Realistic \mathrm{SU(3)_{c}\otimes SU(3)_{L}\otimes U(1)_{X}} model with a type II Dirac neutrino seesaw mechanism

Realistic model with a type II Dirac neutrino seesaw mechanism

Mario Reig mareiglo@alumni.uv.es AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València
Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2
E-46980 Paterna (València) - SPAIN
   José W.F. Valle valle@ific.uv.es AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València
Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2
E-46980 Paterna (València) - SPAIN
   C.A. Vaquera-Araujo vaquera@ific.uv.es AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València
Edificio de Institutos de Paterna, C/Catedratico José Beltrán, 2
E-46980 Paterna (València) - SPAIN
Abstract

Here we propose a realistic electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.

pacs:
14.60.Pq, 12.60.Cn, 14.60.St

I Introduction

Despite the fierce experimental effort over the last decades the long-standing challenge concerning the question of whether neutrinos are their own anti-particles remains Barabash (2010); Avignone et al. (2008); Blot (2016). Although neutrinos could be Dirac or Majorana fermions, the leading theoretical expectation is that they are Majorana, the general belief being that the smallness of neutrino masses relative to the other Standard Model fermion masses is due to their charge neutrality. This fits naturally to the idea that neutrinos acquire Majorana masses from Weinberg’s dimension five operator. Realizations include various varieties of type I Gell-Mann et al. (1979); Yanagida (KEK lectures, 1979); Mohapatra and Senjanovic (1980); Schechter and Valle (1980, 1982) or type II Schechter and Valle (1980, 1982); Lazarides et al. (1981); Grimus et al. (2009) seesaw mechanisms, irrespective of whether the seesaw is realized at high or at low mass scale Boucenna et al. (2014a). Until the observation of neutrinoless double beta decay  Klapdor-Kleingrothaus et al. (2004) becomes a reality Barabash (2010) we must keep an eye open to the possibility that neutrinos can be Dirac particles as well.

There are two issues that Dirac neutrino models must face, namely predicting the Dirac nature of neutrinos, and understanding their small mass. Dirac neutrinos require extra symmetries beyond gauge symmetry, otherwise massive neutrinos are generally expected to be Majorana fermions. Within the standard electroweak gauge structure this can be ensured by imposing a conserved lepton numberlike symmetry, continuous Peltoniemi et al. (1993) or discrete Chuliá et al. (2016). Likewise, one may consider schemes based on flavor symmetries, as suggested in Aranda et al. (2014) or appealing to the existence of extra dimensions Arkani-Hamed et al. (2002); Chen et al. (2016). Alternatively one may extend the gauge group, so as to include the lepton number symmetry Ma et al. (2015), for example, by using the extended gauge structure Singer et al. (1980) although most formulations lead to Majorana neutrinos Tully and Joshi (2001); Kitabayashi and Yasue (2001a, b); Montero et al. (2002); Chang and Long (2006); Dong et al. (2007); Mizukoshi et al. (2011); Boucenna et al. (2014b, 2015a); Okada et al. (2016); Boucenna et al. (2015b); Vien et al. (2016).

Because of the special features of the based models with respect to other electroweak extensions based, for example, on left-right symmetry, in this paper we focus on the possibility of having naturally light Dirac neutrinos with seesaw-induced masses, within the gauge structure. However, in contrast to Ref. Valle and Vaquera-Araujo (2016) in order to predict realistic quark masses in a natural way, two extra antitriplet scalar multiplets are included. As before, we have a lepton numberlike symmetry , preserved in the leptonic and quark sector. This symmetry is softly broken in the scalar sector by the term so that in the limit the Lagrangian symmetry gets enhanced. We show that the smallness of is related to the smallness of neutrino mass. This way we recover the new variant of type II seesaw mechanism for Dirac neutrinos recently considered in Valle and Vaquera-Araujo (2016). However, in contrast to the previous Ref. Valle and Vaquera-Araujo (2016), here the naturally small induced vacuum expectation values (vevs) responsible for neutrino mass generation are decoupled from the quark sector. This eliminates the need of fine-tuning the Yukawa couplings so that all fermion masses are naturally reproduced in a realistic way, since exotic quarks and standard model quarks are now decoupled. The scales associated to neutrino mass generation and the new gauge interactions could be accessible to the current LHC experiments.

