Search for single production of vector-like quarks decaying to a top quark and a \PW boson in proton-proton collisions at \sqrt{s}=13\TeV

Search for single production of vector-like quarks decaying to a top quark and a \Pw boson in proton-proton collisions at

August 17, 2019
Abstract

A search is presented for the single production of vector-like quarks in proton-proton collisions at . The data were recorded with the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9\fbinv. The analysis focuses on the vector-like quark decay into a top quark and a boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of quarks and of highly Lorentz boosted hadronically decaying top quarks and bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03\unitpbfor vector-like quark masses of 700 to 2000\GeV. Mass exclusion limits up to 1660\GeVare obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel.

\cmsNoteHeader

B2G-17-018

\RCS

\RCS

\cmsNoteHeader

B2G-17-018

0.1 Introduction

The discovery of the Higgs boson (\PH[1, 2] with a mass of 125\GeVcompletes the particle content of the standard model (SM). Even though the SM yields numerous accurate predictions, there are several open questions, among them the origin of the mass stability at the electroweak scale. Various models beyond the SM have been proposed that stabilise the mass at the measured value; some examples are Little Higgs [3, 4, 5] or Composite Higgs models [6], in which additional top quark partners with masses at the TeV scale are predicted. Since the left- (LH) and right-handed (RH) chiral components of these particles transform in the same way under the SM electroweak symmetry group, they are often referred to as “vector-like quarks” (VLQs). In contrast to a fourth chiral quark generation, their impact on the properties is small, such that VLQs have not been excluded by the measurements of mediated cross sections [7, 8, 9].

Several searches for VLQs have been performed at the CERN LHC, setting lower exclusion limits on the VLQ mass  [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Many of these analyses study the pair production of VLQs via the strong interaction. In contrast, the analysis presented here searches for the single VLQ production via the weak interaction, where a hadronic jet is emitted at a low angle with respect to the beam direction. Furthermore, VLQs with enhanced couplings to the third generation quarks (\ieVLQ \PQBand  quarks with an electric charge of and respectively) are produced in association with a bottom () or top () quark, leading to the \PQB+\cPqb, \PQB+\cPqt, and +\cPqt production modes.

While a VLQ \PQBquark could decay into the , , or final state, a VLQ  quark could only decay into the \cPqt\PW final state. This search focuses on the \cPqt\PW final state. In Fig. 1, two leading-order (LO) Feynman diagrams are shown for the single production of \PQBand  quarks and their decay into \cPqt\PW. This paper presents the first search of this signature in proton-proton () collision data recorded at a centre-of-mass energy of 13 \TeV. Results at have been obtained by the ATLAS collaboration [32].

Figure 1: Leading order Feynman diagrams for the production of a single vector-like \PQBor quark in association with a (left) or (right) and a light-flavour quark, and the subsequent decay of the VLQ to .

In this analysis, final states with a single muon or electron, several hadronic jets, and missing transverse momenta are studied. Because of the high mass of the VLQ, the and can have high Lorentz boosts, leading to highly collimated decays of the boson, the top quark and non-isolated leptons. For signal events, the mass of the \PQBand quarks can be reconstructed using hadronic jets, the lepton, and the . The associated \cPqb and \cPqt, as well as the leptons originating from their decay, have much lower transverse momenta and are not considered for the reconstruction or selection.

The dominant SM background processes are top quark pair (\ttbar) production, +jets and +jets production, single production, and multijet production via the strong force. All SM backgrounds contributing to this search are predicted from dedicated control regions in data, defined through the absence of a forward jet.

This paper is organised as follows: Section 0.2 provides a description of the CMS detector. Section 0.3 introduces the data set and the simulated events. This is followed by the event selection in Section 0.4, as well as by the description of the reconstruction of the VLQ mass in Section 0.5. In Section 0.6, a method to estimate the background is discussed. Systematic uncertainties are detailed in Section 0.7. The final results of the analysis, as well as the statistical interpretation in terms of exclusion limits, are discussed in Section 0.8.

0.2 The CMS detector and physics objects

The central feature of the CMS apparatus is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionisation chambers embedded in the steel flux-return yoke outside the solenoid.

The particle-flow event algorithm [33] aims to reconstruct and identify each individual particle with an optimised combination of information from the various elements of the CMS detector. The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track [34]. The energy of muons is obtained from the curvature of the corresponding track [35]. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

The reconstructed vertex with the largest value of summed physics-object is taken to be the primary interaction vertex. The physics objects used are the jets, clustered with the jet finding algorithm [36, 37] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the \ptof those jets.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [38].

0.3 Data and simulated samples

In this analysis, collision data at a centre-of-mass energy of taken in 2016 by the CMS experiment are analyzed. The data have been collected with muon and electron triggers [39]. For the muon trigger, a muon candidate with is required. Data events in the electron channel are collected using a logical combination of two triggers: the first requires an electron candidate with and a hadronic jet candidate with , the second requires an electron candidate with . In the trigger selection, reconstructed leptons and jets must be in the central part of the detector, with a pseudorapidity of . No lepton isolation criteria are applied at the trigger level. The collected data correspond to an integrated luminosity of 35.9\fbinv [40].

