 0.867 (0.134) 0.040 (0.005) -1.271 (0.096) RZ2549 S487 22.57 1.07 -0.290 ( – ) -5.765 ( – ) RZ2567 S142 21.16 1.13 0.102 (0.009) -1.291 (0.101) 0.026 (0.007) -1.848 (0.093) 0.038 (0.005) -1.312 (0.108) -1.470 (0.058) RZ2572 20.91 1.14 0.120 (0.009) -1.085 (0.099) 0.036 (0.005) -1.706 (0.072) 0.042 (0.004) -1.231 (0.084) -1.308 (0.049) RZ2593 22.27 1.56 0.239 (0.010) 0.273 (0.116) 0.246 (0.008) 1.270 0.111) 0.029 (– ) -1.495 (– ) -1.490 (–) RZ2611 S235 21.70 1.44 0.093 (0.010) -1.393 (0.116) 0.051 (0.008) -1.493 (0.108) 0.012 (0.006) -1.842 (0.124) -1.584 (0.067) RZ2623 21.64 1.39 0.138 (0.009) -0.880 (0.101) 0.076 (0.005) -1.139 (0.075) 0.057 (0.005) -0.925 (0.096) -0.967 (0.052) RZ2637 S099 20.84 1.49 0.061 (0.007) -1.759 (0.085) 0.062 (0.006) -1.337 (0.085) RZ2658 20.62 1.12 0.092 (– ) -1.405 (– ) -1.213 (–) RZ2664 21.59 1.20 0.221 (0.009) 0.068 (0.103) 0.071 (0.007) -1.210 (0.097) RZ2687 21.49 1.12 0.165 (– ) -0.572 (– ) 0.063 (– ) -1.323 (– ) RZ2694 S239 21.67 1.07 -0.092 (0.016) -3.505 (0.182) 0.061 (0.008) -1.352 (0.108) 0.070 (0.006) -0.660 (0.122) -2.102 (0.081) RZ2720 21.77 1.11 0.058 (0.009) -1.793 (0.105) 0.065 (– ) -1.295 (– ) 0.022 (– ) -1.638 (– ) -1.467 (–) RZ2747 S382 22.27 1.42 0.223 (– ) 0.091 (– ) 0.198 (0.016) 0.590 (0.229) 0.053 (0.008) -1.007 (0.160) 0.090 (–) RZ2769 S373 22.18 1.51 0.274 (0.009) 0.673 (0.106) 0.104 (0.009) -0.742 (0.134) 0.018 (0.008) -1.719 (0.168) -0.776 (0.079) RZ2770 S171 21.23 1.08 0.035 (0.010) -2.055 (0.112) 0.000 (0.008) -2.216 (0.107) -0.009 (0.006) -2.269 (0.116) -2.181 (0.064) RZ2790 22.29 1.38 0.350 (0.009) 1.540 (0.104) 0.153 (0.006) -0.048 (0.091) 0.080 (0.006) -0.457 (0.122) 0.316 (0.061) RZ2796 S175 21.33 1.14 -0.004 (0.008) -2.501 (0.093) 0.025 (0.005) -1.862 (0.070) 0.007 (0.004) -1.943 (0.085) -2.129 (0.048) RZ2830 21.59 1.14 0.200 (0.007) -0.172 (0.085) RZ2832 19.77 1.52 0.215 (0.013) 0.001 (0.146) RZ2835 S153 21.24 1.26 0.077 (0.008) -1.576 (0.097) 0.064 (0.005) -1.309 (0.066) 0.046 (0.004) -1.149 (0.078) -1.365 (0.047) RZ2847 S336 22.06 1.56 0.255 (0.009) 0.456 (0.104) 0.091 (0.008) -0.926 (0.119) 0.027 (0.007) -1.536 (0.150) -0.786 (0.072) RZ2862 21.49 1.06 -0.107 (0.014) -3.676 (0.163) RZ2863 19.36 1.39 0.125 (0.008) -1.028 (0.087) 0.088 (0.008) -0.969 (0.114) 0.046 (0.008) -1.149 (0.158) -1.063 (0.071) RZ2869 S222 21.59 1.18 0.170 (0.009) -0.515 (0.105) 0.086 (0.007) -0.997 (0.094) RZ2883 S300 21.84 1.40 -0.096 ( – ) -3.551 ( – ) 0.066 (0.008) -1.281 (0.111) RZ2885 S138 21.10 1.41 0.045 (0.011) -1.941 (0.122) 0.123 (0.006) -0.473 (0.089) 0.042 (0.006) -1.231 (0.116) -1.290 (0.063) RZ2915 S169 21.34 1.17 -0.039 (0.014) -2.900 (0.157) 0.047 (0.006) -1.550 (0.092) 0.043 (0.007) -1.210 (0.137) -1.978 (0.075) RZ2916 S015 19.49 1.27 0.123 (0.007) -1.051 (0.075) 0.077 (0.004) -1.125 (0.053) 0.034 (0.003) -1.394 (0.068) -1.190 (0.038) RZ2953 21.12 1.17 -0.029 (– ) -2.786 (– ) -0.015 (– ) -2.429 (– ) 0.038 (– ) -1.312 (– ) -2.176 (–) RZ2967 S217 21.61 1.14 0.041 (0.010) -1.987 (0.117) -0.045 (0.008) -2.854 (0.116) RZ2968 S045 20.27 1.49 0.154 (0.008) -0.697 (0.090) 0.146 (0.005) -0.147 (0.066) 0.079 (0.005) -0.477 (0.098) -0.469 (0.049) RZ2980 22.06 1.69 0.306 (0.009) 1.038 (0.105) – – 0.133 (0.008) 0.623 (0.155) RZ2996 S137 21.14 1.09 -0.003 (0.010) -2.489 (0.110) 0.053 (0.006) -1.465 (0.091) 0.036 (0.005) -1.353 (0.109) -1.789 (0.059) RZ3020 S104 20.87 1.44 0.104 (0.011) -1.268 (0.120) 0.093 (0.006) -0.898 (0.085) 0.060 (0.005) -0.864 (0.101) -1.032 (0.059) RZ3026 22.03 1.48 0.422 (0.011) 2.362 (0.130) 0.139 (– ) -0.246 (–) 0.014 (– ) -1.801 (– ) -1.021 (–) RZ3027 22.58 1.08 -0.137 (0.013) -4.019 (0.149) RZ3029 22.11 1.00 0.024 (0.009) -2.181 (0.108) 0.036 (0.007) -1.706 (0.093) 0.003 (0.006) -2.025 (0.112) -1.984 (0.060) RZ3057 22.07 1.18 0.223 (0.008) 0.091 (0.093) RZ3058 21.47 1.12 0.005 (0.010) -2.398 (0.113) 0.035 (0.007) -1.720 (0.098) 0.041 (0.006) -1.251 (0.123) -1.777 (0.064) RZ3061 S011 19.45 1.59 0.152 (0.006) -0.720 (0.072) 0.187 (0.004) 0.434 (0.053) 0.086 (0.003) -0.334 (0.069) -0.267 (0.037) RZ3075 19.81 1.19 0.073 (0.007) -1.622 (0.080) 0.051 (0.004) -1.493 (0.058) 0.022 (0.003) -1.638 (0.068) -1.591 (0.039) RZ3081 S174 21.30 1.11 0.084 (0.010) -1.496 (0.118) 0.073 (0.007) -1.182 (0.093) 0.025 (0.006) -1.577 (0.128) -1.440 (0.065) RZ3110 S165 21.36 1.56 0.382 (0.008) 1.906 (0.089) 0.078 (0.005) -0.497 (0.112) RZ3160 S131 21.00 1.22 0.192 (0.008) -0.263 (0.095) 0.057 (0.006) -1.408 (0.092) 0.037 (0.005) -1.332 (0.111) -1.015 (0.057) RZ3174 21.44 1.42 0.330 (0.011) 1.312 (0.131) 0.117 (– ) -0.558 (– ) 0.075 (– ) -0.558 (– ) -0.557 (–) RZ3191 S071 20.47 1.48 0.107 (0.011) -1.234 (0.129) 0.100 (0.006) -0.799 (0.086) 0.042 (0.005) -1.231 (0.092) -1.111 (0.060) RZ3193 22.80 1.58 0.259 (0.010) 0.502 (0.117) 0.121 (0.008) 0.378 (0.169) RZ3201 S048 20.27 1.44 0.181 (0.006) -0.389 (0.069) 0.127 (0.003) -0.416 (0.047) 0.058 (– ) -0.905 (– ) -0.904 (–) RZ3218 S501 22.65 1.13 -0.007 (0.013) -2.535 (0.148) 0.027 (0.008) -1.833 (0.119) 0.012 (0.008) -1.842 (0.159) -2.079 (0.082) RZ3221 21.30 1.29 0.059 (0.012) -1.782 (0.133) 0.079 (0.008) -1.096 (0.120) 0.025 (0.010) -1.577 (0.204) -1.510 (0.090) RZ3222 S026 19.91 1.35 0.133 (0.007) -0.937 (0.077) 0.070 (0.004) -1.224 (0.052) 0.053 (0.003) -1.007 (0.062) -1.038 (0.037) RZ3226 S112 20.94 1.39 0.143 (0.008) -0.823 (0.095) 0.096 (0.006) -0.856 (0.092) 0.079 (0.005) -0.477 (0.112) -0.703 (0.057) RZ3236 S420 22.39 1.23 0.085 (0.009) -1.485 (0.105) 0.038 (0.008) -1.678 (0.115) 0.036 (0.007) -1.353 (0.137) -1.497 (0.069) RZ3244 S084 20.78 1.53 0.172 (0.007) -0.492 (0.080) 0.117 (0.004) -0.558 (0.060) 0.066 (0.004) -0.742 (0.071) -0.595 (0.041)

Table 8: continued

IDs, magnitudes, colours, indices and metallicites for the sample. ID Alt ID V B-R CH [Fe/H] Mgb [Fe/H] Fe5270 [Fe/H] [Fe/H] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) RZ3261 S433 22.46 1.20 0.019 (0.011) -2.238 (0.122) 0.025 (0.008) -1.862 (0.108) 0.029 (0.006) -1.495 (0.132) -1.856 (0.070) RZ3265 S028 19.96 1.59 0.154 (0.007) -0.697 (0.080) 0.183 (0.004) 0.377 (0.058) 0.072 (0.004) -0.620 (0.072) -0.374 (0.040) RZ3274 S073 20.69 1.21 0.077 (0.008) -1.576 (0.092) 0.047 (– ) -1.550 (– ) -0.012 (– ) -2.330 (– ) -1.940 ( –) RZ3283 S188 21.44 1.18 0.264 (0.008) 0.559 (0.091) 0.027 (0.006) -1.536 (0.114) RZ3319 S401 22.42 1.13 0.056 (– ) -1.816 (– ) 0.089 (0.008) -0.955 (0.111) 0.074 (0.007) -0.579 (0.141) -1.813 (–) RZ3320 S013 19.50 1.46 0.163 (0.007) -0.594 (0.077) 0.104 (0.004) -0.742 (0.056) 0.056 (0.003) -0.945 (0.064) -0.750 (0.038) RZ3354 S364 22.16 1.20 0.062 (0.010) -1.747 (0.115) 0.065 (0.010) -1.295 (0.135) 0.036 (0.009) -1.353 (0.174) -1.441 (0.082) RZ3355 S310 22.00 1.24 0.096 (0.010) -1.359 (0.118) 0.074 (0.006) -1.167 (0.088) 0.052 (0.005) -1.027 (0.105) -1.193 (0.060) RZ3363 22.39 1.54 0.331 (0.013) 1.323 (0.150) 0.297 (– ) 1.993 (– ) RZ3396 S129 21.04 1.09 0.126 (0.009) -1.017 (0.100) 0.018 (0.006) -1.961 (0.088) 0.017 (0.005) -1.740 (0.108) -1.561 (0.057) RZ3398 21.98 1.05 0.057 (0.009) -1.804 (0.108) 0.035 (– ) -1.720 (– ) RZ3408 S294 21.91 1.47 0.158 (0.011) -0.651 (0.132) 0.143 (0.006) -0.190 (0.089) 0.064 (0.005) -0.783 (0.109) -0.569 (0.064) RZ3431 S060 20.45 1.18 0.079 (0.008) -1.553 (0.093) 0.024 (0.006) -1.876 (0.090) 0.024 (0.005) -1.597 (0.093) -1.673 (0.053) RZ3434 22.20 1.48 0.486 (0.014) 3.093 (0.159) 0.184 (0.007) 0.391 (0.103) RZ3441 S115 20.94 1.19 0.114 (0.008) -1.154 (0.094) 0.066 (0.005) -1.281 (0.065) 0.065 (0.004) -0.762 (0.076) -1.062 (0.045) RZ3486 S079 20.66 1.54 0.246 (0.007) 0.353 (0.084) 0.161 (0.006) 0.066 (0.082) 0.079 (0.004) -0.477 (0.083) -0.017 (0.048) RZ3489 S203 21.36 1.49 0.184 (0.009) -0.355 (0.105) 0.149 (0.007) -0.105 (0.099) 0.030 (0.006) -1.475 (0.128) -0.712 (0.064) RZ3491 S503 22.69 1.44 -0.126 (– ) -3.893 (– ) 0.253 (0.008) 1.369 (0.115) 0.000 (0.009) -2.086 (0.177) -3.884 (–) RZ3512 S172 21.30 1.10 -0.022 (0.010) -2.706 (0.111) RZ3517 S008 19.28 1.54 0.189 (0.005) -0.298 (0.054) 0.162 (0.002) 0.080 (0.033) 0.075 (0.002) -0.558 (0.040) -0.281 (0.024) RZ3528 S377 22.26 1.43 0.418 (0.008) 2.316 (0.091) 0.133 (0.008) -0.331 (0.109) 0.086 (0.009) -0.334 (0.179) 0.303 (0.076) RZ3564 S237 21.78 1.32 0.116 (0.011) -1.131 (0.130) 0.107 (0.006) -0.700 (0.079) 0.034 (0.005) -1.394 (0.101) -1.107 (0.061) RZ3575 S083 20.69 1.38 0.111 (0.007) -1.188 (0.085) 0.089 (0.004) -0.955 (0.056) 0.039 (0.003) -1.292 (0.070) -1.161 (0.041) RZ3592 S247 21.75 1.33 0.234 (0.008) 0.216 (0.095) 0.029 (0.006) -1.495 (0.121) RZ3601 S345 22.09 1.43 0.266 (0.011) 0.581 (0.125) 0.101 (0.008) -0.785 (0.120) 0.063 (0.006) -0.803 (0.132) -0.338 (0.072) RZ3616 S352 22.14 1.19 0.019 (0.011) -2.238 (0.125) 0.022 (0.008) -1.904 (0.112) RZ3632 S159 21.31 1.15 -0.025 (0.014) -2.740 (0.164) 0.088 (0.007) -0.969 (0.101) 0.018 (0.006) -1.719 (0.126) -1.954 (0.076) RZ3643 S276 21.86 1.20 0.067 (0.010) -1.690 (0.125) 0.035 (0.006) -1.373 (0.120) RZ3662 S483 22.64 1.00 -0.125 (0.015) -3.882 (0.174) RZ3667 S176 21.34 1.40 0.209 (0.009) -0.069 (0.101) RZ3680 S012 19.47 1.19 0.080 (0.006) -1.542 (0.065) 0.052 (0.002) -1.479 (0.036) 0.030 (0.002) -1.475 (0.044) -1.506 (0.028) RZ3704 S415 22.44 1.37 0.349 (0.009) 1.529 (– ) 0.137 (0.007) -0.275 (0.101) 0.072 (0.007) -0.620 (0.141) 0.110 (0.066) RZ3745 S155 21.23 1.03 -0.009 (0.011) -2.558 (0.121) 0.013 (1.763) -1.821 ( – ) RZ3799 22.28 1.50 0.251 (– ) 0.410 (– ) 0.053 (– ) -1.465 (– ) 0.091 (– ) -0.233 (– ) -0.429 (–) RZ3835 20.47 1.12 0.039 (0.006) -2.010 (0.073) 0.027 (0.004) -1.833 (0.057) 0.032 (0.003) -1.434 (0.066) -1.765 (0.037) RZ3872 21.53 1.11 0.151 (0.009) -0.731 (0.099) 0.096 (– ) -0.856 (– ) 0.029 (– ) -1.495 (– ) -1.175 (–) RZ3873 20.16 1.15 0.103 (0.006) -1.279 (0.068) 0.030 (0.003) -1.791 (0.048) 0.022 (0.003) -1.638 (0.055) -1.538 (0.033) RZ3903 