Searches for light- and heavy-flavour three-jet resonances in pp collisions at \sqrt{s}=8\TeV

Searches for light- and heavy-flavour three-jet resonances in pp collisions at sqrt(s) = 8 TeV

Abstract

A search for three-jet hadronic resonance production in pp collisions at a centre-of-mass energy of 8\TeVhas been conducted by the CMS Collaboration at the LHC with a data sample corresponding to an integrated luminosity of 19.4\fbinv. The search method is model independent, and events are selected that have high jet multiplicity and large values of jet transverse momenta. The signal models explored assume -parity-violating supersymmetric gluino pair production and have final states with either only light-flavour jets or both light- and heavy-flavour jets. No significant deviation is found between the selected events and the expected standard model multijet and \ttbarbackground. For a gluino decaying into light-flavour jets, a lower limit of 650\GeVon the gluino mass is set at a 95% confidence level, and for a gluino decaying into one heavy- and two light-flavour jets, gluino masses between 200 and 835\GeVare, for the first time, likewise excluded.

\cmsNoteHeader

EXO-12-049

\RCS

\RCS \RCS \cmsNoteHeaderEXO-12-049

1 Introduction

Hadronic multijet final states at hadron colliders offer a unique window on many possible extensions of the standard model (SM), although with the view partly obscured by large backgrounds due to SM processes. Many of these extensions predict resonances, such as heavy coloured fermions transforming as octets under  [1, 2, 3, 4] or supersymmetric gluinos that undergo -parity-violating (RPV) decays to three quarks [5, 6, 7]. Recent studies from the Fermilab Tevatron Collider and the CERN Large Hadron Collider (LHC) employed the jet-ensemble technique. For this technique, jets are associated into unique combinations of three jets (triplets). Additional selection requirements are imposed to suppress the large backgrounds due to SM processes and to enhance sensitivity to strongly decaying resonances. These analyses set lower mass limits based upon resonance fits for gluinos undergoing RPV decays. The CDF collaboration at the Tevatron excluded gluino masses below 144\GeV [8] using data from p collisions at 1.96\TeV, while the CMS collaboration at the LHC excluded masses below 460\GeV [9, 10] with data from pp collisions at 7\TeV. An additional search at the LHC by the ATLAS collaboration, also based on data collected with pp collisions at 7\TeV, has extended these limits to 666\GeV [11].

Presented here are the results of dedicated searches for pair-produced three-jet resonances in multijet events from \Pp\Pp collisions, with one search being inclusive with respect to parton flavours and the second requiring at least one jet from the resonance decay to be identified as a bottom-quark jet (b jet). This latter, heavy-flavour search is the first of its kind and probes additional RPV couplings. The results are based on a data sample of pp collisions at \TeV, corresponding to an integrated luminosity of \fbinv [12] collected with the CMS detector [13] at the LHC in 2012. Events with at least six jets, each with high transverse momentum (\pt) with respect to the beam direction, are selected and investigated for evidence of three-jet resonances consistent with strongly coupled supersymmetric particle decays. The event selection criteria are optimised in the context of the gluino signal mentioned above [5, 6, 7], using a simplified model where the gluinos decay with a branching fraction of 100% to quark jets. However, the generic features of the selection criteria provide a model-independent basis that can be used when examining extensions of the SM, since any exotic three-jet resonance with a narrow width, sufficient cross section, and high-\ptjets would be expected to produce a significant bump on the smoothly falling SM background of our search. Additionally, low trigger thresholds and the application of b-jet identification make it possible to use SM top quark-antiquark (\ttbar) events to validate the analysis techniques.

2 The CMS experiment

The central feature of the CMS apparatus [13] is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL) that consists of brass layers and scintillator sampling calorimeters. Muons are measured in gas ionisation detectors embedded in the steel return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the axis pointing to the centre of the LHC, the axis pointing up (perpendicular to the LHC plane), and the axis along the anticlockwise-beam direction. The polar angle is measured with respect to the positive axis, the azimuthal angle is measured in the - plane, and the pseudorapidity is defined as . Energy deposits from hadronic jets are measured using the ECAL and HCAL. The energy resolution for photons with \ET 60\GeVvaries between 1.1% and 2.6% over the solid angle of the ECAL barrel, and from 2.2% to 5% in the endcaps. The HCAL, when combined with the ECAL, measures jets with a resolution  [14]. The ECAL provides coverage in pseudorapidity in a barrel region and in two endcap regions. In the region , the HCAL cells have widths of 0.087 in and 0.087 in . In the - plane, and for , the HCAL cells map on to ECAL crystals arrays to form calorimeter towers projecting radially outwards from close to the nominal interaction point. At larger values of , the size of the towers increases, and the matching ECAL arrays contain fewer crystals. Within each tower, the energy deposits in ECAL and HCAL cells are summed to define the calorimeter tower energies, subsequently used to provide the energies and directions of hadronic jets.

The CMS detector uses a two-tier trigger system to collect data. Events satisfying the requirements at the first level are passed to the high-level trigger (HLT), whose output is recorded and limited to a total rate of \unitHz. An HLT requirement based on at least six jets, reconstructed with only calorimeter information, is used to select events. With the jets ordered in descending \ptvalues, the \ptthreshold at the HLT for the fourth jet is 60\GeVand, for the sixth jet, 20\GeV. For events passing all offline requirements described in Section 4, the total trigger efficiency is at least 99%.

The CMS particle-flow algorithm [15] combines calorimeter information with reconstructed tracks to identify individual particles such as photons, leptons, and neutral and charged hadrons. The photon energy is obtained directly from calibrated measurements in the ECAL. The energy of electrons is determined from a combination of the track momentum at the primary interaction vertex [16], the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons associated with the track in the offline reconstruction. The muon energy is obtained from the corresponding track momentum. The energy for a charged hadron is determined from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects and calibrated for the nonlinear response of the calorimeters. Finally, the energy of a neutral hadron is obtained from the corresponding calibrated ECAL and HCAL energies. The particle-flow objects serve as input for jet reconstruction, performed using the anti-\ktalgorithm [17, 18, 19] with a distance parameter of 0.5. The jet transverse momentum resolution is typically 15% at , 8% at 100\GeV, and 4% at 1\TeV; when jet clustering is based only upon the calorimeter energies, the corresponding resolutions are about 40%, 12%, and 5%.