For the study of dominant SM background processes and for the validation of the background estimation, simulated samples using Monte Carlo (MC) techniques are used. The top quark pair production via the strong interaction and single top quark production in the -channel, and the process are generated with the next-to-leading-order (NLO) generator \POWHEG [41, 42, 43] (version v2 is used for the first two and version v1 for the third). The event generator \MGvATNLO(v2.2.2) [44] at NLO is used for single top quark production in the -channel. The +jets and +jets processes are also simulated using \MGvATNLO(v2.2.2). The +jets events are generated at NLO, and the FXFX scheme [45] is used to match the parton shower emission. The +jets events are produced at LO with the MLM parton matching scheme [46]. The production of quantum chromodynamics (QCD) multijet events has been simulated at LO using \PYTHIA [47]. All generated events are interfaced with \PYTHIAfor the description of the parton shower and hadronisation. The parton distribution functions (PDFs) are taken from the NNPDF 3.0 [48] sets, with the precision matching that of the matrix element calculations. The underlying event tune is CUETP8M1 [49, 50], except for the simulation of top quark pairs and single top quark production in the -channel, which use CUETP8M2T4 [51].

Signal events are generated at LO using \MGvATNLOfor \PQBand with VLQ decay widths relative to the VLQ mass of , 10, 20, and 30%. The samples with 1% relative VLQ width are simulated in steps of 100\GeVfor masses between 700 and 2000\GeV. Samples with 10, 20, and 30% relative VLQ widths are generated in steps of 200\GeVfor masses ranging from 800 to 2000\GeV, using a modified version of the model proposed in Refs. [52, 53, 54]. The theoretical cross sections for VLQ production are calculated using Refs. [55, 56, 57], where a simplified approach is used to provide a model-independent interpretation of experimental results for narrow and large mass width scenarios, as already used for the interpretation of singly produced vector-like \PQTand \PQBquarks [18, 19]. The MADSPIN package [58, 59] is used to retain the correct spin correlations of the top quark and boson decay products.

All generated events are passed through a \GEANTfour [60] based detector simulation of the CMS detector. Additional interactions originating from the same bunch crossing (in-time pileup), as well as from the following or previous bunch crossings (out-of-time pileup) are taken into account in the simulation.

0.4 Event selection

The physics objects used in this analysis are muons, electrons, hadronic jets, , and (defined as the scalar sum of the lepton and ).

For each event, jets are clustered from reconstructed particles using the infrared and collinear safe anti-\ktalgorithm [36] with a distance parameter (AK4 jet). Additionally, jets with (AK8 jet) are also clustered in every event with the anti-\ktalgorithm, which are used for and tagging. The jet clustering is performed with the \FASTJET [37] package. Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is found from simulation to be within 5–10% of the true momentum over the whole \ptspectrum and detector acceptance. Additional interactions within the same or nearby bunch crossings can contribute additional tracks and calorimetric energy depositions to the jet momentum. To mitigate this effect, tracks identified to be originating from pileup vertices are discarded, and an offset correction is applied to correct for remaining contributions. Jet energy corrections are derived from simulation studies so that the average measured response of jets becomes identical to that of particle level jets. In situ measurements of the momentum balance in dijet, photon+jet, +jet, and multijet events are used to account for any residual differences in the jet energy scale in data and simulation. Additional selection criteria are applied to each jet to remove jets potentially dominated by anomalous contributions from various subdetector components or reconstruction failures [61].

From the corrected and reconstructed AK4 jet, those are considered that have and , while AK8 jet must have and .

Events selected in the analysis are required to have one reconstructed muon or electron with and . Electrons and muons are selected using tight quality criteria with small misidentification probabilities of about 0.1% for muons and 1% for electrons [34, 62]. In the electron channel, a AK4 jet must have and if the electron has , reflecting the trigger selection. Events with more than one muon or electron passing the same tight identification criteria and having and are discarded. Selected events contain two AK4 jet and , which are in the central part of the detector with . Additionally at least one AK8 jet is required. For the reconstruction AK4 jet are used with and , while the AK4 jet emitted close to the beam pipe and employed in the background estimation must fulfill and .

Because of the high Lorentz boosts of the top quarks and bosons from the heavy VLQ decay, signal events can have leptons in close vicinity to the jets. For this reason, standard lepton isolation would reduce the selection efficiency considerably. Therefore, for the suppression of events originating from QCD mulitjet processes, either the perpendicular component of the lepton momentum relative to the geometrically closest AK4 jet , is required to exceed or the angular distance of the lepton to the jet, , must be larger than 0.4, where is the azimuthal angle in radians. Furthermore, for selecting an event, the magnitude of has to be greater than 50\GeVin the muon channel and greater than 60\GeVin the electron channel. This requirement reduces the amount of background from multijet production. The final selection is based on the variable , which is required to be larger than 250\GeVin the muon channel and 290\GeVin the electron channel.