21.14 1.17 0.093 (0.008) -1.393 (0.095) 0.018 (0.004) -1.719 (0.084) RZ3937 21.77 1.29 0.280 (0.008) 0.741 (0.094) 0.089 (0.007) -0.955 (0.094) 0.073 (0.005) -0.599 (0.111) -0.289 (0.057) RZ3951 20.61 0.93 0.104 (0.008) -1.268 (0.097) 0.005 (0.005) -2.145 (0.075) 0.014 (0.005) -1.801 (0.096) -1.704 (0.051) RZ3960 20.56 1.37 0.206 (0.013) -0.104 (0.148) 0.077 (0.007) -1.125 (0.099) 0.054 (0.006) -0.986 (0.122) -0.669 (0.071) RZ4029 20.77 1.30 0.186 (0.007) -0.332 (0.083) 0.137 (0.004) -0.275 (0.061) 0.025 (0.970) -1.577 (– ) -1.575 (–) RZ4040 22.35 1.19 0.009 (0.010) -2.352 (0.117) RZ4100 21.85 1.07 -0.010 (0.010) -2.569 (0.109) 0.047 (0.006) -1.550 (0.082) RZ4129 22.27 1.42 0.393 (0.009) 2.031 (0.103) 0.159 (0.007) 0.037 (0.095) 0.068 (0.006) -0.701 (0.126) 0.383 (0.062) RZ4134 22.02 1.56 0.211 (– ) -0.046 (– ) 0.140 (0.011) -0.232 (0.162) 0.068 (– ) -0.701 (– ) -0.373 ( –) RZ4140 21.70 1.04 0.157 (0.008) -0.663 (0.090) 0.105 (0.005) -0.728 (0.076) 0.036 (0.005) -1.353 (0.094) -0.931 (0.050) RZ4143 23.17 1.78 -0.210 (– ) -4.852 (– ) 0.219 (0.011) 0.887 (0.159) -4.734 (–) RZ4160 21.14 1.09 0.080 (0.008) -1.542 (0.089) 0.019 (0.005) -1.947 (0.075) 0.017 (0.004) -1.740 (0.090) -1.732 (0.049) RZ4206 19.71 1.16 0.098 (0.006) -1.336 (0.066) 0.045 (0.003) -1.578 (0.040) 0.035 (0.003) -1.373 (0.052) -1.409 (0.031) RZ4283 23.17 1.41 0.015 (– ) -2.284 (– ) 0.183 (0.008) 0.377 (0.115) 0.095 (0.007) -0.151 (0.151) -2.278 ( —) RZ4301 20.73 1.09 0.107 (0.007) -1.234 (0.074) 0.066 (0.004) -1.281 (0.052) 0.007 (0.003) -1.943 (0.071) -1.502 (0.038) RZ4367 21.69 1.41 0.050 (0.010) -1.884 (0.112) 0.144 (0.006) -0.175 (0.083) RZ4495 22.10 1.31 -0.084 (– ) -3.414 (– ) 0.048 (– ) -1.536 (– ) 0.049 (– ) -1.088 (– ) -2.013 (–) RZ4662 21.46 1.34 0.121 (– ) -1.074 (– ) 0.057 (– ) -1.408 (– ) 0.026 (– ) -1.556 (– ) -1.346 (–) S001 18.74 1.26 0.115 (0.004) -1.142 (0.047) 0.065 (0.002) -1.295 (0.031) 0.045 (0.002) -1.169 (0.035) -1.192 (0.022) S003 18.83 1.27 0.117 (0.005) -1.119 (0.061) 0.065 (0.003) -1.295 (0.042) 0.046 (0.002) -1.149 (0.049) -1.177 (0.029) S004 18.83 1.36 0.154 (0.004) -0.697 (0.049) 0.089 (0.002) -0.955 (0.030) 0.050 (0.002) -1.068 (0.035) -0.879 (0.022) S007 19.04 1.31 0.100 (0.005) -1.314 (0.060) 0.083 (0.003) -1.040 (0.041) 0.049 (0.003) -1.088 (0.068) -1.157 (0.033) S017 19.64 1.23 0.096 (0.008) -1.359 (0.097) 0.073 (0.004) -1.182 (0.064) 0.033 (0.004) -1.414 (0.078) -1.330 (0.046)

Table 9: continued

