Abstract
A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of produced in collisions at a center-of-mass energy of 7 collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
CERN-PH-EP/2012-159
2019/\two@digits7/\two@digits12
CMS-SUS-11-010
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
The CMS Collaboration111See Appendix A for the list of collaboration members
Abstract
Please replace the default abstract using the abstract command.
Submitted to Physical Review Letters
The standard model (SM) is a very successful theory of elementary particles and their interactions. It is generally believed that new physics (NP) could manifest itself at the TeV scale. Supersymmetry (SUSY) is one of these attractive possibilities. It leads to gauge coupling unification at very high energy, provides a mechanism to mitigate large radiative corrections to the Higgs mass and, in its R-parity-conserving [1] realization, can provide a dark matter candidate. A comprehensive program of searches for the production of supersymmetric particles has been underway since 2010 at the Large Hadron Collider (LHC). Since SUSY models vary widely, these searches target a broad range of possible final states, including purely hadronic states [2, 3], leptonic states with one lepton [4, 5], two leptons of the opposite sign [6, 7], two leptons of the same sign [6, 8], and three or more leptons [9]; as well as photonic final states [10, 11].
In this Letter we report on a search for NP based on isolated same-sign (SS) dileptons, missing transverse energy (), and hadronic jets. In SUSY SS dileptons can arise, for example, from pair production of colored super-partners (gluinos and/or squarks), with a lepton in the decay chain of each primary SUSY particle [12, 13, 14]; more generally, this signature is sensitive to final states with same-sign bosons and/or top quarks [15, 16, 17, 18, 19, 20]. The rarity of SS dileptons in the SM makes a NP search in this final state particularly attractive.
All types of charged leptons, , , and hadronically decaying s, are included in our search. These final states are indicators of the possible presence of SUSY particles as well as other possible NP scenarios. The results are based on a data sample corresponding to of collisions at a center-of-mass energy of 7 collected in 2011 by the Compact Muon Solenoid (CMS) [21] experiment at the LHC. This study results in a major improvement in sensitivity with respect to the search performed with data collected in 2010 [8] because of the 140-fold increase in the integrated luminosity of the data sample. These results are interpreted using the constrained minimal supersymmetric extension of the standard model (CMSSM) [22]. In addition, this analysis provides information on the event selection and detector response in order to facilitate the application of our results to a broader range of NP scenarios.
A detailed description of the CMS detector is found elsewhere [21]. Its central feature is a superconducting solenoid providing an axial magnetic field of 3.8 T. Muons are measured in gas detectors embedded in the steel return yoke of the magnet, while all other particle detection systems are located inside the bore of the solenoid. Charged particle trajectories are measured by a silicon pixel and strip tracker system, covering , where the pseudorapidity is defined as , and is the polar angle with respect to the counterclockwise beam direction. A crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadronic calorimeter surround the tracker volume. In addition, the CMS detector has an extensive forward calorimeter and nearly hermetic coverage. The CMS trigger consists of a two-stage system. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select a subset of the events. The High Level Trigger processor farm further decreases the event rate from around 100 kHz to around 300 Hz, before data storage.
All lepton candidates are required to have and to be consistent with a common interaction vertex. Muon candidates are reconstructed [23] by matching tracks in the silicon detector to signals in the muon system. The reconstruction of muons is refined further by imposing track quality and calorimeter energy deposition requirements. Electron candidates are reconstructed [24] starting from a cluster of energy deposits in the ECAL, which is then matched to signals in the silicon tracker. The energy shower in the ECAL must have a shape consistent with expectations for electron showers and its position is required to be well matched to the extrapolated track. Both electrons and muons are required to be isolated from other activity in the event. This is achieved using a scalar sum of transverse track momenta and transverse calorimeter energy deposits, within of the candidate’s direction, where is the azimuthal angle. The sum is required to be less than 15% of the candidate’s transverse momentum (). Hadronic candidates are reconstructed using the Hadron plus Strip algorithm [25]. We select isolated hadronic candidates with one or three charged hadrons in a narrow cone around the direction.
Jets and are reconstructed using the particle-flow technique [26, 27]. For jet clustering, the anti- algorithm is used with the distance parameter [28]. We require selected jets to have and to be considered for analysis. The is defined to be the scalar sum of the of all selected jets whose angular distance to the nearest lepton satisfies . Events are required to have two same-sign leptons and at least two jets. A minimum dilepton invariant mass of 8 is required in order to suppress the low-mass dilepton background. Events having a third lepton are removed if two of the leptons form a boson candidate with an invariant mass within of the boson mass.