Events are separated into categories exploiting the tagging techniques for boosted top quarks and bosons decaying hadronically, as well as for hadronic jets originating from quarks. Jets with are used to identify the hadronic decays of highly boosted top quarks and bosons [63, 64]. For top quark jets is required, and for boson jets the requirement is . The “soft drop” (SD) declustering and grooming algorithm [65, 66] with and is employed to identify subjets and to remove soft and wide-angle radiation. The groomed jet mass, , is used to identify top quark and boson candidates. Tagged top quark candidates ( tagged) are required to have and one of the subjets must fulfill the loose tagging criterion, based on the combined secondary vertex (CSVv2) [67] algorithm. The loose criterion is defined to give a 80% efficiency of correctly identifying \cPqb jets, with a 10% probability of incorrectly tagging a light quark jet. Additionally, the jet must have a N-subjettiness [68, 69] ratio and its angular distance to the lepton must be larger than 2. Identified boson candidates ( tag) must have . The medium tag criterion is used on AK4 jet, defined to give a efficiency of correctly identifying \cPqb jets, with a probability of incorrectly tagging a light quark jet.

Selected events are attributed to different mutually exclusive event categories. Events containing at least one tag constitute the first category (“\cPqt tag”). If no tag is found, all events with at least one tag are grouped into a second category (“\PW tag”). The remaining events are attributed to three further categories based on the multiplicity of tags found in the event. We distinguish events with at least two (“ \cPqb tag”), exactly one (“1 \cPqb tag”), and no tag (“0 \cPqb tag”). These five categories are built separately in the muon and in the electron channel leading to a total of ten categories.

0.5 Mass reconstruction

Hadronic jets, leptons, and are used to reconstruct the mass of the VLQ, denoted . In signal events, the lepton in the final state always originates from the decay of a boson, either the boson from the VLQ decay or the boson from the top quark decay. The neutrino four-momentum can thus be reconstructed from the components of , the mass constraint, and the assumption of massless neutrinos.

In the case when a hadronic jet with a tag is found, is calculated from the four-momentum of the tagged jet and the four-momentum of the leptonically decaying boson. If several hadronic jets with tags are present, the one with the largest angular distance to the reconstructed leptonic boson decay is used. For the shown distributions these events form the tag category. For events in the other categories the hadronic part of the VLQ decay is reconstructed from combinations of AK4 jet with . Each possible jet assignment for the decays of the \PW boson and \cPqt quark is tested exploiting the following quantity {linenomath}

(1)

For each event, the jet assignment with the maximum probability is selected. For the quantity the balance, , the angular distance, , and the reconstructed masses of the top quark candidate and the boson candidate are used. The expected values and , and their standard deviations and are obtained from simulation for correctly reconstructed events and it is verified that the values are independent of the VLQ mass. Here, correctly reconstructed events are defined by the assignment of jets to generated quarks and bosons, where the generated particles from the VLQ decay are unambiguously matched within a distance of to the reconstructed particles. It was also verified in simulation that the expected values of and the balance are and , with their standard deviations and . In order to account for cases where the boson from the VLQ decay decays into a lepton and neutrino, the is calculated for each permutation with the second term omitted. Cases where the hadronic decay products of the bosons or the top quark are reconstructed in a single AK4 jetare included by omitting the first or second term in the calculation of the .

Figure 2: Distributions of for the \PQB+\cPqb production mode, obtained for simulated events with a muon in the final state, reconstructed with a tag (left) and with the method (right) for right-handed VLQ couplings and various VLQ masses . Signal events are shown assuming a production cross section of 1\unitpband a relative VLQ decay width of 1%.

The distributions of in simulation for the \PQB+\cPqb production mode with right-handed couplings are shown in Fig. 2 for events with a muon in the final state. The reconstruction of events with a tag (left) is best suited for high VLQ masses where the decay products of the top quark are highly boosted, while the method (right) yields a stable performance for all VLQ masses, where the decay products of the boson and top quark are reconstructed from several jets. Additionally, the latter method enables the reconstruction of events with a lepton from the top quark decay chain. Mass resolutions between 10–15% are achieved for both reconstruction methods, with peak values of the distributions at the expected values. The VLQs with left-handed couplings (not shown) have a lower selection efficiency by 20–25% because of a smaller lepton , on average, but otherwise features a behaviour similar to VLQs with right-handed couplings. Distributions obtained for the final states with an electron are similar to those with a muon.

0.6 Background estimation

The data sample obtained after the selection is then divided into a signal region with a jet in the forward region of the detector with and a control region without such a jet. The distribution of background processes in the signal region is estimated using the shape of the  distribution in the control region. Residual differences in the shapes of the distributions between signal and control regions are investigated in each of the signal categories by using simulated SM events. Differences can arise from different background compositions in signal and control regions due to the presence of a forward jet. The observed differences are small, with average values of 10%, and are corrected for. The largest differences are observed for values below 800\GeV, with values no larger than about 20%.

In order to validate the VLQ mass reconstruction, data are compared to simulation in the control region. In Fig. 3 the distributions of are shown in the muon (upper) and electron (lower) channels for events with a tag (left) and events reconstructed with the method (right). The \ttbarand standard model processes provide irreducible backgrounds in the reconstructed VLQ mass distributions, showing good agreement between the data and simulation. The contribution of signal events in the control region is small and is taken into account by a simultaneous fit to signal and control regions in the statistical extraction of the results.