Jet energy scale corrections [20] derived from data and Monte Carlo (MC) simulation are applied to account for the nonlinear and nonuniform response of the calorimeters. In data, a small residual correction factor is included to correct for differences in jet response between data and simulation. The combined corrections are approximately 5–10%, and their corresponding uncertainties range from 1–5%, depending on the pseudorapidity and energy of the jet. Jet quality criteria [21] are applied to remove misidentified jets, which arise primarily from calorimeter noise. In both data and simulated signal events, more than 99.8% of all selected jets satisfy these criteria.

3 Signal event simulation

Pair-produced gluinos are used to model the signal. Gluino production and decay are simulated using the \PYTHIA [22] event generator (v6.424), with each gluino decaying to three quarks through the quark RPV coupling [23], where and refer to any up- or down-type quark, respectively. Two different scenarios are considered for this coupling, resulting in both an inclusive search similar to previous analyses [8, 9, 10, 11] and a new heavy-flavour search. For the first case, the coupling of , where the three numerical subscripts of refer to the quark generations of the corresponding u-d-d quarks, is set to a non-zero value, giving a branching fraction of 100% for the gluino decay to three light-flavour quarks. The second case, represented by or , covers gluino decays to one b quark and two light-flavour quarks. The mass of the generated gluino signal ranges from 200 to 500\GeVin 50\GeVsteps, with additional mass points at 750, 1000, 1250, and 1500\GeV. For the generation of this signal, all superpartners except the gluino are taken to be decoupled and heavy (\iebeyond the reach of the LHC), the natural width of the gluino resonance is taken to be much smaller than the mass resolution of the detector of approximately 4–8% in the mass range investigated, and no intermediate particles are produced in the gluino decay. Simulation of the CMS detector response is performed using the \GEANTfour [24] package.

4 Event selection

Events recorded with the six-jet trigger described above are required to contain at least one reconstructed primary vertex [16]. Since this analysis targets pair-produced three-jet resonances that naturally yield high jet multiplicity, we require events to contain at least six jets with . To ensure that the trigger is fully efficient, we impose minimal requirements that the \ptthresholds of the fourth and sixth jets are at least 80 and 60\GeV, respectively, though we impose higher thresholds for two of our three selections, as described below.

We use the jet-ensemble technique [8, 9] in this analysis to combine the six highest-\ptjets in each event into all possible unique triplets. Each event that satisfies all selection requirements will yield 20 combinations of jet triplets. For signal events, no more than two of these triplets can be correct reconstructions of the pair-produced gluinos, with the remaining 18 triplets being incorrect combinations of jets. Thus, background triplets arising from SM multijet events are supplemented by “incorrect” jet-triplet combinations from the signal events themselves. To obtain sensitivity to the presence of a three-jet resonance, an additional requirement is placed on each jet triplet to preferentially remove SM background and incorrectly combined signal triplets. This selection criterion exploits the constant invariant mass of correctly reconstructed signal triplets and the observed linear correlation between the invariant mass and scalar sum of jet \ptfor background triplets and incorrectly combined signal triplets:

(1)

where is the triplet invariant mass, the \ptsum is over the three jets in the triplet (triplet scalar \pt), and is an empirically determined parameter. Figure 1 shows a plot of the triplet invariant mass versus triplet scalar \ptfor simulated events with 400\GeVgluinos decaying to light-flavour jets.

The value of is chosen so that the analysis is sensitive to as broad a range of gluino masses as possible given the restrictions imposed by the trigger. We find that the peak position of the distribution in data depends on the value of . From a study of this peak position versus , we find to be the optimal choice, yielding the lowest value of the peak of . This simple requirement, rather than model-specific invariant mass requirements, maintains the model-independent sensitivity of our analysis to any three-jet resonance, not just that of our signal model.

Figure 1: The triplet invariant mass versus the triplet scalar \ptfor all combinations of the six jets from pair-produced gluinos of mass 400\GeVthat decay to three light-flavour jets. The solid coloured regions represent correctly reconstructed signal triplets, while the contour lines and light grey scatter points represent incorrectly combined triplets. The red dashed line is based on Eq. (1) with , and the triplets to the right of the line satisfy this requirement, while those to the left do not.

Tightening the selection requirement on the \ptvalue of the sixth jet can reduce background stemming from SM multijet production. The optimisation of this requirement to maximise signal significance is performed as follows.

As illustrated in Fig. 2 for a gluino mass of 400\GeV, the triplet invariant mass distribution for signal events has the shape of a Gaussian peak on top of a broad base of incorrect three-jet combinations. We define the Gaussian peak to be the signal. Following Ref. [25], we use a four-parameter function (Eq. (2)) that is representative of the estimated background in the data (see Section 5) and characterised by a steeply and monotonically decreasing shape:

(2)

where is the number of triplets and is the triplet invariant mass. The parametrised signal and background estimates used in the optimisation procedure can be seen in the inset of Fig. 2.

Using these two components, signal triplets from the Gaussian peak and background triplets from the background estimate, we define the signal significance as the ratio of the number of signal triplets to the square root of the number of signal triplets plus the number of background triplets obtained from data. The number of signal and background triplets is calculated within a window around the mass peak with a width corresponding to twice the expected gluino-mass resolution. This procedure is repeated for different thresholds on the sixth-jet \ptin steps of 10\GeV, for a given gluino mass. For the inclusive search, the focus is on masses that are higher than those previously excluded by the jet-ensemble technique [10], so the mass range of the search starts around 400\GeV. We find that a requirement of on the sixth jet maximises the signal significance in this mass range.

