A The CMS Collaboration

Search for single production of vector-like quarks decaying to a \PQbquark and a Higgs boson

Abstract

A search is presented for single production of heavy vector-like quarks (\PB) that decay to a Higgs boson and a \PQb quark, with the Higgs boson decaying to a highly boosted \bbbarpair reconstructed as a single collimated jet. The analysis is based on data collected by the CMS experiment in proton-proton collisions at , corresponding to an integrated luminosity of \xspace. The data are consistent with background expectations, and upper limits at 95% confidence level on the product of the \PB quark cross section and the branching fraction are obtained in the range 1.28–0.07\unitpb, for a narrow \PB quark with a mass between 700 and 1800\GeV. The production of \PB quarks with widths of 10, 20 and 30% of the resonance mass is also considered, and the sensitivities obtained are similar to those achieved in the narrow width case. This is the first search at the CERN LHC for the single production of a \PB quark through its fully hadronic decay channel, and the first study considering finite resonance widths of the \PB quark.

\cmsNoteHeader

B2G-17-009

\RCS

\RCS

\cmsNoteHeader

B2G-17-009

1 Introduction

With the discovery of the Higgs boson (\PH) by the ATLAS [(1)] and CMS [(2), (3)] experiments at the CERN LHC, the standard model (SM) of particle physics has now been completely confirmed. However, the SM does not address, for example, problems related to the nature of the electroweak symmetry breaking and the hierarchy between the electroweak and the Planck mass scales. Several extensions of the SM address such issues through the introduction of new particles that allow the cancellation of loop corrections to the mass of the Higgs boson [(4)]. Supersymmetric theories propose bosonic partners of the top quark to address the hierarchy problem; other models such as Little Higgs or Composite Higgs boson models [(5), (6), (7), (8)] overcome the hierarchy problem by introducing heavy fermionic resonances called vector-like quarks (VLQs) [(4), (9), (10), (11)]. The vector-like nature of these quarks does not exclude their having a fundamental mass, in contrast to chiral fermions, which acquire mass via electroweak symmetry breaking in the SM. The VLQs are therefore not excluded by present searches, unlike a fourth generation of SM quarks that is ruled out by electroweak precision measurements [(12), (13)], and by the measured properties of the SM Higgs boson  [(14), (15), (16)]. Previous searches for VLQs have been performed by the ATLAS [(17), (18), (19), (20), (21), (22)] and CMS [(23), (24), (25), (26), (27), (28), (29)] experiments in proton-proton collisions recorded at centre-of-mass energies of 7, 8, and 13\TeV.

We present a search for electroweak production of single vector-like \PB quarks with electrical charge , with the proton charge, that decay to a bottom (\PQb) quark and a Higgs boson. The search uses \Pp\Pp events collected by the CMS experiment at a centre-of-mass energy of 13\TeV, corresponding to an integrated luminosity of \xspace. We study the fully hadronic final state with the Higgs boson decaying to a pair of \PQb quarks. Figure 1 illustrates the electroweak production of a \PB quark in association with a \PQband a light-flavour quark, typically emitted into the forward region of the detector.

The \PB decay channel considered in this analysis is \xspace. However, the \PB quark can also decay into \cPZ\PQb, \PW\PQt, and possibly into lighter states predicted in models beyond the SM that have model-dependent branching fractions. Our results are interpreted assuming that the \PB quark belongs to a singlet or doublet representation and that it decays exclusively to SM particles. The singlet branching fractions of the \PB quark into \PH\PQb, \cPZ\PQb, and \PW\PQtare , 25, and 50%, and the doublet branching fractions are 50, 50, and 0%, and all depend on the vector-like quark mass .

Previous CMS searches for vector-like \PB quarks relied on the assumption of a decay width that is narrow compared to the experimental resolution. The present analysis, in addition to searching for \PB quarks with narrow decay widths, also explores the possibility that \PB quarks have a non-negligible width, with values up to 30% of the resonance mass. In comparison, the experimental resolution in the reconstructed \PB mass, defined as the ratio between the root-mean-square width of the peak and its mean position, ranges between 8 and 15%, depending on the mass hypothesis. In addition to broadening the width of the observed signal, the intrinsic width of the resonance would modify the kinematic distributions of the final state, thus changing the selection efficiency. These effects are taken into account in this analysis.

The cross section for single production of a \PB quark depends on  and its electroweak couplings to SM particles. For fixed , the kinematic distributions depend only on the total width of the \PB quark. The benchmark model in this analysis assumes a weak coupling of the \PB quark to the \cPZ boson and \PQb quark. Because of the mixing between \PB and the SM bottom quark in models where \PB is a singlet or part of a doublet, the \PB\cPqb\cPZ electroweak coupling has a predominant chirality, respectively, right- or left-handed. The coupling chirality can potentially affect the kinematic distributions. We explicitly checked and found that these effects are negligible for the channel discussed in this work, and our results can therefore be interpreted in both singlet and doublet models.

Figure 1: The leading-order Feynman diagram for the production of a single vector-like \PB quark in association with a \PQb quark and light-flavour quark, and its decay to a Higgs boson and a \PQb quark.

2 The CMS detector and particle reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two end sections, reside within the solenoid. Forward calorimeters extend the pseudorapidity () coverage provided by the barrel and end detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system and kinematic variables, can be found in Ref. [(30)].

Events of interest are selected using a two-tiered trigger system [(31)]. The first level, composed of specialized hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of 100\unitkHz within a time interval of less than 4\unit\mus. The second level, known as the high-level trigger (HLT), consists of a farm of processors running a version of the full event-reconstruction software optimized for fast processing that reduces the event rate to 1\unitkHz before data storage.

Event reconstruction is based on the CMS particle-flow (PF) algorithm [(32)], which reconstructs and identifies each individual particle through an optimized combination of information from the various elements of the CMS detector. The energy of electrons is defined through the combination of the electron momentum at the primary interaction vertex determined in the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track from the primary \Pp\Pp collision vertex. The energy of muons is obtained from the curvature of the corresponding track. The reconstructed energy of charged hadrons is extracted from the reconstructed tracks in the tracker and their matching energy depositions in ECAL and HCAL. Energy depositions are corrected for ignoring calorimeter readouts that are close to threshold (zero suppression) and for the response function of calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies.

Jets are reconstructed by clustering PF candidates using the anti-\ktalgorithm [(33)]. Prior to clustering, the charged-hadron subtraction algorithm [(34)] is applied to the event to reduce the effects of pileup (i.e. additional \Pp\Pp collisions occurring within the same or neighbouring LHC bunch crossings).