Figure 3: Distributions of in data and simulation in the control region for the muon (upper) and electron (lower) channels for events reconstructed with a tag (left) and with the method (right). The VLQ signal is shown for the \PQB+\cPqb production mode and right-handed VLQ couplings. The vertical bars illustrate the statistical uncertainties on the data, while the shaded area shows the total uncertainties for the background simulation. The lower panels show the ratio of data to the background prediction. The dark and light gray bands correspond to the statistical and total uncertainties, respectively.

In order to validate the background estimation, a validation region is constructed from requiring events with reconstruction -values smaller than 0.08. The -values are calculated as the probability of obtaining the as given by Eq. (1), where the number of degrees of freedom of the selected hypothesis are taken into account. For events with a tag, the same quantity is evaluated for the selected hypothesis. The validation region has an order of magnitude fewer events than the signal region and a negligible amount of signal contamination. The distributions for the two most sensitive categories are shown in Fig. 4 for the muon (upper) and electron (lower) channels. The observed number of events is found to be in good agreement with the predicted number of events from the background estimation in the validation region, with no statistically significant deviations. Similar observations are made for the other signal categories.

Figure 4: Distributions of in the validation region of the two most sensitive categories in the muon channel (upper) and electron channel (lower). The lower panels show the difference of data and background expectations in units of the total (stat. and sys.) uncertainty on the background estimate.

0.7 Systematic uncertainties

Systematic uncertainties can affect both the overall normalisation of background components and the shapes of the distributions for signal and background processes. The main uncertainty in the shape of the distribution from the background estimation based on a control region in data is related to the kinematic difference between the signal and control regions. Correction factors are applied to account for this difference, obtained from SM simulations. The uncertainties in the overall normalisation of the background predictions are obtained from a fit to the data in the signal region.

Uncertainties in the MC simulation are applied to all simulated signal events. In the following, the systematic uncertainties are summarized.

  • The uncertainty in the integrated luminosity measurement recorded with the CMS detector in the 2016 run at is 2.5% [40].

  • The estimation of pileup effects is based on the total inelastic cross section. This cross section is determined to be 69.2\unitmb. The uncertainty is taken into account by varying the total inelastic cross section by 4.6% [70].

  • Simulated events are corrected for lepton identification, trigger, and isolation efficiencies. The corresponding corrections are applied as functions of and . The systematic uncertainties due to these corrections are taken into account by varying each correction factor within its uncertainty.

  • The scale factors for the jet energy scale and resolution are determined as functions of and  [61]. The effect of the uncertainties in these scale factors are considered by varying the scale factors within their uncertainties. Jets with distance parameters of 0.4 and 0.8 are modified simultaneously. The results of variations for AK4 jet are propagated to the measurement of \ptvecmiss.

  • The uncertainties due to the PDFs are evaluated by considering 100 replicas of the NNPDF 3.0 set according to the procedure described in Ref. [71]. The associated PDF uncertainties in the signal acceptance are estimated following the prescription for the LHC [71].

  • Uncertainties associated with variations of the factorisation and renormalisation scales are evaluated by varying the respective scales independently, by factors of 0.5 and 2.

  • Corrections for the \cPqb tagging efficiencies and misidentification rates for AK4 jet, and subjets of AK8 jet are applied. These are measured as a function of the jet  [67]. The corresponding uncertainties are taken into account by varying the corrections within their uncertainties for heavy- and light-flavour jets separately.

  • An uncertainty on the \cPqt tagging efficiency of and is applied to signal events with a \cPqt tag [64]. The uncertainty on the tagging efficiency is determined from jet mass resolution (JMR) and scale (JMS) uncertainties, which are added in quadrature. An additional JMR uncertainty is derived from the differences in the hadronisation and shower models of \PYTHIAand \HERWIGpp [72]. The uncertainty depends on the \ptof the \PW boson; for VLQs with a mass of 700\GeVit is around 2% and for a mass of 1800\GeVit is around 6%. An uncertainty of 1% is assigned to the JMS.

In Table 0.7, a summary of the uncertainties considered for signal events is shown, where the largest uncertainties come from the jet energy scale and the jet tagging. For the uncertainties connected to the PDF, and only the signal acceptance and shape differences are propagated. The uncertainties with the largest impact on the analysis are the uncertainties associated with the data-driven background estimation, being more than two times larger than the jet energy scale uncertainties in the signal.