Figure 2: The  distribution for pair-produced 400\GeVgluinos with light-flavour RPV decay into three jets is shown in the main plot. Triplets are selected that pass the requirement from Eq. (1). The Gaussian signal peak of correctly reconstructed gluino triplets is represented by the gold shaded area, with its Gaussian fit shown by the blue dot-dashed line below it. The distribution of incorrectly combined triplets, shown in black, is described by a similar functional form as that used to estimate the background in data. The inset shows the signal and background estimates used in the optimisation procedure, with the expected background from SM multijet processes in red, and the signal-plus-background indicated by a blue dashed line.

The use of b-jet identification enables us to perform a heavy-flavour search in addition to our inclusive search for three-jet resonances. The combined secondary vertex (CSV) algorithm [26] uses variables from reconstructed secondary vertices along with track-based lifetime information to identify b jets. The tagging efficiency for b jets changes with the \ptof the jet, ranging from 70% for jets with 100  \pt 200\GeVto 55% for jets with . We study different b-tagging requirements for signal events with simulated gluinos that have heavy-flavour decays and use the same definition of the signal significance as for the sixth-jet \ptoptimisation to determine the best choice. The CSV medium operating point, with a mistagging rate of about 1% for light-flavour jets, is found to be the optimal choice for detecting a potential signal in this analysis. The requirement that each event contain at least one b-tagged jet (b tag) increases the signal significance, and the additional requirement that all selected triplets have a b tag removes a large portion of the incorrectly combined signal triplets.

For the heavy-flavour analysis, we distinguish between a low-mass region covering gluino masses between 200 and 600\GeVand a high-mass region covering larger gluino masses. For the low-mass region, we maximise signal acceptance by using jet-\ptrequirements of 80\GeVfor the fourth jet and 60\GeVfor the sixth jet. For the high-mass region, the sixth jet is required to have \pt110\GeV. For both the low- and high-mass regions, the value is used. All-hadronic \ttbarevent production is a significant background in the low-mass region. We use \ttbarevents that produce triplets with masses in this region to help validate our analysis technique, as described below.

High-mass signal events, for both the light- and heavy-flavour signal models, have a more spherical shape than background events, which typically contain back-to-back jets and thus have a more linear shape. To significantly reduce the background in the high-mass searches, we use a sphericity variable, , where the variables are eigenvalues of the following tensor [22]:

(3)

where and label separate jets, and the sphericity is calculated using all jets in each event. A comparison of the sphericity variable for data, simulated SM multijet events, and three different simulated gluino masses can be seen in Fig. 3. For the inclusive search and the high-mass, heavy-flavour search, selected events are required to have , which is based on the optimisation of the number of expected signal events divided by the square root of the number of signal-plus-background events. No sphericity requirement is used for the low-mass, heavy-flavour selection because low-mass signal events do not have a significant shape difference from background events.

Figure 3: The sphericity variable for events from data, simulated background from SM multijet processes (shaded area), and simulated gluino signal masses of 300 (open diamonds), 750 (open triangles), and 1250\GeV(open squares), where the gluinos decay to light-flavour jets. Event-level selection requirements for the inclusive, low-mass search are applied, except for the triplet-level diagonal selection (Eq. (1)). All distributions are normalised to unit area. The simulated SM multijet events are generated by \MADGRAPH [27] with showering performed by \PYTHIA.

To conclude, we define three different search regions for this analysis with specific selection criteria applied as previously discussed and summarised in Table 4.

\topcaption

Selection requirements for the three search regions in the analysis. Selection Inclusive Heavy-flavour search criteria search low mass high mass Mass range 400–1500\GeV 200–600\GeV 600–1500\GeV 110\GeV 110\GeV 110\GeV Min. fourth-jet \pt 110\GeV 80\GeV 110\GeV Min. sixth-jet \pt 110\GeV 60\GeV 110\GeV Min. sphericity 0.4 0.4

5 Background estimation and signal extraction

The dominant background for this search comes from SM multijet events, which arise from perturbative QCD processes of order and higher. The invariant mass shape of incorrectly combined signal triplets is found to be similar to that of the background from SM multijet processes, such that the combined distribution is consistent with that of SM multijets alone. Moreover, because the normalisation of the background component ( in Eq. (2)) is unconstrained, any incorrectly combined signal triplets, if present, would be absorbed into the background estimate. The triplet invariant mass distribution for the background decreases smoothly with increasing mass, and we model this background using a four-parameter function (Eq. (2)) fit directly to the data, except in the case of the low-mass, heavy-flavour search.

For the low-mass, heavy-flavour search, there is an additional background contribution from all-hadronic \ttbarevents. These events are modelled using the \MADGRAPH [27] generator, and the expected number of \ttbarevents is determined from the next-to-next-to-leading-order (NNLO) cross section of \unitpb [28]. The shape of the contribution from SM multijet processes is modelled with a statistically independent data sample, constructed by imposing a veto on b-tagged jets while retaining all other selection requirements. This sample is referred to as the b-jet control region, and the combination of simulated \ttbarevents and the background from SM multijet processes, modelled by this control region, gives the total SM background estimate for the low-mass, heavy-flavour analysis.

A comparison of the background estimate to the data is performed, in which the data are fit using a binned maximum likelihood method with either the four-parameter function of Eq. (2) for the inclusive analysis and the high-mass, heavy-flavour analysis, or the background shape described above for the low-mass, heavy-flavour analysis. Figure 4 shows a comparison between the three-jet invariant mass distribution in data and the background estimate for the inclusive analysis. Figure 5 shows the comparisons between data and background estimates for the low- and high-mass heavy-flavour analyses. In all three cases, no statistically significant deviations from the data are observed.

