Spatiocolour Asplünd’s metric and Logarithmic Image Processing for Colour Images (LIPC)
Abstract
Asplünd’s metric, which is useful for pattern matching, consists in a doublesided probing, i.e. the overgraph and the subgraph of a function are probed jointly. This paper extends the Asplünd’s metric we previously defined for colour and multivariate images using a marginal approach (i.e. component by component) to the first spatiocolour Asplünd’s metric based on the vectorial colour LIP model (LIPC). LIPC is a nonlinear model with operations between colour images which are consistent with the human visual system. The defined colour metric is insensitive to lighting variations and a variant which is robust to noise is used for colour pattern matching.
Keywords:
Asplünd’s metric, spatiocolour metric, colour Logarithmic Image Processing, doublesided probing, colour pattern recognitionGuillaume Noyel, Michel Jourlin
1 Introduction
The Asplünd’s metric initially defined for binary shapes [1, 4] has been extended to greyscale images by Jourlin et al. [6, 7] and to colour and multivariate images in the LIP framework by Noyel et al. [13]. It consists in probing a function by two homothetic template functions, i.e. the probes which are computed by the LIP multiplication.
The Logarithmic Image Processing (LIP) model initially defined for grey level images by Jourlin et al. [8, 9] is perfectly suited for images acquired by transmitted light (i.e. when the observed object is located between the source and the sensor) and by reflected light because of its consistency with the Human Vision [3]. The necessity to analyse together the channels of the colour images (i.e. by a vectorial analysis) has led to the introduction of the Logarithmic Image Processing for Colour images (LIPC) by Jourlin et al. [5].
The LIP Asplünd’s metric was defined in [13] in a marginal way (i.e. channel by channel). In this paper, our contribution is to extend this metric by using the spatiocolour properties [11, 12] of the colour LIPC framework.
After some prerequisites about the colour LIPC model and about the marginal LIP Asplünd’s metric, we will define a spatiocolour Asplünd’s metric in the LIPC framework. Then we will perform spatiocolour pattern matching which is robust to noise. Examples will illustrate the definitions.
2 Prerequisites
2.1 LIPC model
A colour image , defined on a domain , with values in , , is written:
(1) 
, , are the red, green and blue channels (i.e. components) of , is a vectorpixel and is the spatial coordinate of the vectorpixel. The real value is equal to for 8 bits images. Given the number of pixels, the matrix of , , associated to the image is written:
(2) 
To make the comments easier, the word “image” designates both the matrix and the image . The image space for 24bits images is written .
A colour image is a particular case of a multivariate image defined as , where is the number of channels [11, 12].
As for the greylevel LIP, the colour LIPC framework is based on colour transmittance [5]. It is valid for transmitted and reflected images [3]. It models the human perceptual system approach by taking into account: the sensitivity of the human eye in the visible domain characterised by colour matching functions of Stiles and Burch (1959) [16] and the spectral distribution of light with the D65 illuminant [14].
In the LIPC framework, the transmittance of the sum of two images is equal to the product of their transmittances and : . The symbol of the LIPC addition is and represents the elementwise multiplication [5]. The addition of two images is:
(3) 
and are real matrices of size corresponding to the LIPC mixing model
^{1}^{1}1With colour matching functions of Stiles and Burch (1959) and D65 illuminant [5], matrices and equal to:
(4)
.
From the LIPC addition, a multiplication by a scalar has been defined:
(5) 
The space is the positive cone of a vector space with robust mathematical properties.
Physical interpretation [5]: the LIPC addition corresponds to the superposition of two semitransparent layers. A LIPC multiplication by a scalar brightens the result by suppressing layers, while a scalar darkens the result by superimposing times the image on itself.
2.2 Marginal Asplünd’s metric for colour and multivariate images
In [13], an Asplünd’s metric between colour images was defined with the LIP model by using a marginal approach (i.e. channel by channel) [11, 12] .
Definition 1
The Asplünd’s metric (with LIP multiplication) between two colour images and on a region is
(6) 
with
and .
In particular, by the property of the distance .