\topcaption

Uncertainties considered for simulated signal events in the \PQB+\cPqb production mode () for right-handed VLQ couplings for the \cPqt tag and \PW tag categories. The uncertainties in the \cPqb tag categories are of comparable size to those in the \PW tag category. Uncertainty tag [] \PW tag [] \PW tagging Rate 3.3 \cPqt tagging Rate Luminosity Rate 2.5 2.5 Pileup Shape 1–3 0.2 Lepton reconstruction Shape 2–3 2–3 \cPqb tagging Shape 2.5 2.5 Jet energy scale Shape 2–6 1–5 Jet energy resolution Shape 1–2 1–2 PDF Shape 2–3 0.5 and Shape 0.3 0.2

0.8 Results

The distributions in the ten categories are measured in the signal and control region, which are defined by the presence or absence of a forward jet with . For the background estimate in the signal regions, a simultaneous binned maximum likelihood fit of both regions is performed using the Theta [73] package. In these fits, the signal cross section and the background normalisations in the different signal categories are free parameters. The shapes of the distributions for the SM background in the signal regions are taken from the corresponding control regions. Systematic uncertainties are taken into account as additional nuisance parameters. A common nuisance parameter is used for uncertainties in the muon and electron channels if a similar effect is expected on the shape or normalisation of the distribution in both channels similarly. The nuisance parameters for the shape uncertainties are taken to be Gaussian distributed. For the uncertainties on the normalisation log-normal prior distributions are assumed.

The measured distributions of for the signal categories are shown in Figs. 5 and 6 for the muon and electron channels, together with the background predictions obtained from the control regions. The signal  distributions for a vector-like \PQBquark with right-handed couplings produced in association with a \cPqb quark are shown for illustration, for two different VLQ masses with an assumed production cross section of 1\unitpband a relative VLQ width of 1%. No significant deviation from the background expectation is observed in any of the categories.

Figure 5: Distributions of  measured in the signal region for events with a jet in the forward direction with in the muon channel. Shown are the sensitive categories: \cPqt tag (upper left), \PW tag (upper right), \cPqb tag (lower left), 1 \cPqb tag (lower right) and 0 \cPqb tag. The background prediction is obtained from control regions as detailed in the main text. The distributions from two example signal samples for the \PQB+\cPqb production mode with right-handed VLQ couplings with a cross section of 1\unitpband a relative width of 1% are shown for illustration.
Figure 6: Distributions of  measured in the signal region for events with a jet in the forward direction with in the electron channel. Shown are the sensitive categories: \cPqt tag(upper left), \PW tag(upper right), \cPqb tag (middle left), 1 \cPqb tag (middle right) and 0 \cPqb tag (lower). The background prediction is obtained from control regions as detailed in the main text. The distributions from two example signal samples for the \PQB+\cPqb production mode with right-handed VLQ couplings with a cross section of 1\unitpband a relative VLQ width of 1% are shown for illustration.

Exclusion limits on the product of the VLQ production cross section and branching fraction are calculated at 95% confidence level (CL) for VLQ masses between 700 and 2000\GeVby using a Bayesian statistical method [73, 74]. Pseudo-experiments are performed to extract expected upper limits under the background-only hypothesis. For the signal cross section parameter an uniform prior distribution, and for the nuisance parameters log-normal prior distributions are used. The nuisance parameters are randomly varied within their ranges of validity to estimate the 68 and 95% CL expected limits. Correlations between the systematic uncertainties across all channels are taken into account through a common nuisance parameter. The statistical uncertainties of the background predictions are treated as an additional Poisson nuisance parameter in each bin of the  distribution.

Figure 7 shows the 95% CL upper limits on the product of the cross section and branching fraction for the \PQB+\cPqbproduction mode for left- and right-handed VLQ couplings and a relative VLQ width of 1% (upper left and upper right), for the left-handed VLQ couplings and a relative VLQ width of 10% (lower left), as well as a comparison of the observed exclusion limits for relative VLQ widths between 10 and 30% (lower right). In Fig. 8, the 95% CL upper limits on the product of the cross section and branching fraction for the production modes \PQB+\cPqt (upper left) and +\cPqt (upper right) and right-handed VLQ couplings are shown. The figure also shows the +\cPqt exclusion limits for left-handed VLQ couplings with a 10% relative VLQ width (lower left) and a comparison of the observed exclusion limits for VLQ widths between 10 and 30% for left-handed couplings (lower right). The predicted cross sections for variations of the relative VLQ mass width (dashed lines) are taken from Refs. [57, 56, 55]. For a set of VLQ masses the expected and observed 95% CL upper limits for the \PQB+\cPqb and the +\cPqt production modes are also given in Table 0.8 for VLQs with widths of 1% and 10% and left-handed couplings, as well as for widths of 1% and right-handed couplings. The exclusion limits for the \PQB+\cPqt production mode are similar to those for the +\cPqt production mode.

The obtained exclusion limits range from 0.3 to 0.03\unitpbfor VLQ masses between 700 and 2000\GeV. For VLQs with a relative width of 1% and purely left-handed couplings an increase of about 25% of the 95% CL upper limits is observed because of the reduced signal acceptance, in comparison to the right-handed couplings. The expected limits for VLQ with relative widths of 10–30% and left-handed couplings only show small differences. Although the predicted cross sections for the SM backgrounds are considerably larger at 13\TeV, similar exclusion limits on the product of cross section and branching fraction are achieved compared to the results obtained at 8\TeVin the more restricted mass range considered in Ref. [32]. However, because of the increase of the VLQ signal cross section at 13\TeV, with this analysis, the existence of VLQ \PQB() quarks with left-handed couplings and a relative width of 10, 20, and 30% can be excluded for masses below 1490, 1590, and 1660\GeV(920, 1300, and 1450\GeV) respectively. The results represent the most stringent exclusion limits for singly produced VLQ in this channel.