Three selection strategies are followed to maximize the sensitivity to the presence of NP. The first one is to use a fully efficient dilepton and based trigger in the , , and channels with and , and a requirement of applied to the offline reconstructed objects. The second strategy trades an increased lepton threshold against a reduced threshold. Here both leptons are required to have and at least one to have . Such events are collected with a purely leptonic trigger with no requirement on . The third strategy focuses on , and final states with , , and . Triggers for hadronic -leptons typically lead to high rates. For this reason dedicated triggers are used that rely on significant and , in addition to the presence of a single lepton or two hadronic -leptons.
Using R-parity–conserving SUSY as a guiding example, we note that the simplest incarnation of the topology probed by this analysis involves three distinct mass scales. In this example, these masses would belong to the gluino, chargino, and lightest SUSY particle (LSP). The mass differences of these particles can strongly influence the kinematics of the final state objects, hence affecting several main observables used in this analysis: lepton , , and . Therefore, in order to maximize the sensitivity of our analysis to a variety of NP scenarios, we define multiple search regions in the (, ) plane : Region 1 (, ), Region 2 (, ), Region 3 (, ), Region 4 ( and ), and Region 5 ( and ). The requirements of GeV and GeV are also motivated in part by trigger thresholds. A scatter plot of events observed in these search regions is shown in Fig. 1.

The background for the same-sign dilepton topology has three components: irreducible background from rare SM processes; leptons resulting from semileptonic decays within a jet, or jets mimicking leptons in events with zero or one genuine isolated lepton; and opposite-sign dilepton events where the charge of one of the two leptons has been mismeasured.
The irreducible backgrounds are dominated by , , and production, combining in similar parts to about 95% of the total. The remaining contributions originate from processes such as tri-boson and production, , and double-parton scattering , in decending order of importance. All irreducible backgrounds are estimated using leading-order Monte Carlo simulation normalized to the next-to-leading order (NLO) production cross sections. Events are generated with the MadGraph [29] event generator and then passed on to pythia [30] for parton shower and hadronization. The generated events are processed by the CMS event simulation and the same chain of reconstruction programs used for collision data. A 50% systematic uncertainty is assigned to this irreducible background prediction. These processes constitute 35-75% of the total background, depending on the search region.
The background due to lepton candidates originating from jets, hereafter referred as non-prompt, forms 20-60% of the total background. Such candidates can be genuine leptons, for example from heavy-flavor decays, hadrons reconstructed as leptons, or jets fluctuating to give hadronic signatures. We have developed and validated a set of techniques to measure this background from data. In each case, a tag-and-probe method is applied to a control sample rich in two-jet events containing leptons selected with loose requirements to measure the conditional probability that the probe jet yields a candidate passing tight lepton requirements. This probability, measured as a function of jet kinematics and event characteristics, is then applied to signal sidebands to estimate non-prompt lepton backgrounds. This suite of techniques encompasses a range of control samples, jet tags, lepton requirements, and variations in the jet kinematics to provide independent and complementary assessments of 50% systematic uncertainties. Full details are given in Ref. [8]. At least two techniques are used in all non- dilepton modes and they yield consistent results within their respective uncertainties.
We quantify backgrounds from events with lepton charge mis-reconstruction by analyzing SS or events inside the mass peak [8]. This background forms less than 5% of the total background across all search regions. The charge mis-reconstruction probability for muons is of the order of and can be neglected.
We determine the performance of the background prediction methods using the low and low region in the data that is expected to be dominated by SM events. We find good agreement between observed yields and the predicted background.
We show the predicted background contributions from each source mentioned above as well as the observed event yields in Fig. 2 and summarize them in Table 2 for each search region. The beam related multiple interactions do not alter these results. There is no evidence of an excess over the expected SM predictions. This measurement is used together with the uncertainty on the signal acceptance to set an upper limit (UL) on the contribution from NP events.

