Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at \sqrt{s}=13\TeV

Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at

August 16, 2019

A search for the production of Higgs boson pairs in proton-proton collisions at a centre-of-mass energy of 13\TeVis presented, using a data sample corresponding to an integrated luminosity of 35.9\fbinvcollected with the CMS detector at the LHC. Events with one Higgs boson decaying into two bottom quarks and the other decaying into two \PGtleptons are explored to investigate both resonant and nonresonant production mechanisms. The data are found to be consistent, within uncertainties, with the standard model background predictions. For resonant production, upper limits at the 95% confidence level are set on the production cross section for Higgs boson pairs as a function of the hypothesized resonance mass and are interpreted in the context of the minimal supersymmetric standard model. For nonresonant production, upper limits on the production cross section constrain the parameter space for anomalous Higgs boson couplings. The observed (expected) upper limit at 95% confidence level corresponds to about 30 (25) times the prediction of the standard model.







1 Introduction

The discovery of the Higgs boson () by the ATLAS and CMS Collaborations [1, 2, 3] was a major step towards improving the understanding of the mechanism of electroweak symmetry breaking (EWSB). With the mass of the Higgs boson now precisely determined [4], the structure of the Higgs scalar field potential and the Higgs boson self-couplings are precisely predicted in the standard model (SM). While the measured properties of the Higgs boson are thus far consistent with the expectations from the SM [5], the measurement of the Higgs boson self-coupling provides an independent test of the SM and verification that the Higgs mechanism is truly responsible for the EWSB by giving access to the shape of the Higgs scalar field potential [6].

The trilinear self-coupling of the Higgs boson () can be extracted from the measurement of the Higgs boson pair () production cross section. In the SM, for proton-proton (pp) collisions at the CERN LHC, this process occurs mainly via gluon-gluon fusion and involves either couplings of the Higgs boson to virtual fermions in a quantum loop, or the coupling itself, with the two processes interfering destructively as illustrated in Fig. 1.

The SM prediction for the cross section is [7, 8, 9, 10, 11]. This value was computed at the next-to-next-to-leading order (NNLO) of the theoretical perturbative quantum chromodynamics (QCD) calculation, including next-to-next-to-leading-logarithm (NNLL) corrections and finite top quark mass effects at next-to-leading order (NLO). The theoretical uncertainties in include uncertainties in the QCD factorization and renormalization scales, the strong coupling parameter , parton distribution functions (PDF), and unknown effects from the finite top quark mass at NNLO.

Figure 1: Feynman diagrams contributing to Higgs pair production via gluon-gluon fusion at leading order at the LHC.

Beyond the standard model (BSM) physics effects can appear either via anomalous couplings of the Higgs boson or via new particles that can be directly produced or contribute to the quantum loops responsible for production. The experimental signature would be an enhancement of the production cross section for a specific value of the invariant mass of the pair (resonant production) or over the whole invariant mass spectrum (nonresonant production).

Resonant double Higgs boson production is predicted by many extensions of the SM such as the singlet model [12, 13, 14], the two-Higgs-doublet model [15] and its realisation as the minimal supersymmetric standard model (MSSM) [16, 17], and models with warped extra dimensions (WED) [18, 19]. Although the physics motivation and the phenomenology of these theoretical models are very different, the signal is represented by a CP-even scalar particle (S) decaying into a Higgs boson pair, with an intrinsic width that is often negligible with respect to the detector resolution.

In the nonresonant case, the BSM physics is modelled through an effective Lagrangian that extends the SM Lagrangian with dimension-6 operators [20]. Five Higgs boson couplings result from this parametrization: the Higgs boson coupling to the top quark, , the trilinear coupling , and three additional couplings, denoted as , , and using the notation in Ref. [7], that represent, respectively, the interactions of a top quark pair with a Higgs boson pair, of a gluon pair with a Higgs boson pair, and of a gluon pair with a single Higgs boson. For simplicity, we investigate only anomalous and couplings, while the other anomalous couplings are assumed to be zero, and parametrize the deviations from the SM values as and . Extension of these results to any combination of the couplings can be obtained by following the procedure detailed in Ref. [21]. These two couplings are currently largely unconstrained by experimental results, and deviations from the SM can be accommodated by the combined measurements of Higgs boson properties [5] depending on the particular assumptions made about the BSM physics contributions.

Previous searches for the production of Higgs boson pairs were performed by both the ATLAS [22, 23] and CMS [24, 25] Collaborations using the LHC data collected at and 13\TeV. The most sensitive upper limit at 95% confidence level (CL) on HH production corresponds to 43 times the rate predicted by the SM and is obtained from the combination of the and decay channels using data collected at  [26].

In this Letter we present a search for Higgs boson pair production in the final state where one Higgs boson decays to \bbbarand the other decays to \TT. For simplicity, we refer to this process as in the following, omitting the quark and lepton charges. This process has a combined branching fraction of 7.3% for a Higgs boson mass of 125\GeV. Its sizeable branching fraction, together with the relatively small background contribution from other SM processes, makes this final state one of the most sensitive to HH production. Three final states of the \PGtlepton pair are considered: one of the two \PGtleptons is required to decay into hadrons and a neutrino (\tauh), while the other can decay either to the same final state, or into an electron () or a muon () and neutrinos. Together, these three final states include about 88% of the decays of the system and are the most sensitive ones for this search. The data sample analyzed corresponds to an integrated luminosity of 35.9\fbinvcollected in pp collisions at \TeV.

