Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features

Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features

Minh-Nghia Nguyen School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, UK,
   Ngo Anh Vien School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, UK,

One-class Support Vector Machine (OC-SVM) for a long time has been one of the most effective anomaly detection methods and widely adopted in both research as well as industrial applications. The biggest issue for OC-SVM is, however, the capability to operate with large and high-dimensional datasets due to inefficient features and optimization complexity. Those problems might be mitigated via dimensionality reduction techniques such as manifold learning or auto-encoder. However, previous work often treats representation learning and anomaly prediction separately. In this paper, we propose autoencoder based one-class SVM (AE-1SVM) that brings OC-SVM, with the aid of random Fourier features to approximate the radial basis kernel, into deep learning context by combining it with a representation learning architecture and jointly exploit stochastic gradient descend to obtain end-to-end training. Interestingly, this also opens up the possible use of gradient-based attribution methods to explain the decision making for anomaly detection, which has ever been challenging as a result of the implicit mappings between the input space and the kernel space. To the best of our knowledge, this is the first work to study the interpretability of deep learning in anomaly detection. We evaluate our method on a wide range of unsupervised anomaly detection tasks in which our end-to-end training architecture achieves a performance significantly better than the previous work using separate training.

1 Introduction

Anomaly detection (AD), also known as outlier detection, is a unique class of machine learning that has a wide range of important applications, including intrusion detection in networks and control systems, fault detection in industrial manufacturing procedures, diagnosis of certain diseases in medical areas by identifying outlying patterns in medical images or other health records, cyber-security, etc. AD algorithms are identification processes that are able to single out items or events that are different from an expected pattern, or that have significantly lower frequencies than others in a dataset [15, 8].

In the past, there has been substantial effort in using traditional machine learning techniques for both supervised and unsupervised anomaly detection such as Principal Component Analysis (PCA) [16, 6, 7], one class support vector machine (OC-SVM) [25, 32, 12], Isolation forest [21], clustering based methods such as k-means and Gaussian mixture model (GMM) [4, 39, 18, 35], etc. However, they often becomes inefficient when used in high-dimensional problems. There is recently growing interest in using deep learning techniques to tackle this issue. Nonetheless, many work still relies on two-staged or separate training in which a low-dimensional space is firstly learnt via an auto-encoder. For example, the work in [13] simply uses a hybrid architecture with a deep belief network to reduce the dimensionality of the input space and separately applies the learned feature space to a conventional OC-SVM. Robust Deep Autoencoder (RDA) [38] uses a robust deep autoencoder that combines robust PCA and deep auto-encoder. Deep Clustering Embeddings (DEC) [34] is a state-of-the-art algorithm that combines unsupervised autoencoding network with clustering. However, all these two-stage training methods can not learn efficient features for anomaly detection tasks, especially when the dimensionality grows higher.

End-to-end training of dimensionality reduction and anomaly detection has recently received much interest, such as the frameworks using deep energy-based model [37], auto-encoder combined with Gaussian mixture model [40], generative adversarial networks (GAN) [24, 36]. However, these methods based on density estimation techniques to detect anomalies as a by-product of unsupervised learning, therefore might not be efficient for anomaly detection. They might assign high density if there are many proximate anomalies (a new cluster or mixture might be established for them), hence result in false negative cases.

One-class support vector machine is one of the most popular technique for unsupervised anomaly detection. OC-SVM is known to be insensitive to noise and outliers in the training data. Still, the performance of OC-SVM in general are susceptible to dimensionality and complexity of the data [5], while their training speed is also heavily affected by the size of the datasets. As a result, conventional OC-SVM may not be desirable in big data and high-dimensional AD applications. To tackle these issues, previous work has only performed dimensionality reduction via deep learning and OC-SVM based anomaly detection separately. Notwithstanding, separate dimensionality reduction might have negative effect on the performance of the consequential AD, since important information useful to identify outliers can be interpreted differently in the latent space. On the other hand, to the best of our knowledge, studies on application of kernel approximation and stochastic gradient descent (SGD) on OC-SVM have been lacking: most of the existing work only apply random Fourier features (RFF) [23] to the input space and treat the problem as a linear SVM; On the other hand, [26, 5], have shown prospect of using SGD to optimize SVM, but those are without the application of kernel approximation.