Region | Mode or threshold | Total | UL | ||
High | |||||
1 | |||||
5 | 7 | 12 | 24 | 13.7 | |
2 | |||||
4 | 6 | 11 | 21 | 15.1 | |
3 | |||||
4 | 2 | 5 | 11 | 9.6 | |
4 | |||||
1 | 0 | 3 | 4 | 6.2 | |
5 | |||||
7 | 4 | 5 | 16 | 10.4 | |
Low | |||||
2 | |||||
4 | 10 | 14 | 28 | 16.9 | |
3 | |||||
4 | 6 | 8 | 18 | 14.0 | |
4 | |||||
1 | 2 | 3 | 6 | 7.4 | |
|
Tau channels : | ||||
4 | |||||
1 | 5 | 0 | 6 | 7.1 |
We measure the electron and muon selection efficiencies in data and simulation using events to derive simulation-to-data correction factors. The uncertainty on the combined lepton selection efficiency decreases with lepton , from 5% at the lowest to 3% above . We assign an additional 5% systematic uncertainty per lepton to cover potential mismodeling of the lepton isolation efficiency due to varying hadronic activity in signal events. We estimate in a sample of events the uncertainty on the selection and reconstruction efficiency to be 10% [25].
We conservatively choose to attribute a flat uncertainty of 7.5% to the energy measurement of all jets as well as to the hadronic component used for the observable. The cumulative effect of this uncertainty on the signal acceptance is intrinsically model dependent. We observe uncertainties below 3% for models with characteristically high scales, well above the requirements. For models with characteristic scales near or below the requirements, uncertainties due to jet energy calibration can be as high as 30%.
The theoretical uncertainties on the signal acceptance due to the modeling of initial- and final-state radiation and knowledge of the parton distribution functions are estimated to be 2%. Using the LM6 benchmark model (CMSSM point with , , , , and ) [31] as a signal model, the total experimental and theoretical uncertainties in the signal yield add up to 14% or 20% depending on the search region. This includes a 2.2% systematic uncertainty in the integrated luminosity [32].
We set a 95% confidence level (CL) upper limits on the number of observed events using the modified frequentist construction CL method [33, 34, 35]. We assume log-normal distributions for the efficiency and background uncertainties. As a reference, we provide in Table 2 the upper limits based on a 20% signal acceptance uncertainty.
In order to compare our signal sensitivity to that of other searches for SUSY, we interpret the results in the context of the CMSSM model. We compare the observed upper limits on the number of signal events reported in Table 2 to the expected number of events in each signal region in the CMSSM model in a plane of for , , and . For each point in the CMSSM, we choose the signal region providing the best expected upper limit on the cross section to evaluate the observed limit; in all cases the best limit is achieved in Region 4, where high leptons, large , and are required. We interpret all points having mean expected values above the corresponding observed upper limit as excluded at the 95% CL. For this exercise the systematic uncertainty on the signal acceptance is re-evaluated for each point in order for the upper limit to reflect the varying influences of the jet energy scale uncertainty. We display the observed exclusion region in Fig. 3. For , the exclusion curve flattens out at about , which corresponds to a wino-like mass of . The new result extends the excluded CMSSM region to gluino masses of 710. This exclusion includes a -1 reduction to account for theory uncertainty [36, 37, 38, 39, 40, 41, 42, 43, 44] on the cross section; the limit is independent of the squark masses.

One of the challenges of signature-based searches is to convey information in a form that can be used to test a variety of NP models. In Ref. [8], additional information is presented that can be used to confront NP models in an approximate way through generator-level simulation studies. The approximate model of lepton, jet, and selection efficiencies in terms of the generator-level quantities are shown to be sufficiently accurate to reproduce the constraints on NP models that otherwise would require the full CMS detector simulation. The efficiency dependence can be parameterized as a function of (expressed in ) as for electrons, for muons, and for taus, where is the error function. We studied the efficiency for an event to pass a given reconstructed () threshold as a function of the generator-level (), where in the latter case is computed using neutrinos and the LSPs and is the scalar sum of the transverse momenta of the partons that satisfy the same jet selection criteria used in this analysis. The dependences are parameterized by , where corresponds to the generator-level or , is the selection efficiency plateau at high values of , is the value of corresponding to half the plateau efficiency, and determines how fast the efficiency changes with . For the selections of 200 and 450, the values of are , and , respectively. For the selections of 50 and 120, the parameters are , and , respectively. We tested the parameterized efficiency model in the CMSSM, and the results obtained agree at the 15% level with the full simulation results.
In summary, we conducted a search for physics beyond the standard model based on same-sign dileptons in the , , , , , and final states, and find no evidence for an excess over the expected standard model background. We set 95% CL upper limits on contributions from new physics processes based on an integrated luminosity of in the range of 6.2 to 16.9 events, depending on the signal search region. These are the most restrictive limits in this particular final state to date. We have also shown the excluded region in the CMSSM parameter space.
