EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
CERNLHCbDP2018004 October 24, 2018
ReDecay: A novel approach to speed up the simulation at LHCb
D. Müller, M. Clemencic, G. Corti, M. Gersabeck
European Organization for Nuclear Research (CERN), Geneva, Switzerland
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
With the steady increase in the precision of flavour physics measurements collected during LHC Run 2, the LHCb experiment requires simulated data samples of larger and larger sizes to study the detector response in detail. The simulation of the detector response is the main contribution to the time needed to simulate full events. This time scales linearly with the particle multiplicity. Of the dozens of particles present in the simulation only the few participating in the signal decay under study are of interest, while all remaining particles mainly affect the resolutions and efficiencies of the detector. This paper presents a novel development for the LHCb simulation software which reuses the rest of the event from previously simulated events. This approach achieves an order of magnitude increase in speed and the same quality compared to the nominal simulation.
Submitted to Eur. Phys. J. C
© 2019 CERN for the benefit of the LHCb collaboration. CCBY4.0 licence.
1 Introduction
A common challenge in many measurements performed in highenergy physics is the necessity to understand the effects of the detector response on the physics parameters of interest. This response is driven by resolution effects that distort the true distribution of a quantity and by inefficiencies that are introduced by either an imperfect reconstruction in the detector or a deliberate event selection, resulting in an unknown number of true events for a given number of reconstructed events. The extraction of an unbiased estimate of the physics parameter of interest requires the correction of these effects. However, due to increasing complexity of the detectors employed and the challenging experimental conditions – especially at a hadron collider – the only feasible solution is the generation of Monte Carlo (MC) events and the simulation of their detector response to study the evolution from the generated to the reconstructed and selected objects. In the era of the Large Hadron Collider, the simulation of the large event samples occupies a considerable fraction of the overall computing resources available. Hence, measures to decrease the time required to simulate an event are crucial to fully exploit the large datasets recorded by the detectors. In fact, recent measurements hinting at tensions with respect to the predictions of the Standard Model of elementary particle physics have systematic uncertainties that are dominated by the insufficient amount of simulated data [1]. Therefore, fast simulation options are necessary to further improve measurements such as these.
This paper presents a fast simulation approach that is applicable if the signal process is a decay of a heavy particle, e.g. or . It retains the same quality as the nominal full simulation while reaching increases in speed of an order of magnitude. In Section 2, the ReDecay approach is presented while Section 3 focuses on the correct treatment of correlations arising in this approach. Lastly, Section 4 discusses the experience with applying the approach within the LHCb collaboration. While the approach is applicable in all experiments which study the type of final state as defined above, the LHCb experiment is used as an example throughout this paper for illustrative purposes.
2 The ReDecay approach
In each simulated protonproton collision, hundreds of particles are typically generated and tracked through a simulation of the detector, most of the time based on the Geant4 toolkit [2]. Generally, the time needed to create an MC event for LHC experiments is dominated by the detector transport, accounting for to of the total time, which is proportional to the number of particles that need to be tracked. In the case that the intended measurement studies decays of heavy particles to exclusive final states with individual children being reconstructed for each particle, all long lived particles in the event can be split into two distinct groups: the particles that participate in the signal process and all remaining particles where the latter group is henceforth referred to as the rest of the event (ROE). As the final state of the signal process is usually comprised of only a few particles, most particles in the event are part of the ROE and hence the majority of the computing time per event is spent on the simulation of particles that are never explicitly looked at. Ideally, this situation should be inverted and most of the computing resources should be spent on simulating the signal decays themselves. However, simply simulating the signal process without any contributions from the ROE results in a much lower occupancy of the detector. This lower occupancy in turn leads to a significant mismodelling of the detector response compared to the real detector: resolution effects are underestimated while reconstruction efficiencies are overestimated.
In the ReDecay approach, problems with simulating only the signal process are mitigated by reusing the ROE multiple times instead of generating a new one for every event. The signal particle is kept identical in all sets of events that use the same ROE, to preserve correlations, but is independently decayed each time. To be more precise, in each redecayed event, the origin vertex and kinematics of the signal particle are identical, while the decay time and thus decay vertex as well as the final state particle kinematics are different. The following procedure is applied:

A full MC event including the signal decay is generated.

Before the generated particles are passed through the detector simulation, the signal and its decay products are removed from the event and the originvertex position and momentum of the signal particle are stored.

The remaining ROE is simulated as usual and the entire output, the information on the true particles and the energy deposits in the detector, are kept.

A signal decay is generated and simulated using the stored origin vertex position and momentum.

The persisted ROE and the signal decay are merged and written out to disk as a full event.