Another major issue in joint training with dimensionality reduction and AD is the interpretability of the trained models, that is, the capability to explain the reasoning for why they detect the samples as outliers, as of the input features. Very recently, explanation for black-box deep learning models has been brought about and attracted a respectable amount of attention from the machine learning research community. Especially, gradient-based explanation (attribution) methods [3, 29, 2] are widely studied as protocols to address this challenge. The aim of the approach is to analyse the contribution of each neuron in the input space of a neural network to the neurons in its latent space by calculating the corresponding gradients. As we will demonstrate, this same concept can be applied to kernel-approximated support vector machines to score the importance of each input feature to the margin that separates the decision hyperplane.

Driven by those reasoning, in this paper we propose AE-1SVM that is an end-to-end autoencoder based OC-SVM model combining dimensionality reduction and OC-SVM for large-scale anomaly detection. RFFs are applied to approximate the RBF kernel, while the input of OC-SVM is fed directly from a deep autoencoder that shares the objective function with OC-SVM such that dimensionality reduction is forced to learn essential pattern assisting the anomaly detecting task. On top of that, we also extend gradient-based attribution methods on the proposed kernel-approximate OC-SVM as well as the whole end-to-end architecture to analyse the contribution of the input features on the decision making of the OC-SVM.

The remainder of the paper is organised as follows. Section 2 reviews the background on OC-SVM, kernel approximation, and gradient-based attribution methods. Section 3 introduce the combined architecture that we have mentioned. In Section 4, we derive expressions and methods to obtain the end-to-end gradient of the OC-SVM’s decision function w.r.t. the input features of the deep learning model. Experimental setups, results, and analyses are presented in Section 5. Finally, Section 6 draws the conclusions for the paper.

2 Background

In this section, we briefly describe preliminary background that are used in the rest of the paper.

2.1 One-class support vector machine

OC-SVM [25] for unsupervised anomaly detection extends the idea of support vector method that is regularly used for classification. While classic SVM tries to find the hyperplane to maximize the margin separating the data points, in OC-SVM the hyperplane is learned to best separate the data points from the origin. SVMs in general have the ability to capture non-linearity thanks to the use of kernels. The kernel method maps the data points from the input feature space in to a higher-dimensional space in (where is potentially infinite) where the data is linearly separable by a transformation . The most commonly used kernel is the radial basis function (RBF) kernel defined by a similarity mapping between any two points and in the input feature, formulated by , where is a kernel bandwidth.

Let and denote the vector determining the weight of each dimension in the kernel space and the offset parameter determining the distance from the origin to the hyperplane, respectively. The objective of OC-SVM is to separate all data points from the origin by a maximum margin w.r.t to some constraint relaxation, and is written as a quadratic program as follows


where is a slack variable and is the regularisation parameter. Theoretically, is the upper bound of the fraction of anomalies in the data, and also the main tuning parameter for OC-SVM. Additionally, by replacing with the hinge loss, we have the unconstrained objective function as


Let , the decision function of OC-SVM is


The optimization problem of SVM in (2.1) is usually solved as a convex optimization problem in the dual space with the use of Lagrangian multipliers to reduce complexity while increasing solving feasibility. LIBSVM [9] is the most popular library that provides efficient optimization algorithms to train SVMs, and has been widely used in the research community. Nevertheless, solving SVMs in the dual space can be susceptible to the data size, since the function between each pair of points in the dataset has to be calculated and stored in a matrix, resulting in an complexity, where is the size of the dataset.

2.2 Kernel approximation with random Fourier features

To address the scalability problem of kernel machines, approximation algorithms have been introduced and widely applied, with the most two dominant being Nyströem [33] and Random Fourier Features (RFF) [23]. In this paper, we focus on RFF since it has lower complexity and does not require pre-training. The method is based on the Fourier transform of the kernel function, given by a Gaussian distribution:


where is the identity matrix and is an adjustable parameter representing the standard deviation of the Gaussian process.

From the distribution , independent and identically distributed (IID) weights are drawn. In the original work [23], two mappings are introduced, which are:

  • The combined and mapping as , which leads to the complete mapping being defined as follows

  • The offset mapping as , where the offset parameter . Consequently, the complete mapping in this case is


It has been proven in [31] that the former mapping outperforms the latter one in approximating RBF kernels due to the fact that no phase shift is introduced as a result of the offset variable. Therefore, in this paper, we only consider the combined and mapping.