We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).
References
- [1] P. Fayet and S. Ferrara, “Supersymmetry”, Phys. Rept. 32 (1977) 249, doi:10.1016/0370-1573(77)90066-7, arXiv:1103.0953.
- [2] ATLAS Collaboration, “Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using = 7 TeV pp collisions with the ATLAS detector”, JHEP 11 (2011) 099, doi:10.1007/JHEP11(2011)099, arXiv:1110.2299.
- [3] CMS Collaboration, “Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy”, Phys. Rev. Lett. 107 (2011) 221804, doi:10.1103/PhysRevLett.107.221804, arXiv:1109.2352.
- [4] ATLAS Collaboration, “Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in = 7 TeV pp collisions using 1 fb of ATLAS data”, Phys. Rev. D 85 (2012) 012006, doi:10.1103/PhysRevD.85.012006, arXiv:1109.6606.
- [5] CMS Collaboration, “Search for supersymmetry in pp collisions at = 7 TeV in events with a single lepton, jets, and missing transverse momentum”, JHEP 08 (2011) 156, doi:10.1007/JHEP08(2011)156, arXiv:1107.1870.
- [6] ATLAS Collaboration, “Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in = 7 TeV proton-proton collisions”, Phys. Lett. B 709 (2012) 137, doi:10.1016/j.physletb.2012.01.076, arXiv:1110.6189.
- [7] CMS Collaboration, “Search for physics beyond the standard model in opposite-sign dilepton events at TeV”, JHEP 06 (2011) 026, doi:10.1007/JHEP06(2011)026, arXiv:1103.1348.
- [8] CMS Collaboration, “Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC”, JHEP 06 (2011) 077, doi:10.1007/JHEP06(2011)077, arXiv:1104.3168.
- [9] CMS Collaboration, “Search for physics beyond the standard model using multilepton signatures in pp collisions at = 7 TeV”, Phys. Lett. B 704 (2011) 411, doi:10.1016/j.physletb.2011.09.047, arXiv:1106.0933.
- [10] ATLAS Collaboration, “Search for diphoton events with large missing transverse momentum in 1 fb of 7 TeV proton-proton collision data with the ATLAS Detector”, Phys. Lett. B 710 (2012) 519, doi:10.1016/j.physletb.2012.02.054, arXiv:1111.4116.
- [11] CMS Collaboration, “Search for Supersymmetry in Collisions at = 7 TeV in Events with Two Photons and Missing Transverse Energy”, Phys. Rev. Lett. 106 (2011) 211802, doi:10.1103/PhysRevLett.106.211802, arXiv:1103.0953.
- [12] R. M. Barnett, J. F. Gunion, and H. E. Haber, “Discovering supersymmetry with like sign dileptons”, Phys. Lett. B 315 (1993) 349, doi:10.1016/0370-2693(93)91623-U, arXiv:9306204.
- [13] M. Guchait and D. P. Roy, “Like sign dilepton signature for gluino production at the CERN LHC including top quark and Higgs boson effects”, Phys. Rev. D 52 (1995) 133, doi:10.1103/PhysRevD.52.133, arXiv:9412329.
- [14] H. Baer et al., “Signals for minimal supergravity at the CERN Large Hadron Collider II: Multilepton channels”, Phys. Rev. D 53 (1996) 6241, doi:10.1103/PhysRevD.53.6241, arXiv:9512383.
- [15] H. C. Cheng, K. T. Matchev, and M. Schmaltz, “Bosonic supersymmetry? Getting fooled at the CERN LHC”, Phys. Rev. D 66 (2002) 056006, doi:10.1103/PhysRevD.66.056006, arXiv:0205314.
- [16] S. Jung, H. Murayama, and A. Pierce, “Top quark forward-backward asymmetry from new t-channel physics”, Phys. Rev. D 81 (2010) 015004, doi:10.1103/PhysRevD.81.015004, arXiv:0907.4112.
- [17] E. L. Berger et al., “Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs”, Phys. Rev. Lett. 106 (2011) 201801, doi:10.1103/PhysRevLett.106.201801, arXiv:1101.5625.
- [18] R. Contino and G. Servant, “Discovering the top partners at the LHC using same-sign dilepton final states”, JHEP 06 (2008) 026, doi:10.1088/1126-6708/2008/06/026, arXiv:0801.1679.
- [19] W.-Y. Keung and G. Senjanovic, “Majorana neutrinos and the production of the right-handed charged gauge boson.”, Phys. Rev. Lett. 50 (1983) 1427, doi:10.1103/PhysRevLett.50.1427.