Figure 4: Comparison of the three-jet invariant mass distribution in data with the background estimate for the inclusive analysis (red solid curve) obtained from a maximum likelihood fit to the data. The error bars on the black data points display the statistical uncertainties. The bin widths increase with mass to match the expected resolution. The bottom plot shows, for each bin, the difference of the data and fit values divided by the statistical uncertainty in the data. No statistically significant deviations from the data are observed. The light magenta dotted line and hatched area show the distribution and pulls for a simulated 500\GeVgluino that decays into light-flavour jets. Similarly, the expectation for a 750\GeVgluino is shown by a dark blue dashed line and shaded area.
Figure 5: Comparison of the three-jet invariant mass distribution in data with the background estimate for the heavy-flavour analysis. The left plot shows the results from the low-mass selection. The background contribution from the b-jet control region is shown as the light blue shaded area, while that from simulated \ttbarevents is shown as the dark red shaded area. The right plot shows the high-mass sample with resolution-based binning. The error bars on the black data points display the statistical uncertainties. The bottom plots show the difference of the data and the background estimate divided by the statistical uncertainty in the data in each bin. The light magenta dashed line and hatched area show the distribution and pulls for a simulated 500\GeVgluino that decays into heavy-flavour jets.

As a validation of the analysis technique, we consider the \ttbartriplets as a signal with the background solely composed of triplets from SM multijet processes, whose shape is modelled by the b-jet control region, with the small amount of simulated \ttbarevents without b tags subtracted. The \ttbarcross section is extracted based on the contribution of its signal triplets and is compared with the theoretical prediction for the cross section of 245.8\unitpb. The measurement yields a result of \unitpb (combined statistical and systematic uncertainties), which is within less than two standard deviations from the theoretical value, thereby showing our technique can successfully reconstruct hadronically decaying \ttbarevents.

To obtain an estimate of the number of signal triplets expected after all selection criteria are applied, the sum of a Gaussian function that represents the signal and a four-parameter function (Eq. (2)) that models the incorrectly combined signal triplets is fit to the simulated distribution for each gluino mass. The Gaussian component of the fit provides the estimate for the expected number of signal triplets. The factors in this overall triplet signal efficiency are the event acceptance, governed by the kinematic and b-tagging selections, and the triplet rate, which represents the number of selected triplets per selected event. This triplet rate is the product of the average number of triplets per event times the proportion of triplets contained in the Gaussian signal peak compared with the full distribution. Width and acceptance-times-efficiency () are both parametrised as functions of gluino mass, as shown in Fig. 6. The width of the Gaussian function modelling the signal varies according to the detector resolution, ranging from 17 to 70\GeVfor gluino masses from 200 to 1500\GeV. The ranges from about 0.003 to 0.033 for the inclusive search for gluino masses from 400–1500\GeV, and, for the heavy-flavour search, from 0.005 to 0.04 for masses from 200–600\GeV, and from 0.008 to 0.015 for masses from 600–1500\GeV. For high-mass gluinos, the flattens slightly because of the decreased efficiency to reconstruct triplets in the Gaussian signal peak.

Figure 6: The signal parametrisation shown as a function of gluino mass for the inclusive search. The Gaussian signal width (left) and the parametrisation (right) versus signal mass are both shown. The hatched bands represent the combined statistical and systematic uncertainties.

6 Systematic uncertainties

Systematic uncertainties in the signal acceptance are assigned in the following manner. For uncertainties related to the jet energy scale (JES) [20], the jet energy corrections are varied within their uncertainties for each signal mass, and then the entire selection procedure is repeated to determine the parametrised values of the . The largest difference from the nominal values is taken as a systematic uncertainty. To evaluate the systematic uncertainty associated with the level of simulated ISR and FSR for signal events, \iethe spontaneous emission of gluons from incoming or outgoing participants of the hard interaction, dedicated signal samples are generated where the relative amounts of ISR and FSR are coherently increased or decreased with respect to the nominal setting of the \PYTHIAevent generator [29]. The parameter controlling the amount of ISR (PARP(67)) is varied around its central value of 2.5 by and that for the FSR (PARP(71)) is varied from 2.5 to 8, with a nominal value of 4.0. For each sample, the rederived is compared to the nominal value, and the difference is taken as the systematic uncertainty. Analogously, an uncertainty is assigned to account for the effects of multiple pp collisions in an event (pileup) by reweighting all MC signal samples such that the distribution of the number of interactions per bunch crossing is shifted, high and low, by one standard deviation compared with that found in data [30]. For the analyses using b tagging, an uncertainty is assigned based on the scale factor that comprises the differences in b-tagging efficiencies in data compared with simulation [26]. The same procedure as outlined above is repeated, where the b-tagging scale factors are varied within their uncertainties, and the effect on is evaluated. Uncertainties in the fit parameters of the Gaussian signal are used as an additional systematic uncertainty for each mass point. Finally, an overall systematic uncertainty of 2.6% is assigned to the integrated luminosity measurement [12]. The ranges in the values of these uncertainties are summarised in Table 6. Systematic uncertainties related to the signal and background shapes are discussed in Section 7.

\topcaption

Systematic uncertainties on the signal included in limit setting. Source of systematic uncertainty Value JES 3–16% ISR/FSR 5–11% Pileup 1–5% b tagging 1–7% Signal fit 4–12% Luminosity 2.6%

7 Results and limits

The three-jet invariant mass distributions are examined for a Gaussian signal peak on top of the smoothly falling background distribution. As has been described, this analysis uses different selection criteria to search for resonances coupling to light-flavour and to heavy-flavour quarks, with the latter search done separately in low-mass and high-mass regions. In the analysis of each of the three selections, the background normalisation parameter is unconstrained and is therefore determined by the SM multijet component of the combined fit. For the function describing the background, the initial values of its parameters are taken from the background-only hypothesis fit to the data, while they are allowed to float in the background-plus-signal hypothesis fits for the limit calculation. The signal is modelled with Gaussians defined by the width and curves shown in Fig. 6. The uncertainties in the expected number of signal triplets are included as log-normal constraints, where the uncertainty for the width of the Gaussian includes a 10% systematic uncertainty to account for jet resolution effects [20]. For the \ttbarbackground estimate, uncertainties in both the shape and normalisation are included. In addition to those already discussed in the previous section, uncertainties due to ambiguities in the parton shower matching procedure between the \MADGRAPHand \PYTHIAevent generators, as well as those due to the dependence on the renormalisation and factorisation scale, are taken into account.