Figure 7: Upper limits at 95% CL on the product of the VLQ production cross section and branching fraction for the \PQB+\cPqb production mode for a relative VLQ width of 1% and left- and right-handed VLQ couplings (upper left and right), for 10% relative VLQ width and left-handed VLQ couplings (lower left), and a comparison of the observed exclusion limits for relative VLQ widths of 10, 20, and 30% for left-handed couplings (lower right). The dashed lines show the theoretical predictions.
Figure 8: Upper limits at 95% CL on the product of the VLQ production cross section and branching fraction for the \PQB+\cPqt and +\cPqt production modes for right-handed VLQ couplings assuming a relative VLQ width of 1% (upper left and right), for the +\cPqt production mode with left-handed VLQ couplings and a 10% relative width (lower left) and a comparison of the observed exclusion limits for left-handed couplings for relative widths of 10, 20, and 30% (lower right). The dashed lines show the theoretical predictions.
\topcaption

Observed (expected) upper limits at 95% CL on the product of the cross section and branching fraction for the \PQB+\cPqb and +\cPqt production modes, for a set of VLQ masses, for VLQs widths of 1% and 10%, and for left-handed and right-handed couplings. The exclusion limits for the \PQB+\cPqt production mode (not shown) are very similar to those for the +\cPqt mode. \PQB+\cPqb +\cPqt [TeV] 1% LH 10% LH 1% RH 1% LH 10% LH 1% RH 0.8 0.29 (0.36) 0.27 (0.36) 0.25 (0.29) 0.31 (0.27) 0.32 (0.25) 0.21 (0.18) 1 0.29 (0.17) 0.29 (0.19) 0.21 (0.12) 0.25 (0.15) 0.25 (0.16) 0.15 (0.10) 1.2 0.10 (0.10) 0.11 (0.11) 0.07 (0.07) 0.10 (0.09) 0.10 (0.10) 0.06 (0.06) 1.4 0.07 (0.07) 0.06 (0.08) 0.03 (0.05) 0.05 (0.06) 0.05 (0.07) 0.03 (0.05) 1.6 0.05 (0.05) 0.05 (0.06) 0.03 (0.04) 0.04 (0.04) 0.05 (0.05) 0.03 (0.03) 1.8 0.04 (0.04) 0.05 (0.04) 0.03 (0.03) 0.05 (0.04)

0.9 Summary

A search for singly produced vector-like quarks decaying into a top quark and a boson has been performed using the 2016 data set recorded by the CMS experiment at the CERN LHC. The selection is optimised for high vector-like quark masses, with a single muon or electron, significant missing transverse momentum, and two jets with high in the final state. Vector-like quarks in the single production mode can be produced in association with a or a quark and a forward jet. The latter feature is used to obtain the background prediction in the signal regions from data. The mass of the vector-like quark is reconstructed from the hadronic jets, the missing transverse momentum, and the lepton in the event. Different decay possibilities of the and are considered. The reach of the search is enhanced by , , and tagging methods. No significant deviation from the standard model prediction is observed. Upper exclusion limits at 95% confidence level on the product of the production cross section and branching fraction range from around 0.3–0.03\unitpbfor vector-like quark masses between 700 and 2000\GeV. Depending on the vector-like quark type, coupling, and decay width to \cPqt\PW, mass exclusion limits up to 1660\GeVare obtained. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel.