This algorithm discards charged hadrons not originating from the primary vertex, which is defined as the reconstructed vertex with the largest value of summed of charged hadrons contributing to jets. The jets are clustered using the jet finding algorithm [(33), (35)], which defines the associated missing transverse momentum taken as the negative of the vector sum of the \ptof those jets. We consider jets with different distance parameter of or 0.8, with the rapidity, referred to as AK4 and AK8 jets, respectively.

The residual pileup contamination from neutral hadrons is subtracted, assuming that it is proportional to the event energy density and the jet area, estimated using the \FASTJET package [(35)]. Jet momenta are determined from the vectorial sum of all the individual PF particles in the jet. The energy scale calibrations obtained from Monte Carlo (MC) simulation are applied to correct the four-momenta of jets. Residual corrections, accounting for remaining discrepancies between jet response in data and in simulated events, are applied to the former. The jet energy resolution for simulated jets is degraded slightly to reproduce the resolution in data. The AK4 jet candidates are required to have and , and to satisfy a stringent set of identification criteria designed to reject spurious detector and reconstruction effects [(36)]. The jets with are referred to as forward jets. The AK8 jets, used to identify and reconstruct Higgs boson candidates, are selected to have and .

A multivariate \PQbtagging algorithm (CSVv2) [(37)] is used to identify central jets (with ) arising from hadronization of \PQb quarks. Parameters are chosen for the CSVv2 discriminant such that the tagging efficiency for b quark jets is 70% while the identification probability averaged over the jet kinematics in \ttbarevents is 1% for light flavour jets with .

The Higgs boson candidates are identified using the heavy-flavour content of the AK8 jet. A pruning algorithm [(38)] is applied that uses the Cambridge–Aachen (CA) algorithm [(39)] to recluster each AK8 jet starting from all its original constituents and to discard soft and wide-angle radiation inside the jet in each step of the iterative procedure. The procedure defines a pruned-jet mass, computed from the sum of the four-momenta of the constituents that have not been removed by the pruning algorithm, which achieves a better mass resolution. The pruned mass of the jet is then used as a discriminant to reject quark and gluon jets and to select Higgs bosons, by requiring its mass to be within the window of 105–135\GeV. Two subjets are obtained using the soft drop declustering algorithm [(40), (41)], and these are required to pass the same CSVv2 discriminant threshold used for the AK4 jets.

3 Modelling and simulation

The production and decay of high mass \xspace, with \PH  \bbbar, provides a signature with multiple jets rich in heavy-flavour content, and characterized by a highly Lorentz-boosted Higgs boson. The dominant background in this search is from SM events comprised of jets produced through the strong quantum chromodynamic (QCD) interaction, referred to as multijet events. Additional contributions arise from \ttbarevents, and minor backgrounds are associated with the production of \PW or \cPZ bosons in association with jets.

Simulated events are used throughout the analysis to define selection strategy and to determine the expected sensitivity to vector-like quarks. The background from multijet events is estimated using data in control regions. Simulation is also used to cross-check the background prediction and to evaluate its validity. The contributions from other backgrounds, such as associated with \ttbarevents and \PW or \cPZ boson production in association with jets, are estimated through MC simulation.

Multijet events, as well as electroweak backgrounds from virtual or on-mass shell \cPZ or +jets and \PW+jets production, are simulated at leading order (LO) using the \MGvATNLO2.2.2 generator [(42)], interfaced to \PYTHIA 8.2 [(43)] with the CUETP8M1 [(44), (45)] underlying-event tune for parton-shower simulation and evolution. The background \ttbarevents are generated using \POWHEG v2 at next-to-leading order (NLO) [(46), (47), (48), (49)], also interfaced to \PYTHIA. The mass of the top quark is set to 172.5\GeV, and the cross section is calculated at next-to-next-to-leading order (NNLO) in perturbative QCD using a next-to-next-to-leading-logarithmic (NNLL) soft-gluon approximation (NNLO+NNLL) in the Top++ 2.0 program [(50)]. The cross sections for \cPZ or +jets and \PW+jets processes are calculated at NNLO using the \FEWZ MC program ((51)).

The \xspace  \bbbar\PQb events are simulated at LO, modelled using the universal FeynRules output (52); (53) and the MC generator \MGvATNLO, interfaced to \PYTHIA 8 for parton-shower simulation. Several mass hypotheses are considered for signals in the range , in steps of 100\GeVfor total decay widths of 1\GeV, representing the narrow-width categories. Signal events for \PB quarks with large widths (10, 20, or 30% of the mass hypothesis) are also generated in the same mass range. All \PB quarks are generated with left-handed chirality, but the effect on the kinematic distributions of only considering one chirality is found to be negligible. Interference between the signal and the SM background is negligible.

Simulations using LO and NLO calculations, respectively, use the LO and NLO NNPDF3.0 (54) sets of parton distribution functions (PDFs). All signal and background events are processed using \GEANT4 (55) to provide a full simulation of the CMS detector. The generated events are also reweighted to account for the dependence of the reconstruction efficiency on the number of pileup interactions in the collisions.

4 Interpretation framework

The total cross section for the single production and decay of a \PB quark with final state X can be written as:

(1)

where and are the production and decay couplings corresponding to the interactions through which a B quark is produced and decays, and is the reduced cross section for a resonance of arbitrary width (AW). This width can be written as , as it depends on the B quark mass, on the masses of all its decay products, and on its couplings to all decay channels, .

Equation (1) is valid in all width regimes. However, when approaches zero, it is possible to factorize production and decay and to write the cross section as:

(2)

where is the \PB production coupling, and information for the parameters and are included in the branching fraction for the specific \PB quark decay, in this case , while is the reduced cross section in the narrow-width approximation (NWA).

Our assumptions have the \PB quark decaying into \PH\PQb, \cPZ\PQb, and \PW\PQt with branching fractions that are specified in the model. The couplings of the \PB quark to SM bosons and quarks can be parametrized as: , , and , where is the electric charge of the proton, \GeVis the vacuum-expectation value for the field of the Higgs boson, and are the cosine and sine of the weak mixing angle , and is a coupling strength that can be fixed to obtain the desired width. Numerically, , and . For the process under consideration, we can set and .

The values can be related to the mixing angle between the vector-like \PB quark and the \PB b quark (56), and correspond to left- and right-handed couplings, which are the dominant chiralities for a singlet or part of a doublet \PB quark, respectively. For small values of , corresponding to the NWA regime, the following relations hold to excellent approximation: for a \PB singlet , while for a (T,\PB) doublet (where T is a vector-like quark with electrical charge 2/3) with no vector-like top quark Yukawa coupling, , and . By imposing these relations among the values, and fixing the  ratio to 1%, is 0.1 in the whole range of explored masses. Table 4 provides the values for and the physical cross sections in the NWA for the process. The CTEQ6L PDF set (57) is used in this calculation.