Upper limits are placed on the cross section times branching fraction for the production of three-jet resonances. A modified-frequentist approach, using the  [31, 32] technique and a profile likelihood as the test statistic, is employed. Limits are calculated with the frequentist asymptotic calculator implemented in the RooStats [33, 34] package. The full calculations give similar limits within a few percent, and closure tests where a fixed signal is injected, yield consistent coverage. The observed and expected 95% confidence level (CL) upper limits on the gluino pair-production cross section times branching fraction as a function of gluino mass are presented in Fig. 7. The solid red lines in the figure show the next-to-leading-order (NLO) plus next-to-leading-logarithm (NLL) cross sections for gluino pair production [35, 36, 37, 38, 39], and the dashed red lines indicate the corresponding one-standard-deviation () uncertainties, which range between 15% and 43%. To quote final results, we use the points where the -uncertainty curve for the NLO+NLL cross section crosses the expected- and observed-limit curves. We additionally quote the result where the central theoretical curve intersects the limit curves.

The production of gluinos undergoing RPV decays into light-flavour jets is excluded at 95% CL for gluino masses below 650\GeV, with a less conservative exclusion of 670\GeVbased upon the theory value at the central scale. The respective expected limits are 755 and 795\GeV. These results extend the limit of 460\GeV [10] obtained with the 7\TeVCMS dataset. Gluinos whose decay includes a heavy-flavour jet are excluded for masses between 200 and 835\GeV, which is the most stringent mass limit to date for this model of RPV gluino decay, with the less conservative exclusion up to 855\GeVfrom the central theoretical value. The respective expected limits are 825 and 860\GeV. While a smaller phase space is probed in the heavy-flavour search, the limits extend to higher masses because of the reduction of the background.

Figure 7: Observed and expected 95% CL cross section limits as a function of mass for the inclusive (left) and heavy-flavour searches (right). The limits for the heavy-flavour search cover two mass ranges, one for low-mass gluinos ranging from 200 to 600\GeV, and one for high-mass gluinos covering the remainder of the mass range up to 1500\GeV. The solid red lines show the NLO+NLL predictions [35, 36, 37, 38, 39], and the dashed red lines give the corresponding one-standard-deviation uncertainty bands [40].

