Search for ZZ resonances in the 2\ell 2\nu final state in proton-proton collisions at 13\TeV

Search for ZZ resonances in the final state in proton-proton collisions at 13\TeV


A search for heavy resonances decaying to a pair of Z bosons is performed using data collected with the CMS detector at the LHC. Events are selected by requiring two oppositely charged leptons (electrons or muons), consistent with the decay of a Z boson, and large missing transverse momentum, which is interpreted as arising from the decay of a second Z boson to two neutrinos. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13\TeV, corresponding to an integrated luminosity of 35.9\fbinv. The hypothesis of a spin-2 bulk graviton () decaying to a pair of Z bosons is examined for \GeVand upper limits at 95% confidence level are set on the product of the production cross section and branching fraction of ranging from 100 to 4\unitfb. For bulk graviton models characterized by a curvature scale parameter in the extra dimension, the region \GeVis excluded, providing the most stringent limit reported to date. Variations of the model considering the possibility of a wide resonance produced exclusively via gluon–gluon fusion or \qqbarannihilation are also examined.







1 Introduction

The standard model (SM) of particle physics has successfully described a wide range of high energy phenomena investigated over the decades. The discovery of a particle compatible with SM predictions for the Higgs boson [1, 2, 3, 4, 5, 6] by the ATLAS and CMS experiments [7, 8, 9] at the CERN LHC marks an important milestone in the history of particle physics, providing substantive verification of the SM. However, the SM lacks a natural means to accommodate the large hierarchy between gravity and electroweak (EW) scales. Large loop corrections are necessary to stabilize the SM Higgs boson mass at the EW scale. One possible interpretation is that the measured Higgs boson mass is the result of fine-tuned constants of nature within the SM. Alternatively, new physics at the \TeVscale can be invoked to stabilize the mass of the Higgs boson far below the Planck scale (\GeV). The spontaneous breaking of EW symmetry in the SM has also been associated with new dynamics appearing at the \TeVscale. Examples of theoretical extensions include the description of a new strongly interacting sector [10, 11, 12] or the introduction of a composite Higgs boson [13, 14, 15].

Models extending the number of spatial dimensions can also address the observed difference between the EW and gravitational scales. A solution postulating the existence of multiple and potentially large extra spatial dimensions, accessible only for the propagation of gravity [16, 17], was advanced as a way to eliminate the hierarchy between the EW scale and . The model of Randall and Sundrum [18] introduced an alternative hypothesis, with a single compactified extra dimension and a modification to the space-time metric by an exponential “warp” factor. Standard model particles reside on a (3+1) dimensional \TeVbrane, while the graviton propagates though the extra dimensional bulk, thereby generating two effective scales. These models predict the existence of a tower of massive Kaluza–Klein (KK) excitations of a spin-2 boson, the KK graviton, which couples to SM fields at energies on the order of the EW scale. Such states could be produced at a hadron collider. However, limits on flavor-changing neutral currents and EW precision tests place strong constraints on this model. The bulk graviton () model extends the Randall–Sundrum model, by addressing the flavor structure of the SM through localization of fermions in the warped extra dimension [19, 20, 21], only confining the Higgs field to the \TeVbrane. The coupling of the graviton to light fermions is highly suppressed in this scenario and the decays into photons are negligible. On the other hand, the production of gravitons from gluon–gluon fusion and their decays into a pair of massive gauge bosons can be sizable at hadron colliders, while precision EW and flavor constraints are relaxed to allow graviton masses in the \TeVrange. The model has two free parameters: the mass of the first mode of the KK bulk graviton, , and the ratio , where is the unknown curvature scale of the extra dimension, and is the reduced Planck mass. For values of , the width of the KK bulk graviton relative to its mass is less than 6% for as large as 2\TeV, and therefore a narrow resonance is expected. Previous direct searches at ATLAS and CMS have set limits on the cross section for the production of as a function of  [22, 23, 24, 25, 26, 27] using LHC data taken at center-of-mass energies of 7, 8, and 13\TeV.

We present a new search for resonances decaying to a pair of \cPZ bosons, in which one of the Z bosons decays into two charged leptons and the other into two neutrinos (where represents either or ), as illustrated in Fig. 1. The analysis uses data from proton-proton collisions at a center-of-mass energy of 13\TeVcollected in 2016 and corresponding to an integrated luminosity of 35.9\fbinv. The results are compared to expectations for the bulk graviton model of Refs. [19, 20, 21]. We also examine variations of the model considering the possibility of a wide resonance, which is produced exclusively via gluon–gluon fusion or \qqbarannihilation processes.

Figure 1: Leading order Feynman diagram for the production of a generic resonance via gluon–gluon fusion decaying to the \cPZ\cPZ final state.

The characteristic signature of the final state includes two charged leptons with large transverse momenta (\pt) and an overall imbalance in \ptdue to the presence of the undetected neutrinos. The imbalance in transverse momentum (\ptvecmiss) is the negative of the vector sum of the \ptof all final-state particles; its magnitude is referred to as \ptmiss. We refer to the observable final states and as the electron and muon channels, respectively.

The search is performed using the transverse mass () spectrum of the two leptons and \ptmiss, where a kinematic edge is expected from the putative heavy resonance and depends on its invariant mass. The variable is calculated as:


where is the \ptof the two lepton system associated with the leptonic decay of a \cPZ boson. The decay of the second \cPZ boson to two invisible neutrinos is represented by \ptmissand in the middle term provides an estimator of the mass of the invisibly decaying \cPZ boson. This choice has negligible impact on the expected signal at large , but is found to preferentially suppress backgrounds from \ttbarand \PW\PW decays.

The most significant background to the final state is due to production, where the \cPZ boson or recoiling hadrons are not precisely reconstructed. This can produce a signal-like final state with \ptmissarising primarily from instrumental effects. Other important sources of background include the nonresonant production of final states and \ptmiss, primarily composed of \ttbarand \PW\PW production, and the resonant background from SM production of diboson (\cPZ\cPZ and \PW\cPZ) events.

