Search for a pseudoscalar boson decaying into a Z boson and the 125\,\text{GeV} Higgs boson in \ell^{+}\ell^{-}\mathrm{b}\overline{\mathrm{b}} final states
Abstract

Results are reported on a search for decays of a pseudoscalar A boson into a Z boson and a light scalar h boson, where the Z boson decays into a pair of oppositely-charged electrons or muons, and the h boson decays into . The search is based on data from proton-proton collisions at a center-of-mass energy collected with the CMS detector, corresponding to an integrated luminosity of 19.7. The h boson is assumed to be the standard model-like Higgs boson with a mass of 125. With no evidence for signal, upper limits are obtained on the product of the production cross section and the branching fraction of the A boson in the Zh channel. Results are also interpreted in the context of two Higgs doublet models.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)


CERN-PH-EP/2013-037 2019/\two@digits7/\two@digits15

CMS-HIG-14-011                                         


Search for a pseudoscalar boson decaying into a Z boson and the 125 Higgs boson in final states


The CMS Collaboration111See Appendix A for the list of collaboration members



Abstract

Please replace the default abstract using the abstract command.


Published in Physics Letters B as doi:10.1016/j.physletb.2015.07.010.

© 2019 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

1 Introduction

The discovery of a scalar boson at the CERN LHC [1, 2, 3] with properties in agreement with those predicted by the standard model (SM) raises the question of whether the Higgs sector consists of only one physical state, as expected in the SM, or whether additional bosons are also involved.

An extension of the SM Higgs sector is provided in two Higgs doublet models (2HDM) [4], which introduce a second scalar doublet in addition to the one from the SM. Different formulations of 2HDM predict different couplings of the two doublets to quarks and to leptons. In Type-I 2HDM, all fermions couple to only one Higgs doublet, while in Type-II, up- and down-type quarks couple to different doublets. One example of a Type-II 2HDM is the minimal supersymmetric standard model [5], despite that supersymmetry is not explicitly required in 2HDM. The second Higgs doublet entails the presence of five physical states: two neutral, CP-even states, representing a light and a heavy boson; a neutral, CP-odd boson; and two charged scalar bosons. The lightest scalar is assumed to be the boson observed at the LHC at a mass of 125 [6, 7, 8, 9]. If the masses of the heavier bosons are at or below the scale, they can be accessible at the LHC. Searches for this extended sector can be performed either by measuring the values of the couplings of the discovered boson to other SM particles [10, 11, 12], or via direct searches in final states disfavored by the SM [13]. A way to probe this kind of new physics is therefore to search for bosons that decay into final states that contain an SM-like Higgs boson.

This paper describes a search for a heavy pseudoscalar boson that decays into a and an boson, both on-shell, with the boson decaying into a pair of leptons ( being or ), and the boson into . In most 2HDM formulations [4], the boson is produced predominantly through gluon-gluon fusion and decays to on-shell and bosons, provided that the mass of the boson satisfies . This channel is expected to be viable for smaller than twice the top quark mass (), where the decay is generally dominant, but, depending on model parameters, it can also be sensitive at larger values of . The decay has a large branching fraction for most of the parameter space in 2HDM [11]. A similar analysis has been recently published by ATLAS [14].

The analysis strategy is to reconstruct the , , and boson candidates from the visible decay products in the event. The signal would manifest itself as a peak in the four-body invariant mass () spectrum over an expected SM continuum. Irreducible backgrounds correspond to boson production with two accompanying b quark jets, and events in the dileptonic final state. These backgrounds are evaluated and normalized directly using appropriate control regions in data. The boson produced in association with a boson provides a contribution to the background, but it differs from signal because the mass does not contain a resonant peak. Signal sensitivity is improved by exploiting the known value of the boson mass, using it to rescale the jet momenta to match the value expected for the dijet invariant mass. In addition, optimal signal efficiency and background rejection is achieved using a multivariate discriminator. Results are extracted through a two-dimensional (2D) fit to and the discriminator output; upper limits are presented on the product of the total cross section and the , , and branching fractions for a pseudoscalar boson, and interpreted within the 2HDM.