- [20] Y. Bai and Z. Han, “Top-antitop and Top-top Resonances in the Dilepton Channel at the CERN LHC”, JHEP 04 (2009) 056, doi:10.1088/1126-6708/2009/04/056, arXiv:0809.4487.
- [21] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [22] G. L. Kane et al., “Study of constrained minimal supersymmetry”, Phys. Rev. D 49 (1994) 6173, doi:10.1103/PhysRevD.49.6173, arXiv:9312272.
- [23] CMS Collaboration, “Performance of muon identification in pp collisions at = 7 TeV”, CMS Physics Analysis Summary CMS-PAS-MUO-10-002, (2010).
- [24] CMS Collaboration, “Electron Reconstruction and Identification at TeV”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, (2010).
- [25] CMS Collaboration, “Performance of lepton reconstruction and identification in CMS”, JINST 7 (2012) P01001, doi:10.1088/1748-0221/7/01/P01001, arXiv:1109.6034.
- [26] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and ”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).
- [27] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, (2010).
- [28] M. Cacciari, G. P. Salam, and G. Soyez, “The anti- jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [29] J. Alwall et al., “MadGraph/MadEvent v4: the new web generation”, JHEP 09 (2007) 028, doi:10.1088/1126-6708/2007/09/028, arXiv:0706.2334.
- [30] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:0603175.
- [31] CMS Collaboration, “CMS technical design report, volume II: Physics performance”, J. Phys. G 34 (2007) 995, doi:10.1088/0954-3899/34/6/S01.
- [32] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2012).
- [33] A. L. Read, “Presentation of search results: The CL(s) technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.
- [34] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:9902006.
- [35] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, ATL-PHYS-PUB 2011-11, (2011). CMS NOTE 2011-005.
- [36] M. Kramer et al., “Supersymmetry production cross sections in pp collisions at sqrts = 7 TeV”, (2012). arXiv:1206.2892.
- [37] W. Beenakker et al., “Squark and Gluino Production at Hadron Colliders”, Nucl. Phys. B 492 (1997) 51, doi:10.1016/S0550-3213(97)80027-2.
- [38] A. Kulesza and L. Motyka, “Threshold resummation for squark-antisquark and gluino-pair production at the LHC”, Phys. Rev. Lett. 102 (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405.
- [39] A. Kulesza and L. Motyka, “Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC”, Phys. Rev. D 80 (2009) 095004, doi:10.1103/PhysRevD.80.095004, arXiv:0905.4749.
- [40] W. Beenakker et al., “Soft-gluon resummation for squark and gluino hadroproduction”, JHEP 0912 (2009) 041, doi:10.1088/1126-6708/2009/12/041, arXiv:0909.4418.
- [41] W. Beenakker et al., “Squark and gluino hadroproduction”, Int. J. Mod. Phys. A 26 (2011) 2637, doi:10.1142/S0217751X11053560, arXiv:1105.1110.
- [42] W. Beenakker et al., “Stop production at hadron colliders”, Nucl. Phys. B 515 (1998) 3, doi:10.1016/S0550-3213(98)00014-5, arXiv:hep-ph/9710451.
- [43] W. Beenakker et al., “Supersymmetric top and bottom squark production at hadron colliders”, JHEP 1008 (2010) 098, doi:10.1007/JHEP08(2010)098, arXiv:1006.4771.
- [44] W. Beenakker et al., “The Production of charginos / neutralinos and sleptons at hadron colliders”, Phys. Rev. Lett. 83 (1999) 3780, doi:10.1103/PhysRevLett.83.3780,10.1103/PhysRevLett.100.029901, arXiv:hep-ph/9906298.