Compared to fully reconstructed final states, the branching fraction for the decay mode is approximately a factor of six larger than that of the four charged-lepton final state, and has less background than semileptonic channels such as + (). For the channel, the hadronic recoil in the background is kinematically similar to the system from \cPZ boson decay. For events with large \ptmiss, as expected for a high-mass signal, high \ptjets in the corresponding background are more accurately reconstructed. This effectively suppresses the background in the channel and the signal purity is enhanced relative to the channel.

2 The CMS detector

The central feature of the CMS detector is a 3.8\unitT superconducting solenoid with a 6\unitm internal diameter. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage () provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel magnetic flux-return yoke outside the solenoid. Events of interest are selected using a two-tiered trigger system [28]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100\unitkHz within a time interval of less than 4\mus. The second level, known as the high-level trigger, consists of a farm of processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to less than 1\unitkHz before data storage. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [29].

3 Event selection and reconstruction

The signal consists of two \cPZ bosons, one decaying into a pair of oppositely charged leptons and the other to two neutrinos, which escape direct detection. The final state is thus characterized by a pair of oppositely charged electrons or muons that are isolated from large deposits of hadronic energy, having an invariant mass consistent with that of a \cPZ boson, and large \ptmiss. A single-electron or a single-muon trigger has to be satisfied. Thresholds on the \ptof the leptons are 115 (50)\GeVin the electron (muon) channel. Electron events are triggered by clusters of energy depositions in the ECAL that are matched to reconstructed tracks within a range . Cluster shape requirements, as well as isolation criteria based on calorimetric and track information, are also applied. An additional sample of photon plus jet(s) () events is collected for background modeling based on control samples in data and is discussed below. The photon trigger is similar to the electron trigger, except that a veto is applied on the presence of a matching track. For muon events the trigger begins with track fitting in the outer muon spectrometer. The outer track is used to seed track reconstruction in the inner tracker and matching inner-outer track pairs are included in a combined fit that is used to select muon candidates in a range .

3.1 Event reconstruction

The global event reconstruction (also called particle-flow event reconstruction [30]) consists of reconstructing and identifying each individual particle with an optimized combination of all subdetector information. In this process, the identification of the particle type (photon, electron, muon, charged hadron, neutral hadron) plays an important role in the determination of the particle direction and energy. Photons (\egcoming from \Pgpz decays or from electron bremsstrahlung) are identified as ECAL energy clusters not linked to the extrapolation of any charged particle trajectory to the ECAL. Electrons (\egcoming from photon conversions in the tracker material or from \cPqb-hadron semileptonic decays) are identified as a primary charged particle track and potentially many ECAL energy clusters corresponding to this track extrapolation to the ECAL and to possible bremsstrahlung photons emitted along the way through the tracker material. Muons (\egfrom \cPqb-hadron semileptonic decays) are identified as a track in the central tracker consistent with either a track or several hits in the muon system, associated with an energy deficit in the calorimeters. Charged hadrons are identified as charged particle tracks neither identified as electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to any charged hadron trajectory, or as ECAL and HCAL energy excesses with respect to the expected charged hadron energy deposit.

The energy of photons is directly obtained from the ECAL measurement, corrected for zero-suppression effects. The energy of electrons is determined from a combination of the track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons attached to the track. The energy of muons is obtained from the corresponding track momentum. The energy of charged hadrons is determined from a combination of the track momentum and the corresponding ECAL and HCAL energy, corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

Events are required to have at least one reconstructed interaction vertex. In case of the existence of multiple vertices, the reconstructed vertex with the largest value of summed physics-object is taken to be the primary interaction vertex. The physics objects are the jets, clustered using the jet finding algorithm [31, 32] with the tracks assigned to the vertex as inputs, and the associated missing transverse momentum, taken as the negative vector sum of the \ptof those jets.

To reduce the electron misidentification rate, we require the candidates to satisfy additional identification criteria that are based on the shape of the electromagnetic shower in the ECAL [33]. Electron candidates within the transition region between the ECAL barrel and endcap () are rejected, because instrumental effects degrade the performance of the reconstruction. Candidates that are identified as coming from photon conversions in the detector material are removed. Photon reconstruction uses the same approach as electrons, except that photon candidates must not have an assigned track or be identified as a bremsstrahlung photon from an electron [34].

Muon candidate reconstruction at CMS utilizes several standard algorithms [35], two of which are employed in this analysis. In the first, tracks are reconstructed in the muon system and propagated inward to the tracker. If a matching track is found, a global fit is performed to hits in both the silicon tracker and the muon system. In the second, tracks in the silicon tracker are matched with at least one muon segment in any detector plane of the muon system, but only silicon tracking data are used to reconstruct the trajectory of the muon. To improve efficiency for highly boosted events where the separation between the two muons is small, we require only one muon to satisfy the global fit requirement. This results in an efficiency improvement of 4–18% for identifying \cPZ bosons having \ptin the range of 200–1000\GeV. The muon misidentification rate is reduced by applying additional identification criteria based on the number of spatial points measured in the tracker and in the muon system, the fit quality of the muon track, and its consistency with the event vertex location.

Leptons produced in the decay of \cPZ bosons are expected to be isolated from hadronic activity in the event. Therefore, an isolation requirement is applied based on the sum of the momenta of either charged hadron PF candidates or additional tracks found in a cone of radius around each electron or muon candidate, respectively. The isolation sum is required to be smaller than of the \ptof the electron or muon. For each electron, the mean energy deposit in the isolation cone coming from other collisions in the same bunch crossing, is estimated following the method described in Ref. [33], and subtracted from the isolation sum. For muon candidates, only charged tracks associated with the primary vertex are included and any additional muons found in the isolation cone are removed from this sum to prevent rejection of a highly boosted \cPZ boson decay.

Jets produced by initial state radiation may accompany signal events and are also expected to arise from background sources. The jets are reconstructed from all the PF candidates using the anti-\ktalgorithm [31, 32] with a radius parameter of . Charged hadron candidates that are not associated with the primary vertex are excluded. Jet energy corrections are derived from the simulation, and are confirmed with in situ measurements using the energy balance of dijet, multijet, , and leptonically decaying events [36].