The search described in this Letter improves on the previous results [26] by including final states with a leptonic \PGtdecay, improving the event categorization, introducing multivariate methods for the background rejection, and optimizing the event and object selection for the LHC collisions at \TeV.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. Events of interest are selected using a two-tiered trigger system [27]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100\unitkHz within a time interval of less than 4\mus. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to less than 1\unitkHz before data storage. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, including pseudorapidity and azimuthal angle , can be found in Ref. [28].

3 Modelling of physics processes

Simulated samples of resonant and nonresonant production via gluon-gluon fusion are generated at leading order (LO) precision with \MGvATNLO 2.3.2 [29]. In the case of resonant production, separate samples are generated for mass values of the resonance ranging from 250 to 900\GeV. In the case of nonresonant production, separate samples are generated for different values of the effective Lagrangian couplings, including the couplings predicted by the SM [21, 30]. In the latter case, an event weight determined as a function of the generated pair kinematics is applied to these samples to model signals corresponding to additional points in the effective Lagrangian parametrization.

Backgrounds arising from and in association with jets (with ), diboson (, , and ), and SM single Higgs boson production are simulated with \MGvATNLO2.3.2 at LO with MLM merging [31], while the single top and backgrounds are simulated at NLO precision with \POWHEG2.0 [32, 33]. The NNPDF3.0 [34] PDF set is used. In order to increase the number of simulated events that satisfy the requirements detailed in Section 4, the inclusive simulation of the and processes is complemented by samples simulated in selected regions of multiplicity, flavour, and the transverse momentum scalar sum of the partons emitted at the matrix element level. Signal and background generators are interfaced with \PYTHIA8.212 [35] with the tune CUETP8M1 [36] to simulate the multiparton, parton shower, and hadronization effects. The simulated events include multiple overlapping hadron interactions as observed in the data.

The , , and single top quark samples are normalized to their theoretical cross sections at NNLO precision [37, 38, 39], and the diboson samples are normalized to their cross section at NLO precision [40]. The single Higgs boson production cross section is computed at the NNLO precision of the QCD corrections and at the NLO precision of electroweak corrections [7, 41, 42, 43, 44].

4 Object reconstruction and event selection

In order to reconstruct an candidate event, it is necessary to identify the \Pe, \PGm, and \tauhleptons, the jets originating from the two \PQbquarks, and the missing transverse momentum vector \ptvecmiss, defined as the projection onto the plane perpendicular to the beam axis of the negative vector sum of the momenta of all reconstructed particle-flow objects in an event. Its magnitude is referred to as \ptmiss.

The particle-flow (PF) event algorithm [45] reconstructs and identifies each individual particle (PF candidate) with an optimized combination of information from the various elements of the CMS detector. The momentum of the muons is obtained from the curvature of the corresponding track. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex, as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies. Complex objects, such as \tauh, jets, and the \ptvecmissvector, are reconstructed from PF candidates. For each event, hadronic jets are clustered from PF candidates with the infrared and collinear safe anti-\ktalgorithm [46, 47], operated with distance parameters of 0.4 and 0.8. These jets are denoted as “AK4” and “AK8” in the following. Leptons from \PQbhadron decays within a jet are considered as constituents by the algorithm. The jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is found in the simulation to be within 5 to 10% of the true momentum over the whole \ptspectrum and detector acceptance. The invariant mass of AK8 jets is obtained by applying the soft drop jet grooming algorithm [48, 49], that iteratively decomposes the jet into subjets to remove the soft wide-angle radiation and mitigates the contribution from initial state radiation, underlying event, and multiple hadron scattering. Jet energy corrections are derived from the simulation, and are confirmed with in situ measurements using the energy balance of dijet, multijet, +jet, and leptonic Z+jet events [50, 51]. The PF components of the jets are used to reconstruct \tauhcandidates using the hadrons plus strips algorithm [52, 53], combining either one or three charged particle tracks with clusters of photons and electrons to identify the decay mode of the lepton.

Events in the () final state have been recorded using a set of triggers that require the presence of a single muon (electron) in the event. The selected events are required to contain a reconstructed muon (electron) [54, 55] of and and a reconstructed \tauhcandidate [52] of and . The muon (electron) candidate must satisfy the relative isolation requirement  [54, 55], while the \tauhcandidate must satisfy the “medium” working point of a multivariate isolation discriminant [52], that corresponds to a signal efficiency of about 60% and a jet misidentification rate ranging between 0.1% and 1% depending on the jet . The reconstructed tracks associated to the selected electron, muon, and \tauhcandidates must be compatible with the primary pp interaction vertex of the event. Electrons and muons erroneously reconstructed as a \tauhcandidate are rejected using discriminants based on the information from the calorimeters and muon detectors and on the properties of the PF candidates that form the \tauhcandidate, as is detailed in [52].