Applying the kernel approximation mappings to (2.1), the unconstrained OC-SVM objective function with hinge loss becomes


which is equivalent to a OC-SVM in the approximated kernel space , and thus the optimization problem is more trivial, despite the dimensionality of being higher than that of .

2.3 Gradient-based explanation methods

Gradient-based methods exploit the gradient of the latent nodes in a neural network with respect to the input features to rate the attribution of each input to the output of the network. In the recent years, many research studies [29, 30, 22, 2] have applied this approach to explain the classification decision and sensitivity of input features in deep neural networks and especially convolutional neural networks. Intuitively, an input dimension has larger contribution to a latent node if the gradient of with respect to is higher, and vice versa. Instead of using purely gradient as a quantitative factor, various extensions of the method has been developed, including Gradient*Input [28], Integrated gradients [30], or DeepLIFT [27]. The most recent work [2] showed that these methods are strongly related and proved conditions of equivalence or approximation between them. In addition, other non gradient-based can be re-formulated to be implemented easily like gradient-based.

3 Deep autoencoding one-class SVM

Figure 1: (Left) Illustration of the Deep autoencoding One-class SVM architecture. (Right) Connections between input layer and hidden layers of a neural network

In this section, we present our combined model Deep autoencoding One-class SVM (AE-1SVM), based on OC-SVM for anomaly detecting tasks in high-dimensional and big datasets. The model consists of two main components, as illustrated in Figure 1 (Left):

  • A deep autoencoder network for dimensionality reduction and feature representation of the input space.

  • An OC-SVM for anomaly prediction based on support vectors and margin. The RBF kernel is approximated using random Fourier features.

The bottleneck layer of the deep autoencoder network is forwarded directly into the Random features mapper as the input of the OC-SVM. By doing this, the autoencoder network is pressed to optimize its variables to represent the input features in the direction that supports the OC-SVM in separating the anomalies from the normal class.

Let us denote as the input of the deep autoencoder and as the reconstructed value of . In addition, is the set of parameters of the autoencoder. As such, the joint objective function of the model regarding the autoencoder parameters, the OC-SVM’s weights, and its offset is as follows


The components and parameters in (8) are described below

  • is the reconstruction loss of the autoencoder, which is normally chosen to be the L2-norm loss .

  • Since SGD is utilized, the variable , which is formerly the number of training samples, becomes the batch size since the hinge loss is calculated using the data points in the batch.

  • is the Random Fourier mappings as defined in (5). Due to the random features being data-independent, the standard deviation of the Gaussian distribution has to be fine-tuned correlatively with the parameter .

  • is a hyperparameter controlling the trade-off between feature compression and SVM margin optimization.

Overall, the objective function is optimized in conjunction using SGD with backpropagation. Furthermore, the autoencoder network can also be extended to a convolutional autoencoder, which is showcased in the experiment section.

4 Interpretable autoencoding one-class SVM

In this section, we outline the method for interpreting the results obtained from AE-1SVM using gradients and present illustrative example to verify its validity.

4.1 Derivations of end-to-end gradients

Considering an input of a RFF kernel-approximated OC-SVM with dimension . In our model, is the bottleneck representation of the latent space in the deep autoencoder. The expression of the margin with respect to the input is as follows


As a result, the gradient of the margin function on each input dimension can be calculated as


Next, we can derive the gradient of the latent space nodes with respect to the deep autoencoder’s input layer (extension to convolutional autoencoder is straightforward). In general, considering a neural network with input neurons , and the first hidden layer having neurons , as depicted in Figure 1 (Right). The gradient of with respect to can be derived as


where , is the activation function, and are the weight and bias connecting and . The derivative of is different for each activation function. For instance, with a sigmoid activation , the gradient is computed as , while is for activation function.

To calculate the gradient of neuron in the second hidden layer with respect to , we simply apply the chain rule and sum rule as follows


The gradient can be obtained in a similar manner to (11). By maintaining the values of at each hidden layer, the gradient of any hidden or output layer with respect to the input layer can be calculated. Finally, combining this and (10), we can get the end-to-end gradient of the OC-SVM margin with respect to all input features. Besides, state-of-the-art machine learning frameworks like TensorFlow also implements methods to obtain the a gradient between any variables without having to define any extra operations.