2 CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system and kinematic variables, can be found in Ref. [15]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. The field volume contains a silicon pixel and strip tracker, a homogeneous electromagnetic calorimeter (ECAL), and a sampling hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

The silicon tracker measures charged particles within the pseudorapidity range of . For non-isolated particles with transverse momenta of and , the track resolutions are typically 1.5% in , and between 25–90 and 45–150, respectively, in transverse and longitudinal impact parameters relative to the production vertex [16]. The ECAL consists of lead tungstate crystals that provide a coverage up to . The mass resolution for decays when both electrons are in the ECAL barrel is 1.6%, and is 2.6% when both electrons are in the endcaps. The HCAL has alternating layers of brass as absorber and plastic scintillators, and covers the range of , which is extended to through forward calorimetry. Muons are measured in the range of , with detection planes made using three technologies: drift tubes, cathode-strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker provides a resolution of 1.3–2.0% for muons with in the barrel and better than 6% in the endcaps.

3 Data and simulation

Data used for this analysis were collected using double-muon and double-electron triggers, with thresholds set to 17 and 8 for the highest and next highest lepton, respectively, and an isolation requirement used in the electron trigger to maintain an acceptable rate. The analyzed events correspond to an integrated luminosity of of pp collisions at  [17].

Signal samples and SM background processes +jets, +jets, and +jets or a vector boson () are simulated using the MadGraph 5.1 [18] Monte Carlo (MC) generator; multijets and dibosons (, with , being or ) are generated using LO pythia 6.4 [19] and the CTEQ6L [20] parton distribution functions (PDF). Single top quark production, and SM Higgs boson production in association with an electroweak vector boson () are generated using the next-to-leading-order (NLO) powheg 1.0 [21, 22, 23] MC generator and the MSTW2008NLO PDF [24]. Parton showering and hadronization are performed with pythia using the Z2* tune [25]. The generated MC events, including additional pp interactions (pileup) occurring in the bunch crossing containing the high- scatter, are processed through a full detector simulation based on Geant4 [26] and reconstructed with the same algorithms as used for data.

The pseudoscalar boson is assumed to be produced via the gluon-gluon fusion process and to have a narrow width. The validity of the narrow-width approximation is discussed in Section 7. The branching fraction is set to 100%, and similarly only the boson decays into electrons or muons, and the boson decays into a pair of quarks, are considered. Other decay modes have negligible efficiency for passing the selections. The mass of the light Higgs boson is set to , while the search for the boson is performed in the mass range from 225 to 600, above which the efficiency to reconstruct two separate jets from decay becomes too small because of its increased momentum.

4 Event reconstruction

A global reconstruction of the event is achieved using a particle-flow (PF) technique, which reconstructs and identifies individual particles emerging from each collision using information from all CMS subdetectors [27, 28].

Electron candidates are reconstructed for by matching energy depositions in the ECAL with reconstructed tracks [29]. The identification relies on a multivariate technique that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the compatibility of the measured position, direction and momentum of the reconstructed track in the inner tracker, and the energy deposition reconstructed in the ECAL cluster. Additional requirements are imposed to remove electrons produced by photon conversions in the detector material.

Muons are reconstructed within , combining information from both the silicon tracker and the outer muon spectrometer [30], requiring small energy depositions in the calorimeters [31]. Muon candidates have to fulfill restrictive selection criteria based on the quality and the impact parameter of the track, as well as on the number of hits observed in the tracker and muon systems.

An isolation variable is defined for each lepton through the scalar sum over the of all PF candidates, excluding the lepton, within a cone of around the lepton direction, where is the azimuthal angle in radians, subtracting the pileup contribution [32], and then dividing by the lepton . The lepton is rejected if the isolation exceeds 0.15 for electrons and 0.12 for muons.

Jets are formed from all particles, charged and neutral, reconstructed through the PF algorithm, and clustered with the anti- algorithm [33, 34] with a distance parameter of 0.5. Jet energy corrections are determined from dijet and +jet events, and applied to both data and simulation [35]. The imbalance in transverse momentum is calculated as the negative of the vectorial sum of transverse momenta of all the PF candidates, and its magnitude is denoted as  [36].

The combined secondary vertex (CSV) b tagging algorithm [37] is used to identify jets that originate from b quarks. This algorithm combines information from track impact parameters relative to the primary and secondary (displaced) vertices into a likelihood discriminant. Two standard working points are set on the discriminant, corresponding to restrictive (tight) and less-restrictive (loose) thresholds that provide on average 50% and 80% b tagging efficiencies, with respective misidentification probabilities of about 0.1% and 10% for light-flavor jets, and about 5% and 25% for c jets. The CSV distribution is corrected in simulation to take into account a difference at the percent level in algorithm performance for data and simulation.