The \ptmissis calculated from all the PF candidates, with momentum scale corrections applied to the candidates.

3.2 Sample selection

Events are selected if they include a pair of same-flavor, oppositely charged leptons that pass the identification and isolation criteria. The leading (subleading) leptons are required to have \GeVfor the electron channel and \GeVfor the muon channel. Electrons (muons) are required to be reconstructed in the range . To suppress backgrounds that do not include a \cPZ boson, the lepton pair is required to have an invariant mass compatible with the \cPZ boson mass [37] \GeV. If more than one such pair is identified, the pair with invariant mass closest to the \cPZ boson is selected.

The signal region (SR) is defined by additionally requiring that the \ptof the \cPZ boson candidate satisfies \GeV, \GeV, and the angular difference between and \ptvecmisssatisfies \unitradians. The SR selection largely suppresses the backgrounds, which are primarily concentrated at low and low \ptmiss. In the case of a signal we expect two highly boosted \cPZ bosons, therefore, the distribution is correspondingly peaked around in contrast to a relatively flat distribution in the background where \ptvecmissarises from instrumental effects.

4 Signal and background models

Two versions of the signal model are examined. For our benchmark model, signal events are generated at leading order for the bulk graviton model of Refs. [19, 20, 21] using the \MGvATNLO 2.3.3 event generator [38]. Because the expected width is small compared to detector resolution for reconstructing the signal, we use a zero width approximation [39] for generating signal events. A more general version of the bulk graviton decaying to \cPZ\cPZ is generated using JHU Generator 7.0.2 [40, 41, 42]. We model a bulk graviton as in Refs. [43, 44] and introduce variable decay widths up to 30% of . Production of the wide resonance via gluon fusion and \qqbarannihilation are generated separately. Generated events are interfaced to \PYTHIA 8.212 [45] for parton showering and hadronization. The renormalization and factorization scales are set to the resonance mass. Parton distribution functions (PDFs) are modeled using the NNPDF 3.0 [46] parametrization. Signal samples are generated in the mass range 600–2500\GeVfor each tested model. We simulate both signal and background using a \GEANTfour-based model [47, 48, 49] of the CMS detector and process the Monte Carlo (MC) events using the same reconstruction algorithms as for data. All MC samples include an overlay of additional minimum bias events (also called “pileup”), generated with an approximate distribution for the number of expected additional interactions, and events are reweighted to match the distribution observed in data.

The largest source of background arises from the production of events, characterized by a transversely boosted \cPZ boson and recoiling hadrons. The observation of \ptmissin these events primarily results from the mismeasurement of jet or lepton \pt. While this process may be modeled exclusively using simulated events, the description of detector instrumental effects can be improved by constructing a background estimate based on control samples in data. We use a sample of data with a reweighting procedure to reproduce the kinematics of the \cPZ boson in events, exploiting the intrinsic similarity of the recoiling hadrons balancing the \ptof the \cPZ boson or the photon. The procedure also employs a sample of events generated using the \MADGRAPH5_aMC@NLO framework with next-to-leading order (NLO) matrix elements for final states with up to two additional partons. The merging scheme of Frederix and Frixione is employed for matching to parton showers using a merging scale  [50]. The inclusive cross section is recalculated to include next-to-next-to-leading order (NNLO) QCD and EW corrections from \FEWZ 3.1 [51]. We use the differential cross section measurement as a function of in CMS data to reweight each event in the MC sample at the generator level to match the dependence observed in data. The differential cross section measured in data is first corrected for backgrounds producing physical \ptmiss, such as events. The reconstructed events in data are then reweighted as a function of and to match the corrected spectra in simulation for electron and muon channels separately. This procedure transfers the lepton trigger and identification efficiencies from , into the data sample. For calculation of the variable in Eq. (1), the photon is randomly assigned a mass based on the measured \cPZ boson mass distribution as a function of the \cPZ boson \pt. Finally to account for small energy scale and resolution differences in the \ptmissbetween and events, we fit the parallel and perpendicular components of the hadronic recoil relative to the reconstructed boson in both samples using a Gaussian model in bins of boson \pt. The differences are used to correct the data as a function of photon \pt.

The nonresonant backgrounds can be significant in regions of large \ptmissdue to the presence of neutrinos in the final state. A method based on control samples in data is used to more precisely model this background. The method uses dilepton samples consisting of \Pe\Pgm pairs to describe the expected background in (\Pe\Pe or \Pgm\Pgm) events. This utilizes the fact that \Pe\Pgm pairs in the nonresonant background have very similar kinematic behavior and cross sections compared to the final states. Events with at least one \Pe\Pgm pair are selected. If more than one pair is present, the pair having an invariant mass closest to that of the \cPZ boson is selected. The normalization of event yields between and \Pe\Pgm events is estimated using events outside the \cPZ boson mass selection window. Because of effects due to different trigger requirements and identification efficiencies, variances are observed in the lepton \ptdistributions compared to the single-flavor samples. Therefore when modeling the electron (muon) channel, event-based weighting factors are applied to correct the \ptdistribution of the muon (electron) in the \Pe\Pgm data for these observed differences. The trigger efficiency is also applied in the background sample to simulate the single-lepton trigger efficiency. The correction corresponding to either the electron or muon channel is applied based on the \ptand of both leptons.

Figure 2: The distributions for electron (left) and muon (right) channels comparing the data and background model based on control samples in data. The lower panels give the ratio of data to the prediction for the background. The shaded band shows the systematic uncertainties in background, while the statistical uncertainty in the data is shown by the error bars. The expected distribution for a zero width bulk graviton resonance with a mass of 1\TeVis also shown for a value of 1\unitpb for the product of cross section and branching fraction .

The irreducible (resonant) background arises mainly from the SM process and is modeled using MC samples generated by \POWHEG 2.0 [52, 53], at NLO in QCD and leading order in EW calculations. We also apply NNLO QCD [54] and NLO EW corrections to the production processes [55, 56]. These are applied as a function of and on average are 1.11 and 0.95 for the NNLO QCD and NLO EW corrections, respectively. Smaller contributions from \PW\cPZ and \ttbar\cPZ decays are modeled at NLO using \MADGRAPH5_aMC@NLO.