Using the gradient, the decision making of the AD model can be interpreted as follows

  • For an outlying sample, the dimension which has higher gradient has higher contribution to the decision making of the ML model. In other words, the sample is further to the boundary in that particular dimension.

  • For each mentioned dimension, if the gradient is positive, the value of the feature in that dimension is lesser than the the lower limit of the boundary. In contrast, if the gradient holds a negative value, the feature exceeds the level of the normal class.

4.2 Illustrative example

Figure 2 presents an illustrative example of interpreting anomaly detecting results using gradients. We generate 1950 four-dimensional samples as normal instances, where the first two features are uniformly generated such that they are inside a circle with center . The third and fourth dimensions are drawn uniformly in the range so that the contribution of them are significantly less than the other two dimensions. In contrast, 50 anomalies are created which have the first two dimensions being far from the mentioned circle, while the last two dimensions has a higher range of . The whole dataset including both the normal and anomalous classes are trained with the proposed AE-1SVM model with a bottleneck layer of size 2 and sigmoid activation.

Figure 2: An illustrative example of gradient-based explanation methods. The left figure depicts the encoded 2-dimensional feature space from a 4-dimension dataset. The nine graphs on the right plot the gradient of the margin function with respect to the four original features for each testing point. Only the coordinates of first two dimensions are annotated.

The figure on the left shows the representation of the 4D dataset on a 2-dimensional space. Expectedly, it captures most of the variability from the first two dimensions. Furthermore, we plot the gradients of 9 different anomalous samples, with the two latter dimensions being randomized, and overall, the results have proven the aforementioned interpreting rules. It can easily be observed that the contribution of the third and fourth dimensions to the decision making of the model is always negligible. Among the first two dimensions, the ones having the value of 0.1 or 0.9 has the corresponding gradients perceptibly higher than those being 0.5, as they are further from the boundary and the sample can be considered ”more anomalous” in that dimension. Besides, the gradient of the input 0.1 is always positive due to the fact that it is lower than the normal level. In contrast, the gradient of the input 0.9 is consistently negative.

5 Experimental results

We present qualitative empirical analysis to justify the effectiveness of the AE-1SVM model in terms of accuracy and improved training/testing time. The objective is comparing the proposed model with conventional and state-of-the-art AD methods over synthetic and well-known real world data 111All codes for reproducibility is available at

5.1 Datasets

We conduct experiments on one generated datasets and five real-world datasets (we assume all tasks are unsupervised anomaly detection) as listed below in Table 1. The descriptions of each individual dataset is as follows:

  • Gaussian: This dataset is used to showcase the performance of the methods on high-dimensional and large data. The normal samples are drawn from a normal distribution with zero mean and standard deviation , while for the anomalous instances. Theoretically, since the two groups have different distributional attributes, the AD model should be able to separate them.

  • ForestCover: From the ForestCover/Covertype dataset [11], the class 2 is extracted as the normal class, and class 4 is chosen as the anomaly class.

  • Shuttle: From the Shuttle dataset [11], we select the normal samples from classes 2, 3, 5, 6, 7, while the outlier group is made of class 1.

  • KDDCup99: The popular KDDCup99 dataset [11] has approximately 80% proportion as anomalies. Therefore, from the 10-percent subset, we randomly select 5120 samples from the outlier classes to form the anomaly set such that the contamination ratio is 5%. The categorical features are extracted using one-hot encoding, making 118 features in the raw input space.

  • USPS: We select from the U.S Postal Service handwritten digits dataset [17] 950 samples from digit 1 as normal data, and 50 samples from digit 7 as anomalous data, as the appearance of the two digits are similar. The size of each image is 16 16, resulting in each sample being a flatten vector of 256 features.

  • MNIST: From the MNIST dataset [20], 5842 samples of digit ’4’ are chosen as normal class. On the other hand, the set of outliers contains 100 digits from classes ’0’, ’7’, and ’9’. This task is challenging due to the fact that many digits ’9’ are remarkably similar to digit ’4’. Each input sample is a flatten vector with 784 dimensions.

Dataset Dimensions Normal instances Anomalies rate (%)
Gaussian 512 950 5.0
ForestCover 54 581012 0.9
Shuttle 9 49097 7.2
KDDCup99 118 97278 5.0
USPS 256 950 5.0
MNIST 784 5842 1.7
Table 1: Summary of the datasets used for comparison in the experiments.