To interpret the results in a model-independent way, the mechanism through which the B quarks achieve large widths is not specified, and is considered as a free parameter. The relations among the (with X = \PW, \cPZ, \PH), corresponding to the NWA limit (), are imposed for the large-width regime. With this assumption, the total width is always proportional to , and therefore can be chosen to obtain a specific  ratio. However, with the assumption relaxed, in a simplified model, new physics can be invoked to generate the required couplings.

\topcaption

Cross sections for , with the ratio  fixed to 1% (NWA). The couplings and branching fractions in simplified models are calculated using the equations in the text. The uncertainties in the production cross sections correspond to the halving and doubling of the QCD renormalization and factorization scales

Singlet model Doublet model
 (\GeVns) (\unitpb) (\unitpb) (\unitpb)
700 31.30 0.18 0.466 0.271 0.263 0.1631 0.25 0.499 0.501 0.5720
800 21.50 0.16 0.474 0.276 0.260 0.0830 0.22 0.499 0.501 0.3003
900 15.10 0.14 0.489 0.263 0.258 0.0451 0.19 0.500 0.500 0.1666
1000 10.80 0.13 0.483 0.261 0.256 0.0257 0.17 0.500 0.500 0.0962
1100 7.85 0.11 0.486 0.259 0.255 0.0153 0.16 0.500 0.500 0.0580
1200 5.77 0.10 0.489 0.257 0.254 0.0094 0.15 0.500 0.500 0.0358
1300 4.29 0.10 0.490 0.256 0.254 0.0059 0.13 0.500 0.500 0.0227
1400 3.23 0.09 0.492 0.255 0.253 0.0038 0.12 0.500 0.500 0.0147
1500 2.45 0.08 0.493 0.254 0.253 0.0025 0.12 0.500 0.500 0.0097
1600 1.86 0.08 0.494 0.254 0.252 0.0017 0.11 0.500 0.500 0.0065
1700 1.44 0.07 0.494 0.254 0.252 0.0011 0.10 0.500 0.500 0.0044
1800 1.11 0.07 0.495 0.253 0.252 0.0008 0.10 0.500 0.500 0.0031

Table 4 reports the cross sections integrated over the phase space of \cPq and \PQb, the particles produced in association with the \PB quark (see Fig. 1), for fixed values of , with configurations of corresponding to singlet () and doublet () representations. Given the yields for a doublet in the \cPZ\PQb and \PH\PQb decay modes, these couplings at fixed width are larger than for singlets, and as a consequence .

\topcaption

Cross sections for for three values of the  ratio. The conditions assume that singlets and doublets have , and , respectively. For each , we provide the values of and of the physical cross sections for both the singlet and doublet models, and respectively. The uncertainties in the production cross sections correspond to the halving and doubling of the QCD renormalization and factorization scales. The values of are listed in the parentheses.

 (\GeVns) (\unitpb) (\unitfb) () (\unitfb) () (\unitpb) (\unitfb) () (\unitfb) () (\unitpb) (\unitfb) () (\unitfb) ()
700 3.01 400 (0.588) 1378 (0.8010) 1.43 759 (0.832) 2616 (1.130) 0.899 1074 (1.020) 3703 (1.390)
800 2.10 203 (0.508) 726 (0.699) 1.00 386 (0.719) 1377 (0.9880) 0.634 552 (0.880) 1968 (1.210)
900 1.51 111 (0.448) 406 (0.619) 0.719 212 (0.633) 775 (0.876) 0.454 301 (0.776) 1101 (1.070)
1000 1.09 63.7 (0.401) 237 (0.556) 0.523 122 (0.567) 453 (0.787) 0.331 174 (0.694) 647 (0.964)
1100 0.807 38.2 (0.363) 144 (0.505) 0.386 73.2 (0.513) 276 (0.714) 0.246 105 (0.628) 394 (0.875)
1200 0.601 23.6 (0.331) 89.7 (0.463) 0.290 45.5 (0.468) 173 (0.654) 0.185 65.2 (0.574) 248 (0.801)
1300 0.451 14.9 (0.305) 57.1 (0.427) 0.220 29.0 (0.431) 111 (0.603) 0.141 41.9 (0.528) 160 (0.739)
1400 0.342 9.70 (0.283) 37.2 (0.396) 0.167 18.9 (0.400) 72.9 (0.560) 0.108 27.5 (0.489) 106 (0.686)
1500 0.262 6.42 (0.263) 24.9 (0.369) 0.129 12.6 (0.372) 48.9 (0.522) 0.0836 18.4 (0.456) 71.3 (0.640)
1600 0.203 4.34 (0.246) 16.9 (0.346) 0.101 8.61 (0.349) 33.5 (0.489) 0.0651 12.5 (0.427) 48.7 (0.599)
1700 0.158 2.99 (0.232) 11.6 (0.326) 0.0788 5.94 (0.328) 23.2 (0.460) 0.0514 8.71 (0.401) 34.0 (0.564)
1800 0.124 2.08 (0.219) 8.13 (0.307) 0.0621 4.16 (0.309) 16.3 (0.435) 0.0408 6.14 (0.379) 24.0 (0.532)

5 Event selection

As stated previously, this analysis searches for a Higgs boson and a bottom quark arising from the decay of a \PB quark, and the decay of the Higgs boson into a pair of \PQb quarks. An additional light-flavour quark, resulting from the production mechanism and produced in the forward direction (see Fig. 1), is also required to be present. For values of  much larger than the Higgs boson mass, the decay products of the B quark are expected to have large \pt. The two b quarks originating from the Higgs boson tend therefore to emerge very close to each other in - space, resulting in a single large jet.

The data are collected through an online selection (trigger) based on jet activity \HT, defined as the scalar \ptsum of all AK4 jets with and . The jet activity threshold for this trigger is 900\GeV. Collisions containing at least one jet reconstructed through the HLT system with are also selected, to increase the HLT efficiency. At the analysis level, \HT is recalculated using AK4 jets with and , and is required. This offline selection corresponds to a trigger efficiency 87%.

Events are preselected if they contain three or more AK4 jets with and , among which there must be at least one b-tagged jet with . A veto is applied to events with one or more leptons to ensure that the selection criteria do not overlap with those used for searches for the \PB quark in leptonic final states. Selected events are further required to have at least one large Higgs-tagged AK8 jet, fulfilling the Higgs boson tagging requirements as described in Section 2. The Higgs boson tagging efficiency is 10–20%, depending on the value of . Figure 2 compares to data the b-tagged subjet multiplicity expected for simulated background and for signal processes.

The B quark is reconstructed from the Higgs jet candidate along with a nonoverlapping \PQb-tagged jet. The \PQb quark from \PB quark decay is usually highly energetic (), thus the \PQb jet with the highest \pt is chosen, and this reduces significantly the combinatorial background. Furthermore, to reduce overlaps with the decay products of the Higgs boson, a condition is applied on the distance between the two objects in (), requiring .