Acknowledgements.
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

.10 The CMS Collaboration

\cmsinstskip

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, J. Hrubec, M. Jeitler\cmsAuthorMark1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz\cmsAuthorMark1, M. Zarucki \cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang \cmsinstskipGhent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\cmsAuthorMark2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\cmsAuthorMark3, E. Coelho, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\cmsAuthorMark3, F. Torres Da Silva De Araujo, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista , Universidade Federal do ABC , São Paulo, Brazil
S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, SandraS. Padula \cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark5, X. Gao\cmsAuthorMark5, L. Yuan \cmsinstskipInstitute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen\cmsAuthorMark6, A. Spiezia, J. Tao, Z. Wang, E. Yazgan, H. Zhang, S. Zhang\cmsAuthorMark6, J. Zhao \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang \cmsinstskipTsinghua University, Beijing, China
Y. Wang \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado \cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac \cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\cmsAuthorMark7, T. Susa \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski \cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark8, M. Finger Jr.\cmsAuthorMark8 \cmsinstskipEscuela Politecnica Nacional, Quito, Ecuador
E. Ayala \cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
M.A. Mahmoud\cmsAuthorMark9\cmsAuthorMark10, A. Mahrous\cmsAuthorMark11, Y. Mohammed\cmsAuthorMark9 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva \cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam\cmsAuthorMark12, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche \cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram\cmsAuthorMark13, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte\cmsAuthorMark13, J.-C. Fontaine\cmsAuthorMark13, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, A. Popov\cmsAuthorMark14, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret \cmsinstskipGeorgian Technical University, Tbilisi, Georgia
A. Khvedelidze\cmsAuthorMark8 \cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark8 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl\cmsAuthorMark15 \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras\cmsAuthorMark16, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo\cmsAuthorMark17, A. Geiser, J.M. Grados Luyando, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann\cmsAuthorMark18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev \cmsinstskipUniversity of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, A. Vanhoefer, B. Vormwald, I. Zoi \cmsinstskipKarlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann\cmsAuthorMark15, S.M. Heindl, U. Husemann, I. Katkov\cmsAuthorMark14, S. Kudella, S. Mitra, M.U. Mozer, Th. Müller, M. Musich, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf \cmsinstskipInstitute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-Giotis \cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis \cmsinstskipNational Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos, G. Tsipolitis \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis \cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók\cmsAuthorMark19, M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres \cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark20, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark21, A. Makovec, J. Molnar, Z. Szillasi \cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipIndian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari \cmsinstskipNational Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark22, C. Kar, P. Mal, K. Mandal, A. Nayak\cmsAuthorMark23, D.K. Sahoo\cmsAuthorMark22, S.K. Swain \cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia \cmsinstskipUniversity of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma \cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj\cmsAuthorMark24, M. Bharti\cmsAuthorMark24, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep\cmsAuthorMark24, D. Bhowmik, S. Dey, S. Dutt\cmsAuthorMark24, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh\cmsAuthorMark24, S. Thakur\cmsAuthorMark24 \cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla \cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma \cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity\cmsAuthorMark25, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar\cmsAuthorMark25 \cmsinstskipIndian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma \cmsinstskipInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani\cmsAuthorMark26, E. Eskandari Tadavani, S.M. Etesami\cmsAuthorMark26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh\cmsAuthorMark27, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari , Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, A. Di Florio, F. Errico, L. Fiore, A. Gelmi, G. Iaselli, M. Ince, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen, G. Zito \cmsinstskipINFN Sezione di Bologna , Università di Bologna , Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, C. Ciocca, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, E. Fontanesi, P. Giacomelli, C. Grandi, L. Guiducci, S. Lo Meo, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, F. Primavera\cmsAuthorMark15, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi \cmsinstskipINFN Sezione di Catania , Università di Catania , Catania, Italy
S. Albergo, A. Di Mattia, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze , Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, G. Latino, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\cmsAuthorMark28, G. Sguazzoni, D. Strom, L. Viliani \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo \cmsinstskipINFN Sezione di Genova , Università di Genova , Genova, Italy
F. Ferro, R. Mulargia, F. Ravera, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca , Milano, Italy
A. Benaglia, A. Beschi, F. Brivio, V. Ciriolo\cmsAuthorMark15, S. Di Guida\cmsAuthorMark15, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, A. Massironi, D. Menasce, F. Monti, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, T. Tabarelli de Fatis, D. Zuolo \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, A. De Iorio, A. Di Crescenzo, F. Fabozzi, F. Fienga, G. Galati, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\cmsAuthorMark15, P. Paolucci\cmsAuthorMark15, C. Sciacca, E. Voevodina \cmsinstskipINFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi, N. Bacchetta, A. Boletti, A. Bragagnolo, R. Carlin, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S.Y. Hoh, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, R. Rossin, F. Simonetto, A. Tiko, E. Torassa, M. Tosi, S. Ventura, M. Zanetti, P. Zotto \cmsinstskipINFN Sezione di Pavia , Università di Pavia , Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia , Perugia, Italy
M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa , Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, L. Bianchini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, F. Fiori, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, G. Rolandi\cmsAuthorMark29, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini \cmsinstskipINFN Sezione di Roma , Sapienza Università di Roma , Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, B. Marzocchi, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio \cmsinstskipINFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, D. Soldi, A. Staiano \cmsinstskipINFN Sezione di Trieste , Università di Trieste , Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, F. Vazzoler, A. Zanetti \cmsinstskipKyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh \cmsinstskipHanyang University, Seoul, Korea
B. Francois, J. Goh\cmsAuthorMark30, T.J. Kim \cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh \cmsinstskipSejong University, Seoul, Korea
H.S. Kim \cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu \cmsinstskipUniversity of Seoul, Seoul, Korea