Figure 2 shows the comparison of background models and data for the \ptdistribution of the reconstructed \cPZ boson after all corrections are applied. Figure 3 shows the data and background prediction of the \ptmissdistribution after all corrections are applied. The \ptmissis an essential variable to examine the quality of the background modeling and the understanding of the systematic uncertainties. All the systematic uncertainties are propagated to the \ptmissdistributions and shown as the uncertainty band on the ratio plots in the lower panels of the figure. Also shown in Figs. 2 and 3 is the expected signal distribution assuming a bulk graviton with 1\TeVmass and an arbitrary product of the cross section and branching fraction of 1\unitpb.

Figure 3: The \ptmissfor electron (left) and muon (right) channels comparing the data and background model based on control samples in data. The expected distribution for a zero width bulk graviton resonance with a mass of 1\TeVis also shown for a value of 1\unitpb for the product of cross section and branching fraction . The lower panels show the ratio of data to the prediction for the background. The shaded band shows the systematic uncertainties in background, while the statistical uncertainty in the data is shown by the error bars.

5 Systematic uncertainties

Systematic uncertainties can affect both the normalization and differential distributions of signal and background. Individual sources of systematic uncertainties are evaluated by studying the effects of parameter variations within one standard deviation relative to their nominal values and propagating the result into the template distributions that are used to evaluate signal cross section limits. The various categories of systematic uncertainties affecting these distributions are described below and summarized in Table 5 for both electron and muon channels.


Summary of the normalization uncertainties that are included in the statistical procedure for the electron and muon channels. All values are listed in percentage units and similar categories are grouped for brevity. Sources that do not apply or are found to be negligibly small are marked “” or “(),” respectively. Integrated luminosity and theoretical uncertainties are evaluated separately for effects on normalizations, while all the other uncertainties are considered simultaneously with shape variations in the statistical analysis. Values in the signal column refer to the hypothetical spin-2 bulk graviton signal with a mass of 1\TeV. Source Signal Resonant Nonresonant (%) (%) (%) (%) Integrated luminosity 2.5 2.5 2.5 2.5 PDF: cross section 2.3 1.7 Scale: cross section 3.5 3.0 EW NLO correction 3.0 Electron channel PDF: acceptance 1.0 3.4 1.0 Scale: acceptance () 22.7 2.9 Trigger/identification eff. 2.1 0.4 reweighting 6.8 Nonresonant norm. 10.0 \pt/energy scale () 4.6 Jet energy resolution () 6.8 Unclustered energy () 5.5 Hadronic recoil 3.4 Muon channel PDF: acceptance 1.0 3.4 1.0 Scale: acceptance () 13.1 2.9 Trigger/identification eff. 3.6 1.0 1.0 1.0 reweighting 3.2 Nonresonant norm. 2.4 \pt/energy scale () 7.4 Jet energy resolution () 5.6 Unclustered energy () 6.3 Hadronic recoil 2.0

Uncertainties from trigger efficiencies, lepton identification and isolation requirements, and tracking efficiency can affect signal and background estimates obtained from both simulation and from control samples in data. The combined effect of these uncertainties on the normalizations of the various samples is found to be 0.4–3.6%.

Uncertainties of 6.8 (3.2)% for the electron (muon) channel are assigned to the reweighting procedure for the background. For the nonresonant background, modeling of trigger and lepton identification efficiencies relative to the \cPZ boson data and the size of the sideband samples contribute the major uncertainties in the expected event yields. These are estimated to affect the normalization by 10 (2.4)% for the electron (muon) channel.

The lepton momenta, and photon and jet energies are recalculated by varying their respective corrections within scale uncertainties. These uncertainties affect event selection and the detector response corrected \ptmiss, contributing a variation of 4.6 (7.4)% to the template normalizations for the MC-generated resonant backgrounds in the electron (muon) channel. Their corresponding effect on acceptance for the signal is negligible. The modeling of jet resolution and the correction applied to unclustered energy are similarly considered for the MC samples and found to contribute an uncertainty of 6% each to the resonant background normalization. The effect of variations in corrections to the modeling of recoil in the background is found to be 3.4% and 2.0% for the electron and muon channel, respectively.

Uncertainties arising from the PDF model and renormalization and factorization scales in fixed-order calculations affect signal and simulated backgrounds, modifying predictions for both the production cross-section and the acceptance. We estimate the effect of PDF uncertainties by evaluating the complete set of NNPDF 3.0 PDF eigenvectors, following the PDF4LHC prescription [46, 57]. This contributes a variation of 1.0–3.4% to the MC background models. The production of bulk gravitons is modeled by a fusion process with gluons having large Björken-, where parton luminosities are generally not well-constrained by existing PDF models. The PDF uncertainties in the signal production cross section depend on and range from 10–50%, but modify the acceptance by only about 1%.

The effect of scale variations is assessed by varying the original factorization and renormalization scales by factors of 0.5 or 2.0. The scale uncertainties are estimated to be about 3–3.5% each in the production cross section and acceptance for the resonant background. For the background, the scale choice modifies the normalization by 3.5%. The acceptance varies by 23 (13)% in the electron (muon) channel and the corresponding effect is negligibly small for the signal. An uncertainty of 3.0% is estimated for the (N)NLO correction to the resonant background. The uncertainty assigned to the integrated luminosity measurement is 2.5% [58] and is applied to the signal and simulated backgrounds.

In the treatment of systematic uncertainties, both normalization effects, which only alter the overall yields of individual contributions, as well as shape variations, which also affect their distribution, are taken into account for each source individually.

6 Statistical interpretation

The distribution is used as the sensitive variable to search for a new resonance decaying to \cPZ\cPZ with the subsequent decay . For both the electron and muon channels, a binned shape analysis is employed. The expected numbers of background and signal events scaled by a signal strength modifier are combined to form a binned likelihood calculated using each bin of the distribution.