Figure 2: The b-tagged subjet multiplicity of AK8 jets in events passing preselection criteria. The lower panel shows the ratio of data to the MC background prediction. The normalization of the contributions from signals at and 1.8\TeVis multiplied by a factor of 500. Background events are normalized to data. Only the statistical uncertainties are taken into consideration here, and they are too small to be visible.

To further reduce the multijet background and the contamination from gluon-like jets, \HT is required to be 950\GeVfor smaller mass values of , while for , a trigger with a threshold of is chosen. In what follows, we refer to the former as the “low-mass analysis” and to the latter as the “high-mass analysis”.

The signal to background discrimination is enhanced by exploiting the distinctive presence of a forward jet. Events are therefore separated into categories based on the forward-jet multiplicity. A high-purity category is obtained by requiring at least one forward jet. A second category that contains a large fraction of events from both signal and background, is defined requiring no forward jets. The forward-jet multiplicity expected for background and signal events after preselection is compared to data in Fig. 3. After all the selections are implemented, we reach signal efficiencies ranging from 2% or less at low masses, to larger values at larger , as a result of the optimization of the analysis for highly-boosted topologies. The disagreement between data and simulation at large forward-jet multiplicities does not affect the analysis, as the background contribution in the signal region is estimated from data. Moreover, the effect on the measurement is negligible since the majority of vector-like \PB quark events contain 2 forward jets, for which the simulated and observed yields are consistent after preselection.

Figure 3: Multiplicity of forward jets before event categorization. The normalization of the signal contributions is multiplied by a factor of 500. The simulated background predictions are normalized to data. The lower panel shows the ratio of data to background. We show only the statistical uncertainties.

6 Signal extraction

A potential signal would manifest itself as a localized excess over the expected background in the spectrum of the reconstructed mass . A binned maximum likelihood fit is performed to the  distribution to extract a signal, exploiting the characteristic structure of the reconstructed \PB quark mass spectrum.

Multijet events constitute the dominant source of background in this search. An additional contribution of 5–7% arises from \ttbarevents. To reduce the dependence of the maximum-likelihood fit on the modelling of the multijet background in simulation, the contribution from this background is obtained from data. The procedure we use to estimate the yield of such events in the signal region is referred to as the “ABCD method” (discussed below), but its dependence on  is taken from a background-enriched control region in data. A minor contribution (1%) to the background arises from other SM sources, such as \cPZ+jets and \PW+jets events. Both \ttbarevents and these minor backgrounds are estimated from simulation. The normalization of multijet events in the signal region is estimated using three data control regions, enriched in background events. These regions, in addition to the one enriched in signal events, are sampled in a two-dimensional phase space defined by two variables: the b-tagged subjet multiplicity of the Higgs jet and its reconstructed mass, . From a check on the simulation, the number of b-tagged subjets is not correlated with . The four regions used to define the ABCD method are: (i) region A, with two b-tagged subjets, and \GeV, (ii) region B, with two b-tagged subjets, and or , (iii) region C, with one b-tagged subjet, and , and (iv) region D, with one b-tagged subjet, and or 135\GeV.

Region A is the signal region, defined by the selection criteria described in the previous section. The multijet background yield in the signal region is obtained from regions B, C, and D, which are background enriched. Assuming that the \PQb-tagged subjet multiplicity and the Higgs boson mass are uncorrelated, the number of background events in the four regions follows the relationship:

(3)

where , , , and are the yields in regions A, B, C, and D, respectively. Thus, the number of background events in the signal region A is given by:

(4)

after subtracting the \ttbarcontribution predicted in the MC simulation. The contributions from \cPZ+jets and \PW+jets backgrounds are not subtracted as they are negligible.

The  distribution of the multijet background in the signal region is estimated from the  distribution in region C, since the reconstructed  spectrum is not expected to be correlated with the b jet multiplicity. The compatibility of the distributions in regions A and C is verified using simulated multijet events, and cross-checked in data.

In addition, the method is validated using a signal-depleted region from sidebands at large mass. Here, two regions (A’ and C’) are defined, similar to A and C in the mass region \GeV. Two control regions (B’ and D’) are defined requiring or , respectively, with 2 or 1 \PQb-tagged subjets. The background distribution estimated in region A’, using the method described above, agrees with the observed data in region A’. The difference between the estimated and the observed yields in region A’ is used as a systematic uncertainty in the normalization of the estimated multijet yield.

7 Systematic uncertainties

The systematic effect of each source of uncertainty is evaluated by propagating the uncertainty in the input parameters to the reconstructed \PB quark mass distribution and to the event yield. Then, the uncertainties in the event yield and in the  distribution for signal and background processes are taken into account as “nuisance” parameters that are integrated over in the statistical process of inferring the resultant parameters.

The statistical uncertainties in the background estimate of multijet production from control samples in data are propagated to  in the signal region by changing the observed event yields in regions B and D, up and down by one standard deviation, and recalculating the expected distribution in the signal region. As the expected multijet contribution in  is estimated from region C, its statistical uncertainty in this region is considered in the signal extraction. In addition to the normalization, this uncertainty affects the distribution of the background  in the signal region. Each bin of the observed  spectrum in region C is therefore changed independently according to its statistical uncertainty.

An additional systematic uncertainty in the estimated multijet background is obtained from the difference between the observed and predicted yields in the check, in the validation step that uses large-mass sideband regions, described in Section 6, and corresponds to 5–10%.

The systematic uncertainties from the limited number of simulated events and background estimates from simulation are also included by fluctuating each bin of the  distribution independently, according to Poisson statistics.

Additional systematic uncertainties in simulated signal and background distributions originate from the corrections applied to rescale simulated distributions to data. Other such uncertainties are listed below. An uncertainty of 2.5% (58) in the measured integrated luminosity is used just to account for the total event yields.

The corrections to account for the difference between the \PQbtagging efficiency measured in data and in simulation are changed up and down by their uncertainties in both AK4 jets and subjets. The reconstructed four-momenta of the AK4 and AK8 jets are also shifted by 1 standard deviation in the jet energy scale and resolution, and propagated to . In addition, the pruned mass scale and resolution of the Higgs-tagged jet are changed within their uncertainties, affecting the  spectrum by 0.5–5.5%.

All simulated events are weighted to match the distribution of pileup interactions. The corresponding uncertainty is obtained by changing the total inelastic cross section by 4.6%, which is used to calculate the pileup distribution in data. Scale factors are applied to account for differences between the trigger efficiency measured in data and in simulated events, with the uncertainties in the scale factors applied as a function of \HT and propagated to the  distribution.