A trigger requiring the presence of two candidates is used to record events in the final state. The selected events must contain two reconstructed candidates with and , that are required to pass the “medium” working point of the multivariate isolation discriminant and whose associated tracks must be compatible with the primary pp interaction vertex of the event. The discriminants that suppress the contribution from prompt electrons and muons are applied to both \tauhcandidates as in the and final states.

For all three final states, the two selected \PGtleptons are required to have opposite electric charge. Events containing additional isolated muons or electrons are rejected to reduce the background contribution.

Events selected with the criteria described above (, , ) are required to have two additional AK4 jets with and . In the case of production via a resonance of mass 700\GeVor higher, the two jets originating from the decay partially overlap due to the high Lorentz boost of the Higgs boson, and are reconstructed at the same time as two separate AK4 jets and as a single AK8 jet. To profit from this information, the event is classified as “boosted” if it contains at least one AK8 jet of invariant mass larger than 30\GeVand that is composed of two subjets, each geometrically matched to one of the selected AK4 jets (, where denotes the spatial separation of the jet candidates). The event is classified as “resolved” if any of these requirements is not satisfied. This classification provides a clear separation of the signal topology against the \ttbarbackground, where the two jets are typically more spatially separated and not reconstructed as a single AK8 jet. The AK8 jet mass requirement is applied to reject candidates resulting from a single quark or gluon hadronization or poorly reconstructed by the soft drop algorithm.

The combined secondary vertex [56] algorithm is applied to the selected jets to identify those originating from a bottom quark and reduce the contribution from the multijet background where jets are initiated by light quarks or gluon radiation. Both the “medium” and the “loose” working points of the b tagging discriminant [57] are used in this search as described below. The efficiency and rate of erroneous b jet identification are about 60% (80%) and 1% (10%) respectively for the “medium” (“loose”) working point.

Jets reconstructed in events classified as “resolved” are defined as b-tagged if they satisfy the “medium” working point of the b tagging algorithm. These events are classified into two groups according to the number of b-tagged jets: the group with at least two b-tagged jets (2b) has the best sensitivity, and the group with exactly one b-tagged jet (1b1j) increases the signal acceptance. Both AK4 jets previously selected in the events classified as “boosted” are required to satisfy the “loose” working point of the b tagging discriminant.

5 Signal regions and discriminating observables

After the object selection and event classification, the kinematic information of the event is exploited to reduce the contribution from background processes. The invariant mass of the two lepton candidates, , is reconstructed using a dynamic likelihood technique called SVfit [58] that combines the kinematics of the two visible lepton candidates and the missing transverse momentum in the event. The invariant mass, , is estimated from the two selected jet candidates for “resolved” topologies and from the invariant mass of the AK8 jet for “boosted” topologies. In the “resolved” case, the events are required to satisfy the condition:


where the values of 35 and 45\GeVare related to the mass resolution of the and systems and 116 and 111\GeVcorrespond to the position of the expected reconstructed 125\GeVHiggs boson peak in the and distributions, respectively. The selection has been optimized for the SM process to obtain a signal efficiency of approximately 80% and a background reduction of about 85% in the most sensitive event categories. The peak is shifted below the Higgs boson mass value because the momenta of neutrinos from \PQbhadron decays are not measured. This effect also prevents the SVfit algorithm from fully recovering the system mass value. In the “boosted” case the events are required to satisfy:


In addition to the previous requirements, a multivariate discriminant is applied to the events in the resolved categories of the and final states to identify and reject the \ttbarprocess, which is the most important source of background. The discriminant is built using the boosted decision tree (BDT) [59, 60] algorithm that is trained on a combination of and simulated signal and background events. The algorithm identifies the kinematic differences between the two processes and assigns to every selected event a number that defines its compatibility with a signal or background topology. Two separate BDT trainings are performed to achieve an optimal performance for all the signal processes studied.

One training is performed using resonant signals with masses as input. Eight variables are used in the discriminant training because of their good separation between signal and background: , , , , , , , and . Here refers to the selected muon or electron, and denote the H boson candidates reconstructed from the two jets and the two \PGtleptons, respectively, and denotes the transverse mass of the selected lepton candidate, with a similar definition for . The separations of the two b quarks and of the two tau leptons are multiplied by the and candidate \ptrespectively to reduce their dependence on the hypothesis. All the selected variables contribute significantly to the discrimination achieved with the trained BDT. The same training is used both for the search for resonant production up to and for the search for nonresonant production. No loss of performance is observed by using this training in comparison to a dedicated training on nonresonant signals. Different selections on the BDT discriminant output are applied in the two searches to maximize the sensitivity: these selections correspond to a rejection of the \ttbarbackground of approximately 90 and 70% for the resonant and nonresonant searches, respectively, for a signal efficiency ranging between 65 and 95% depending on the signal hypothesis considered.