Event yields for different background contributions and those observed in data in the electron and muon channels. Electron channel Muon channel Data 9336 52806 Zjets Resonant Nonresonant Total background

The results of a simultaneous fit of the predicted backgrounds to data, combining electron and muon channels, and including the estimated systematic uncertainties are summarized in Table 6. Figure 4 shows the post-fit distributions in the SR using only the background models. The expected distribution for a bulk graviton signal with a mass of 1\TeVand an arbitrary product of cross section and branching fraction of 1\unitpb is also shown. The observed distributions are in agreement with fitted SM background predictions.

Figure 4: The distributions for electron (left) and muon (right) channels comparing the data and background model based on control samples in data, after fitting the background-only model to the data. The expected distribution for a zero width bulk graviton resonance with a mass of 1\TeVis also shown for a value of 1\unitpb for the product of branching fraction and cross section . The lower panels show the ratio of data to the prediction for the background. The shaded bands show the systematic uncertainties in the background, while the statistical uncertainty in the data is shown by the error bars.

Upper limits on the product of cross section and branching fraction for the resonance production are evaluated using the asymptotic approximation [59] of the modified frequentist approach CL [60, 61, 62]. The same simultaneous combined fit is performed using signal and background distributions after application of the SR selection, to extract the upper limits for a given signal hypothesis. Statistical uncertainties in the background modeling are taken into account by fluctuating the predicted background histograms within an envelope according to uncertainties in each bin. Systematic uncertainties are treated as nuisance parameters, constrained with Gaussian or log-normal probability density functions in the maximum likelihood fit. For the signal, only uncertainties related to luminosity and acceptance contribute in the limit setting procedure. When the likelihoods for electron and muon channels are combined, the correlation of systematic effects is taken into account.

7 Results

The expected and observed upper limits on the product of the resonance cross section and the branching fraction for are determined at the 95% confidence level (CL) for the zero width benchmark model as a function of and shown in Fig. 5 for the \Pe\Pe and \PGm\PGm channels combined. Expectations for are also normalized to the calculations of Ref. [39] and shown as a function of the bulk graviton mass for three values of the curvature scale parameter . The hypothesis of can be excluded for masses below 800\GeVat 95% CL, while the current data are not yet sensitive to the hypothesis of .

Figure 5: Expected and observed limits on the product of cross section and branching fraction of a new spin-2 heavy resonance , assuming zero width, based on the combined analysis of the electron and muon channels. Expectations for the production cross section are also shown for the benchmark bulk graviton model for three values of the curvature scale parameter .

The observed limits are within 2 standard deviations of expectations from the background-only model. The largest upward fluctuations in the data are observed for \GeVand weaken the corresponding exclusions in this region. To explore this region in more detail, upper limits are shown separately for the electron and muon channels in Fig. 6. The upward fluctuations at \GeVappear mainly in the muon channel, and additional fluctuations below this  can also be observed.

The analysis is repeated comparing to the more general wide width version of the bulk graviton model described above. The initial state is fixed purely to either a gluon–gluon fusion or \qqbarannihilation process and the width of the resonance varied between 0 and . The 95% CL limits for these models are shown in Fig. 7. Differences in the limits between the gluon fusion and \qqbarproduction processes arise from spin and parity effects, which broaden the peak in \qqbarproduction [41].

Figure 6: Expected and observed limits on the product of cross section and branching fraction of a new spin-2 bulk heavy resonance , assuming zero width, shown separately for searches in the electron (left) and muon (right) final states. The median expected 95% CL limits from the combined analysis (Fig. 5) are also shown.
Figure 7: Expected and observed limits on the product of cross section and branching fraction of a new spin-2 heavy resonance based on a combined analysis of the electron and muon channels. The more generic version of the bulk graviton model is considered, assuming either gluon-gluon fusion (left) or \qqbarannihilation (right) processes. Expected limits are also shown for models having various decay widths relative to the mass of the resonance.