An additional uncertainty is applied to account for discrepancies in the modelling of the forward jet multiplicity. The magnitude of this effect is obtained by considering the difference between the event yield in data and in MC, and results in an uncertainty of 0.5% for the category with no forward jets, and 2.0% for the category with at least one jet in the forward region.

The uncertainties from the choice of factorization and renormalization scales, and , are taken into account by halving and doubling the nominal values and using the combination of and leading to the maximal change. The resulting uncertainty in signal acceptance is as small as 1.3%, depending on the mass hypothesis. Larger effects (15–25%) are observed in the overall normalization and acceptance in simulated backgrounds. In addition, the uncertainty from the choice of PDF is estimated by reweighting the simulated signal and background events using the NNPDF3.0 (59); (60); (61) set of eigenvectors.

A summary of the systematic uncertainties considered in this analysis, along with their effect when propagated to the reconstructed \PB mass, is presented in Table 7.

\topcaption

Summary of systematic uncertainties in background events. The quantification of the effects quoted in the table reflects the uncertainties in the event yields. All uncertainties are considered in the simulated background events, except the one on background estimation that affects only the data-based estimate of the multijet process. All the systematic uncertainties apply to both categories of forward-jet multiplicity, except for the case of the modelling of the forward jets, where the first entry corresponds to the category with no forward jets, and the second entry to the category with at least one jet in the forward region. Source Effect Luminosity 2.5% \PQbtagging efficiency 0–9% Misidentification efficiency 0–2% Pileup modelling 0–12% Trigger 0.5% PDF 1.0–4.5% and 15–25% Jet energy scale 1–7% Jet energy resolution 1.0–1.5% Jet mass scale 0–5% Jet mass resolution 0–4% MC Statistical accuracy 1–4% Mismodelling of forward jets 0.5/2.0% Background estimation 5–10%

8 Results

A binned maximum likelihood fit is performed to the  distribution in Fig. 4, where the dominant multijet background is estimated from data, as discussed in Section 6. The fitted  distributions are presented in Fig. 5, while the expected yields are listed in Table 5 for the backgrounds, and for two signal hypotheses ( and 1800\GeV), together with their observed yields. The observed distributions are consistent with the background-only hypothesis in all the categories. Upper limits are set therefore on the product of the cross section and branching fraction of a \PB quark decaying to \PH\PQb, produced in association with another \PQb quark and a light-flavoured quark, as a function of . Exclusion limits at 95% confidence level (CL\xspace) are calculated using a modified frequentist approach and a profile likelihood ratio as test statistic, in an asymptotic approximation (62); (63); (64). The combination of the two forward-jet multiplicity-based categories increases the sensitivity of the analysis by up to 20% relative to that obtained when only requiring at least one jet in the region of the detector.

Systematic uncertainties described in Section 7 are treated as nuisance parameters affecting the rate of the expected  distribution. Both the uncertainties affecting the normalization, modelled using log-normal priors, and uncertainties in distributions are included in the fit (65).

The observed and expected combined upper limits from the two categories are given in Fig. 6. Assuming a narrow width, values of between 0.07–1.28\unitpb are excluded at the 95% confidence level, for masses in the range 700–1800\GeV. Upper limits are compared with the predictions calculated at NLO (53) for both singlet and doublet B quark models, assuming narrow widths and %. Figure 6 also shows the observed and expected upper limits on the product of the cross section and branching fraction for \PB quarks with intrinsic widths fixed to , 20, and 30%. Sensitivities similar to those for negligible widths are observed for exclusion limits that lie between 0.08 and 1.97, 0.11 and 1.32, and 0.10 and 1.22\unitpb, respectively, for the 10, 20, and 30%  values.

Figure 4: Distribution in the reconstructed B quark mass, after applying all selections to events with no forward jets (left\xspace) and to events with at least one forward jet (right\xspace), compared to the background distributions estimated before fitting. The upper and lower plots refer to the low- and high-mass  analyses, respectively. The expectations for signal MC events are given by the blue histogram lines. Different contributions to background are indicated by the colour-filled histograms. The grey-hatched error band shows total uncertainties in the background expectation. The ratios of observations to background expectations are given in the lower panels, together with the total uncertainties prior to fitting, indicated by the grey-hatched band.
Figure 5: Distribution in the reconstructed B quark mass after applying all selections to events with no forward jets (left\xspace) and to events with at least one forward jet (right\xspace), compared to the background distributions estimated after fitting. The upper and lower plots refer to the low- and high- analyses, respectively. The expectations for signal MC events are given by the blue lines. Different contributions to background are indicated by the colour-filled histograms. The grey-hatched error band shows total uncertainties in the background expectation. The ratios of the observations to background expectations are given in the lower panels, together with the total uncertainties after fitting, indicated by the grey-hatched band.
\topcaption

Observed and expected fitted number of events in the signal ranges of and , and expected signal at and 1800\GeV. The multijet background is obtained from data, while the yields for the other sources of background are obtained from MC simulation. The combined statistical and systematic uncertainties correspond to the quadrature of the statistical and systematic uncertainties. Category Source \multirow7*No forward jets \ttbar \PW+jets \cPZ+jets Multijets Total background Observed in data Expected signal \multirow7*0 forward jets \ttbar \PW+jets \cPZ+jets Multijets Total background Observed in data Expected signal

Figure 6: The median observed and expected 95% CL\xspaceupper limits on the product of the B quark production cross section and branching fraction as a function of the signal mass, assuming narrow-width resonances (upper-left) and widths of 10 (upper-right), 20 (lower-left), and 30% (lower-right) of the resonance mass for the B quark. The results are shown for the combination of 0 and 0 forward-jet categories. The continuous red curves correspond to the theoretical expectations for singlet and doublet models.

9 Summary

A search has been presented for electroweak production of vector-like \PB quarks with charge , decaying to a bottom quark and a Higgs boson (\PH). The analysis uses a data sample corresponding to an integrated luminosity of \xspace, collected in \Pp\Pp collisions at .

No significant deviations are observed relative to the standard model prediction, and upper limits are placed on the product of the cross section and the branching fraction of the \PB quark.

Expected and observed limits at 95% confidence level vary from 1.20 to 0.07\unitpb and from 1.28 to 0.07\unitpb, respectively, for \PB quark masses in the range considered, which extends from 700 to 1800\GeV. The search is performed under the hypothesis of a singlet or doublet B quark of narrow width decaying to \PH\PQb with a branching fraction of approximately 25%. The possibility of having non-negligible resonant widths is also studied. Limits obtained on the production of \PB quarks with widths of 10, 20, and 30% of the resonance mass are comparable to those found for the narrow-width approximation. This search extends existing knowledge on vector-like quarks, by interpreting the results in a new theoretical framework with non-negligible resonance widths, and investigating the final state with a bottom quark and a Higgs boson for the first time.