5 Event selection

Events are required to have at least two electrons or two muons within the geometrical acceptance regions, and to satisfy the reconstruction, identification, and isolation requirements. The threshold is set to 20 for the lepton with highest , and to 10 for the lepton with next-highest . The boson candidate is formed from the two highest-, opposite-charge, same-flavor leptons, and must have an invariant mass larger than 50. In addition, at least two jets are required with , within , and with angular separation relative to each lepton of . The boson candidate is formed from the two jets that have the highest values of the b tagging discriminant. Additional jets in the event are ignored.

Signal events are expected to have at least one jet b-tagged with the tight and one with the loose CSV working points; after b tagging application, the contribution from pileup jets becomes negligible. The invariant masses of the two leptons and of the two jets are required to be compatible with those of the boson () and boson (), and the value of the in the event has to be compatible with zero. After these selections, the signal efficiencies range from for to for .

Dedicated control regions are defined to check both the normalizations and distributions of the most important backgrounds by inverting the selections used to enhance signal. Drell–Yan backgrounds (from production) are considered separately as a function of the number of b jets, distinguishing +jets (no b jets), (1 b jet) and (2 b jets). The corresponding control regions are selected by requiring , , vetoing of dijet masses close to the Higgs boson mass of , and applying different b-tagging selections. In the +jets control region, no cutoffs are applied on b tagging discriminators. The control region contains events with one b jet fulfilling the tight CSV working point, and no other jets passing the loose threshold. Events that enter the control region should have at least two b-tagged jets, with one passing the tight and the other the loose working point. The control region is defined by inverting the and selections, dropping the requirement of the dijet mass, and requiring at least one tight and one loose b-tagged jet.

The scale factors that are used to correct the normalization of Drell–Yan and backgrounds, reported in Table 2, are obtained from a simultaneous likelihood fit to data and simulation in the four control regions and are applied in the following steps of the analysis. Multijet contamination in control and signal regions is evaluated with data by inverting lepton isolation criteria, and its contribution is found to be negligible. The yield of the h, , and single top production through the channel are calculated at NLO [38, 39], while the other single top channels and dibosons are normalized to the measured cross sections [40, 41, 42]. A mismodeling in simulation, observed in the control regions relative to data, is corrected by reweighting with a linear function the event centrality distribution (defined as the ratio of the sums in scalar and the energy of the two leptons and two jets in the rest frame of the four objects) in all Monte Carlo events, improving the overall agreement between simulation and data.

Background
Scale factor
Table 2: Scale factors for the four main backgrounds obtained from a fit to the control regions. Reported uncertainties are statistical in nature.

An important feature of the signal is that the two b jets originate from the decay of the boson, whose mass is known with better precision than that provided by the invariant mass resolution [43]. The measured jet , , and values are therefore varied according to their resolution, in a kinematic fit based on Lagrange multipliers, to constrain the dijet invariant mass to . The fit is used in subsequent steps of the analysis as a discriminant in place of . The kinematic fit improves the relative four-body invariant mass resolution from 6.3% to 1.2% and 4.0% to 1.9%, respectively, for the smallest and largest values of , centering the peaks around their nominal values, as shown in Fig. 1. The effect of the kinematic fit is larger at low , where the constraint on the Higgs invariant mass has the largest contribution. Although both the background and signal distributions are modified by the kinematic fit, the signal significance in a mass window close to the investigated boson mass increases by a factor of two at the lowest mass and by 34% at the highest mass. The resulting jet three-momenta are used to redefine all the kinematic variables in the event.

Figure 1: Simulated distributions for before (dotted lines) and after the kinematic fits (solid lines). Histograms are normalized to unit area.