5.2 Baseline methods

Variants of OC-SVM and several state-of-the-art methods are selected as baselines to compare the performance with the AE-1SVM model. Different modifications of the conventional OC-SVM are considered. First, we take into account the version where OC-SVM is trained directly on the raw input. Additionally, to give more impartial justifications, a version where an autoencoding network exactly identical to that of the AE-1SVM model is considered. We use the same number of training epochs to AE-1SVM to investigate the ability of AE-1SVM to force the dimensionality reduction network to learn better representation of the data. The OC-SVM is then trained on the encoded feature space, and this variant is also similar to the approach given in [13]. We also attempt to use random Fourier features and apply a linear kernel to the approximated feature space as another modification.

Besides, the following method are also considered as baselines to examine the anomaly detecting performance of the proposed model:

  • Isolation Forest [21]: This ensemble method is based on the idea that the anomalies in the data have less frequencies and are different from the normal points.

  • Robust Deep Autoencoder (RDA) [38]: In this algorithm, a deep autoencoder is constructed and trained such that it can decompose the data into two components. The first component contains the latent space representation of the input, while the second one is comprised of the noise and outliers that are difficult to reconstruct.

  • Deep Clustering Embeddings (DEC) [34]: This algorithm combines unsupervised autoencoding network with clustering. As outliers lie in to sparser clusters or are far from their centroids, we apply this method into anomaly detection and calculate the anomaly score of each sample as a product of its distance to the centroid and the density of the cluster it belongs to.

5.3 Evaluation metrics

In all experiments, the area under receiver operating characteristic (AUROC) and area under the Precesion-Recall curve (AUPRC) are applied as metrics to evaluate and compare the performance of anomaly detection methods. Having a high AUROC is necessary for a competent model, whereas AUPRC often highlights the difference between the methods regarding imbalance datasets [10]. The testing procedure follows the unsupervised setup, where each dataset is split with 1:1 ratio, and the entire training set including the anomalies is used for training the model. The output of the models on the test set is measured against the ground truth using the mentioned scoring metrics, with the average scores and approximal training and testing time of each algorithm after 20 runs being reported.

5.4 Model configurations

In all experiments, we employ the sigmoid activation function and implement the architecture using TensorFlow [1]. The initial weights of the autoencoding networks are generated according to Xavier’s method [14]. The optimizing algorithm of choice is Adam [19]. We also discover that for the random Fourier features, a standard deviation produces satisfactory results for all datasets. For other parameters, the network configurations of AE-1SVM for each individual dataset are as in Table 2 below.

Dataset Encoding layers RFF Batch size Learning rate


{128, 32} 0.40 1000 500 32 0.01


{32, 16} 0.30 1000 200 1024 0.01


{6, 2} 0.40 1000 50 16 0.001


{80, 40, 20} 0.30 10000 400 128 0.001


{128, 64, 32} 0.28 1000 500 16 0.005


{256, 128} 0.40 1000 1000 32 0.001
Table 2: Summary of network configurations and training parameters of AE-1SVM used in the experiments.

For the MNIST dataset, we additionally implement a convolutional autoencoder with pooling and unpooling layers: conv1(), pool1(), conv2(), pool2() and a feed-forward layer afterward to continue compressing into 49 dimensions; the decoder: a feed-forward layer afterward of dimensions, then deconv1(), unpool1(), deconv2(), unpool2(), then a feed-forward layer of 784 dimensions. The dropout rate is set to 0.5 in this convolutional autoencoder network.

For each baseline methods, the best set of parameters are selected. In particular, for different variants of OC-SVM, the optimal value for parameter is exhaustively searched. Likewise, for Isolation forest, the fraction ratio is tuned around the anomalies rate for each dataset. For RDA, DEC, as well as OC-SVM variants that involves auto-encoding network for dimensionality reduction, the autoencoder structures exactly identical to AE-1SVM are used, while the hyperparameter in RDA is also adjusted as it is the most important factor of the algorithm.

5.5 Results

Firstly, for the Gaussian dataset, the histograms of the decision scores obtained by different methods are presented in Figure 3. It can clearly be seen that AE-1SVM is able to single out all anomalous samples, while giving the best separation between the two classes.

Figure 3: Histograms of decision scores of AE-1SVM and other baseline methods.