Acknowledgements.
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the ”Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler\cmsAuthorMark1, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz\cmsAuthorMark1, M. Zarucki \cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni \cmsinstskipGhent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\cmsAuthorMark2, D. Poyraz, C. Roskas, S. Salva, D. Trocino, M. Tytgat, W. Verbeke, M. Vit, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\cmsAuthorMark3, E. Coelho, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\cmsAuthorMark3, F. Torres Da Silva De Araujo, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas \cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark5, X. Gao\cmsAuthorMark5, L. Yuan \cmsinstskipInstitute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang\cmsAuthorMark5 \cmsinstskipTsinghua University, Beijing, China
Y. Wang \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado \cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac \cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\cmsAuthorMark6, T. Susa \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski \cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark7, M. Finger Jr.\cmsAuthorMark7 \cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla\cmsAuthorMark8, Y. Assran\cmsAuthorMark9\cmsAuthorMark10, E. El-khateeb\cmsAuthorMark11 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, C. Veelken \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva \cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam\cmsAuthorMark12, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, I. Kucher, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche \cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram\cmsAuthorMark13, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, C. Collard, E. Conte\cmsAuthorMark13, X. Coubez, F. Drouhin\cmsAuthorMark13, J.-C. Fontaine\cmsAuthorMark13, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\cmsAuthorMark14, V. Sordini, M. Vander Donckt, S. Viret, S. Zhang \cmsinstskipGeorgian Technical University, Tbilisi, Georgia
T. Toriashvili\cmsAuthorMark15 \cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark7 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov\cmsAuthorMark14 \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
A. Albert, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl\cmsAuthorMark16 \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras\cmsAuthorMark17, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo\cmsAuthorMark18, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel\cmsAuthorMark19, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann\cmsAuthorMark19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev \cmsinstskipUniversity of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo\cmsAuthorMark16, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald \cmsinstskipInstitut für Experimentelle Teilchenphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf, F. Hartmann\cmsAuthorMark16, S.M. Heindl, U. Husemann, F. Kassel\cmsAuthorMark16, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf \cmsinstskipInstitute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis \cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi \cmsinstskipNational Technical University of Athens, Athens, Greece
K. Kousouris \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis \cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres\cmsAuthorMark20 \cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark21, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi\cmsAuthorMark20 \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark22, A. Makovec, J. Molnar, Z. Szillasi \cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók\cmsAuthorMark20, P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipIndian Institute of Science (IISc),  Bangalore, India
S. Choudhury, J.R. Komaragiri \cmsinstskipNational Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark23, P. Mal, K. Mandal, A. Nayak\cmsAuthorMark24, D.K. Sahoo\cmsAuthorMark23, N. Sahoo, S.K. Swain \cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia \cmsinstskipUniversity of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma \cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj\cmsAuthorMark25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep\cmsAuthorMark25, D. Bhowmik, S. Dey, S. Dutt\cmsAuthorMark25, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, B. Singh, S. Thakur\cmsAuthorMark25 \cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\cmsAuthorMark16, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar \cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar \cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity\cmsAuthorMark26, G. Majumder, K. Mazumdar, T. Sarkar\cmsAuthorMark26, N. Wickramage\cmsAuthorMark27 \cmsinstskipIndian Institute of Science Education and Research (IISER),  Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma \cmsinstskipInstitute for Research in Fundamental Sciences (IPM),  Tehran, Iran
S. Chenarani\cmsAuthorMark28, E. Eskandari Tadavani, S.M. Etesami\cmsAuthorMark28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi\cmsAuthorMark29, F. Rezaei Hosseinabadi, B. Safarzadeh\cmsAuthorMark30, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris\cmsAuthorMark16, R. Venditti, P. Verwilligen \cmsinstskipINFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, F. Iemmi, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi \cmsinstskipINFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\cmsAuthorMark31, G. Sguazzoni, D. Strom, L. Viliani \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera\cmsAuthorMark16 \cmsinstskipINFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, L. Panizzi, F. Ravera, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
A. Benaglia, A. Beschi, L. Brianza, F. Brivio, V. Ciriolo\cmsAuthorMark16, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, K. Pauwels, D. Pedrini, S. Pigazzini\cmsAuthorMark32, S. Ragazzi, T. Tabarelli de Fatis \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\cmsAuthorMark16, F. Fabozzi, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\cmsAuthorMark16, P. Paolucci\cmsAuthorMark16, C. Sciacca, F. Thyssen \cmsinstskipINFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi, N. Bacchetta, L. Benato, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossin, F. Simonetto, A. Tiko, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle \cmsinstskipINFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov, P. Azzurri\cmsAuthorMark16, G. Bagliesi, L. Bianchini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo\cmsAuthorMark31, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini \cmsinstskipINFN Sezione di Roma , Sapienza Università di Roma ,  Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio \cmsinstskipINFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, A. Staiano, P. Traczyk \cmsinstskipINFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti \cmsinstskipKyungpook National University
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh \cmsinstskipHanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim \cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh \cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu \cmsinstskipUniversity of Seoul, Seoul, Korea
H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus \cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\cmsAuthorMark33, F. Mohamad Idris\cmsAuthorMark34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\cmsAuthorMark35, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada \cmsinstskipUniversidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
P.H. Butler \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, V. Alexakhin, A. Golunov, I. Golutvin, N. Gorbounov, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark37\cmsAuthorMark38, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