Ii Model

The model is a modified version of the one presented in Ref. Valle and Vaquera-Araujo (2016). In the new setup, two extra scalar triplets are included and an auxiliary symmetry is implemented in order to decouple heavy quarks. The matter content and the transformation properties of the fields are contained in Table 1

Table 1: Matter content of the model, where , and .

In terms of the gauge group generators, the electric charge is expressed as

(1)

while lepton number is defined as

(2)

The symmetry breaking pattern is assumed to be of the form

(3)
(4)

with and .

The Yukawa interactions invariant under all the defining symmetries of the model are

(5)

In this setup, and are completely decoupled from the quark sector and are responsible for the neutrino mass generation, whereas and contribute exclusively to the quark masses. After spontaneous symmetry breaking, the above interactions lead to the following mass matrices for the fermion fields:

  • charged leptons:

  • neutrinos:

    (6)
  • up-type quarks, basis :

    (7)
  • down-type quarks, basis :

    (8)

Realistic quark masses can be readily obtained as the standard model and exotic sectors are independent by virtue of the symmetry. This also implies that the Cabibbo-Kobayashi-Maskawa matrix describing quark mixing is unitary.

Moreover, from the diagonalization of , the mass of the light neutrino in the one-family approximation is given by

(9)

Notice that the Dirac nature of neutrinos is ensured by the discrete group. In what follows, we specialize to the case and show that the smallness of the neutrino mass can be understood as emerging from a type II seesaw mechanism for Dirac neutrinos. This links the emergence of the small induced scale to the breaking of the global symmetry Valle and Vaquera-Araujo (2016).

The scalar potential of the model is

(10)

where the term breaks explicitly the symmetry. Assuming real vevs and parameters in the potential, the tadpole equations can be solved for the parameters , , and as follows

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Assuming that the bracketed factor in the rhs of Eq.(18) is nonvanishing, can be interpreted as an induced vev, whose smallness is related to the scale of symmetry breaking, characterized by , in the sense that in the limit , the symmetry of the potential is enhanced by .

We conclude this section with an estimate of the scales involved and the resulting light neutrino mass

(19)

Taking , , and quartic couplings of in Eq.(18), the resulting scale can accommodate easily a neutrino mass of without invoking tiny Yukawa couplings or large values for the vacuum expectation values . Finally, note that the light neutrino mass in Eq.(19) is mostly insensitive to the values of and , and therefore new physics in this model can lie within reach of the LHC experiments.

Iii Summary and discussion

Here we have proposed a realistic electroweak gauge model with an enlarged Higgs sector. The scheme leads to Dirac neutrinos, and allows for the natural implementation of a type II seesaw mechanism. The model substantially improves the one previously considered in Ref. Valle and Vaquera-Araujo (2016), in that here the small vacuum expectation values associated to neutrino mass generation are decoupled from the quark sector. The charged lepton and quark masses are reproduced in a realistic way, avoiding the mixing between exotic and standard model quarks. The energy scales characterizing neutrino mass generation and the new gauge interactions arising from the enlarged gauge symmetry could be accessible to the current LHC experiments.

Acknowledgements

This work is supported by the Spanish grants FPA2014-58183-P, Multidark CSD2009-00064, SEV-2014-0398 (MINECO) and PROMETEOII/2014/084 (Generalitat Valenciana). C.A.V-A. acknowledges support from CONACyT (Mexico), grant 251357.