Forest Cover OC-SVM raw input 0.9295 0.0553
OC-SVM encoded 0.7895 0.0689
OC-SVM encoded + RFF 0.8034 0.0501
Isolation Forest 0.9396 0.0705
RDA 0.8683 0.0353
DEC 0.9181 0.0421



Shuttle OC-SVM raw input 0.9338 0.4383
OC-SVM encoded 0.8501 0.4151
OC-SVM encoded + RFF 0.8472 0.5301
Isolation Forest


RDA 0.8306 0.1872
DEC 0.9010 0.3184
AE-1SVM 0.9747


KDDCup OC-SVM raw input 0.8881 0.3400
OC-SVM encoded 0.9518 0.3876
OC-SVM encoded + RFF 0.9121 0.3560
Isolation Forest 0.9572 0.4148
RDA 0.6320 0.4347
DEC 0.9496 0.3688



AE-1SVM (Full dataset)



USPS OC-SVM raw input 0.9747 0.5102
OC-SVM encoded 0.9536 0.4722
OC-SVM encoded + RFF 0.9578 0.5140
Isolation Forest 0.9863 0.6250
RDA 0.9799 0.5681
DEC 0.9263 0.7506



MNIST OC-SVM raw input 0.8302 0.0819
OC-SVM encoded 0.7956 0.0584
OC-SVM encoded + RFF 0.7941 0.0819
Isolation Forest 0.7574 0.0533
RDA 0.8464 0.0855
DEC 0.5522 0.0289
AE-1SVM 0.8119 0.0864



Table 3: Average AUROC, AUPRC, approximal train time and test time of the baseline methods and proposed method. Best results are displayed in boldface.

For other datasets, the comprehensive results are given in Table 3. It is obvious that AE-1SVM outperforms the conventional OC-SVM in terms of accuracy performance in all scenarios, and is always among the top performers. For ForestCover, only the AUROC score of Isolation Forest is close, but the AUPRC is significantly lower, with three time less than that of AE-1SVM, suggesting that it has to compensate a higher false alarm rate to identify anomalies correctly. Similarly, Isolation Forest slightly surpasses AE-1SVM in AUROC for Shuttle dataset, but is subpar in terms of AUPRC, thus can be considered less optimal choice. Analogous patterns can as well be noticed for other datasets. Especially, for MNIST, it is shown that the proposed method AE-1SVM can also operate under a convolutional autoencoder network in image processing contexts.

Regarding training time, AE-1SVM outperforms other methods for ForestCover, which are the largest datasets. For KDDCup99 and Shuttle datasets, it is still one of the fastest candidates. Furthermore, we also extend the KDDCup99 experiment and train AE-1SVM model on a full dataset, and acquire promising results in only 200 seconds. This verifies the effectiveness and potential application of the model in big-data circumstances. On top of that, the testing time of AE-1SVM is a notable improvement over other methods, especially Isolation Forest and conventional OC-SVM, suggesting its feasibility in real-time environments.

5.6 Gradient-based explanation in image datasets

We also investigate the use of gradient-based explanation methods from the image datasets. Figure 4 and Figure 5 illustrate the unsigned gradient maps of several anomalous digits in the USPS and MNIST datasets, respectively. The MNIST results are given by the version with convolutional autoencoder.

Interesting patterns proving the correctness of gradient-based explanation approach can be observed from the Figure 4. The positive gradient maps revolve around the middle part of the images where the pixels in the normal class of digits ’1’ are normally bright (higher values), indicating the absence of those pixels contributes significantly to the reasoning that the samples ’7’ are detected as outliers. Likewise, the negative gradient maps are more intense on the pixels matching the bright pixels outside the center area of its corresponding image, meaning that the values of those pixels in the original image exceeds the range of the normal class, which is around the zero (black) level. Similar perception can be acquired from Figure 5, as it shows the difference between each samples of digits ’0’, ’7’, and ’9’, to digit ’4’.

Figure 4: Examples of images and their corresponding gradient maps of digits ’7’ in the USPS experiment. From top to bottom rows: original image, positive gradient map, negative gradient map, and full gradient map.
Figure 5: Examples of images and their corresponding gradient maps of digits ’0’, ’7’, ’9’ in the MNIST experiment with convolutional autoencoder. From top to bottom rows: original image, positive gradient map, negative gradient map, and full gradient map.