Y. Ivanov, V. Kim\cmsAuthorMark39, E. Kuznetsova\cmsAuthorMark40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin \cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin\cmsAuthorMark38 \cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
R. Chistov\cmsAuthorMark41, M. Danilov\cmsAuthorMark41, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\cmsAuthorMark38, I. Dremin\cmsAuthorMark38, M. Kirakosyan\cmsAuthorMark38, S.V. Rusakov, A. Terkulov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\cmsAuthorMark42, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin \cmsinstskipNovosibirsk State University (NSU),  Novosibirsk, Russia
V. Blinov\cmsAuthorMark43, D. Shtol\cmsAuthorMark43, Y. Skovpen\cmsAuthorMark43 \cmsinstskipState Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute",  Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipNational Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi, A. Álvarez Fernández \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia \cmsinstskipInstituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, J. Garcia-Ferrero, A. García Alonso, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban\cmsAuthorMark19, J. Kieseler, V. Knünz, A. Kornmayer, M.J. Kortelainen, M. Krammer\cmsAuthorMark1, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\cmsAuthorMark45, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi\cmsAuthorMark46, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\cmsAuthorMark47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Tsirou, V. Veckalns\cmsAuthorMark48, M. Verweij, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada\cmsAuthorMark49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr \cmsinstskipETH Zurich - Institute for Particle Physics and Astrophysics (IPA),  Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu \cmsinstskipUniversität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\cmsAuthorMark50, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta \cmsinstskipNational Central University, Chung-Li, Taiwan
V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu \cmsinstskipNational Taiwan University (NTU),  Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai \cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas \cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci\cmsAuthorMark51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos\cmsAuthorMark52, E.E. Kangal\cmsAuthorMark53, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir\cmsAuthorMark54, D. Sunar Cerci\cmsAuthorMark51, U.G. Tok, H. Topakli\cmsAuthorMark55, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar\cmsAuthorMark56, K. Ocalan\cmsAuthorMark57, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya\cmsAuthorMark58, O. Kaya\cmsAuthorMark59, S. Tekten, E.A. Yetkin\cmsAuthorMark60 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu \cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold\cmsAuthorMark61, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark62, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley \cmsinstskipImperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash\cmsAuthorMark63, A. Nikitenko\cmsAuthorMark6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta\cmsAuthorMark64, T. Virdee\cmsAuthorMark16, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz \cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid \cmsinstskipBaylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith \cmsinstskipCatholic University of America, Washington DC, USA
R. Bartek, A. Dominguez \cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West \cmsinstskipBoston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou \cmsinstskipBrown University, Providence, USA
G. Benelli, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu \cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang \cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev \cmsinstskipUniversity of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates \cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\cmsAuthorMark65, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta \cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J. Bunn, I. Dutta, J.M. Lawhorn, H.B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg \cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, E. Macdonald, T. Mulholland, K. Stenson, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro\cmsAuthorMark66, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, W. Wu \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton \cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez \cmsinstskipFlorida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang \cmsinstskipThe University of Iowa, Iowa City, USA
B. Bilki\cmsAuthorMark67, W. Clarida, K. Dilsiz\cmsAuthorMark68, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\cmsAuthorMark69, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark70, Y. Onel, F. Ozok\cmsAuthorMark71, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi \cmsinstskipJohns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You \cmsinstskipThe University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang \cmsinstskipKansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch \cmsinstskipUniversity of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger \cmsinstskipState University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood \cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\cmsAuthorMark37, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard \cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin \cmsinstskipPrinceton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg \cmsinstskipPurdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie \cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak \cmsinstskipRice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang \cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti \cmsinstskipThe Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark72, A. Castaneda Hernandez\cmsAuthorMark72, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark73, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang \cmsinstskipVanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia \cmsinstskipWayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski \cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, V. Rekovic, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods \cmsinstskip†: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3:  Also at Universidade Estadual de Campinas, Campinas, Brazil
4:  Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
6:  Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7:  Also at Joint Institute for Nuclear Research, Dubna, Russia
8:  Also at Cairo University, Cairo, Egypt
9:  Also at Suez University, Suez, Egypt
10: Now at British University in Egypt, Cairo, Egypt
11: Now at Ain Shams University, Cairo, Egypt
12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
15: Also at Tbilisi State University, Tbilisi, Georgia
16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
18: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at Yazd University, Yazd, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
42: Also at California Institute of Technology, Pasadena, USA
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Gaziosmanpasa University, Tokat, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Necmettin Erbakan University, Konya, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Monash University, Faculty of Science, Clayton, Australia
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, USA
66: Also at Purdue University, West Lafayette, USA
67: Also at Beykent University, Istanbul, Turkey
68: Also at Bingol University, Bingol, Turkey
69: Also at Erzincan University, Erzincan, Turkey
70: Also at Sinop University, Sinop, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea

References

  1. ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  3. ATLAS and CMS Collaborations, “Combined measurement of the Higgs boson mass in pp collisions at and 8 TeV with the ATLAS and CMS experiments”, Phys. Rev. Lett. 114 (2015) 191803, doi:10.1103/PhysRevLett.114.191803, arXiv:1503.07589.
  4. J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria, “Handbook of vectorlike quarks: mixing and single production”, Phys. Rev. D 88 (2013) 094010, doi:10.1103/PhysRevD.88.094010, arXiv:1306.0572.
  5. M. Schmaltz and D. Tucker-Smith, “Little Higgs review”, Ann. Rev. Nucl. Part. Sci. 55 (2005) 229, doi:10.1146/annurev.nucl.55.090704.151502, arXiv:hep-ph/0502182.
  6. D. B. Kaplan and H. Georgi, “SU(2) x U(1) breaking by vacuum misalignment”, Phys. Lett. B 136 (1984) 183, doi:10.1016/0370-2693(84)91177-8.
  7. H. Georgi, D. B. Kaplan, and P. Galison, “Calculation of the composite Higgs mass”, Phys. Lett. B 143 (1984) 152, doi:10.1016/0370-2693(84)90823-2.
  8. M. J. Dugan, H. Georgi, and D. B. Kaplan, “Anatomy of a composite Higgs model”, Nucl. Phys. B 254 (1985) 299, doi:10.1016/0550-3213(85)90221-4.
  9. J. A. Aguilar-Saavedra, “Identifying top partners at LHC”, JHEP 11 (2009) 030, doi:10.1088/1126-6708/2009/11/030, arXiv:0907.3155.
  10. A. De Simone, O. Matsedonskyi, R. Rattazzi, and A. Wulzer, “A first top partner hunter’s guide”, JHEP 04 (2013) 004, doi:10.1007/JHEP04(2013)004, arXiv:1211.5663.
  11. M. Buchkremer, G. Cacciapaglia, A. Deandrea, and L. Panizzi, “Model independent framework for searches of top partners”, Nucl. Phys. B 876 (2013) 376, doi:10.1016/j.nuclphysb.2013.08.010, arXiv:1305.4172.
  12. G. D. Kribs, T. Plehn, M. Spannowsky, and T. M. P. Tait, “Four generations and Higgs physics”, Phys. Rev. D 76 (2007) 075016, doi:10.1103/PhysRevD.76.075016, arXiv:0706.3718.
  13. S. Banerjee, M. Frank, and S. K. Rai, “Higgs data confronts sequential fourth generation fermions in the Higgs triplet model”, Phys. Rev. D 89 (2014) 075005, doi:10.1103/PhysRevD.89.075005, arXiv:1312.4249.
  14. ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at and 8 TeV”, JHEP 08 (2016) 045, doi:10.1007/JHEP08(2016)045, arXiv:1606.02266.
  15. O. Eberhardt et al., “Joint analysis of Higgs decays and electroweak precision observables in the standard model with a sequential fourth generation”, Phys. Rev. D 86 (2012) 013011, doi:10.1103/PhysRevD.86.013011, arXiv:1204.3872.
  16. CMS Collaboration, “Searches for Higgs bosons in pp collisions at = 7 and 8 TeV in the context of four-generation and fermiophobic models”, Phys. Lett. B 725 (2013) 36, doi:10.1016/j.physletb.2013.06.043, arXiv:1302.1764.
  17. ATLAS Collaboration, “Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at 8 TeV with the ATLAS detector”, Phys. Rev. D 91 (2015) 112011, doi:10.1103/PhysRevD.91.112011, arXiv:1503.05425.
  18. ATLAS Collaboration, “Search for pair production of a new heavy quark that decays into a W boson and a light quark in pp collisions at TeV with the ATLAS detector”, Phys. Rev. D 92 (2015) 112007, doi:10.1103/PhysRevD.92.112007, arXiv:1509.04261.
  19. ATLAS Collaboration, “Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at TeV with the ATLAS detector”, JHEP 11 (2014) 104, doi:10.1007/JHEP11(2014)104, arXiv:1409.5500.
  20. ATLAS Collaboration, “Search for single production of a vector-like quark via a heavy gluon in the 4b final state with the ATLAS detector in pp collisions at TeV”, Phys. Lett. B 758 (2016) 249, doi:10.1016/j.physletb.2016.04.061, arXiv:1602.06034.
  21. ATLAS Collaboration, “Search for single production of vector-like quarks decaying into Wb in pp collisions at TeV with the ATLAS detector”, Eur. Phys. J. C. 76 (2016) 442, doi:10.1140/epjc/s10052-016-4281-8, arXiv:1602.05606.
  22. ATLAS Collaboration, “Search for the production of single vector-like and excited quarks in the Wt final state in pp collisions at = 8 TeV with the ATLAS detector”, JHEP 02 (2016) 110, doi:10.1007/JHEP02(2016)110, arXiv:1510.02664.
  23. CMS Collaboration, “Search for vector-like charge 2/3 T quarks in proton-proton collisions at = 8 TeV”, Phys. Rev. D 93 (2016) 012003, doi:10.1103/PhysRevD.93.012003, arXiv:1509.04177.
  24. CMS Collaboration, “Search for pair-produced vectorlike B quarks in proton-proton collisions at TeV”, Phys. Rev. D 93 (2016) 112009, doi:10.1103/PhysRevD.93.112009, arXiv:1507.07129.
  25. CMS Collaboration, “Search for top-quark partners with charge 5/3 in the same-sign dilepton final state”, Phys. Rev. Lett. 112 (2014) 171801, doi:10.1103/PhysRevLett.112.171801, arXiv:1312.2391.
  26. CMS Collaboration, “Search for single production of vector-like quarks decaying to a Z boson and a top or a bottom quark in proton-proton collisions at TeV”, JHEP 05 (2017) 029, doi:10.1007/JHEP05(2017)029, arXiv:1701.07409.
  27. CMS Collaboration, “Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state”, Phys. Lett. B 771 (2017) 80, doi:10.1016/j.physletb.2017.05.019, arXiv:1612.00999.
  28. CMS Collaboration, “Search for electroweak production of a vector-like quark decaying to a top quark and a higgs boson using boosted topologies in fully hadronic final states”, JHEP 04 (2017) 136, doi:10.1007/JHEP04(2017)136, arXiv:1612.05336.
  29. CMS Collaboration, “Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at TeV”, Phys. Lett. B 772 (2017) 634, doi:10.1016/j.physletb.2017.07.022, arXiv:1701.08328.
  30. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
  31. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  32. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  33. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  34. CMS Collaboration, “Pileup removal algorithms”, CMS Physics Analysis Summary CMS-PAS-JME-14-001, 2014.
  35. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  36. CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.
  37. CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, (2017). arXiv:1712.07158. Submitted to JINST.
  38. S. D. Ellis, C. K. Vermilion, and J. R. Walsh, “Techniques for improved heavy particle searches with jet substructure”, Phys. Rev. D 80 (2009) 051501, doi:10.1103/PhysRevD.80.051501, arXiv:0903.5081.
  39. S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, “Longitudinally-invariant k-clustering algorithms for hadron-hadron collisions”, Nucl. Phys. B 406 (1993) 187, doi:10.1016/0550-3213(93)90166-M.
  40. M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, JHEP 09 (2013) 029, doi:10.1007/JHEP09(2013)029, arXiv:1307.0007.
  41. A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, JHEP 05 (2014) 146, doi:10.1007/JHEP05(2014)146, arXiv:1402.2657.
  42. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.
  43. T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  44. P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune”, Euro. Phys. J. C 74 (2014) 3024, doi:10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
  45. CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Euro. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
  46. P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
  47. S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, doi:10.1088/1126-6708/2007/09/126, arXiv:0707.3088.
  48. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
  49. S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.
  50. M. Czakon and A. Mitov, “Top++: A program for the calculation of the top-pair cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930, doi:10.1016/j.cpc.2014.06.021, arXiv:112.5675.
  51. Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton production in FEWZ”, Phys. Rev. D 86 (2012) 094034, doi:10.1103/PhysRevD.86.094034, arXiv:1208.5967.
  52. C. Degrande et al., “UFO — The Universal FeynRules Output”, Comput. Phys. Commun. 183 (2012) 1201, doi:10.1016/j.cpc.2012.01.022, arXiv:1108.2040.
  53. O. Matsedonskyi, G. Panico, and A. Wulzer, “On the interpretation of top partners searches”, JHEP 12 (2014) 097, doi:10.1007/JHEP12(2014)097, arXiv:1409.0100.
  54. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, doi:10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  55. GEANT4 Collaboration, “\GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
  56. C. Y. Chen, S. Dawson, and E. Furlan, “Vectorlike fermions and Higgs effective field theory revisited”, Phys. Rev. D 96 (2017) 015006, doi:10.1103/PhysRevD.96.015006, arXiv:1703.06134.
  57. J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.
  58. CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.
  59. M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011). arXiv:1101.0538.
  60. S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536.
  61. NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.
  62. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  63. A. L. Read, “Presentation of search results: the technique”, in Durham IPPP Workshop: Advanced Statistical Techniques in Particle Physics, p. 2693. Durham, UK, March, 2002. [J. Phys. G 28 (2002) 2693]. doi:10.1088/0954-3899/28/10/313.
  64. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
  65. J. S. Conway, “Incorporating nuisance parameters in likelihoods for multisource spectra”, in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN,Geneva, Switzerland 17-20 January 2011, p. 115. 2011. arXiv:1103.0354. doi:10.5170/CERN-2011-006.115.
Comments 0
Request Comment
You are adding your first comment
How to quickly get a good reply:
  • Give credit where it’s Due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should ultimately help the author improve the paper.
  • Remember, the better we can be at sharing our knowledge with each other, the faster we can move forward.
""
The feedback must be of minumum 40 characters
Add comment
Cancel
Loading ...
185621
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
Edit
-  
Unpublish
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description