8 Summary

A search for the production of new resonances has been performed in events with a leptonically decaying \cPZ boson and missing transverse momentum, using data corresponding to an integrated luminosity of 35.9\fbinvof proton-proton collisions at a center-of-mass energy of 13\TeV. The data are consistent with expectations from standard model processes. The hypothesis of a spin-2 bulk graviton, , decaying to a pair of \cPZ bosons is examined for  GeV, and upper limits are set at 95% confidence level on the product of the cross section and branching fraction ranging from 100 to 4\unitfb. For bulk graviton models characterized by a curvature scale parameter in the extra dimension, the region \GeVis excluded, providing the most stringent limit reported to date. The analysis is repeated considering variations of the bulk graviton model to include a large mass-dependent width. Exclusion limits are provided separately for gluon–gluon fusion and \qqbarannihilation production processes.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, M. Friedl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler\cmsAuthorMark1, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, N. Rad, H. Rohringer, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz\cmsAuthorMark1, M. Zarucki \cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, T. Seva, E. Starling, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni \cmsinstskipGhent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\cmsAuthorMark2, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, A. Caudron, P. David, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\cmsAuthorMark3, E. Coelho, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\cmsAuthorMark3, F. Torres Da Silva De Araujo, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas \cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark5, X. Gao\cmsAuthorMark5, L. Yuan \cmsinstskipInstitute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, T. Yu, H. Zhang, S. Zhang, J. Zhao \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, J. Li, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang\cmsAuthorMark5 \cmsinstskipTsinghua University, Beijing, China
Y. Wang \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez, M.A. Segura Delgado \cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac \cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\cmsAuthorMark6, T. Susa \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski \cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark7, M. Finger Jr.\cmsAuthorMark7 \cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran\cmsAuthorMark8\cmsAuthorMark9, S. Elgammal\cmsAuthorMark9, A. Mahrous\cmsAuthorMark10 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva \cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam\cmsAuthorMark11, C. Amendola, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche \cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram\cmsAuthorMark12, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\cmsAuthorMark12, X. Coubez, F. Drouhin\cmsAuthorMark12, J.-C. Fontaine\cmsAuthorMark12, D. Gelé, U. Goerlach, M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\cmsAuthorMark13, V. Sordini, M. Vander Donckt, S. Viret \cmsinstskipGeorgian Technical University, Tbilisi, Georgia
T. Toriashvili\cmsAuthorMark14 \cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark7 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov\cmsAuthorMark13 \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl\cmsAuthorMark15 \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras\cmsAuthorMark16, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo\cmsAuthorMark17, J. Garay Garcia, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, A. Harb, J. Hauk, M. Hempel\cmsAuthorMark18, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann\cmsAuthorMark18, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev \cmsinstskipUniversity of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo\cmsAuthorMark15, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald \cmsinstskipInstitut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann, B. Freund, R. Friese, M. Giffels, M.A. Harrendorf, F. Hartmann\cmsAuthorMark15, S.M. Heindl, U. Husemann, F. Kassel\cmsAuthorMark15, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf \cmsinstskipInstitute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Topsis-Giotis \cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou \cmsinstskipNational Technical University of Athens, Athens, Greece
K. Kousouris \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis \cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor, O. Surányi, G.I. Veres\cmsAuthorMark19 \cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark20, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi\cmsAuthorMark19 \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark21, A. Makovec, J. Molnar, Z. Szillasi \cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók\cmsAuthorMark19, P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipIndian Institute of Science (IISc),  Bangalore, India
S. Choudhury, J.R. Komaragiri \cmsinstskipNational Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark22, P. Mal, K. Mandal, A. Nayak\cmsAuthorMark23, D.K. Sahoo\cmsAuthorMark22, N. Sahoo, S.K. Swain \cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia \cmsinstskipUniversity of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma \cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur \cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\cmsAuthorMark15, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar \cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar \cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity\cmsAuthorMark24, G. Majumder, K. Mazumdar, T. Sarkar\cmsAuthorMark24, N. Wickramage\cmsAuthorMark25 \cmsinstskipIndian Institute of Science Education and Research (IISER),  Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma \cmsinstskipInstitute for Research in Fundamental Sciences (IPM),  Tehran, Iran
S. Chenarani\cmsAuthorMark26, E. Eskandari Tadavani, S.M. Etesami\cmsAuthorMark26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi\cmsAuthorMark27, F. Rezaei Hosseinabadi, B. Safarzadeh\cmsAuthorMark28, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris\cmsAuthorMark15, R. Venditti, P. Verwilligen \cmsinstskipINFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi \cmsinstskipINFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\cmsAuthorMark29, G. Sguazzoni, D. Strom, L. Viliani \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera\cmsAuthorMark15 \cmsinstskipINFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, F. Ravera, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
A. Benaglia, A. Beschi, L. Brianza, F. Brivio, V. Ciriolo\cmsAuthorMark15, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, K. Pauwels, D. Pedrini, S. Pigazzini\cmsAuthorMark30, S. Ragazzi, T. Tabarelli de Fatis \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\cmsAuthorMark15, F. Fabozzi, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\cmsAuthorMark15, P. Paolucci\cmsAuthorMark15, C. Sciacca, F. Thyssen \cmsinstskipINFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi, N. Bacchetta, L. Benato, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossin, F. Simonetto, E. Torassa, S. Ventura, M. Zanetti, P. Zotto, G. Zumerle \cmsinstskipINFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov, P. Azzurri\cmsAuthorMark15, G. Bagliesi, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo\cmsAuthorMark29, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\cmsAuthorMark31, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini \cmsinstskipINFN Sezione di Roma , Sapienza Università di Roma ,  Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re\cmsAuthorMark15, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio \cmsinstskipINFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, A. Staiano, P. Traczyk \cmsinstskipINFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti \cmsinstskipKyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang \cmsinstskipChonbuk National University, Jeonju, Korea
A. Lee \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh \cmsinstskipHanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim \cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh \cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu \cmsinstskipUniversity of Seoul, Seoul, Korea
H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus \cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\cmsAuthorMark32, F. Mohamad Idris\cmsAuthorMark33, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\cmsAuthorMark34, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada \cmsinstskipUniversidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
P.H. Butler \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
V. Alexakhin, A. Golunov, I. Golutvin, N. Gorbounov, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark36\cmsAuthorMark37, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