IDs, magnitudes, colours, indices and metallicites for the sample. ID Alt ID V B-R CH [Fe/H] Mgb [Fe/H] Fe5270 [Fe/H] [Fe/H] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) S027 19.92 1.25 0.112 (0.007) -1.177 (0.078) 0.063 (0.004) -1.323 (0.057) S032 19.95 1.35 0.040 (0.008) -1.998 (0.090) 0.039 (0.004) -1.663 (0.062) 0.006 (0.004) -1.964 (0.075) -1.895 (0.044) S034 20.03 1.22 0.068 (0.008) -1.679 (0.087) 0.074 (0.004) -1.167 (0.059) 0.051 (0.003) -1.047 (0.069) -1.337 (0.042) S035 20.18 1.55 0.193 (0.005) -0.252 (0.062) 0.084 (0.003) -0.375 (0.054) S037 20.08 1.17 0.104 (0.007) -1.268 (0.086) 0.061 (0.003) -1.352 (0.050) S039 20.20 1.27 0.087 (0.008) -1.462 (0.087) 0.040 (0.005) -1.649 (0.069) 0.033 (0.004) -1.414 (0.091) -1.497 (0.047) S043 20.29 1.51 0.179 (0.009) -0.412 (0.107) 0.155 (0.005) -0.020 (0.075) 0.058 (0.005) -0.905 (0.092) -0.470 (0.053) S044 20.13 1.23 0.068 (0.008) -1.679 (0.095) 0.016 (0.005) -1.989 (0.069) 0.046 (0.004) -1.149 (0.078) -1.597 (0.046) S050 20.32 1.39 0.161 (0.007) -0.617 (0.086) 0.078 (0.005) -1.111 (0.075) S051 20.33 1.28 -0.008 (0.009) -2.546 (0.099) 0.053 (0.004) -1.007 (0.078) S057 20.47 1.60 0.198 (0.008) -0.195 (0.089) 0.063 (0.004) -0.803 (0.082) S062 20.47 1.61 0.189 (0.008) -0.298 (0.096) 0.169 (0.004) 0.179 (0.065) 0.064 (0.004) -0.783 (0.080) -0.330 (0.046) S065 20.48 1.46 0.136 (0.008) -0.903 (0.094) 0.141 (0.004) -0.218 (0.064) 0.063 (0.004) -0.803 (0.079) -0.685 (0.046) S066 20.55 1.50 0.178 (0.007) -0.423 (0.079) 0.160 (0.004) 0.051 (0.055) 0.064 (0.003) -0.783 (0.067) -0.413 (0.039) S070 20.43 1.11 0.059 (0.007) -1.782 (0.079) 0.019 (0.004) -1.947 (0.058) 0.022 (0.003) -1.638 (0.069) -1.780 (0.040) S072 20.52 1.21 0.154 (0.008) -0.697 (0.099) 0.057 (0.004) -1.408 (0.070) 0.054 (0.004) -0.986 (0.082) -1.001 (0.047) S075 20.63 1.54 0.191 (0.007) -0.275 (0.077) 0.161 (0.004) 0.066 (0.054) 0.046 (0.003) -1.149 (0.068) -0.480 (0.038) S076 20.68 1.19 0.127 (0.009) -1.005 (0.098) 0.045 (0.005) -1.578 (0.076) 0.019 (0.004) -1.699 (0.086) -1.402 (0.050) S080 20.66 1.32 0.196 (0.009) -0.218 (0.101) 0.078 (0.005) -1.111 (0.077) 0.025 (0.007) -1.577 (0.146) -1.043 (0.060) S085 20.80 1.42 0.201 (0.006) -0.161 (0.076) 0.144 (0.004) -0.175 (0.062) 0.055 (0.004) -0.966 (0.076) -0.449 (0.041) S095 20.77 1.23 0.059 (0.010) -1.782 (0.119) 0.013 (0.006) -2.032 (0.091) 0.061 (0.005) -0.844 (0.104) -1.544 (0.060) S097 20.85 1.31 0.136 (0.007) -0.903 (0.084) 0.106 (0.005) -0.714 (0.070) 0.080 (0.004) -0.457 (0.079) -0.694 (0.045) S102 20.84 1.19 0.062 (0.008) -1.747 (0.090) 0.088 (0.007) -0.969 (0.096) 0.046 (0.003) -1.149 (0.069) -1.292 (0.049) S106 20.90 1.30 0.241 (0.008) 0.296 (0.092) 0.085 (0.006) -1.011 (0.081) 0.055 (0.005) -0.966 (0.097) -0.549 (0.052) S111 20.94 1.59 0.197 (0.008) -0.206 (0.092) 0.192 (0.004) 0.505 (0.059) 0.066 (0.004) -0.742 (0.082) -0.211 (0.045) S113 20.99 1.47 0.091 (0.014) -1.416 (0.156) 0.126 (0.007) -0.431 (0.095) -0.013 (0.007) -2.351 (0.138) -1.507 (0.076) S125 20.95 1.47 0.169 (0.007) -0.526 (0.076) 0.125 (0.004) -0.445 (0.054) S128 21.08 1.59 0.136 (0.009) -0.903 (0.104) 0.170 (0.006) 0.193 (0.090) 0.067 (0.006) -0.721 (0.119) -0.518 (0.060) S133 21.10 1.29 0.066 (– ) -1.702 (– ) 0.021 (0.007) -1.918 (0.100) -0.010 (0.006) -2.290 (0.115) -1.703 (–) S145 21.20 1.48 0.217 (0.009) 0.022 (0.099) 0.114 (0.006) -0.600 (0.088) 0.038 (0.005) -1.312 (0.104) -0.643 (0.056) S146 21.15 1.27 -0.036 (0.012) -2.866 (0.134) 0.035 (0.008) -1.720 (0.109) S151 21.21 1.39 0.409 (0.008) 2.214 (0.091) 0.056 (0.008) -1.422 (0.113) 0.052 (0.009) -1.027 (0.192) -0.395 (0.080) S152 21.23 1.23 0.073 (0.012) -1.622 (0.135) 0.131 (0.006) -0.360 (0.086) 0.091 (0.005) -0.233 (0.104) -0.844 (0.063) S161 21.25 1.16 0.128 (0.009) -0.994 (0.102) 0.113 (0.006) -0.615 (0.084) S162 21.36 1.19 0.146 (0.009) -0.788 (0.105) 0.089 (0.007) -0.955 (0.099) 0.029 (0.007) -1.495 (0.136) -1.119 (0.066) S163 21.33 1.52 -0.042 (– ) -2.934 (– ) 0.140 (0.006) -0.232 (0.092) 0.052 (0.007) -1.027 (0.141) -2.929 (–) S182 21.47 1.59 0.335 ( – ) 1.369 ( – ) 0.067 (0.008) -0.721 (0.165) S185 21.46 1.46 0.273 (0.007) 0.661 (0.080) 0.056 (0.004) -0.945 (0.093) S194 21.43 1.24 0.208 (0.011) -0.081 (0.120) 0.071 (0.008) -1.210 (0.112) 0.000 (0.006) -2.086 (0.125) -1.137 (0.068) S200 21.55 1.25 0.213 (0.011) -0.024 (0.122) 0.052 (0.008) -1.479 (0.109) S209 21.49 1.44 0.020 (0.014) -2.227 (0.157) 0.093 (0.009) -0.898 (0.124) 0.072 (0.007) -0.620 (0.138) -1.304 (0.081) S219 21.62 1.22 0.087 (– ) -1.462 (– ) 0.013 (0.009) -2.032 (0.126) -0.056 (0.008) -3.227 (0.160) -1.466 (–) S220 21.57 1.17 0.097 (0.009) -1.348 (0.109) 0.066 (0.005) -1.281 (0.078) S223 21.68 1.44 0.352 (0.008) 1.563 (0.089) 0.033 (0.006) -1.414 (0.125) S229 21.63 1.52 0.041 (– ) -1.987 (– ) 0.181 (0.006) 0.349 (0.090) 0.053 (0.007) -1.007 (0.151) -1.983 ( –) S232 21.68 1.52 0.143 (0.010) -0.823 (0.113) 0.076 (0.005) -0.538 (0.114) S242 21.67 1.55 0.194 (0.009) -0.241 (0.103) 0.067 (0.005) -0.721 (0.096) S256 21.80 1.47 0.312 (0.013) 1.106 (0.144) 0.071 (0.006) -0.640 (0.127) S263 21.90 1.61 0.143 (0.008) -0.823 (0.097) 0.069 (0.005) -0.681 (0.097) S272 21.88 1.30 0.045 (– ) -1.941 (– ) 0.053 (0.009) -1.465 (0.128) 0.092 (0.006) -0.212 (0.122) -1.938 (–) S273 21.87 1.18 0.093 (0.012) -1.393 (0.134) 0.058 (0.008) -1.394 (0.117) S278 21.79 1.27 0.224 (0.009) 0.102 (0.108) 0.069 (0.008) -1.238 (0.113) 0.029 (0.007) -1.495 (0.145) -0.944 (0.071) S280 21.91 1.56 0.169 (0.013) -0.526 (0.149) 0.064 (0.007) -1.309 (0.102) 0.064 (0.006) -0.783 (0.118) -0.825 (0.072) S311 22.07 1.53 0.176 (0.010) -0.446 (0.115) 0.079 (0.006) -0.477 (0.129) S318 21.97 1.31 0.092 (0.013) -1.405 (0.145) 0.189 (0.007) 0.462 (0.106) 0.044 (0.007) -1.190 (0.148) -0.829 (0.077) S335 22.09 1.48 -0.486 (– ) -8.003 (– ) 0.092 (0.008) -0.912 (0.120) 0.042 (0.007) -1.231 (0.149) S358 22.15 1.48 0.089 (0.010) -1.439 (0.122) 0.098 (0.005) -0.090 (0.110) S363 22.22 1.43 0.287 (0.012) 0.821 (0.141) S368 22.22 1.19 0.212 (0.010) -0.035 (0.115) S369 22.26 1.53 0.389 (– ) 1.985 (– )

Table 10: continued

IDs, magnitudes, colours, indices and metallicites for the sample. ID Alt ID V B-R CH [Fe/H] Mgb [Fe/H] Fe5270 [Fe/H] [Fe/H] (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) S370 22.15 1.16 0.079 (0.012) -1.553 (0.134) -0.038 (0.010) -2.860 (0.207) S376 22.21 1.32 -0.126 (0.013) -3.893 (0.145) 0.044 (0.008) -1.592 (0.110) 0.090 (0.006) -0.253 (0.123) -2.039 (0.073) S388 22.33 1.15 -0.071 ( – ) -3.265 ( – ) 0.060 (0.010) -1.366 (0.145) 0.118 (0.008) 0.317 (0.170) -3.256 (–) S393 22.29 1.26 0.132 (0.006) -0.948 (0.067) 0.075 (0.004) -1.153 (0.063) 0.041 (0.004) -1.251 (0.079) -1.124 (0.040) S435 22.34 1.14 0.197 (0.009) -0.206 (0.100) 0.036 (0.008) -1.706 (0.108) S438 22.46 1.32 0.183 (0.014) -0.366 (0.163) 0.107 (0.008) -0.700 (0.120) 0.051 (0.008) -1.047 (0.154) -0.697 (0.084) S490 22.63 1.19 -0.038 (0.012) -2.889 (0.133) 0.097 (0.007) -0.841 (0.108) 0.067 (0.007) -0.721 (0.138) -1.514 (0.073) S502 22.68 1.27 0.557 (0.008) 3.903 (0.089) 0.041 (0.010) -1.635 (0.148) S529 22.93 1.37 -0.022 ( – ) -2.706 ( – ) S605 23.31 1.61 0.061 (0.006) -1.759 (0.067) 0.033 (0.003) -1.748 (0.044) 0.017 (0.003) -1.740 (0.055) -1.750 (0.032)

Table 11: continued
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
78900
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description