A second training is performed on the resonant signals of mass . The variables used as inputs to this training are the same as in the previous case, but replacing and with and . The selection on the BDT output is chosen to maximize the sensitivity and corresponds to a rejection of the \ttbarbackground of approximately 90% for a signal efficiency ranging between 70 and 95% depending on the value of . In the case of the resonant search, the selections applied to the two BDT discriminants define low-mass (LM) and high-mass (HM) signal regions.

In the resonant search, the invariant mass of the two visible \PGtlepton decay products and the two selected jets is used to search for a possible signal above the expected background event distribution. In order to improve the resolution and to enhance the sensitivity of the analysis, the invariant mass is reconstructed using a kinematic fit () that is detailed in Ref. [61]. The fit is based on the four-momenta of the and candidates and on the vector in the event, and is performed under the hypothesis of two 125\GeVHiggs bosons decaying into a bottom quark pair and a lepton pair. The use of the kinematic fit improves the resolution on by about a factor of two compared to the four-body invariant mass of the reconstructed leptons and jets.

The stransverse mass or variable is used in the search for a nonresonant signal. This variable, originally introduced for supersymmetry searches involving invisible particles in the final state [62, 63] and later proposed for searches in events [64], is used to reconstruct events where two equal mass particles are produced and each undergoes a two-body decay into a visible and an invisible particle. The variable is defined as the largest mass of the parent particle that is compatible with the kinematic constraints of the event. In the case of the decay, where the dominant background is \ttbarproduction, the parent particle is interpreted as the top quark that decays into a bottom quark and a boson. Following the description in Ref. [64], we denote with , the momenta of the two selected b jets and with , their invariant masses, and we introduce the , symbols to denote the momenta of the other particles produced in the top quark decay corresponding to the measured leptons and the neutrinos. We also set and , where denotes the invariant mass of the measured leptons or \tauh. Under this notation, is defined as:


where the constraint in the minimization is over the measured lepton momenta and the missing transverse momentum, \ie. In Eq. (3), the transverse mass is defined as


and the “transverse energy” of a particle of transverse momentum and mass is defined as


We use the implementation in Ref. [65] to perform the minimization of Eq. (3).

The variable has a large discriminating power between the signal and the \ttbarbackground, as it is bounded above by the top quark mass for the irreducible background process , while it can assume larger values for the signal where the tau and the b jet do not originate from the same parent particle. Detector resolution effects and other decay modes of the \ttbarsystem (\egjets from the boson misidentified as \tauh) result in an extension of the tail of the distribution in \ttbarevents beyond the value.

6 Background estimation

The main background sources that contaminate the signal region are \ttbarproduction, production and QCD multijet events.

The backgrounds from \ttbar, single top, single Higgs boson, W boson in association with jets, and diboson processes are estimated from simulation, as described in Section 3.

The background contribution is estimated using the simulation, where the LO modelling of jet emission in the process is known to be imperfect [66]. Therefore, correction factors are calculated using events containing two isolated, opposite-sign muons compatible with the decay in association with two jets that satisfy similar invariant mass criteria as in the signal region. This +2 jets sample is divided into three control regions according to the number of -tagged jets (0, 1, and 2) and three correction factors are derived for the production in association with 0, 1, or 2 generator level jets initiated by b quarks, and applied in the signal regions.

The multijet background is determined from data in a jet-enriched region defined by requiring that the two selected \PGtlepton candidates have the same electric charge. The yield is obtained from this same-sign (SS) region, where all the other selections are applied as in the signal region. The events in this region are scaled by the ratio of opposite-sign (OS) to SS event yields obtained in a multijet-enriched region with inverted \PGtlepton isolation. The contributions of other backgrounds, based on predictions from simulated samples, are subtracted in the OS and SS regions. The shape of the multijet background is estimated using the events in an SS region with relaxed \PGtlepton isolation, after subtracting the other background contributions.

7 Systematic uncertainties

The effects of an imperfect knowledge of the detector response, discrepancies between simulation and data, and limited knowledge of the background and signal processes are accounted for in the analysis as systematic uncertainties. They are separately treated as “normalization” uncertainties or “shape” uncertainties; the first affect the number of expected events in the signal region, while the second affect their distributions.

7.1 Normalization uncertainties

The following normalization uncertainties are considered:

  • The integrated luminosity is known with an uncertainty of 2.5% [67]. This value is obtained from dedicated Van der Meer scans and the stability of detector response during the data taking. The uncertainty is applied to the signal and to \ttbar, W+jets, single top quark, single Higgs boson, and diboson backgrounds, but it is not applied to the multijet and Z+jets backgrounds because they are estimated or corrected from data.

  • Electron, muon, and \tauhlepton trigger, reconstruction and identification efficiencies are measured using , , and events collected at . The corresponding uncertainties are considered as uncorrelated among the final states and are about 3% for electrons, 2% for muons, and 6% for \PGtleptons.

  • The uncertainty in the knowledge of the \tauhenergy scale is about 3% for each \tauhcandidate [53], and its impact on the overall normalization ranges from 3 to 10% depending on the process being considered. This effect is fully correlated with a corresponding shape uncertainty in the distribution of and .

