Real-time time-dependent density functional theory using higher order finite element methods

Real-time time-dependent density functional theory using higher order finite element methods

Bikash Kanungo Vikram Gavini Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

We present a computationally efficient approach to solve the time-dependent Kohn-Sham equations in real-time using higher-order finite-element spatial discretization, applicable to both pseudopotential and all-electron calculations. To this end, we develop an a priori mesh adaption technique, based on the semi-discrete (discrete in space but continuous in time) error estimate on the time-dependent Kohn-Sham orbitals, to construct a close to optimal finite-element discretization. Subsequently, we obtain the full-discrete error estimate to guide our choice of the time-step. We employ spectral finite-elements along with Gauss-Legendre-Lobatto quadrature to render the overlap matrix diagonal, thereby simplifying the inversion of the overlap matrix that features in the evaluation of the discrete time-evolution operator. We use the second-order Magnus operator as the time-evolution operator in all our calculations. Furthermore, the action of the discrete Magnus operator, expressed as exponential of a matrix, on the Kohn-Sham orbitals is obtained efficiently through an adaptive Lanczos iteration. We observe close to optimal rates of convergence of the dipole moment with respect to spatial and temporal discretization, for both pseudopotential and all-electron calculations. We demonstrate a staggering 100-fold reduction in the computational time afforded by higher-order finite-elements over linear finite-elements, for both pseudopotential and all-electron calculations. We present comparative studies, in terms of accuracy and efficiency, of our approach against finite-difference based discretization for pseudopotential calculations, and demonstrate significant computational savings when compared to the finite-difference method. We also demonstrate the competence of higher-order finite-elements for all-electron benchmark systems. Lastly, we observe good parallel scalability of the proposed method on many hundreds of processors.

Time-dependent density functional theory; Finite-elements; Higher-order; Mesh adaption; Magnus propagator; Scalability

1 Introduction



2 Time-dependent Kohn-Sham Equations



3 Error estimates and a priori mesh adaptation



4 Numerical Implementation



5 Results



6 Summary



7 Acknowledgements

We are grateful for the support of Army Research Office through Grant number W911NF-15-1-0158, under the auspices of which the mathematical formulation, error analysis and numerical implementation was developed, and the pseudopotential studies were conducted. We also gratefully acknowledge the support from the Department of Energy, Office of Basic Energy Sciences, under grant number DE-SC0017380, for supporting the all-electron studies. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant number ACI-1053575. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge the Advanced Research Computing at University of Michigan for providing additional computing resources through the Flux computing platform, part of which were performed using the computing cluster constructed from the DURIP Grant number W911NF-18-1-0242.