8 Summary

A search for hadronic resonance production in \Pp\Pp collisions at a centre-of-mass energy of 8\TeVhas been conducted by the CMS experiment at the LHC with a data sample corresponding to an integrated luminosity of 19.4\fbinv. The approach is model independent, with event selection criteria optimised using the RPV supersymmetric model for gluino pair production in a six-jet final state. Two different scenarios for this RPV decay have been considered: gluinos decaying exclusively to light-flavour jets, and gluinos decaying to one b-quark jet and two light-flavour jets, with the assumption in both cases of a 100% branching fraction for gluinos decaying to quark jets. Methods based on data have been used to derive estimates of background from SM multijet processes. Events with high jet multiplicity and a large scalar sum of jet \pthave been analysed for the presence of signal events, and no deviation has been found between the standard model background expectations and the measured mass distributions. The production of gluinos undergoing RPV decay into light-flavour jets has been excluded at the 95% CL for masses below 650\GeV. Gluinos that include a heavy-flavour jet in their decay have been excluded at 95% CL for masses between 200 and 835\GeV, which is the most stringent limit to date for this model of gluino decay.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan\cmsAuthorMark1, M. Friedl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, N. Hörmann, J. Hrubec, M. Jeitler\cmsAuthorMark1, W. Kiesenhofer, V. Knünz, M. Krammer\cmsAuthorMark1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady\cmsAuthorMark2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\cmsAuthorMark1 \cmsinstskipNational Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Heracleous, A. Kalogeropoulos, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang \cmsinstskipGhent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\cmsAuthorMark3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\cmsAuthorMark4, J. Hollar, P. Jez, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov\cmsAuthorMark5, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia \cmsinstskipUniversité de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato\cmsAuthorMark6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\cmsAuthorMark6, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
C.A. Bernardes, F.A. Dias\cmsAuthorMark7, T.R. Fernandez Perez Tomei, E.M. Gregores, C. Lagana, P.G. Mercadante, S.F. Novaes, Sandra S. Padula \cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev\cmsAuthorMark2, P. Iaydjiev\cmsAuthorMark2, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipInstitute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, R. Plestina\cmsAuthorMark8, J. Tao, X. Wang, Z. Wang \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria \cmsinstskipTechnical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak \cmsinstskipUniversity of Split, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis \cmsinstskipCharles University, Prague, Czech Republic
M. Finger, M. Finger Jr. \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim\cmsAuthorMark9, Y. Assran\cmsAuthorMark10, S. Elgammal\cmsAuthorMark9, A. Ellithi Kamel\cmsAuthorMark11, M.A. Mahmoud\cmsAuthorMark12, A. Radi\cmsAuthorMark13\cmsAuthorMark14 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva \cmsinstskipDSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, M. Bluj\cmsAuthorMark15, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski, A. Florent, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi \cmsinstskipInstitut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram\cmsAuthorMark16, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte\cmsAuthorMark16, F. Drouhin\cmsAuthorMark16, J.-C. Fontaine\cmsAuthorMark16, D. Gelé, U. Goerlach, C. Goetzmann, P. Juillot, A.-C. Le Bihan, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, S. Brochet, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez\cmsAuthorMark17, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao \cmsinstskipInstitute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark18 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov\cmsAuthorMark5 \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann\cmsAuthorMark2, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz\cmsAuthorMark19, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, G. Flucke, A. Geiser, A. Grebenyuk, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, M. Krämer, D. Krücker, W. Lange, J. Leonard, K. Lipka, W. Lohmann\cmsAuthorMark19, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, O. Novgorodova, F. Nowak, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen, R. Schmidt\cmsAuthorMark19, T. Schoerner-Sadenius, M. Schröder, N. Sen, M. Stein, R. Walsh, C. Wissing \cmsinstskipUniversity of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, H. Enderle, J. Erfle, E. Garutti, U. Gebbert, M. Görner, M. Gosselink, J. Haller, K. Heine, R.S. Höing, G. Kaussen, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, T. Schum, M. Seidel, J. Sibille\cmsAuthorMark20, V. Sola, H. Stadie, G. Steinbrück, J. Thomsen, D. Troendle, E. Usai, L. Vanelderen \cmsinstskipInstitut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff\cmsAuthorMark2, F. Hartmann\cmsAuthorMark2, T. Hauth\cmsAuthorMark2, H. Held, K.H. Hoffmann, U. Husemann, I. Katkov\cmsAuthorMark5, J.R. Komaragiri, A. Kornmayer\cmsAuthorMark2, E. Kuznetsova, P. Lobelle Pardo, D. Martschei, M.U. Mozer, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise \cmsinstskipInstitute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari, I. Topsis-giotis \cmsinstskipUniversity of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas \cmsinstskipKFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath\cmsAuthorMark21, F. Sikler, V. Veszpremi, G. Vesztergombi\cmsAuthorMark22, A.J. Zsigmond \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi \cmsinstskipUniversity of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipNational Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain\cmsAuthorMark23 \cmsinstskipPanjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh \cmsinstskipUniversity of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shivpuri \cmsinstskipSaha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty\cmsAuthorMark2, L.M. Pant, P. Shukla, A. Topkar \cmsinstskipTata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait\cmsAuthorMark24, A. Gurtu\cmsAuthorMark25, G. Kole, S. Kumar, M. Maity\cmsAuthorMark26, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage\cmsAuthorMark27 \cmsinstskipTata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad \cmsinstskipInstitute for Research in Fundamental Sciences (IPM),  Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami\cmsAuthorMark28, A. Fahim\cmsAuthorMark29, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh\cmsAuthorMark30, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, A. Pompili, G. Pugliese, R. Radogna, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, P. Verwilligen, G. Zito \cmsinstskipINFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini \cmsinstskipINFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano\cmsAuthorMark2, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo \cmsinstskipINFN Sezione di Genova , Università di Genova ,  Genova, Italy
P. Fabbricatore, R. Ferretti, F. Ferro, M. Lo Vetere, R. Musenich, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
A. Benaglia, M.E. Dinardo, S. Fiorendi\cmsAuthorMark2, S. Gennai, A. Ghezzi, P. Govoni, M.T. Lucchini\cmsAuthorMark2, S. Malvezzi, R.A. Manzoni\cmsAuthorMark2, A. Martelli\cmsAuthorMark2, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Università della Basilicata (Potenza) , Università G. Marconi (Roma) ,  Napoli, Italy
S. Buontempo, N. Cavallo, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola\cmsAuthorMark2, M. Merola, P. Paolucci\cmsAuthorMark2 \cmsinstskipINFN Sezione di Padova , Università di Padova , Università di Trento (Trento) ,  Padova, Italy
P. Azzi, N. Bacchetta, M. Bellato, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Fanzago, M. Galanti\cmsAuthorMark2, F. Gasparini, U. Gasparini, P. Giubilato, A. Gozzelino, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, A. Zucchetta, G. Zumerle \cmsinstskipINFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, A. Santocchia, A. Spiezia \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov\cmsAuthorMark31, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, M.A. Ciocci\cmsAuthorMark31, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, M.T. Grippo\cmsAuthorMark31, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, C.S. Moon\cmsAuthorMark32, F. Palla, A. Rizzi, A. Savoy-Navarro\cmsAuthorMark33, A.T. Serban, P. Spagnolo, P. Squillacioti\cmsAuthorMark31, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini, C. Vernieri \cmsinstskipINFN Sezione di Roma , Università di Roma ,  Roma, Italy
L. Barone, F. Cavallari, D. Del Re, M. Diemoz, M. Grassi, C. Jorda, E. Longo, F. Margaroli, P. Meridiani, F. Micheli, S. Nourbakhsh, G. Organtini, R. Paramatti, S. Rahatlou, C. Rovelli, L. Soffi \cmsinstskipINFN Sezione di Torino , Università di Torino , Università del Piemonte Orientale (Novara) ,  Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, R. Bellan, C. Biino, N. Cartiglia, S. Casasso, M. Costa, A. Degano, N. Demaria, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, G. Ortona, L. Pacher, N. Pastrone, M. Pelliccioni\cmsAuthorMark2, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staiano, U. Tamponi \cmsinstskipINFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti\cmsAuthorMark2, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, D. Montanino, A. Penzo, A. Schizzi, T. Umer, A. Zanetti \cmsinstskipKangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam \cmsinstskipKyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song \cmsinstskipKorea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh \cmsinstskipUniversity of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