  • Uncertainties arising from the imperfect knowledge of the jet and b jet measured energy [50] have an impact of about 2% for the signal processes and 4% for the backgrounds.

  • Uncertainties in the b tagging efficiency in the simulation are evaluated as functions of jet \ptand  [57] and result in an average value of 2 to 6% for the samples with genuine b jets in the final state.

  • For the \ttbarprocess, the uncertainty in the normalization of the cross section is 4.8%/5.5%. For the W+jets, single top quark, diboson, and single Higgs backgrounds, uncertainties range from 1 to 10%.

  • The uncertainties in the three correction factors derived in the control regions with 0, 1, and 2 b-tagged jets for the background are propagated from the control regions to the signal region, taking into account the correlation between them, and amount to an uncertainty in the range 0.1–2.5%

  • The uncertainty in the multijet background normalization is estimated by propagating the statistical uncertainties in the number of events used for its determination in the region with the sign requirement inverted, as described in Section 6, and ranges between 5 and 30% depending on the final state and category. Additional sources of systematic uncertainties were found to be negligible with respect to the statistical component given the number of events in the signal and control regions.

  • The uncertainties in the signal cross section arising from scale variations result in an uncertainty in its normalization of / while effects from other theoretical uncertainties such as uncertainties on , PDFs and finite top quark mass effects at NNLO amount to a further 5.9% uncertainty.

The systematic uncertainties are summarized in Table 7.1.


Systematic uncertainties affecting the normalization of the different processes. Systematic uncertainty Value Processes Luminosity 2.5% all but multijet, Lepton trigger and reconstruction all but multijet energy scale all but multijet Jet energy scale all but multijet b tag efficiency all but multijet Background cross section all but multijet, SF uncertainty Multijet normalization multijet Scale unc. %/% signals Theory unc. 5.9% signals

7.2 Shape uncertainties

The following shape uncertainties are considered:

  • The shape uncertainty affecting the kinematic distribution in the simulation of the \ttbarbackground is estimated by varying the top quark distribution according to the uncertainties in differential measurements described in Ref. [68], and has an impact smaller than 1% on the sensitivity of the measurement.

  • Uncertainties due to the limited number of simulated events or due to the statistical fluctuations of events in the multijet control region are taken into account. These uncertainties are uncorrelated across bins in the individual template shapes and their inclusion has an impact on the sensitivity smaller than 7%.

  • Uncertainties due to the \tauhand jet energy scales are taken into account and are fully correlated with the associated normalization uncertainties. Uncertainties in the energy scales for other objects have negligible impacts on the simulated event distributions and are not taken into account.

8 Results

Figures 2, 3, and 4 show the distributions of the and variables in the , , and final states, respectively. The expected signature of resonant production is a localized excess in the distribution, while an enhancement in the tails of the distribution would reveal the presence of nonresonant production. A binned maximum likelihood fit is performed simultaneously in the signal regions defined in this search for the three final states considered. The systematic uncertainties discussed previously in Section 7 are introduced as nuisance parameters in the maximum likelihood fit. In the absence of evidence for a signal, we set 95% CL upper limits on the cross section for Higgs boson pair production using the asymptotic modified frequentist method (asymptotic [69, 70].

Figure 2: Distributions of the events observed in the signal regions of the final state. The first, second, and third rows show the resolved 1b1j, 2b, and boosted regions, respectively. Panels in the right column show the distribution of the variable, while the other panels show the distribution of the variable, separated in the low-mass (LM, left panels) and high-mass (HM, central panels) regions for the resolved event categories. Data are represented by points with error bars and expected signal contributions are represented by the solid (BSM signals) and dashed (SM nonresonant signal) lines. Expected background contributions (shaded histograms) and associated systematic uncertainties (dashed areas) are shown as obtained after the maximum likelihood fit to the data under the background-only hypothesis. The background histograms are stacked while the signal histograms are not stacked.
Figure 3: Distributions of the events observed in the signal regions of the final state. The first, second, and third rows show the resolved 1b1j, 2b, and boosted regions, respectively. Panels in the right column show the distribution of the variable, while the other panels show the distribution of the variable, separated in the low-mass (LM, left panels) and high-mass (HM, central panels) regions for the resolved event categories. Data are represented by points with error bars and expected signal contributions are represented by the solid (BSM signals) and dashed (SM nonresonant signal) lines. Expected background contributions (shaded histograms) and associated systematic uncertainties (dashed areas) are shown as obtained after the maximum likelihood fit to the data under the background-only hypothesis. The background histograms are stacked while the signal histograms are not stacked.
Figure 4: Distributions of the events observed in the signal regions of the final state. The first, second, and third rows show the resolved 1b1j, 2b, and boosted regions, respectively. Panels in the left column show the distribution of the variable and panels in the right column show the distribution of the variable. Data are represented by points with error bars and expected signal contributions are represented by the solid (BSM signals) and dashed (SM nonresonant signal) lines. Expected background contributions (shaded histograms) and associated systematic uncertainties (dashed areas) are shown as obtained after the maximum likelihood fit to the data under the background-only hypothesis. The background histograms are stacked while the signal histograms are not stacked.