Y. Ivanov, V. Kim\cmsAuthorMark38, E. Kuznetsova\cmsAuthorMark39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin \cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin\cmsAuthorMark37 \cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
R. Chistov\cmsAuthorMark40, M. Danilov\cmsAuthorMark40, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\cmsAuthorMark37, I. Dremin\cmsAuthorMark37, M. Kirakosyan\cmsAuthorMark37, S.V. Rusakov, A. Terkulov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\cmsAuthorMark41, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev \cmsinstskipNovosibirsk State University (NSU),  Novosibirsk, Russia
V. Blinov\cmsAuthorMark42, D. Shtol\cmsAuthorMark42, Y. Skovpen\cmsAuthorMark42 \cmsinstskipState Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute",  Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, I. Bachiller, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Álvarez Fernández \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia \cmsinstskipInstituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban\cmsAuthorMark18, J. Kieseler, V. Knünz, A. Kornmayer, M.J. Kortelainen, M. Krammer\cmsAuthorMark1, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\cmsAuthorMark44, F. Moortgat, M. Mulders, H. Neugebauer, J. Ngadiuba, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, D. Rabady, A. Racz, T. Reis, G. Rolandi\cmsAuthorMark45, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\cmsAuthorMark46, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns\cmsAuthorMark47, M. Verweij, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada\cmsAuthorMark48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr \cmsinstskipETH Zurich - Institute for Particle Physics and Astrophysics (IPA),  Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu \cmsinstskipUniversität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\cmsAuthorMark49, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta \cmsinstskipNational Central University, Chung-Li, Taiwan
V. Candelise, Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu \cmsinstskipNational Taiwan University (NTU),  Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai \cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas \cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
M.N. Bakirci\cmsAuthorMark50, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, I. Hos\cmsAuthorMark51, E.E. Kangal\cmsAuthorMark52, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut\cmsAuthorMark53, K. Ozdemir\cmsAuthorMark54, A. Polatoz, U.G. Tok, H. Topakli\cmsAuthorMark50, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
G. Karapinar\cmsAuthorMark55, K. Ocalan\cmsAuthorMark56, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya\cmsAuthorMark57, O. Kaya\cmsAuthorMark58, S. Tekten, E.A. Yetkin\cmsAuthorMark59 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu \cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold\cmsAuthorMark60, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark61, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley \cmsinstskipImperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko\cmsAuthorMark6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta\cmsAuthorMark62, T. Virdee\cmsAuthorMark15, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz \cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, L. Teodorescu, S. Zahid \cmsinstskipBaylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith \cmsinstskipCatholic University of America, Washington DC, USA
R. Bartek, A. Dominguez \cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West \cmsinstskipBoston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou \cmsinstskipBrown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu \cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, D. Stolp, K. Tos, M. Tripathi, Z. Wang \cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev \cmsinstskipUniversity of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates \cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\cmsAuthorMark63, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta \cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J. Bunn, J.M. Lawhorn, H.B. Newman, T. Q. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg \cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck, W. Wu \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton \cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez \cmsinstskipFlorida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang \cmsinstskipThe University of Iowa, Iowa City, USA
B. Bilki\cmsAuthorMark64, W. Clarida, K. Dilsiz\cmsAuthorMark65, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\cmsAuthorMark66, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark67, Y. Onel, F. Ozok\cmsAuthorMark68, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi \cmsinstskipJohns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You \cmsinstskipThe University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang \cmsinstskipKansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch \cmsinstskipUniversity of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger \cmsinstskipState University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, A. Massironi, D.M. Morse, T. Orimoto, R. Teixeira De Lima, D. Trocino, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood \cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\cmsAuthorMark36, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard \cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, B. Liu, W. Luo, B.L. Winer, H.W. Wulsin \cmsinstskipPrinceton University, Princeton, USA
S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, A. Kalogeropoulos, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg \cmsinstskipPurdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie \cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak \cmsinstskipRice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Guilbaud, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang \cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti \cmsinstskipThe Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark69, A. Castaneda Hernandez\cmsAuthorMark69, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark70, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang \cmsinstskipVanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia \cmsinstskipWayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski \cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods \cmsinstskip†: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3:  Also at Universidade Estadual de Campinas, Campinas, Brazil
4:  Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
6:  Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7:  Also at Joint Institute for Nuclear Research, Dubna, Russia
8:  Also at Suez University, Suez, Egypt
9:  Now at British University in Egypt, Cairo, Egypt
10: Now at Helwan University, Cairo, Egypt
11: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
12: Also at Université de Haute Alsace, Mulhouse, France
13: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
14: Also at Tbilisi State University, Tbilisi, Georgia
15: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
16: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
17: Also at University of Hamburg, Hamburg, Germany
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
22: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
23: Also at Institute of Physics, Bhubaneswar, India
24: Also at University of Visva-Bharati, Santiniketan, India
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at Yazd University, Yazd, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at California Institute of Technology, Pasadena, USA
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
45: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
46: Also at National and Kapodistrian University of Athens, Athens, Greece
47: Also at Riga Technical University, Riga, Latvia
48: Also at Universität Zürich, Zurich, Switzerland
49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
50: Also at Gaziosmanpasa University, Tokat, Turkey
51: Also at Istanbul Aydin University, Istanbul, Turkey
52: Also at Mersin University, Mersin, Turkey
53: Also at Cag University, Mersin, Turkey
54: Also at Piri Reis University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Necmettin Erbakan University, Konya, Turkey
57: Also at Marmara University, Istanbul, Turkey
58: Also at Kafkas University, Kars, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
61: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
62: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
63: Also at Utah Valley University, Orem, USA
64: Also at Beykent University, Istanbul, Turkey
65: Also at Bingol University, Bingol, Turkey
66: Also at Erzincan University, Erzincan, Turkey
67: Also at Sinop University, Sinop, Turkey
68: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea


  1. F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13 (1964) 321, doi:10.1103/PhysRevLett.13.321.
  2. P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, doi:10.1016/0031-9163(64)91136-9.
  3. P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13 (1964) 508, doi:10.1103/PhysRevLett.13.508.
  4. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett. 13 (1964) 585, doi:10.1103/PhysRevLett.13.585.
  5. P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, doi:10.1103/PhysRev.145.1156.
  6. T. W. B. Kibble, “Symmetry breaking in non-abelian gauge theories”, Phys. Rev. 155 (1967) 1554, doi:10.1103/PhysRev.155.1554.
  7. ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  8. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  9. CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at = 7 and 8 TeV”, JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.
  10. S. Weinberg, “Implications of dynamical symmetry breaking”, Phys. Rev. D 13 (1976) 974, doi:10.1103/PhysRevD.13.974.
  11. S. Weinberg, “Implications of dynamical symmetry breaking: An addendum”, Phys. Rev. D 19 (1979) 1277, doi:10.1103/PhysRevD.19.1277.
  12. L. Susskind, “Dynamics of spontaneous symmetry breaking in the Weinberg–Salam theory”, Phys. Rev. D 20 (1979) 2619, doi:10.1103/PhysRevD.20.2619.
  13. D. B. Kaplan and H. Georgi, “SU(2) x U(1) breaking by vacuum misalignment”, Phys. Lett. B 136 (1984) 183, doi:10.1016/0370-2693(84)91177-8.
  14. R. Contino, T. Kramer, M. Son, and R. Sundrum, “Warped/composite phenomenology simplified”, JHEP 05 (2007) 074, doi:10.1088/1126-6708/2007/05/074, arXiv:hep-ph/0612180.
  15. G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, “The strongly-interacting light Higgs”, JHEP 06 (2007) 045, doi:10.1088/1126-6708/2007/06/045, arXiv:hep-ph/0703164.
  16. N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B 429 (1998) 263, doi:10.1016/S0370-2693(98)00466-3, arXiv:hep-ph/9803315.
  17. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “New dimensions at a millimeter to a Fermi and superstrings at a TeV”, Phys. Lett. B 436 (1998) 257, doi:10.1016/S0370-2693(98)00860-0, arXiv:hep-ph/9804398.
  18. L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83 (1999) 3370, doi:10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.
  19. A. L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang, “Searching for the Kaluza-Klein graviton in bulk RS models”, JHEP 09 (2007) 013, doi:10.1088/1126-6708/2007/09/013, arXiv:hep-ph/0701150.
  20. O. Antipin, D. Atwood, and A. Soni, “Search for RS gravitons via decays”, Phys. Lett. B 666 (2008) 155, doi:10.1016/j.physletb.2008.07.009, arXiv:0711.3175.
  21. K. Agashe, H. Davoudiasl, G. Perez, and A. Soni, “Warped gravitons at the LHC and beyond”, Phys. Rev. D 76 (2007) 036006, doi:10.1103/PhysRevD.76.036006, arXiv:hep-ph/0701186.
  22. ATLAS Collaboration, “Search for new phenomena in the WW to final state in pp collisions at TeV with the ATLAS detector”, Phys. Lett. B 718 (2013) 860, doi:10.1016/j.physletb.2012.11.040, arXiv:1208.2880.
  23. ATLAS Collaboration, “Search for resonant diboson production in the decay channels with the ATLAS detector at 7 TeV”, Phys. Rev. D 87 (2013) 112006, doi:10.1103/PhysRevD.87.112006, arXiv:1305.0125.
  24. ATLAS Collaboration, “Search for resonant diboson production in the final state in pp collisions at TeV with the ATLAS detector”, Eur. Phys. J. C 75 (2015) 69, doi:10.1140/epjc/s10052-015-3261-8, arXiv:1409.6190.
  25. CMS Collaboration, “Search for a narrow spin-2 resonance decaying to a pair of Z vector bosons in the semileptonic final state”, Phys. Lett. B 718 (2013) 1208, doi:10.1016/j.physletb.2012.11.063, arXiv:1209.3807.
  26. CMS Collaboration, “Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at 8 TeV”, JHEP 08 (2014) 174, doi:10.1007/JHEP08(2014)174, arXiv:1405.3447.
  27. ATLAS Collaboration, “Searches for heavy diboson resonances in pp collisions at TeV with the ATLAS detector”, JHEP 09 (2016) 173, doi:10.1007/JHEP09(2016)173, arXiv:1606.04833.
  28. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  29. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
  30. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  31. M. Cacciari, G. P. Salam, and G. Soyez, “The anti- jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  32. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  33. CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at = 8 TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
  34. CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at \TeV”, JINST 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.
  35. CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
  36. CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
  37. Particle Data Group, C. Patrignani et al., “Review of Particle Physics”, Chin. Phys. C 40 (2016) 100001, doi:10.1088/1674-1137/40/10/100001.
  38. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.
  39. A. Oliveira, “Gravity particles from warped extra dimensions, predictions for LHC”, (2014). arXiv:1404.0102.
  40. Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, Phys. Rev. D 81 (2010) 075022, doi:10.1103/PhysRevD.81.075022, arXiv:1001.3396.
  41. S. Bolognesi et al., “On the spin and parity of a single-produced resonance at the LHC”, Phys. Rev. D 86 (2012) 095031, doi:10.1103/PhysRevD.86.095031, arXiv:1208.4018.
  42. M. Chen et al., “The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC”, Phys. Rev. D 89 (2014) 034002, doi:10.1103/PhysRevD.89.034002, arXiv:1310.1397.
  43. CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, Phys. Rev. D 89 (2014) 092007, doi:10.1103/PhysRevD.89.092007, arXiv:1312.5353.
  44. CMS Collaboration, “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV”, Phys. Rev. D 92 (2015) 012004, doi:10.1103/PhysRevD.92.012004, arXiv:1411.3441.
  45. T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
  46. NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.
  47. GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
  48. J. Allison et al., “Geant4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, doi:10.1109/TNS.2006.869826.
  49. Geant4 Collaboration, “Recent developments in Geant4”, Annals Nucl. Energy 82 (2015) 19, doi:10.1016/j.anucene.2014.08.021.
  50. R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, doi:10.1007/JHEP12(2012)061, arXiv:1209.6215.
  51. Y. Li and F. Petriello, “Combining QCD and electroweak corrections to dilepton production in FEWZ”, Phys. Rev. D 86 (2012) 094034, doi:10.1103/PhysRevD.86.094034, arXiv:1208.5967.
  52. P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
  53. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
  54. M. Grazzini, S. Kallweit, and D. Rathlev, “ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD”, Phys. Lett. B 750 (2015) 407, doi:10.1016/j.physletb.2015.09.055, arXiv:1507.06257.
  55. A. Bierweiler, T. Kasprzik, and J. H. Kühn, “Vector-boson pair production at the LHC to accuracy”, JHEP 12 (2013) 071, doi:10.1007/JHEP12(2013)071, arXiv:1305.5402.
  56. S. Gieseke, T. Kasprzik, and J. H. Kühn, “Vector-boson pair production and electroweak corrections in HERWIG++”, Eur. Phys. J. C 74 (2014) 2988, doi:10.1140/epjc/s10052-014-2988-y, arXiv:1401.3964.
  57. J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
  58. CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, Technical Report CMS-PAS-LUM-17-001, 2017.
  59. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: Eur. Phys. J. C 73 (2013) 2501].
  60. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  61. A. L. Read, “Presentation of search results: the technique”, in Durham IPPP Workshop: Advanced Statistical Techniques in Particle Physics, p. 2693. Durham, UK, March, 2002. [J. Phys. G 28 (2002) 2693]. doi:10.1088/0954-3899/28/10/313.
  62. ATLAS, CMS, and the LHC Higgs Combination Group Collaboration, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description