The steps 4 and 5 are repeated times, where is a fixed number that is the same for all events.
An ROE and a signal decay associated to form a complete event according to the procedure above are digitised simultaneously. This ensures that simulated energy deposits that stem from particles in the ROE can interfere with the deposits produced by the signal decay products, as is the case in the standard method to simulate events. Different complete events, for example obtained combining the same ROE with different signal decays, are themselves digitised independently. This further implies that each event obtained could have been produced by chance in a nominal simulation as ReDecay just reorders the already factorised approach: hadrons are decayed independently and the quasistable tracks are propagated through the detector individually. Therefore, the efficiencies and resolutions are, by construction, identical to those found in a nominal simulation. Furthermore, with increasing , the average time per created event becomes more and more dominated by the time required to simulate the detector response for the signal particle and its decay products compared to the simulation of the particles from the ROE. However, an attentive reader will have noticed that different events stemming from the same original event are correlated, e.g. they all have — bar resolution effects — the same signal kinematics. The magnitude of these correlations will also depend on the studied observables and the following section attempts to quantify the strength of the correlations. Additionally, it presents a method to take them into account in an analysis using simulated samples that have been generated following the ReDecay approach.
3 The statistical treatment
Reusing the ROE multiple times and leaving the kinematics of the signal particle unchanged yields correlated events. Considering the signal decay as an example large correlations are expected for the transverse momentum of the as the decaying particle’s kinematics are invariant in all redecayed events. On the other hand, quantities computed to evaluate, for example, the performance of the track reconstruction for the meson tracks will be uncorrelated as those are based on the hits produced by the meson traversing the detector that are regenerated in every redecayed event. Additionally, many observables are constrained by the fixed kinematics but have a certain amount of freedom in each redecayed event such as the transverse momentum of the . In the following, a simple example is used to develop methods to quantify the degree of correlation between different events and to discuss methods to take the correlations into account.
Suppose is a random variable, which is sampled in a two stage process: first, a random number is sampled from a normal distribution with mean zero and width . Subsequently, a value for is then obtained by sampling one number from a normal distribution with width that is centered at . The resulting is then distributed according to the convolution of the two normal distributions, . In the nominal case, a new is sampled for every , while a procedure equivalent to the ReDecay approach is achieved by sampling values for from the same . Modifying the procedure for the generation of in this way does not alter the final distribution and thus both approaches provide random numbers that can be used to obtain a histogram following the expected shape given by the convolution of the two normal distributions.
However, the latter approach introduces correlations between different values, which is visible in Figure 1 as these correlations lead to an underestimate of the uncertainties when the values of are filled into a histogram using uncertainties equal to where is the number of entries in the bin of the nominal distribution. One possibility to quantify the correlation between different entries in a sequence of random numbers is given by the autocorrelation of the random number :
(1) 
where is the total number of entries, is the mean (zero in this example) and is the standard deviation ( here) of the random numbers . The autocorrelation itself is typically studied as a function of an integer offset , where is the trivial case with . Example autocorrelations as a function of are given in Figure 1 for multiple combinations of values for and with different ratios of . As expected, the autocorrelation decreases both as a function of the offset as well as with increasing values for the ratio . While the former is simply caused by a decreasing overlap between the blocks of from the same , the latter is a result of larger values of the ratio corresponding to a greater amount of freedom in the random process for the generation of despite using the same .
In summary, events are correlated though the amount of correlation depends on the studied observable. This explains the effect seen in the pulls where the approximation of for the uncertainties breaks down in the presence of large correlations, when is small. In the following, an alternative approach will be discussed to obtain the statistical uncertainty in the presence of such correlations. The effect of the correlations highly depends on how the sample is used and which variables are of interest and hence deriving a general, analytical solution is difficult if not impossible. In use cases where the variables of interest are sufficiently independent in every redecayed event (corresponding to a large in the example above) even ignoring the correlations altogether can be a valid approach. Nonetheless, a general solution is provided by bootstrapping [4], which is a method for generating pseudosamples by resampling. These pseudosamples can then be used to estimate the variance of complex estimators, for which analytic solutions are impractical.
Starting from a sample with entries, a pseudosample can be obtained according to the following procedure: first, a new total number of events is randomly drawn from a Poisson distribution of mean . Then, entries are randomly drawn with replacement from the original sample times to fill the pseudosample. As sampling with replacement is employed, the obtained pseudosample can contain some entries of the original sample multiple times while others are not present in the pseudosample at all. Unfortunately, this cannot directly be applied to the ReDecay samples because it assumes statistically independent entries. In the study of time series, data points ordered in time where each data point can depend on the previous points, different extensions of the bootstrapping algorithm have been developed to preserve the correlations in the pseudosamples [5]. A common approach is the socalled block bootstrapping where the sample is divided into blocks. In order to capture the correlations arising in the ReDecay approach, a block is naturally given by all events using the same ROE (or the same in the example above). To obtain a pseudosample, the bootstrapping procedure above is slightly modified: instead of sampling individual entries from the original sample, entire blocks are drawn with replacement and all entries constituting a drawn block are filled into the pseudosample until the pseudosample has reached a size of entries. From these pseudosamples, derived quantities, e.g. the covariance matrix for the bins in the histogram in Figure 1 (right), can be obtained and utilised to include the correlations in an analysis.