For the resonant production mode, limits are set as a function of the mass of the resonance under the hypothesis that its intrinsic width is negligible compared to the experimental resolution. The observed and expected 95% CL limits are shown in Fig. 5, upper panel. The figure also shows the expectation for radion production, a spin-0 state predicted in WED models, for the parameters (mass scale) and (size of the extra dimension), and assuming the absence of mixing with the Higgs boson. The corresponding cross section and branching fractions are taken from [71]. These model-independent limits are also interpreted in the hMSSM scenario [72, 73], that is a parametrization of the MSSM that considers the observed 125\GeVHiggs boson as the lighter scalar predicted from the model (usually denoted as h in the context of the model), while the resonance of mass represents the heavier CP-even scalar (usually denoted as H in the context of the model). Excluded regions as a function of the and parameters, representing respectively the mass of the CP-odd scalar and the ratio of the vacuum expectation values of the two Higgs doublets of the model, are shown in Fig. 5, lower panel. The minimum of the sensitivity around \GeVresults in the presence of two separate expected excluded regions in this interpretation.

Figure 5: (upper) Observed and expected 95% CL upper limits on cross section times branching fraction as a function of the mass of the resonance under the hypothesis that its intrinsic width is negligible with respect to the experimental resolution. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The red line denotes the expectation for the production of a radion, a spin-0 state predicted in WED models, for the parameters (mass scale) and (size of the extra dimension), assuming the absence of mixing with the Higgs boson. (lower) Interpretation of the exclusion limit in the context of the hMSSM model, parametrized as a function of the and parameters. In this model, the CP-even lighter scalar is assumed to be the observed 125\GeVHiggs boson and is denoted as h, while the CP-even heavier scalar is denoted as H and the CP-odd scalar is denoted as A. The dotted lines indicate trajectories in the plane corresponding to equal values of the mass of the CP-even heavier scalar of the model, .

For the nonresonant production mode, including the theoretical uncertainties, the observed 95% CL upper limit on the production cross section times branching fraction amounts to 75.4\unitfb while the expected 95% CL upper limit amounts to 61.0\unitfb. These values correspond to about 30 and 25 times the SM prediction, respectively. Limits are set for different hypotheses of anomalous self-coupling and top quark coupling of the Higgs boson. The signal kinematics depend on the ratio of the two couplings and 95% CL upper limits are set as a function of , assuming the other BSM couplings to be zero. The result is shown in Fig. 6, upper panel, and the exclusion is compared with the theoretical prediction for the cross section for and . The sensitivity varies as a function of and because of the corresponding changes in the signal distribution. These upper limits are used to set constraints on anomalous and couplings as shown in Fig. 6, lower panel, where the , , and couplings are assumed to be equal to zero. The branching fractions for the decays of the Higgs boson into a and pair are assumed to be those predicted by the SM for all the values of and tested.

Figure 6: (upper) Observed and expected 95% CL upper limits on cross section times branching fraction as a function of . The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. The two red bands show the theoretical cross section expectations and the corresponding uncertainties for and . (lower) Test of and anomalous couplings. The blue region denotes the parameters excluded by the data at 95% CL, while the dashed black line and the grey regions denote the expected exclusions and the and bands. The dotted lines indicate trajectories in the plane with equal values of cross section times branching fraction that are displayed in the associated labels. The diamond-shaped symbol denotes the couplings predicted by the SM. The theory predictions and the expected and observed limits are symmetric through a , transformation. In both figures, the couplings that are not explicitly tested are assumed to correspond to the SM prediction.

9 Summary

A search for resonant and nonresonant Higgs boson pair () production in the final state is presented. This search uses a data sample collected in proton-proton collisions at that corresponds to an integrated luminosity of . The three most sensitive decay channels of the \PGtlepton pair, requiring the decay of one or both leptons into final-state hadrons and a neutrino, are used. The results are found to be statistically compatible with the expected standard model (SM) background contribution, and upper limits at the 95% confidence level are set on the production cross sections.

For the resonant production mechanism, upper exclusion limits at 95% confidence level (CL) are obtained for the production of a narrow resonance of mass ranging from 250 to 900\GeV. These model-independent results are interpreted in the context of the hMSSM scenario, where a region in the parameter space corresponding to values of between 230 and 360\GeVand is excluded at 95% CL.

For the nonresonant production mechanism, the theoretical framework of an effective Lagrangian is used to parametrize the cross section as a function of anomalous couplings of the Higgs boson. Upper limits at 95% CL on the cross section are obtained as a function of and . The observed 95% CL upper limit corresponds to approximately 30 times the theoretical prediction for the SM cross section, and the expected limit is about 25 times the SM prediction. This is the highest sensitivity achieved so far for SM production at the LHC.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.


Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler\cmsAuthorMark1, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, D. Spitzbart, J. Strauss, W. Waltenberger, J. Wittmann, C.-E. Wulz\cmsAuthorMark1, M. Zarucki \cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, A. Olbrechts, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang\cmsAuthorMark2 \cmsinstskipGhent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz \cmsinstskipUniversité de Mons, Mons, Belgium
N. Beliy \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\cmsAuthorMark3, A. Custódio, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\cmsAuthorMark3, F. Torres Da Silva De Araujo, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas \cmsinstskipInstitute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark5, X. Gao\cmsAuthorMark5 \cmsinstskipInstitute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez \cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac \cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\cmsAuthorMark6, T. Susa \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski \cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark7, M. Finger Jr.\cmsAuthorMark7 \cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb\cmsAuthorMark8, S. Elgammal\cmsAuthorMark9, A. Mohamed\cmsAuthorMark10 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva \cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche \cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram\cmsAuthorMark11, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\cmsAuthorMark11, X. Coubez, J.-C. Fontaine\cmsAuthorMark11, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\cmsAuthorMark12, V. Sordini, M. Vander Donckt, S. Viret \cmsinstskipGeorgian Technical University, Tbilisi, Georgia
T. Toriashvili\cmsAuthorMark13 \cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark7 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl\cmsAuthorMark14 \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras\cmsAuthorMark15, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo\cmsAuthorMark16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel\cmsAuthorMark17, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann\cmsAuthorMark17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev \cmsinstskipUniversity of Hamburg, Hamburg, Germany
S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo\cmsAuthorMark14, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald \cmsinstskipInstitut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann\cmsAuthorMark14, S.M. Heindl, U. Husemann, F. Kassel\cmsAuthorMark14, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf \cmsinstskipInstitute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis \cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
S. Kesisoglou, A. Panagiotou, N. Saoulidou \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis \cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor \cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark18, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi\cmsAuthorMark19, A.J. Zsigmond \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark20, A. Makovec, J. Molnar, Z. Szillasi \cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók\cmsAuthorMark19, P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipIndian Institute of Science (IISc),  Bangalore, India
S. Choudhury, J.R. Komaragiri \cmsinstskipNational Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark21, S. Bhowmik, P. Mal, K. Mandal, A. Nayak\cmsAuthorMark22, D.K. Sahoo\cmsAuthorMark21, N. Sahoo, S.K. Swain \cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, U. Bhawandeep, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia \cmsinstskipUniversity of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma \cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur \cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\cmsAuthorMark14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar \cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar \cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity\cmsAuthorMark23, G. Majumder, K. Mazumdar, T. Sarkar\cmsAuthorMark23, N. Wickramage\cmsAuthorMark24 \cmsinstskipIndian Institute of Science Education and Research (IISER),  Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma \cmsinstskipInstitute for Research in Fundamental Sciences (IPM),  Tehran, Iran
S. Chenarani\cmsAuthorMark25, E. Eskandari Tadavani, S.M. Etesami\cmsAuthorMark25, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi\cmsAuthorMark26, F. Rezaei Hosseinabadi, B. Safarzadeh\cmsAuthorMark27, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris\cmsAuthorMark14, R. Venditti, P. Verwilligen \cmsinstskipINFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi \cmsinstskipINFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\cmsAuthorMark28, G. Sguazzoni, D. Strom, L. Viliani\cmsAuthorMark14 \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera\cmsAuthorMark14 \cmsinstskipINFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
L. Brianza, F. Brivio, V. Ciriolo, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, K. Pauwels, D. Pedrini, S. Pigazzini\cmsAuthorMark29, S. Ragazzi, T. Tabarelli de Fatis \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\cmsAuthorMark14, F. Fabozzi, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\cmsAuthorMark14, P. Paolucci\cmsAuthorMark14, C. Sciacca, F. Thyssen \cmsinstskipINFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi\cmsAuthorMark14, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, S. Fantinel, F. Fanzago, A. Gozzelino, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossin, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle \cmsinstskipINFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, F. Fallavollita, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov, P. Azzurri\cmsAuthorMark14, G. Bagliesi, J. Bernardini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo\cmsAuthorMark28, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\cmsAuthorMark30, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini \cmsinstskipINFN Sezione di Roma , Sapienza Università di Roma ,  Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, D. Del Re\cmsAuthorMark14, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio \cmsinstskipINFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, F. Ravera, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, A. Staiano, P. Traczyk \cmsinstskipINFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti \cmsinstskipKyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang \cmsinstskipChonbuk National University, Jeonju, Korea
A. Lee \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh \cmsinstskipHanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim \cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh \cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu \cmsinstskipUniversity of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus \cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\cmsAuthorMark31, F. Mohamad Idris\cmsAuthorMark32, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\cmsAuthorMark33, R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadán-Trejo, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada \cmsinstskipUniversidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
P.H. Butler \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark35\cmsAuthorMark36, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
Y. Ivanov, V. Kim\cmsAuthorMark37, E. Kuznetsova\cmsAuthorMark38, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin \cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin\cmsAuthorMark36 \cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