Appendix A The CMS Collaboration
Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan
Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan\@textsuperscript1, M. Friedl, R. Frühwirth\@textsuperscript1, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler\@textsuperscript1, W. Kiesenhofer, V. Knünz, M. Krammer\@textsuperscript1, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz\@textsuperscript1
National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez
Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck
Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella
Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. Léonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang
Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis
Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, R. Castello, A. Caudron, L. Ceard, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\@textsuperscript2, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia
Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder
Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes\@textsuperscript3, F.A. Dias\@textsuperscript4, T.R. Fernandez Perez Tomei, E. M. Gregores\@textsuperscript3, C. Lagana, F. Marinho, P.G. Mercadante\@textsuperscript3, S.F. Novaes, Sandra S. Padula
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev\@textsuperscript5, P. Iaydjiev\@textsuperscript5, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov
Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang
State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou
Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria
Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina\@textsuperscript6, D. Polic, I. Puljak\@textsuperscript5
University of Split, Split, Croatia
Z. Antunovic, M. Kovac
Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic
University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis
Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran\@textsuperscript7, S. Elgammal\@textsuperscript8, A. Ellithi Kamel\@textsuperscript9, S. Khalil\@textsuperscript8, M.A. Mahmoud\@textsuperscript10, A. Radi\@textsuperscript11\@textsuperscript12
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Raidal, L. Rebane, A. Tiko
Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland
Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj\@textsuperscript13, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram\@textsuperscript14, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte\@textsuperscript14, F. Drouhin\@textsuperscript14, C. Ferro, J.-C. Fontaine\@textsuperscript14, D. Gelé, U. Goerlach, P. Juillot, M. Karim\@textsuperscript14, A.-C. Le Bihan, P. Van Hove
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, H. Brun, J. Chasserat, R. Chierici\@textsuperscript5, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret
Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\@textsuperscript15
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov\@textsuperscript16
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, P. Kreuzer, J. Lingemann, C. Magass, M. Merschmeyer, A. Meyer, M. Olschewski, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier, M. Weber
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, V. Cherepanov, M. Davids, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, J. Behr, W. Behrenhoff, U. Behrens, M. Bergholz\@textsuperscript17, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, E. Castro, F. Costanza, D. Dammann, G. Eckerlin, D. Eckstein, D. Fischer, G. Flucke, A. Geiser, I. Glushkov, P. Gunnellini, S. Habib, J. Hauk, G. Hellwig, H. Jung\@textsuperscript5, M. Kasemann, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann\@textsuperscript17, B. Lutz, R. Mankel, I. Marfin, M. Marienfeld, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, J. Olzem, H. Perrey, A. Petrukhin, D. Pitzl, A. Raspereza, P.M. Ribeiro Cipriano, C. Riedl, M. Rosin, J. Salfeld-Nebgen, R. Schmidt\@textsuperscript17, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, J. Erfle, U. Gebbert, M. Görner, T. Hermanns, R.S. Höing, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, F. Nowak, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Schröder, T. Schum, M. Seidel, H. Stadie, G. Steinbrück, J. Thomsen
Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Berger, C. Böser, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff\@textsuperscript5, C. Hackstein, F. Hartmann, T. Hauth\@textsuperscript5, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov\@textsuperscript16, J.R. Komaragiri, D. Martschei, S. Mueller, Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, A. Oehler, J. Ott, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, S. Röcker, A. Scheurer, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, M. Zeise
Institute of Nuclear Physics ”Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari
University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou
University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas\@textsuperscript5, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
G. Bencze, C. Hajdu\@textsuperscript5, P. Hidas, D. Horvath\@textsuperscript18, K. Krajczar\@textsuperscript19, B. Radics, F. Sikler\@textsuperscript5, V. Veszpremi, G. Vesztergombi\@textsuperscript19
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi
University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari
Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, J. Singh
University of Delhi, Delhi, India
S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri
Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, S. Sarkar, M. Sharan
Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty\@textsuperscript5, L.M. Pant, P. Shukla
Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Ganguly, M. Guchait\@textsuperscript20, M. Maity\@textsuperscript21, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage
Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi\@textsuperscript22, S.M. Etesami\@textsuperscript23, A. Fahim\@textsuperscript22, M. Hashemi, H. Hesari, A. Jafari\@textsuperscript22, M. Khakzad, A. Mohammadi\@textsuperscript24, M. Mohammadi Najafabadi, S. Paktinat Mehdiabadi, B. Safarzadeh\@textsuperscript25, M. Zeinali\@textsuperscript23
INFN Sezione di Bari , Università di Bari , Politecnico di Bari , Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria\@textsuperscript5, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis\@textsuperscript5, M. De Palma, L. Fiore, G. Iaselli, L. Lusito, G. Maggi, M. Maggi, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, A. Pompili, G. Pugliese, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, G. Zito