I. Grigelionis, A. Juodagalvis \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz\cmsAuthorMark34, R. Lopez-Fernandez, J. Martínez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen \cmsinstskipUniversidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
E. Casimiro Linares, A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, W. Wolszczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas\cmsAuthorMark2, J. Varela, P. Vischia \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin\cmsAuthorMark7, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev \cmsinstskipState Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark35, M. Djordjevic, M. Ekmedzic, J. Milosevic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas\cmsAuthorMark2, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, C. Willmott \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias \cmsinstskipInstituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, J.F. Benitez, C. Bernet\cmsAuthorMark8, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi\cmsAuthorMark36, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, C. Hartl, A. Hinzmann, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, Y.-J. Lee, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, M. Mulders, P. Musella, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, L. Quertenmont, A. Racz, W. Reece, G. Rolandi\cmsAuthorMark37, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas\cmsAuthorMark38, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, A. Tsirou, G.I. Veres\cmsAuthorMark22, J.R. Vlimant, H.K. Wöhri, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe \cmsinstskipInstitute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, F. Moortgat, C. Nägeli\cmsAuthorMark39, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, M. Quittnat, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov\cmsAuthorMark40, M. Takahashi, L. Tauscher, K. Theofilatos, D. Treille, R. Wallny, H.A. Weber \cmsinstskipUniversität Zürich, Zurich, Switzerland
C. Amsler\cmsAuthorMark41, V. Chiochia, A. De Cosa, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang \cmsinstskipNational Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu \cmsinstskipNational Taiwan University (NTU),  Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, M. Wang \cmsinstskipChulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee \cmsinstskipCukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci\cmsAuthorMark42, S. Cerci\cmsAuthorMark43, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut\cmsAuthorMark44, K. Ozdemir, S. Ozturk\cmsAuthorMark42, A. Polatoz, K. Sogut\cmsAuthorMark45, D. Sunar Cerci\cmsAuthorMark43, B. Tali\cmsAuthorMark43, H. Topakli\cmsAuthorMark42, M. Vergili \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar\cmsAuthorMark46, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak\cmsAuthorMark47, M. Kaya\cmsAuthorMark48, O. Kaya\cmsAuthorMark48, S. Ozkorucuklu\cmsAuthorMark49, N. Sonmez\cmsAuthorMark50 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
H. Bahtiyar\cmsAuthorMark51, E. Barlas, K. Cankocak, Y.O. Günaydin\cmsAuthorMark52, F.I. Vardarlı, M. Yücel \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, S. Metson, D.M. Newbold\cmsAuthorMark53, K. Nirunpong, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark54, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Ilic, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm \cmsinstskipImperial College, London, United Kingdom
R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas\cmsAuthorMark53, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko\cmsAuthorMark40, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi\cmsAuthorMark55, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle \cmsinstskipBrunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner \cmsinstskipBaylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough \cmsinstskipThe University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio \cmsinstskipBoston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak \cmsinstskipBrown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer \cmsinstskipUniversity of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, S. Shalhout, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay \cmsinstskipUniversity of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, E. Takasugi, P. Traczyk, V. Valuev, M. Weber \cmsinstskipUniversity of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny \cmsinstskipUniversity of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech\cmsAuthorMark56, F. Würthwein, A. Yagil, J. Yoo \cmsinstskipUniversity of California, Santa Barbara, Santa Barbara, USA
D. Barge, C. Campagnari, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, D. Kovalskyi, V. Krutelyov, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, Y. Ma, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev \cmsinstskipUniversity of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich \cmsinstskipFairfield University, Fairfield, USA
D. Winn \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kunori, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko\cmsAuthorMark57, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, J.C. Yun \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic\cmsAuthorMark58, G. Mitselmakher, L. Muniz, A. Rinkevicius, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria \cmsinstskipFlorida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez \cmsinstskipFlorida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, D. Strom, P. Turner, N. Varelas \cmsinstskipThe University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak\cmsAuthorMark51, B. Bilki\cmsAuthorMark59, W. Clarida, K. Dilsiz, F. Duru, J.-P. Merlo, H. Mermerkaya\cmsAuthorMark60, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok\cmsAuthorMark51, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin\cmsAuthorMark61, K. Yi \cmsinstskipJohns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz, A. Whitbeck \cmsinstskipThe University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, J.S. Wood \cmsinstskipKansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
A. Apyan, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, Y. Kim, M. Klute, Y.S. Lai, A. Levin, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, R. Wolf, B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti, V. Zhukova \cmsinstskipUniversity of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, R. Rahmat, D.A. Sanders, D. Summers \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow \cmsinstskipState University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang \cmsinstskipNorthwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf \cmsinstskipThe Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe, H.W. Wulsin \cmsinstskipPrinceton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas \cmsinstskipPurdue University, West Lafayette, USA
E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng \cmsinstskipPurdue University Calumet, Hammond, USA
N. Parashar \cmsinstskipRice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel \cmsinstskipUniversity of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski \cmsinstskipThe Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark62, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon\cmsAuthorMark63, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev \cmsinstskipVanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood \cmsinstskipWayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov \cmsinstskipUniversity of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, J. Swanson \cmsinstskip†: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3:  Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4:  Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5:  Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6:  Also at Universidade Estadual de Campinas, Campinas, Brazil
7:  Also at California Institute of Technology, Pasadena, USA
8:  Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9:  Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at National Centre for Nuclear Research, Swierk, Poland
16: Also at Université de Haute Alsace, Mulhouse, France
17: Also at Universidad de Antioquia, Medellin, Colombia
18: Also at Joint Institute for Nuclear Research, Dubna, Russia
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at The University of Kansas, Lawrence, USA
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Eötvös Loránd University, Budapest, Hungary
23: Also at Tata Institute of Fundamental Research - EHEP, Mumbai, India
24: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
25: Now at King Abdulaziz University, Jeddah, Saudi Arabia
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Sharif University of Technology, Tehran, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
33: Also at Purdue University, West Lafayette, USA
34: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Suleyman Demirel University, Isparta, Turkey
50: Also at Ege University, Izmir, Turkey
51: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
52: Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
53: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
54: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
55: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
56: Also at Utah Valley University, Orem, USA
57: Also at Institute for Nuclear Research, Moscow, Russia
58: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
59: Also at Argonne National Laboratory, Argonne, USA
60: Also at Erzincan University, Erzincan, Turkey
61: Also at Yildiz Technical University, Istanbul, Turkey
62: Also at Texas A&M University at Qatar, Doha, Qatar
63: Also at Kyungpook National University, Daegu, Korea