References

  • Barabash (2010) A. S. Barabash, DAE Symp. Nucl. Phys. 55, I13 (2010), eprint 1101.4502.
  • Avignone et al. (2008) F. T. Avignone, III, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80, 481 (2008), eprint 0708.1033.
  • Blot (2016) S. Blot (NEMO-3, SuperNEMO), J. Phys. Conf. Ser. 718, 062006 (2016).
  • Gell-Mann et al. (1979) M. Gell-Mann, P. Ramond, and R. Slansky (1979), print-80-0576 (CERN).
  • Yanagida (KEK lectures, 1979) T. Yanagida (KEK lectures, 1979), ed. O. Sawada and A. Sugamoto (KEK, 1979).
  • Mohapatra and Senjanovic (1980) R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
  • Schechter and Valle (1980) J. Schechter and J. W. F. Valle, Phys. Rev. D22, 2227 (1980).
  • Schechter and Valle (1982) J. Schechter and J. W. F. Valle, Phys. Rev. D25, 774 (1982).
  • Lazarides et al. (1981) G. Lazarides, Q. Shafi, and C. Wetterich, Nucl. Phys. B181, 287 (1981).
  • Grimus et al. (2009) W. Grimus, L. Lavoura, and B. Radovcic, Phys. Lett. B674, 117 (2009), eprint 0902.2325.
  • Boucenna et al. (2014a) S. M. Boucenna, S. Morisi, and J. W. F. Valle, Adv. High Energy Phys. 2014, 831598 (2014a), eprint 1404.3751.
  • Klapdor-Kleingrothaus et al. (2004) Klapdor-Kleingrothaus et al., Phys. Lett. B586, 198 (2004), eprint hep-ph/0404088.
  • Peltoniemi et al. (1993) J. T. Peltoniemi, D. Tommasini, and J. W. F. Valle, Phys. Lett. B298, 383 (1993).
  • Chuliá et al. (2016) S. C. Chuliá, E. Ma, R. Srivastava, and J. W. F. Valle (2016), eprint 1606.04543.
  • Aranda et al. (2014) A. Aranda, C. Bonilla, S. Morisi, E. Peinado, and J. W. F. Valle, Phys. Rev. D89, 033001 (2014), eprint 1307.3553.
  • Arkani-Hamed et al. (2002) N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, and J. March-Russell, Phys. Rev. D65, 024032 (2002), eprint hep-ph/9811448.
  • Chen et al. (2016) P. Chen, G.-J. Ding, A. D. Rojas, C. A. Vaquera-Araujo, and J. W. F. Valle, JHEP 01, 007 (2016), eprint 1509.06683.
  • Ma et al. (2015) E. Ma, N. Pollard, R. Srivastava, and M. Zakeri, Phys. Lett. B750, 135 (2015), eprint 1507.03943.
  • Singer et al. (1980) M. Singer, J. W. F. Valle, and J. Schechter, Phys. Rev. D22, 738 (1980).
  • Tully and Joshi (2001) M. B. Tully and G. C. Joshi, Phys. Rev. D64, 011301 (2001), eprint hep-ph/0011172.
  • Kitabayashi and Yasue (2001a) T. Kitabayashi and M. Yasue, Phys. Rev. D63, 095002 (2001a), eprint hep-ph/0010087.
  • Kitabayashi and Yasue (2001b) T. Kitabayashi and M. Yasue, Phys. Rev. D63, 095006 (2001b).
  • Montero et al. (2002) J. C. Montero, C. A. De S. Pires, and V. Pleitez, Phys. Rev. D65, 095001 (2002), eprint hep-ph/0112246.
  • Chang and Long (2006) D. Chang and H. N. Long, Phys. Rev. D73, 053006 (2006), eprint hep-ph/0603098.
  • Dong et al. (2007) P. V. Dong, H. N. Long, and D. V. Soa, Phys. Rev. D75, 073006 (2007), eprint hep-ph/0610381.
  • Mizukoshi et al. (2011) J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, and P. S. Rodrigues da Silva, Phys. Rev. D83, 065024 (2011), eprint 1010.4097.
  • Boucenna et al. (2014b) S. M. Boucenna, S. Morisi, and J. W. F. Valle, Phys. Rev. D90, 013005 (2014b), eprint 1405.2332.
  • Boucenna et al. (2015a) S. M. Boucenna, R. M. Fonseca, F. Gonzalez-Canales, and J. W. F. Valle, Phys. Rev. D91, 031702 (2015a), eprint 1411.0566.
  • Okada et al. (2016) H. Okada, N. Okada, and Y. Orikasa, Phys. Rev. D93, 073006 (2016), eprint 1504.01204.
  • Boucenna et al. (2015b) S. M. Boucenna, J. W. F. Valle, and A. Vicente, Phys. Rev. D92, 053001 (2015b), eprint 1502.07546.
  • Vien et al. (2016) V. V. Vien, A. E. C. Hernández, and H. N. Long (2016), eprint 1601.03300.
  • Valle and Vaquera-Araujo (2016) J. W. F. Valle and C. A. Vaquera-Araujo, Phys. Lett. B755, 363 (2016), eprint 1601.05237.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
305116
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description