R. Chistov\cmsAuthorMark39, M. Danilov\cmsAuthorMark39, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\cmsAuthorMark36, I. Dremin\cmsAuthorMark36, M. Kirakosyan\cmsAuthorMark36, A. Terkulov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\cmsAuthorMark40, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin \cmsinstskipNovosibirsk State University (NSU),  Novosibirsk, Russia
V. Blinov\cmsAuthorMark41, Y.Skovpen\cmsAuthorMark41, D. Shtol\cmsAuthorMark41 \cmsinstskipState Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Álvarez Fernández \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia \cmsinstskipInstituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco\cmsAuthorMark43, M. Dobson, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban\cmsAuthorMark17, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer\cmsAuthorMark14, M.J. Kortelainen, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\cmsAuthorMark44, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi\cmsAuthorMark45, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\cmsAuthorMark46, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns\cmsAuthorMark47, G.I. Veres\cmsAuthorMark19, M. Verweij, N. Wardle, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada\cmsAuthorMark48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr \cmsinstskipInstitute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, A. Zagozdzinska\cmsAuthorMark34, D.H. Zhu \cmsinstskipUniversität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\cmsAuthorMark49, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta \cmsinstskipNational Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu \cmsinstskipNational Taiwan University (NTU),  Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Paganis, A. Psallidas, J.f. Tsai \cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas \cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Adiguzel\cmsAuthorMark50, F. Boran, S. Cerci\cmsAuthorMark51, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos\cmsAuthorMark52, E.E. Kangal\cmsAuthorMark53, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut\cmsAuthorMark54, K. Ozdemir\cmsAuthorMark55, D. Sunar Cerci\cmsAuthorMark51, B. Tali\cmsAuthorMark51, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar\cmsAuthorMark56, K. Ocalan\cmsAuthorMark57, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya\cmsAuthorMark58, O. Kaya\cmsAuthorMark59, S. Tekten, E.A. Yetkin\cmsAuthorMark60 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak \cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold\cmsAuthorMark61, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark62, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams \cmsinstskipImperial College, London, United Kingdom
R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko\cmsAuthorMark6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta\cmsAuthorMark63, T. Virdee\cmsAuthorMark14, D. Winterbottom, J. Wright, S.C. Zenz \cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner \cmsinstskipBaylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith \cmsinstskipCatholic University of America, Washington DC, USA
R. Bartek, A. Dominguez \cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West \cmsinstskipBoston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou \cmsinstskipBrown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Piperov, S. Sagir, R. Syarif, D. Yu \cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang \cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev \cmsinstskipUniversity of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates \cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\cmsAuthorMark64, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta \cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg \cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, S. Das, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton \cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez \cmsinstskipFlorida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, R. Yohay \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang \cmsinstskipThe University of Iowa, Iowa City, USA
B. Bilki\cmsAuthorMark65, W. Clarida, K. Dilsiz\cmsAuthorMark66, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\cmsAuthorMark67, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark68, Y. Onel, F. Ozok\cmsAuthorMark69, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi \cmsinstskipJohns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You \cmsinstskipThe University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, R. Stringer, J.D. Tapia Takaki, Q. Wang \cmsinstskipKansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch \cmsinstskipUniversity of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger \cmsinstskipState University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, D. Wood \cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\cmsAuthorMark35, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard \cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin \cmsinstskipPrinceton University, Princeton, USA
A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg \cmsinstskipPurdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.F. Schulte, J. Sun, F. Wang, W. Xie \cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak \cmsinstskipRice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel \cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti \cmsinstskipThe Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark70, A. Castaneda Hernandez\cmsAuthorMark70, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark71, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang \cmsinstskipVanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia \cmsinstskipWayne State University, Detroit, USA
R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski \cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods \cmsinstskip†: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3:  Also at Universidade Estadual de Campinas, Campinas, Brazil
4:  Also at Universidade Federal de Pelotas, Pelotas, Brazil
5:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
6:  Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7:  Also at Joint Institute for Nuclear Research, Dubna, Russia
8:  Now at Ain Shams University, Cairo, Egypt
9:  Now at British University in Egypt, Cairo, Egypt
10: Also at Zewail City of Science and Technology, Zewail, Egypt
11: Also at Université de Haute Alsace, Mulhouse, France
12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
13: Also at Tbilisi State University, Tbilisi, Georgia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at INFN Sezione di Roma; Sapienza Università di Roma, Rome, Italy
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Universität Zürich, Zurich, Switzerland
49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
50: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
51: Also at Adiyaman University, Adiyaman, Turkey
52: Also at Istanbul Aydin University, Istanbul, Turkey
53: Also at Mersin University, Mersin, Turkey
54: Also at Cag University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Izmir Institute of Technology, Izmir, Turkey
57: Also at Necmettin Erbakan University, Konya, Turkey
58: Also at Marmara University, Istanbul, Turkey
59: Also at Kafkas University, Kars, Turkey
60: Also at Istanbul Bilgi University, Istanbul, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at Beykent University, Istanbul, Turkey
66: Also at Bingol University, Bingol, Turkey
67: Also at Erzincan University, Erzincan, Turkey
68: Also at Sinop University, Sinop, Turkey
69: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
70: Also at Texas A&M University at Qatar, Doha, Qatar
71: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description