Discrimination of signal from backgrounds is achieved through a multivariate discriminant. Simulated mass points are divided into three mass regions: low (, 250, and 275), intermediate (, 325, and 350), and high mass (, 500, and 600). Three boosted decision trees (BDT) [44] are trained separately, one for each region. The inputs of each BDT consist of 16 discriminating variables, selected from a list of more than 40 variables: the of the and boson candidates, the of the kinematic fit, the significance of  [36], the dilepton invariant mass, the separation and the “twist” angle (defined as ) between the two b jets [45], their CSV discriminator values, the flight directions of the boson and of the beam in the rest frame of the boson (), the decay angle of the boson relative to its flight direction in the rest frame of the boson (), which is sensitive to the transverse polarization of the boson along its flight direction, the angle of the pull vector [46, 47] of the highest- jet, which exploits the color connection between the two b quarks originating from the boson, the scalar sum of and the of jets and leptons in the event (), the number of jets with , the event centrality, and aplanarity [45]. The distribution in BDT outputs for data, for simulated signal (S), and for the expected SM background (B) events are shown in Fig. 2, weighting each entry in the distribution by the expected S/(SB) ratio of the BDT bin in the signal-sensitive region with BDT .

Figure 2: BDT outputs and invariant mass distributions in the low, intermediate, and high mass regions. The plots are for , weighted by in each BDT bin. Histograms for signal are normalized to the expected exclusion limit at 95% confidence level. Statistical and systematic uncertainties in simulated samples are shown as well. Either the ratio (left) or the difference (right) between data and SM background is given at the bottom of each panel.

6 Systematic uncertainties

The sensitivity of the analysis is currently limited by the available data, and not by systematic uncertainties.

The uncertainties in the normalizations of the four main backgrounds (+jets, , , and ) originate both from the fits in the control regions and from the extrapolation to the signal region. The former are reported in Table 2, and the latter is evaluated through a simultaneous likelihood fit to data and to simulated yields in several statistically independent regions, obtained by altering the selections used to define the four control regions. A 13% normalization uncertainty due to this extrapolation is assigned to +jets, 12% to , 2.1% to , and 6.2% to events. Normalization uncertainties for other SM backgrounds correspond to the ones on their measured or theoretical cross sections.

The uncertainties in lepton reconstruction, identification, isolation, and trigger efficiencies are evaluated through specific studies of events with masses in the region of the peak. Uncertainties in background or signal normalization and distribution due to uncertainties in jet energy scale and resolution [35] and b tagging scale factors [37] are estimated by changing the corresponding values by standard deviation (). Additional systematic uncertainties affecting the normalization of backgrounds and signal from the choice of PDF [48, 49], contributions from pileup, fluctuations because of the presence of unclustered energy in the event, and integrated luminosity [17] are also considered in the analysis and are reported in Table 4 (Normalization).

Results are extracted from an analysis based on a binned likelihood fit to the two-dimensional (2D) distribution of versus BDT. Dependence on jet energy scale and resolution, b tagging, as well as factorization and renormalization scales are propagated to the 2D-templates, taking into account the correlations between the two variables. The impact of reweighting the Monte Carlo distributions is considered as an additional source of background in modeling the uncertainty. Finally, the uncertainty from the limited number of simulated events is treated as in Ref. [50]. The sources of systematic uncertainty affecting the forms of the distributions are summarized in the first column of Table 4 (Shape). The second and third columns indicate the respective ranges in the relative impact in percent, obtained by the changes implemented in the background and signal contributions.

The systematic uncertainty with the largest impact on the expected limit is from the reweighting of the background (accounting for a 6% difference on the expected limit, depending on ), which is followed by the limitations in the number of simulated events (4%), and the factorization and renormalization scales (2%). The effect of the other sources is small (1%).

Sources Backgrounds Signal
Drell–Yan, Others
Normalization
Control region fitting 2.4%
Extrapolation 2–13%
Lepton and trigger 2.5% 2.5%
 efficiency
Jet energy scale 5.7% 3.8–0.2%
Jet energy resolution 3.2% 0.8–0.5%
b tagging 4.9% 3.6–3.2%
Unclustered energy 1.9% 1.4–1.0%
Pileup 0.9% 1.2%
PDF 4.3% 4.0–7.9%
Cross section 9.2–
Integrated luminosity 2.6% 2.6%
Shape
Jet energy scale 4% 8%
Jet energy resolution 2% 4%
b tagging 4% 8%
Factorization and 6% 6–10%
 renormalization scales
Monte Carlo reweighting 15%
Monte Carlo statistics 1–4%
Table 4: Summary of systematic uncertainties. Normalization: sources of systematic uncertainty and their effect in percent on the normalization of signal and background distributions. Shape: sources of systematic uncertainty and the range of their effect in percent on relative changes made in the form of the background and signal distributions.