4 Implementation and experience in LHCb
While the idea of ReDecay is applicable in different experiments, the actual implementation strongly depends on the simulation framework and no general solution can be provided. Nonetheless, this section discusses the experiences gained when introducing the ReDecay approach to the LHCb software and which can be transferred to other experiments.
In the most commonly used procedure to simulate events in LHCb, collisions are generated with the Pythia 8.1 [6, 7] generator using a specific LHCb configuration similar to the one described in Ref. [8]. Decays of particles are described by EvtGen [9] in which finalstate radiation is generated with Photos [10]. The implementation of the interaction of the generated particles with the detector, and its response, uses the Geant4 toolkit. The steering of the different steps in the simulation of an event uses interfaces to external generators and to the Geant4 toolkit. It is handled by Gauss [11], the LHCb simulation software built on top of the Gaudi [12, 13] framework.
The ReDecay algorithm has been implemented as a package within the Gauss framework, deployed in the LHCb production system and already used in several large Monte Carlo sample productions. In general, a speedup by a factor of 10 to 20 is observed with the exact factor depending on the simulated conditions of the Large Hadron Collider and the complexity of the signal event. This factor is reached with a number of redecays per original event of . In this configuration, and depending on the simulated decay, around 95% of the total time required to create the sample is spent on the simulation of the detector response of the products of the studied decay. Hence, increasing the number of redecays further would have little to no impact on the speed. Due to the correlations between different simulated events using the same ROE as described above, ReDecay samples are typically used to obtain efficiency descriptions as a function of final state variables with high granularity. For example, the use of the ReDecay method is ideal to study variables describing multibody decays, since these variables are largely independent between all ReDecay events. An example for this is given in Figure 2, which compares some distributions for decays between a ReDecay and a nominally simulated sample. Despite ignoring the correlations and using uncertainties computed as , sensible pull distributions with a width compatible with one are observed.
In the case where the variables of interest are not obviously independent between different ReDecay events, the degree of correlation is difficult to predict and the only solution is the actual creation of a test sample. While the increase in speed when using ReDecay is substantial, the time to produce events is still not negligible and creating a test sample of sufficient size can quickly overwhelm the resources available for an individual analyst. To this end and in collaboration with the respective developers, the ReDecay approach has been added to the RapidSim [14] generator to enable the fast production of simplified simulation samples to judge the degree of correlation before committing the resources for the production of a large ReDecay sample.
5 Summary
The paper presents developments of a fast simulation option applicable to analyses of signal particle decays that occur after the hadronisation phase. An overall increase in speed by a factor of 10 to 20 is observed. Furthermore, this paper discusses procedures to handle the correlations that can arise between different events if necessary. ReDecay has already enabled the production of large simulated samples for current measurements at LHCb [15].
With the upgrade of the LHCb detector for the third run of the Large Hadron Collider, the detector will collect a substantially larger amount of data. ReDecay is becoming a crucial fast simulation option to extract high precision physics results from this data.
Acknowledgements
We acknowledge all our LHCb collaborators who have contributed to the results presented in this paper. Specifically, we thank Patrick Robbe, Michal Kreps and Mark Whitehead for their editorial help preparing this document. We acknowledge support from the Science and Technology Facilities Council (United Kingdom) and the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFINHH (Romania), CBPF (Brazil), PLGRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple opensource software packages on which we depend.
References
 [1] LHCb collaboration, R. Aaij et al., Measurement of the ratio of the and branching fractions using threeprong lepton decays, Phys. Rev. Lett. 120 (2018) 171802, arXiv:1708.08856
 [2] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270
 [3] Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250
 [4] B. Efron, Bootstrap methods: Another look at the jackknife, Ann. Statist. 7 (1979) 1
 [5] J.P. Kreiss and S. N. Lahiri, 1  Bootstrap methods for time series, in Time series analysis: methods and applications, vol. 30 of Handbook of Statistics, pp. 3 – 26. Elsevier, 2012. doi: http://doi.org/10.1016/B9780444538581.000016
 [6] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hepph/0603175
 [7] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820
 [8] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047
 [9] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152
 [10] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in and decays, Eur. Phys. J. C45 (2006) 97, arXiv:hepph/0506026
 [11] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023
 [12] G. Barrand et al., GAUDI  A software architecture and framework for building HEP data processing applications, Comput. Phys. Commun. 140 (2001) 45
 [13] M. Clemencic et al., Recent developments in the LHCb software framework Gaudi, J. Phys. Conf. Ser. 219 (2010) 042006
 [14] G. A. Cowan, D. C. Craik, and M. D. Needham, RapidSim: an application for the fast simulation of heavyquark hadron decays, Comput. Phys. Commun. C214 (2017) 239, arXiv:1612.07489
 [15] LHCb collaboration, R. Aaij et al., Measurement of the charmmixing parameter , arXiv:1810.06874, submitted to PRL.