3 Asplünd’s metric defined in the Logarithmic Image Processing Colour (LIPC) framework
Given two colours , , as we are only looking for lower and upper bounds, a marginal order [2] is used: and and .
Definition 2
Given two colours , , their Asplünd’s distance (with LIPC multiplication) is equal to:
(7) 
and .
Strictly speaking, is a metric if the colours are replaced by their equivalence classes .
Comment: in eq. 7 contrary to the Asplünd’s distance (with LIP multiplication) defined in [13] (eq. 6), we have because, by definition of the colour LIPC model the scales are inverted as compared to the grey LIP model [5].
Colour metrics (with LIPC multiplication) between two colour images and may be defined as the sum ( metric) or the supremum () of on the region of interest of cardinal
(8) 
The Asplünd’s metric can be extended to colour functions.
Definition 3
The colour Asplünd’s metric (with LIPC multiplication) between two colour images and on a region is
(9) 
and .
In fig. 1, the Asplünd’s metric has been computed between the colour probe and the colour function on their definition domain .
(a) Colour function  (b) Colour probe  (c) Lower () and upper () bounds 
Comment: the lower (resp. upper) bound (resp. ) may not be equal to any point of the function but strictly less (or greater) than the function. Indeed, one can demonstrate that the following assertion is verified: “given ”.
The metric can be adapted to local processing with a colour template image (i.e. the probe) defined on a spatial support . For each point , the distance is computed on the neighbourhood centred in where is the restriction of to .
Definition 4
Given a colour image defined on with values in , , a colour probe defined on with values in , , and the neighbourhood centred in , the map of Asplünd’s distances (with ) is:
(10) 
In figure 2, the map of Asplünd’s distances is computed between a colour function and a colour probe. The minima of the map corresponds to the location of a pattern which is similar to the probe.
(a) Colour function  (b) Colour probe  (c) Map of Asplünd’s 
distance 
Asplünd’s distance is sensitive to noise because the probe lays on regional extrema that may be caused by noise (Figure 1). In [7, 13], definitions of Asplünd’s distance with a tolerance on the extrema have been introduced. In this paper, we extend this definition for colour images with LIPC model.
To reduce the sensitivity of Asplünd’s distance to the noise, the “Measure metric” or “Mmetric” has been defined in the context of “Measure Theory”. The image being digitized, the number of pixels of is finite and the “measure” of a subset of is linked to the cardinal of this subset, e.g. the percentage of its elements with respect to . We are looking for a subset of , such that and are neighbours for Asplünd’s metric and the complementary set of into is of small size when compared to . This last condition is written as: , where is an acceptable percentage and is the number of elements in .
Given a small positive real number, the neighbourhood of function is
(11) 
Definition 5
Given two constant vectorpixels , a percentage of points to be discarded. The colour Asplünd’s metric (with LIPC multiplication) with tolerance between two colour images and on a region is
(12) 
and . and are increased such as a percentage of points is discarded.
In figure 3, a tolerance of is used to discard two points. The Asplünd’s distance decreases from to .
(a) Colour function  (b) Colour probe  (c) Lower and upper 
bounds, 
A map of Asplünd’s distances (with ) can now be defined.
Definition 6
Given a colour image of , a colour probe of and a tolerance , the map of Asplünd’s distances with a tolerance is:
(13) 
is the neighbourhood centred in .
4 Examples
(a) Image and probe  (b) Map  (c) Map 
(d) Noisy image  (e) Map  (f) Correlation map 
In figure 4, we look for the bricks of a wall, similar to a colour probe. A blue brick has been added to the wall. In the image without noise , the regional minima of the map (dark points in fig. 4b) correspond to the centre of the bricks similar to the probe (according to the Asplünd’s distance). The white rectangle corresponds to the maxima of the distances between the blue brick and the probe. Therefore, the distance is sensitive to colour (i.e. the hue). In the image with noise , the map without tolerance is more sensitive to noise (fig. 4e) than the map with tolerance (fig 4c). Indeed, the minima are preserved into the map with tolerance (fig. 4c) compared to the map without (fig. 4e). The minima can be extracted using mathematical morphology [10, 15]. Importantly, all the maps of Asplünd’s distances are insensitive to the vertical lighting drift. Moreover, a correlation map is useless to find the location of the bricks (fig. 4f).