References

  1. E. Farhi and L. Susskind, “Grand Unified Theory with Heavy Color”, Phys. Rev. D 20 (1979) 3404, doi:10.1103/PhysRevD.20.3404.
  2. W. J. Marciano, “Exotic New Quarks and Dynamical Symmetry Breaking”, Phys. Rev. D 21 (1980) 2425, doi:10.1103/PhysRevD.21.2425.
  3. P. H. Frampton and S. L. Glashow, “Unifiable Chiral Color with Natural Glashow-Iliopoulos-Maiani Mechanism”, Phys. Rev. Lett. 58 (1987) 2168, doi:10.1103/PhysRevLett.58.2168.
  4. P. H. Frampton and S. L. Glashow, “Chiral Color: An Alternative to the Standard Model”, Phys. Lett. B 190 (1987) 157, doi:10.1016/0370-2693(87)90859-8.
  5. R. S. Chivukula, M. Golden, and E. H. Simmons, “Six Jet Signals of Highly Colored Fermions”, Phys. Lett. B 257 (1991) 403, doi:10.1016/0370-2693(91)91915-I.
  6. R. S. Chivukula, M. Golden, and E. H. Simmons, “Multi-jet Physics at Hadron Colliders”, Nucl. Phys. B 363 (1991) 83, doi:10.1016/0550-3213(91)90235-P.
  7. R. Essig, “Physics Beyond the Standard Model: Supersymmetry, Dark Matter, and LHC Phenomenology”, PhD thesis, Rutgers University, USA, (2008).
  8. CDF Collaboration, “First Search for Multijet Resonances in  TeV Collisions”, Phys. Rev. Lett. 107 (2011) 042001, doi:10.1103/PhysRevLett.107.042001, arXiv:1105.2815.
  9. CMS Collaboration, “Search for Three-Jet Resonances in pp Collisions at  TeV”, Phys. Rev. Lett. 107 (2011) 101801, doi:10.1103/PhysRevLett.107.101801, arXiv:1107.3084.
  10. CMS Collaboration, “Search for three-jet resonances in pp collisions at  TeV”, Phys. Lett. B 718 (2012) 329, doi:10.1016/j.physletb.2012.10.048, arXiv:1208.2931.
  11. ATLAS Collaboration, “Search for pair production of massive particles decaying into three quarks with the ATLAS detector in  TeV pp collisions at the LHC”, JHEP 12 (2012) 086, doi:10.1007/JHEP12(2012)086, arXiv:1210.4813.
  12. CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting—Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, (2013).
  13. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
  14. CMS Collaboration, “Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at = 7 TeV”, JINST 8 (2013) P09009, doi:10.1088/1748-0221/8/09/P09009, arXiv:1306.2016.
  15. CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, (2010).
  16. CMS Collaboration, “Tracking and Primary Vertex Results in First 7 TeV Collisions”, CMS Physics Analysis Summary CMS-PAS-TRK-10-005, (2010).
  17. M. Cacciari, G. P. Salam, and G. Soyez, “The Anti- Jet Clustering Algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  18. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  19. M. Cacciari and G. P. Salam, “Dispelling the myth for the jet-finder”, Phys. Lett. B 641 (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210.
  20. CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) 11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.
  21. CMS Collaboration, “Jet Performance in pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-003, (2010).
  22. T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
  23. R. Barbier et al., “R-parity violating supersymmetry”, Phys. Rept. 420 (2005) 1, doi:10.1016/j.physrep.2005.08.006, arXiv:hep-ph/0406039.
  24. GEANT4 Collaboration, “Geant4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
  25. CMS Collaboration, “Search for narrow resonances using the dijet mass spectrum in pp collisions at  TeV”, Phys. Rev. D 87 (2013) 114015, doi:10.1103/PhysRevD.87.114015, arXiv:1302.4794.
  26. CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.
  27. J. Alwall et al., “MadGraph/MadEvent v4: the new web generation”, JHEP 09 (2007) 028, doi:10.1088/1126-6708/2007/09/028, arXiv:0706.2334.
  28. M. Czakon, P. Fiedler, and A. Mitov, “The total top quark pair production cross-section at hadron colliders through O()”, Phys. Rev. Lett. 110 (2013) 252004, doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254.
  29. CMS Collaboration, “Dijet Azimuthal Decorrelations in pp Collisions at  = 7 TeV”, Phys. Rev. Lett. 106 (2011) 122003, doi:10.1103/PhysRevLett.106.122003.
  30. CMS Collaboration, “Measurement of the inelastic proton-proton cross section at ”, Phys. Lett. B 722 (2013) 5, doi:10.1016/j.physletb.2013.03.024.
  31. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  32. A. L. Read, “Presentation of search results: the technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.
  33. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.
  34. L. Moneta et al., “The RooStats Project”, in 13 International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010). SISSA, 2010. arXiv:1009.1003.
  35. W. Beenakker, R. Höpker, M. Spira, and P. M. Zerwas, “Squark and gluino production at hadron colliders”, Nucl. Phys. B 492 (1997) 51, doi:10.1016/S0550-3213(97)80027-2, arXiv:hep-ph/9610490.
  36. A. Kulesza and L. Motyka, “Threshold Resummation for Squark-Antisquark and Gluino-Pair Production at the LHC”, Phys. Rev. Lett. 102 (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405.
  37. A. Kulesza and L. Motyka, “Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC”, Phys. Rev. D 80 (2009) 095004, doi:10.1103/PhysRevD.80.095004, arXiv:0905.4749.
  38. W. Beenakker et al., “Soft-gluon resummation for squark and gluino hadroproduction”, JHEP 12 (2009) 041, doi:10.1088/1126-6708/2009/12/041, arXiv:0909.4418.
  39. W. Beenakker et al., “Squark and Gluino Hadroproduction”, Int. J. Mod. Phys. A 26 (2011) 2637, doi:10.1142/S0217751X11053560, arXiv:1105.1110.
  40. M. Krämer et al., “Supersymmetry production cross sections in pp collisions at  TeV”, (2012). arXiv:1206.2892.
Comments 0
Request comment
You are adding your first comment
How to quickly get a good reply:
  • Give credit where it’s Due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should ultimately help the author improve the paper.
  • Remember, the better we can be at sharing our knowledge with each other, the faster we can move forward.
""
The feedback must be of minumum 40 characters
Add comment
Cancel
Loading ...
190656
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
Edit
-  
Unpublish
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description