6 Conclusion

In this paper, we propose the end-to-end autoencoding One-class Support Vector Machine (AE-1SVM) model comprising of a deep autoencoder for dimensionality reduction and a variant structure of OC-SVM using random Fourier features for anomaly detection. The model is jointly trained using SGD with a combined loss function to both lessen the complexity of solving support vector problems and force dimensionality reduction to learn better representation that is beneficial for the anomaly detecting task. We also investigate the application of applying gradient-based explanation methods to interpret the decision making of the proposed model, which is not feasible for most of the other anomaly detection algorithms. Extensive experiments have been conducted to verify the strengths of our approach. The results have demonstrated that AE-1SVM can be effective in detecting anomalies, while significantly enhance both training and response time for high-dimensional and large-scale data. Empirical evidence of interpreting the predictions of AE-1SVM using gradient-based methods has also been presented using illustrative examples and handwritten image datasets.


  • [1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). URL Software available from
  • [2] Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: International Conference on Learning Representations (2018). URL
  • [3] Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)
  • [4] Barnett, V., Lewis, T.: Outliers in statistical data. Wiley (1974)
  • [5] Bengio, Y., Lecun, Y.: Scaling learning algorithms towards AI. MIT Press (2007)
  • [6] Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of the ACM (JACM) 58(3), 11 (2011)
  • [7] Chalapathy, R., Menon, A.K., Chawla, S.: Robust, deep and inductive anomaly detection. In: Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Proceedings, Part I, pp. 36–51 (2017)
  • [8] Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM computing surveys (CSUR) 41(3), 15 (2009)
  • [9] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)
  • [10] Davis, J., Goadrich, M.: The Relationship Between Precision-Recall and ROC Curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 233–240. ACM, New York, NY, USA (2006)
  • [11] Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). URL
  • [12] Erfani, S.M., Baktashmotlagh, M., Rajasegarar, S., Karunasekera, S., Leckie, C.: R1SVM: A randomised nonlinear approach to large-scale anomaly detection. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 432–438. AAAI Press (2015)
  • [13] Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recogn. 58(C), 121–134 (2016)
  • [14] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)
  • [15] Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)
  • [16] Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of educational psychology 24(6), 417 (1933)
  • [17] Hull, J.J.: A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(5), 550–554 (1994)
  • [18] Kim, J., Scott, C.D.: Robust kernel density estimation. Journal of Machine Learning Research 13(Sep), 2529–2565 (2012)
  • [19] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. ArXiv e-prints (2014)
  • [20] LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). URL
  • [21] Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008)
  • [22] Montavon, G., Bach, S., Binder, A., Samek, W., Müller, K.: Explaining nonlinear classification decisions with deep taylor decomposition. CoRR abs/1512.02479 (2015)
  • [23] Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems 20, pp. 1177–1184. Curran Associates, Inc. (2008)
  • [24] Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International Conference on Information Processing in Medical Imaging, pp. 146–157. Springer (2017)
  • [25] Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99, pp. 582–588. MIT Press, Cambridge, MA, USA (1999)
  • [26] Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: Primal estimated sub-gradient solver for svm. Math. Program. 127(1), 3–30 (2011)
  • [27] Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. CoRR abs/1704.02685 (2017)
  • [28] Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black box: Learning important features through propagating activation differences. CoRR abs/1605.01713 (2016)
  • [29] Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. ArXiv e-prints abs/1506.02785 (2013)
  • [30] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. CoRR abs/1703.01365 (2017)
  • [31] Sutherland, D.J., Schneider, J.G.: On the error of random fourier features. CoRR (2015)
  • [32] Tax, D.M., Duin, R.P.: Support vector data description. Machine learning 54(1), 45–66 (2004)
  • [33] Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS’00, pp. 661–667. MIT Press, Cambridge, MA, USA (2000)
  • [34] Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16, pp. 478–487. (2016). URL
  • [35] Xiong, L., Póczos, B., Schneider, J.G.: Group anomaly detection using flexible genre models. In: Advances in neural information processing systems, pp. 1071–1079 (2011)
  • [36] Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient gan-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018). ICLR 2018 workshop
  • [37] Zhai, S., Cheng, Y., Lu, W., Zhang, Z.: Deep structured energy based models for anomaly detection. In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pp. 1100–1109 (2016)
  • [38] Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, pp. 665–674. ACM, New York, NY, USA (2017)
  • [39] Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA Data Science Journal 5(5), 363–387 (2012)
  • [40] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018). URL
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description