In figure 5, two images of the same scene, a bright image and a dark image , are acquired with two different exposure times. The probe is extracted in the bright image and used to compute the map of Asplünd’s distance in the darker image. By finding the minima of the map, all the balls are detected and their contours are added to the image in figure 5 (b). One can notice that the Asplünd’s distance is very robust to the lighting variations.

5 Conclusion and perspectives
A new spatiocolour Asplünd’s distance based on colour LIPC model has been defined. It is a true colour (i.e. vectorial) metric based on a colour model consistent with the human visual system. It is also consistent with the previous properties given in [7, 13]. An extension of this metric robust to noise has been presented and illustrated on pattern recognition examples. This doublesided probing distance is efficient for colour pattern matching and performs better than traditional correlation methods. In future work, we will evaluate in details the properties of this colour distance on practical applications (e.g. in medical, remote sensing or industrial images). We will compare it to the marginal colour Asplünd’s distance and we will study the links between Asplünd’s probing and mathematical morphology.
References
 [1] Asplünd, E.: Comparison between plane symmetric convex bodies and parallelograms. Mathematica Scandinavica 8, 171–180 (1960)
 [2] Barnett, V.: The ordering of multivariate data. Journal of the Royal Statistical Society. Series A (General) 139(3), 318–355 (1976)
 [3] Brailean, J., Sullivan, B., Chen, C., Giger, M.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: Acoustics, Speech, and Signal Processing, 1991. ICASSP91., 1991 International Conference on. pp. 2957–2960 vol.4 (Apr 1991)
 [4] Grünbaum, B.: Measures of symmetry for convex sets. In: Proceedings of Symposia in Pure Mathematics. pp. 233–270 vol.7 (1963)
 [5] Jourlin, M., Breugnot, J., Itthirad, F., Bouabdellah, M., Closs, B.: Chapter 2  Logarithmic image processing for color images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 168, pp. 65 – 107. Elsevier (2011)
 [6] Jourlin, M., Carré, M., Breugnot, J., Bouabdellah, M.: Chapter 7  Logarithmic image processing: Additive contrast, multiplicative contrast, and associated metrics. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 171, pp. 357 – 406. Elsevier (2012)
 [7] Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s metric defined in the logarithmic image processing (LIP) framework: A new way to perform doublesided image probing for nonlinear grayscale pattern matching. Pattern Recognition 47(9), 2908 – 2924 (2014)
 [8] Jourlin, M., Pinoli, J.: A model for logarithmic image processing. Journal of Microscopy 149(1), 21–35 (1988)
 [9] Jourlin, M., Pinoli, J.: Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 115, pp. 129 – 196. Elsevier (2001)
 [10] Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)
 [11] Noyel, G., Angulo, J., Jeulin, D.: Morphological segmentation of hyperspectral images. Image Analysis & Stereology 26(3) (2007)
 [12] Noyel, G., Angulo, J., Jeulin, D., Balvay, D., Cuenod, C.A.: Multivariate mathematical morphology for DCEMRI image analysis in angiogenesis studies. Image Analysis & Stereology 34(1), 1–25 (2014)
 [13] Noyel, G., Jourlin, M.: Asplünd’s metric defined in the logarithmic image processing (LIP) framework for colour and multivariate images. In: Image Processing (ICIP), 2015 IEEE International Conference on. pp. 3921–3925 (Sept 2015)
 [14] Schanda, J.: Colorimetry: Understanding the CIE System. J. Wiley & Sons (2007)
 [15] Serra, J., Cressie, N.: Image analysis and mathematical morphology: Vol. 1. Academic Press, London (1982)
 [16] Stiles, W., Burch, J.: N.p.l. colourmatching investigation: Final report (1958). Optica Acta: International Journal of Optics 6(1), 1–26 (1959)