D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus \cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\cmsAuthorMark31, F. Mohamad Idris\cmsAuthorMark32, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli \cmsinstskipUniversidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz\cmsAuthorMark33, R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada \cmsinstskipUniversidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, J. Seixas, G. Strong, O. Toldaiev, J. Varela \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark35\cmsAuthorMark36, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim\cmsAuthorMark37, E. Kuznetsova\cmsAuthorMark38, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin \cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev \cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
M. Chadeeva\cmsAuthorMark39, P. Parygin, D. Philippov, S. Polikarpov\cmsAuthorMark39, E. Popova, V. Rusinov \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin\cmsAuthorMark36, M. Kirakosyan, A. Terkulov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\cmsAuthorMark40, L. Dudko, A. Ershov, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, V. Savrin, P. Volkov \cmsinstskipNovosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov\cmsAuthorMark41, V. Blinov\cmsAuthorMark41, T. Dimova\cmsAuthorMark41, L. Kardapoltsev\cmsAuthorMark41, Y. Skovpen\cmsAuthorMark41 \cmsinstskipInstitute for High Energy Physics of National Research Centre ’Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipNational Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia \cmsinstskipInstituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte \cmsinstskipUniversity of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita\cmsAuthorMark43, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, V. Innocente, A. Jafari, P. Janot, O. Karacheban\cmsAuthorMark18, J. Kieseler, A. Kornmayer, M. Krammer\cmsAuthorMark1, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\cmsAuthorMark44, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo\cmsAuthorMark15, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\cmsAuthorMark45, A. Stakia, J. Steggemann, D. Treille, A. Tsirou, V. Veckalns\cmsAuthorMark46, M. Verzetti, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
L. Caminada\cmsAuthorMark47, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr \cmsinstskipETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T.A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Quittnat, C. Reissel, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu \cmsinstskipUniversität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\cmsAuthorMark48, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta \cmsinstskipNational Central University, Chung-Li, Taiwan
Y.H. Chang, K.y. Cheng, T.H. Doan, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu \cmsinstskipNational Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Arun Kumar, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen \cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee \cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
M.N. Bakirci\cmsAuthorMark49, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos\cmsAuthorMark50, C. Isik, E.E. Kangal\cmsAuthorMark51, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir\cmsAuthorMark52, S. Ozturk\cmsAuthorMark49, D. Sunar Cerci\cmsAuthorMark53, B. Tali\cmsAuthorMark53, U.G. Tok, H. Topakli\cmsAuthorMark49, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
B. Isildak\cmsAuthorMark54, G. Karapinar\cmsAuthorMark55, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya\cmsAuthorMark56, O. Kaya\cmsAuthorMark57, S. Ozkorucuklu\cmsAuthorMark58, S. Tekten, E.A. Yetkin\cmsAuthorMark59 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen\cmsAuthorMark60 \cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold\cmsAuthorMark61, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark62, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley \cmsinstskipImperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash\cmsAuthorMark63, A. Nikitenko\cmsAuthorMark7, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee\cmsAuthorMark15, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz \cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid \cmsinstskipBaylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith \cmsinstskipCatholic University of America, Washington DC, USA
R. Bartek, A. Dominguez \cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West \cmsinstskipBoston University, Boston, USA
D. Arcaro, T. Bose, D. Gastler, D. Pinna, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou \cmsinstskipBrown University, Providence, USA
G. Benelli, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan\cmsAuthorMark64, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Sagir\cmsAuthorMark65, R. Syarif, E. Usai, D. Yu \cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang \cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev \cmsinstskipUniversity of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates \cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\cmsAuthorMark66, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta \cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorn, N. Lu, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg \cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro\cmsAuthorMark67, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rosenzweig, K. Shi, D. Sperka, J. Wang, S. Wang, X. Zuo \cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi, S. Linn \cmsinstskipFlorida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, R. Yohay \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang \cmsinstskipThe University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki\cmsAuthorMark68, W. Clarida, K. Dilsiz\cmsAuthorMark69, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark70, Y. Onel, F. Ozok\cmsAuthorMark71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel \cmsinstskipJohns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You \cmsinstskipThe University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang \cmsinstskipKansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabili, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong \cmsinstskipUniversity of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, N. Ruckstuhl, R. Rusack, M.A. Wadud \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger \cmsinstskipState University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood \cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\cmsAuthorMark35, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard \cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer \cmsinstskipPrinceton University, Princeton, USA
S. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg \cmsinstskipPurdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie \cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar \cmsinstskipRice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, A. Zhang \cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark73, S. Luo, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang \cmsinstskipVanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia \cmsinstskipWayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski \cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W.H. Smith, N. Woods \cmsinstskip†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Fayoum University, El-Fayoum, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Now at Helwan University, Cairo, Egypt
12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at Shoolini University, Solan, India
25: Also at University of Visva-Bharati, Santiniketan, India
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
30: Also at Kyunghee University, Seoul, Korea
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Pavia , Università di Pavia , Pavia, Italy
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Universität Zürich, Zurich, Switzerland
48: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
49: Also at Gaziosmanpasa University, Tokat, Turkey
50: Also at Istanbul Aydin University, Istanbul, Turkey
51: Also at Mersin University, Mersin, Turkey
52: Also at Piri Reis University, Istanbul, Turkey
53: Also at Adiyaman University, Adiyaman, Turkey
54: Also at Ozyegin University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Monash University, Faculty of Science, Clayton, Australia
64: Also at Bethel University, St. Paul, USA
65: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
66: Also at Utah Valley University, Orem, USA
67: Also at Purdue University, West Lafayette, USA
68: Also at Beykent University, Istanbul, Turkey
69: Also at Bingol University, Bingol, Turkey
70: Also at Sinop University, Sinop, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
296114
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description