7 Results and their interpretation

Results are obtained from the combined signal and background fit to the binned two-dimensional distribution of the four-body invariant mass and the BDT output in the signal-sensitive (BDT 0.6) region. With no evidence of significant deviation from background expectations, the asymptotic modified frequentist method is used to determine the limit at the 95% confidence level (CL) on the contribution from signal, treating systematic uncertainties as nuisance parameters that are integrated over in the fit [51, 52, 53, 54].

The observed limit, as well as the expected limit and its relative and bands of uncertainty, are reported as a function of the boson mass in Fig. 3 for , i.e. the product of the cross section and the , , and branching fractions, with or . The limits are obtained by considering the boson produced via the gluon-gluon fusion process in the narrow-width approximation. Interpolated mass points are obtained as in Ref. [55], and numerical values are reported in Table 6. A signal upper limit at 95% CL is set on , excluding from 10 to 30 for near the kinematic threshold, 8 for , and up to 3 at the high end (600) of the considered mass range. Comparable limits have been recently obtained for the same channel by the ATLAS Collaboration [14]. The most significant excess at has a local significance of , which becomes a global significance taking into account the look-elsewhere effect [56].

For , the width of the boson depends strongly on the model parameters. Different limits are provided by taking into account the natural width of the boson () in the reconstructed , leaving the BDT unchanged. Figure 4 shows the exclusion limit above for an average width of 30, and the dependence of the observed limit on for . The local and global significance at become, respectively, and , assuming .

As an independent cross-check of the 2D fit, the signal is extracted by applying two complementary strategies, based on one-dimensional fits. The first one consists of fitting the distribution, after selecting events in a signal-enriched region by applying a selection. The second relies on fits to the BDT distributions, after selecting events within the resolution of the signal peak. The two methods give upper limits compatible with those from the 2D fit, but 10 to 20% less stringent.

The results are interpreted in terms of Type-I and Type-II 2HDM formulations [4]. The and branching fractions and the signal cross sections are computed at next-to-next-to-leading-order (NNLO) with SuShi 1.2.0 [57] and 2hdmc 1.6.4 [58], respectively, using the MSTW2008LO, NLO, and NNLO sets of PDF. The branching fraction, with or , is taken from the measured value [59]. Both gluon-gluon fusion and associated production with b quarks have been considered. The latter is rescaled to the fusion process, taking account of the difference in acceptance for signal, as well as the efficiency for selecting dijet pairs in the presence of combinatorial contributions from additional b quarks in the event. The parameters used for the models are: , , ,  [60], while –600, , and , using the convention , where and are, respectively, the ratio of the vacuum expectation values, and the mixing angle of the two Higgs doublets [4].

The observed limit, together with the expected limit and its relative and uncertainty bands, are shown in Fig. 5, interpreted in Type-I and Type-II 2HDM for = 300. A sizeable fraction of the 2HDM phase space is excluded at a 95% CL with respect to the previous CMS searches [13].

225 250 275 300 325 350 400 500 600
Observed [fb] 17.9 16.8 14.8 19.5 10.1 8.84 3.29 3.35 2.61
Expected [fb] 17.9 18.1 16.4 13.6 10.0 7.84 5.27 2.79 1.93
Table 6: Observed and expected 95% CL upper limits on as a function of in the narrow-width approximation, including statistical and systematic uncertainties.
Figure 3: Observed and expected 95% CL upper limit on as a function of in the narrow-width approximation, including all statistical and systematic uncertainties. The green and yellow bands are the and uncertainty bands on the expected limit.
Figure 4: Observed and expected 95% CL upper limit on for as a function of (left), and for as a function of the width of the boson (right).
Figure 5: Observed and expected (together with uncertainty bands) exclusion limit for Type-I (left) and Type-II (right) models, as a function of and . Contours are derived from the projection on the 2HDM parameter space for the = 300 signal hypothesis; the observed limit is close to above the expected limit, as shown in Fig. 3.