  • (1) E. Runge, E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett. 52 (1984) 997–1000.
  • (2) W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) 1133–1138.
  • (3) H. Appel, E. K. U. Gross, K. Burke, Excitations in time-dependent density-functional theory, Phys. Rev. Lett. 90 (2003) 043005.
  • (4) X. Gonze, J.-P. Vigneron, Density-functional approach to nonlinear-response coefficients of solids, Phys. Rev. B 39 (1989) 13120–13128.
  • (5) S. J. A. van Gisbergen, J. G. Snijders, E. J. Baerends, Time-dependent density functional results for the dynamic hyperpolarizability of , Phys. Rev. Lett. 78 (1997) 3097–3100.
  • (6) G. Stefanucci, C.-O. Almbladh, Time-dependent quantum transport: An exact formulation based on TDDFT, EPL 67 (2004) 14.
  • (7) S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E. K. U. Gross, Time-dependent quantum transport: A practical scheme using density functional theory, Phys. Rev. B 72 (2005) 035308.
  • (8) C. Jamorski Jödicke, H. P. Lüthi, Time-dependent density functional theory (TDDFT) study of the excited charge-transfer state formation of a series of aromatic donor–acceptor systems, J. Am. Chem. Soc. 125 (2003) 252–264.
  • (9) T. Stein, L. Kronik, R. Baer, Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory, J. Am. Chem. Soc. 131 (2009) 2818–2820.
  • (10) T. Burnus, M. A. L. Marques, E. K. U. Gross, Time-dependent electron localization function, Phys. Rev. A 71 (2005) 010501.
  • (11) X.-M. Tong, S.-I. Chu, Time-dependent density-functional theory for strong-field multiphoton processes: Application to the study of the role of dynamical electron correlation in multiple high-order harmonic generation, Phys. Rev. A 57 (1998) 452–461.
  • (12) X.-M. Tong, S.-I. Chu, Multiphoton ionization and high-order harmonic generation of He, Ne, and Ar atoms in intense pulsed laser fields: Self-interaction-free time-dependent density-functional theoretical approach, Phys. Rev. A 64 (2001) 013417.
  • (13) D. A. Telnov, S.-I. Chu, Effects of electron structure and multielectron dynamical response on strong-field multiphoton ionization of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional-theory approach, Phys. Rev. A 79 (2009) 041401.
  • (14) M. E. Casida, Time-dependent density functional response theory for molecules, in: Recent Advances In Density Functional Methods: (Part I), World Scientific, 1995.
  • (15) M. Petersilka, U. J. Gossmann, E. K. U. Gross, Excitation energies from time-dependent density-functional theory, Phys. Rev. Lett. 76 1212–1215.
  • (16) J. Theilhaber, Ab initio simulations of sodium using time-dependent density-functional theory, Phys. Rev. B 46 (1992) 12990–13003.
  • (17) K. Yabana, G. F. Bertsch, Time-dependent local-density approximation in real time, Phys. Rev. B 54 (1996) 4484–4487.
  • (18) R. Baer, R. Gould, A method for ab initio nonlinear electron-density evolution, J. Chem. Phys. 114 (2001) 3385–3392.
  • (19) G. Vignale, Center of mass and relative motion in time dependent density functional theory, Phys. Rev. Lett. 74 (1995) 3233–3236.
  • (20) N. T. Maitra, K. Burke, C. Woodward, Memory in time-dependent density functional theory, Phys. Rev. Lett. 89 (2002) 023002.
  • (21) M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross, Time-dependent density functional theory, Springer, 2006.
  • (22) N. T. Maitra, K. Burke, Demonstration of initial-state dependence in time-dependent density-functional theory, Phys. Rev. A 63 (2001) 042501.
  • (23) F. Gygi, Architecture of qbox: A scalable first-principles molecular dynamics code, IBM J. Res. Dev. 52 (2008) 137–144.
  • (24) A. Schleife, E. W. Draeger, Y. Kanai, A. A. Correa, Plane-wave pseudopotential implementation of explicit integrators for time-dependent kohn-sham equations in large-scale simulations, J. Chem. Phys. 137 (2012) 22A546.
  • (25) J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, The siesta method for ab initio order-n materials simulation, J. Phys.: Condens. Matter 14 (2002) 2745.
  • (26) Y. Takimoto, F. D. Vila, J. J. Rehr, Real-time time-dependent density functional theory approach for frequency-dependent nonlinear optical response in photonic molecules, J. Chem. Phys. 127 (2007) 154114.
  • (27) M. Kuisma, A. Sakko, T. P. Rossi, A. H. Larsen, J. Enkovaara, L. Lehtovaara, T. T. Rantala, Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations, Phys. Rev. B 91 (2015) 115431.
  • (28) M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun. 181 (2010) 1477–1489.
  • (29) K. Lopata, N. Govind, Modeling fast electron dynamics with real-time time-dependent density functional theory: application to small molecules and chromophores, J. Chem. Theory Comput. 7 (2011) 1344–1355.