INFN Sezione di Bologna , Università di Bologna , Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Castro, F.R. Cavallo, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella\@textsuperscript5, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, M. Meneghelli\@textsuperscript5, A. Montanari, F.L. Navarria, F. Odorici, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G. Siroli, R. Travaglini
INFN Sezione di Catania , Università di Catania , Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze , Università di Firenze , Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano\@textsuperscript5
INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi\@textsuperscript26, F. Fabbri, D. Piccolo
INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich
INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca , Milano, Italy
A. Benaglia\@textsuperscript5, F. De Guio, L. Di Matteo\@textsuperscript5, S. Fiorendi, S. Gennai\@textsuperscript5, A. Ghezzi, S. Malvezzi, R.A. Manzoni, A. Martelli, A. Massironi\@textsuperscript5, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis
INFN Sezione di Napoli , Università di Napoli ”Federico II” , Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya\@textsuperscript5, N. Cavallo\@textsuperscript27, A. De Cosa\@textsuperscript5, O. Dogangun, F. Fabozzi\@textsuperscript27, A.O.M. Iorio, L. Lista, S. Meola\@textsuperscript28, M. Merola, P. Paolucci\@textsuperscript5
INFN Sezione di Padova , Università di Padova , Università di Trento (Trento) , Padova, Italy
P. Azzi, N. Bacchetta\@textsuperscript5, P. Bellan, A. Branca\@textsuperscript5, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, K. Kanishchev, S. Lacaprara, I. Lazzizzera, M. Margoni, A.T. Meneguzzo, J. Pazzini, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi\@textsuperscript5, S. Vanini, A. Zucchetta, G. Zumerle
INFN Sezione di Pavia , Università di Pavia , Pavia, Italy
M. Gabusi, S.P. Ratti, C. Riccardi, P. Torre, P. Vitulo
INFN Sezione di Perugia , Università di Perugia , Perugia, Italy
M. Biasini, G.M. Bilei, L. Fanò, P. Lariccia, A. Lucaroni\@textsuperscript5, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Saha, A. Santocchia, S. Taroni\@textsuperscript5
INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa , Pisa, Italy
P. Azzurri, G. Bagliesi, T. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori\@textsuperscript5, L. Foà, A. Giassi, A. Kraan, F. Ligabue, T. Lomtadze, L. Martini\@textsuperscript29, A. Messineo, F. Palla, A. Rizzi, A.T. Serban\@textsuperscript30, P. Spagnolo, P. Squillacioti\@textsuperscript5, R. Tenchini, G. Tonelli\@textsuperscript5, A. Venturi\@textsuperscript5, P.G. Verdini
INFN Sezione di Roma , Università di Roma ”La Sapienza” , Roma, Italy
L. Barone, F. Cavallari, D. Del Re\@textsuperscript5, M. Diemoz, M. Grassi\@textsuperscript5, E. Longo, P. Meridiani\@textsuperscript5, F. Micheli, S. Nourbakhsh, G. Organtini, R. Paramatti, S. Rahatlou, M. Sigamani, L. Soffi
INFN Sezione di Torino , Università di Torino , Università del Piemonte Orientale (Novara) , Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, C. Biino, C. Botta, N. Cartiglia, M. Costa, N. Demaria, A. Graziano, C. Mariotti\@textsuperscript5, S. Maselli, E. Migliore, V. Monaco, M. Musich\@textsuperscript5, M.M. Obertino, N. Pastrone, M. Pelliccioni, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, V. Sola, A. Solano, A. Staiano, A. Vilela Pereira
INFN Sezione di Trieste , Università di Trieste , Trieste, Italy
S. Belforte, F. Cossutti, G. Della Ricca, B. Gobbo, M. Marone\@textsuperscript5, D. Montanino\@textsuperscript5, A. Penzo, A. Schizzi
Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam
Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song
Konkuk University, Seoul, Korea
H.Y. Jo
Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo
University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu
Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas
Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
University of Auckland, Auckland, New Zealand
D. Krofcheck
University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski
Soltan Institute for Nuclear Studies, Warsaw, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, M. Fernandes, P.G. Ferreira Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia
Joint Institute for Nuclear Research, Dubna, Russia
I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin
Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evstyukhin, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev
Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov\@textsuperscript5, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin
Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin\@textsuperscript4, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva, V. Savrin, A. Snigirev
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin\@textsuperscript5, V. Kachanov, D. Konstantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\@textsuperscript31, M. Djordjevic, M. Ekmedzic, D. Krpic\@textsuperscript31, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott
Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz
Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez\@textsuperscript32
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini\@textsuperscript33, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte
CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, C. Bernet\@textsuperscript6, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, F. Glege, R. Gomez-Reino Garrido, P. Govoni, S. Gowdy, R. Guida, M. Hansen, P. Harris, C. Hartl, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi\@textsuperscript34, T. Rommerskirchen, C. Rovelli\@textsuperscript35, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas\@textsuperscript36, D. Spiga, M. Spiropulu\@textsuperscript4, M. Stoye, A. Tsirou, G.I. Veres\@textsuperscript19, J.R. Vlimant, H.K. Wöhri, S.D. Worm\@textsuperscript37, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille\@textsuperscript38
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, Z. Chen, A. Deisher, G. Dissertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marini, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägeli\@textsuperscript39, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov\@textsuperscript40, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli
Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti
National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu
National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang
Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci\@textsuperscript41, S. Cerci\@textsuperscript42, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk\@textsuperscript43, A. Polatoz, K. Sogut\@textsuperscript44, D. Sunar Cerci\@textsuperscript42, B. Tali\@textsuperscript42, H. Topakli\@textsuperscript41, L.N. Vergili, M. Vergili
Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek
Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak\@textsuperscript45, M. Kaya\@textsuperscript46, O. Kaya\@textsuperscript46, S. Ozkorucuklu\@textsuperscript47, N. Sonmez\@textsuperscript48