8 Summary

A search is presented for new physics in the extended Higgs sector, in signatures expected from decays of a pseudoscalar boson into a boson and an SM-like boson, with the boson decaying into ( being either  or ) and the boson into . Different techniques are employed to increase the sensitivity to signal, exploiting the presence of the three resonances , , and to discriminate against standard model backgrounds. Upper limits at a 95% CL are set on the product of a narrow pseudoscalar boson cross section and branching fraction , which exclude 30 to 3 at the low and high ends of the 250–600 mass range. Results are also presented as a function of the width of the boson. Interpretations are given in the context of Type-I and Type-II 2HDM formulations, thereby reducing the parameter space for extensions of the standard model.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\@textsuperscript1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\@textsuperscript1, V. Knünz, A. König, M. Krammer\@textsuperscript1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady\@textsuperscript2, B. Rahbaran, H. Rohringer, J. Schieck\@textsuperscript1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\@textsuperscript1 National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs Université Libre de Bruxelles, Bruxelles, Belgium
P. Barria, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, D. Dobur, G. Fasanella, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè, A. Randle-conde, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni Ghent University, Ghent, Belgium
K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\@textsuperscript3, O. Bondu, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\@textsuperscript4, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov\@textsuperscript5, L. Quertenmont, M. Selvaggi, M. Vidal Marono Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\@textsuperscript6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\@textsuperscript6, A. Vilela Pereira Universidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, S. Dogra, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, C.S. Moon\@textsuperscript7, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev\@textsuperscript2, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina\@textsuperscript8, F. Romeo, S.M. Shaheen, J. Tao, C. Wang, Z. Wang, H. Zhang State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, F. Zhang\@textsuperscript9, W. Zou Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, L. Sudic University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.\@textsuperscript10 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Ali\@textsuperscript11\@textsuperscript12, R. Aly\@textsuperscript13, S. Aly\@textsuperscript13, Y. Assran\@textsuperscript14, A. Ellithi Kamel\@textsuperscript15, A. Lotfy\@textsuperscript16, M.A. Mahmoud\@textsuperscript16, R. Masod\@textsuperscript11, A. Radi\@textsuperscript12\@textsuperscript11 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, J. Pekkanen, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms, O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram\@textsuperscript17, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\@textsuperscript17, J.-C. Fontaine\@textsuperscript17, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin\@textsuperscript2, K. Skovpen, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, C. Bernet\@textsuperscript8, G. Boudoul\@textsuperscript2, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\@textsuperscript10 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer, V. Zhukov\@textsuperscript5 RWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann\@textsuperscript2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel\@textsuperscript18, H. Jung, A. Kalogeropoulos, O. Karacheban\@textsuperscript18, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann\@textsuperscript18, R. Mankel, I. Marfin\@textsuperscript18, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, K.D. Trippkewitz, C. Wissing University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, D. Nowatschin, J. Ott, F. Pantaleo\@textsuperscript2, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann\@textsuperscript2, U. Husemann, F. Kassel\@textsuperscript2, I. Katkov\@textsuperscript5, A. Kornmayer\@textsuperscript2, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, C. Wöhrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, A. Psallidas, I. Topsis-Giotis University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath\@textsuperscript19, F. Sikler, V. Veszpremi, G. Vesztergombi\@textsuperscript20, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\@textsuperscript21, J. Molnar, J. Palinkas, Z. Szillasi University of Debrecen, Debrecen, Hungary
M. Bartók\@textsuperscript22, A. Makovec, P. Raics, Z.L. Trocsanyi National Institute of Science Education and Research, Bhubaneswar, India
P. Mal, K. Mandal, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, N. Nishu, J.B. Singh, G. Walia University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, Sh. Jain, R. Khurana, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\@textsuperscript2, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik\@textsuperscript23, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu\@textsuperscript24, G. Kole, S. Kumar, B. Mahakud, M. Maity\@textsuperscript23, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar\@textsuperscript23, K. Sudhakar, N. Sur, B. Sutar, N. Wickramage\@textsuperscript25 Indian Institute of Science Education and Research (IISER),  Pune, India
S. Sharma Institute for Research in Fundamental Sciences (IPM),  Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami\@textsuperscript26, A. Fahim\@textsuperscript27, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh\@textsuperscript28, M. Zeinali University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald INFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, S.S. Chhibra, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna\@textsuperscript2, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris\@textsuperscript2, R. Venditti, P. Verwilligen INFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini INFN Sezione di Catania , Università di Catania , CSFNSM ,  Catania, Italy
G. Cappello, M. Chiorboli, S. Costa, F. Giordano\@textsuperscript2, R. Potenza, A. Tricomi, C. Tuve INFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano, L. Viliani INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
M.E. Dinardo, S. Fiorendi, S. Gennai\@textsuperscript2, R. Gerosa, A. Ghezzi, P. Govoni, M.T. Lucchini\@textsuperscript2, S. Malvezzi, R.A. Manzoni, B. Marzocchi\@textsuperscript2, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\@textsuperscript2, M. Esposito, F. Fabozzi, A.O.M. Iorio, G. Lanza, L. Lista, S. Meola\@textsuperscript2, M. Merola, P. Paolucci\@textsuperscript2, C. Sciacca, F. Thyssen INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi\@textsuperscript2, N. Bacchetta, D. Bisello, A. Branca, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso, T. Dorigo, F. Gasparini, U. Gasparini, A. Gozzelino, K. Kanishchev, S. Lacaprara, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, M. Zanetti, P. Zotto, A. Zucchetta, G. Zumerle INFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, M. Gabusi, A. Magnani, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo INFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, D. Ciangottini\@textsuperscript2, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia\@textsuperscript2 INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov\@textsuperscript29, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, M.A. Ciocci\@textsuperscript29, R. Dell’Orso, S. Donato\@textsuperscript2, G. Fedi, L. Foà, A. Giassi, M.T. Grippo\@textsuperscript29, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\@textsuperscript30, A.T. Serban, P. Spagnolo, P. Squillacioti\@textsuperscript29, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini INFN Sezione di Roma , Università di Roma ,  Roma, Italy
L. Barone, F. Cavallari, G. D’imperio, D. Del Re, M. Diemoz, S. Gelli, C. Jorda, E. Longo, F. Margaroli, P. Meridiani, F. Micheli, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, P. Traczyk\@textsuperscript2 INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, R. Bellan, C. Biino, N. Cartiglia, S. Casasso, M. Costa, R. Covarelli, A. Degano, N. Demaria, L. Finco\@textsuperscript2, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staiano, U. Tamponi INFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, V. Candelise\@textsuperscript2, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son Chonbuk National University, Jeonju, Korea
H. Kim, T.J. Kim, M.S. Ryu Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song Korea University, Seoul, Korea
S. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park, Y. Roh Seoul National University, Seoul, Korea
H.D. Yoo University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania
A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali\@textsuperscript31, F. Mohamad Idris, W.A.T. Wan Abdullah Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz\@textsuperscript32, A. Hernandez-Almada, R. Lopez-Fernandez, G. Ramirez Sanchez, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen Universidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda University of Auckland, Auckland, New Zealand
D. Krofcheck University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev\@textsuperscript33, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, T. Toriashvili\@textsuperscript34, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
V. Golovtsov, Y. Ivanov, V. Kim\@textsuperscript35, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\@textsuperscript36, I. Dremin\@textsuperscript36, M. Kirakosyan, A. Leonidov\@textsuperscript36, G. Mesyats, S.V. Rusakov, A. Vinogradov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin\@textsuperscript37, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\@textsuperscript38, M. Ekmedzic, J. Milosevic, V. Rekovic Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia Instituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi\@textsuperscript39, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi\@textsuperscript40, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Silva, M. Simon, P. Sphicas\@textsuperscript41, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres\@textsuperscript20, N. Wardle, H.K. Wöhri, A. Zagozdzinska\@textsuperscript42, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, M. Rossini, A. Starodumov\@textsuperscript43, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny, H.A. Weber Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\@textsuperscript44, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, D. Salerno, S. Taroni, Y. Yang National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, T.H. Doan, C. Ferro, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu National Taiwan University (NTU),  Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.f. Tsai, Y.M. Tzeng, R. Wilken Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey
A. Adiguzel, S. Cerci\@textsuperscript45, C. Dozen, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal\@textsuperscript46, A. Kayis Topaksu, G. Onengut\@textsuperscript47, K. Ozdemir\@textsuperscript48, S. Ozturk\@textsuperscript49, B. Tali\@textsuperscript45, H. Topakli\@textsuperscript49, M. Vergili, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, B. Isildak\@textsuperscript50, G. Karapinar\@textsuperscript51, U.E. Surat, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey
E.A. Albayrak\@textsuperscript52, E. Gülmez, M. Kaya\@textsuperscript53, O. Kaya\@textsuperscript54, T. Yetkin\@textsuperscript55 Istanbul Technical University, Istanbul, Turkey
K. Cankocak, Y.O. Günaydin\@textsuperscript56, F.I. VardarlıInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold\@textsuperscript57, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\@textsuperscript58, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas\@textsuperscript57, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko\@textsuperscript43, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, P. Sharp, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, S.C. Zenz Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA
A. Borzou, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika, T. Scarborough The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, H. Wei, S. Wimpenny University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, D. Kovalskyi, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech\@textsuperscript59, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, W. To, C. West, J. Yoo California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, Z. Hu, S. Jindariani, M. Johnson, U. Joshi, A.W. Jung, B. Klima, B. Kreis, S. Kwan, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, A. Whitbeck, F. Yang, H. Yin University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, P. Ma, K. Matchev, H. Mei, P. Milenovic\@textsuperscript60, G. Mitselmakher, L. Muniz, D. Rank, L. Shchutska, M. Snowball, D. Sperka, S.J. Wang, J. Yelton Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, USA
A. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg Florida Institute of Technology, Melbourne, USA
V. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Mareskas-palcek, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria The University of Iowa, Iowa City, USA
B. Bilki\@textsuperscript61, W. Clarida, K. Dilsiz, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\@textsuperscript62, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok\@textsuperscript52, A. Penzo, S. Sen, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, K. Nash, M. Osherson, M. Swartz, M. Xiao, Y. Xin The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, R. Stringer, Q. Wang, J.S. Wood Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, K. Pedro, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Mcginn, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, USA
B. Dahmes, A. Finkel, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, S. Nourbakhsh, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco, S. Won University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\@textsuperscript33, T. Pearson, M. Planer, R. Ruchti, G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti, D. Vishnevskiy The Rockefeller University, New York, USA
L. Demortier Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, USA
M. Foerster, K. Rose, S. Spanier, A. York Texas A&M University, College Station, USA
O. Bouhali\@textsuperscript63, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon\@textsuperscript64, V. Krutelyov, R. Montalvo, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, I. Suarez, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood, F. Xia Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis, B. Gomber, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Ruggles, T. Sarangi, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods †: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3:  Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4:  Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5:  Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6:  Also at Universidade Estadual de Campinas, Campinas, Brazil
7:  Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
8:  Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Ain Shams University, Cairo, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Now at Helwan University, Cairo, Egypt
14: Also at Suez University, Suez, Egypt
15: Also at Cairo University, Cairo, Egypt
16: Now at Fayoum University, El-Fayoum, Egypt
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Brandenburg University of Technology, Cottbus, Germany
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at University of Debrecen, Debrecen, Hungary
22: Also at Wigner Research Centre for Physics, Budapest, Hungary
23: Also at University of Visva-Bharati, Santiniketan, India
24: Now at King Abdulaziz University, Jeddah, Saudi Arabia
25: Also at University of Ruhuna, Matara, Sri Lanka
26: Also at Isfahan University of Technology, Isfahan, Iran
27: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at CONSEJO NATIONAL DE CIENCIA Y TECNOLOGIA, MEXICO, Mexico
33: Also at Institute for Nuclear Research, Moscow, Russia
34: Also at Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
35: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
36: Also at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at California Institute of Technology, Pasadena, USA
38: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
39: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
40: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
41: Also at University of Athens, Athens, Greece
42: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
43: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
44: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
45: Also at Adiyaman University, Adiyaman, Turkey
46: Also at Mersin University, Mersin, Turkey
47: Also at Cag University, Mersin, Turkey
48: Also at Piri Reis University, Istanbul, Turkey
49: Also at Gaziosmanpasa University, Tokat, Turkey
50: Also at Ozyegin University, Istanbul, Turkey
51: Also at Izmir Institute of Technology, Izmir, Turkey
52: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
53: Also at Marmara University, Istanbul, Turkey
54: Also at Kafkas University, Kars, Turkey
55: Also at Yildiz Technical University, Istanbul, Turkey
56: Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
57: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
58: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
59: Also at Utah Valley University, Orem, USA
60: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
61: Also at Argonne National Laboratory, Argonne, USA
62: Also at Erzincan University, Erzincan, Turkey
63: Also at Texas A&M University at Qatar, Doha, Qatar
64: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
207508
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description