Istanbul Technical University, Istanbul, Turkey
K. Cankocak
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk
University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold\@textsuperscript37, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams
Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso\@textsuperscript49, K.W. Bell, A. Belyaev\@textsuperscript49, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley
Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko\@textsuperscript40, A. Papageorgiou, J. Pela\@textsuperscript5, M. Pesaresi, K. Petridis, M. Pioppi\@textsuperscript50, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie
Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner
Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarborough
The University of Alabama, Tuscaloosa, USA
C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak
Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang
University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, O. Mall, T. Miceli, R. Nelson, D. Pellett, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra
University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein, J. Tucker, V. Valuev, M. Weber
University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng\@textsuperscript51, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny
University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech\@textsuperscript52, F. Würthwein, A. Yagil, J. Yoo
University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West
California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev
University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner
Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich
Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, A. Hahn, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, D. Lincoln, R. Lipton, L. Lueking, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko\@textsuperscript53, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun
University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic\@textsuperscript54, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria
Florida International University, Miami, USA
V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez
Florida State University, Tallahassee, USA
J.R. Adams, T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg
Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov
University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, C. Dragoiu, O. Evdokimov, L. Gauthier, C.E. Gerber, S. Hamdan, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas
The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki\@textsuperscript55, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya\@textsuperscript56, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi
Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck
The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova
Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze
Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright
University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt
Massachusetts Institute of Technology, Cambridge, USA
G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti
University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz
University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders
University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow
State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith
Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang
Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won
University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf
The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer
Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski
University of Puerto Rico, Mayaguez, USA
J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy
Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar
Rice University, Houston, USA
A. Adair, C. Boulahouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel
University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, S. Korjenevski, D.C. Miner, D. Vishnevskiy, M. Zielinski
The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian
Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, A. Richards, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas
University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon\@textsuperscript57, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Safonov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback
Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev
Vanderbilt University, Nashville, USA
E. Appelt, D. Engh, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska
University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov
University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at Ain Shams University, Cairo, Egypt
12: Now at British University, Cairo, Egypt
13: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Now at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Moscow State University, Moscow, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Also at University of Visva-Bharati, Santiniketan, India
22: Also at Sharif University of Technology, Tehran, Iran
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Shiraz University, Shiraz, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran
26: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
27: Also at Università della Basilicata, Potenza, Italy
28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
29: Also at Università degli studi di Siena, Siena, Italy
30: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
31: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
32: Also at University of Florida, Gainesville, USA
33: Also at University of California, Los Angeles, Los Angeles, USA
34: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
35: Also at INFN Sezione di Roma; Università di Roma ”La Sapienza”, Roma, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
38: Also at The University of Kansas, Lawrence, USA
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at The University of Iowa, Iowa City, USA
44: Also at Mersin University, Mersin, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Suleyman Demirel University, Isparta, Turkey
48: Also at Ege University, Izmir, Turkey
49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
50: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
51: Also at University of Sydney, Sydney, Australia
52: Also at Utah Valley University, Orem, USA
53: Also at Institute for Nuclear Research, Moscow, Russia
54: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
55: Also at Argonne National Laboratory, Argonne, USA
56: Also at Erzincan University, Erzincan, Turkey
57: Also at Kyungpook National University, Daegu, Korea