  • (30) A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M. A. L. Marques, E. K. U. Gross, A. Rubio, octopus: a tool for the application of time-dependent density functional theory, Phys. Status Solidi B 243 (11) 2465–2488.
  • (31) J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71 (2005) 035109.
  • (32) M. Walter, H. Häkkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, J. J. Mortensen, Time-dependent density-functional theory in the projector augmented-wave method, J. Chem. Phys. 128 (2008) 244101.
  • (33) S. Brenner, R. Scott, The mathematical theory of finite element methods, Springer, 2007.
  • (34) T. J. R. Hughes, The finite element method: linear static and dynamic finite element analysis, Courier Corporation, 2012.
  • (35) S. R. White, J. W. Wilkins, M. P. Teter, Finite-element method for electronic structure, Phys. Rev. B 39 (1989) 5819–5833.
  • (36) E. Tsuchida, M. Tsukada, Large-scale electronic-structure calculations based on the adaptive finite-element method, J. Phys. Soc. Jpn. 67 (11) (1998) 3844–3858.
  • (37) J. E. Pask, B. M. Klein, C. Y. Fong, P. A. Sterne, Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach, Phys. Rev. B 59 (1999) 12352–12358.
  • (38) J. Pask, B. Klein, P. Sterne, C. Fong, Finite-element methods in electronic-structure theory, Comput Phys Commun 135 (2001) 1–34.
  • (39) J. E. Pask, P. A. Sterne, Finite element methods in ab initio electronic structure calculations, Model. Simul. Mater. Sci. Eng. 13 (2005) R71.
  • (40) J.-L. Fattebert, R. D. Hornung, A. M. Wissink, Finite element approach for density functional theory calculations on locally-refined meshes, J. Comput. Phys. 223 (2007) 759–773.
  • (41) D. Zhang, L. Shen, A. Zhou, X.-G. Gong, Finite element method for solving Kohn–Sham equations based on self-adaptive tetrahedral mesh, Phys. Lett. A 372 (2008) 5071–5076.
  • (42) P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, M. Ortiz, Non-periodic finite-element formulation of Kohn–Sham density functional theory, J. Mech. Phys. Solids 58 (2010) 256–280.
  • (43) J. Fang, X. Gao, A. Zhou, A Kohn–Sham equation solver based on hexahedral finite elements, J. Comput. Phys. 231 (2012) 3166–3180.
  • (44) G. Bao, G. Hu, D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, J. Comput. Phys. 231 (2012) 4967–4979.
  • (45) P. Motamarri, M. R. Nowak, K. Leiter, J. Knap, V. Gavini, Higher-order adaptive finite-element methods for Kohn–Sham density functional theory, J. Comput. Phys. 253 (2013) 308–343.
  • (46) P. Motamarri, V. Gavini, Configurational forces in electronic structure calculations using Kohn-Sham density functional theory, Phys. Rev. B 97 (2018) 165132.
  • (47) S. Yamakawa, S.-a. Hyodo, Gaussian finite-element mixed-basis method for electronic structure calculations, Phys. Rev. B 71 (2005) 035113.
  • (48) E. J. Bylaska, M. Holst, J. H. Weare, Adaptive finite element method for solving the exact Kohn–Sham equation of density functional theory, J. Chem. Theory Comput. 5 (2009) 937–948.
  • (49) L. Lehtovaara, V. Havu, M. Puska, All-electron density functional theory and time-dependent density functional theory with high-order finite elements, J. Chem. Phys. 131 (2009) 054103.
  • (50) V. Schauer, C. Linder, All-electron Kohn–Sham density functional theory on hierarchic finite element spaces, J. Comput. Phys. 250 (2013) 644–664.
  • (51) P. Motamarri, V. Gavini, Subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization, Phys. Rev. B 90 (2014) 115127.
  • (52) B. Kanungo, V. Gavini, Large-scale all-electron density functional theory calculations using an enriched finite-element basis, Phys. Rev. B 95 (2017) 035112.
  • (53) P. Motamarri, V. Gavini, K. Bhattacharya, M. Ortiz, Spectrum-splitting approach for fermi-operator expansion in all-electron Kohn-Sham DFT calculations, Phys. Rev. B 95 (2017) 035111.
  • (54) L. Lehtovaara, V. Havu, M. Puska, All-electron time-dependent density functional theory with finite elements: Time-propagation approach, J. Chem. Phys. 135 (2011) 154104.
  • (55) G. Bao, G. Hu, D. Liu, Real-time adaptive finite element solution of time-dependent Kohn–Sham equation, J. Comput. Phys. 281 (2015) 743–758.
  • (56) B. Hermansson, D. Yevick, Finite-element approach to band-structure analysis, Phys. Rev. B 33 (1986) 7241.
  • (57) P. F. Batcho, Computational method for general multicenter electronic structure calculations, Phys. Rev. E 61 (2000) 7169–7183.
  • (58) P. Motamarri, M. Iyer, J. Knap, V. Gavini, Higher-order adaptive finite-element methods for orbital-free density functional theory, J. Comput. Phys. 231 (2012) 6596–6621.
  • (59) Z. H. Levine, J. W. Wilkins, An energy-minimizing mesh for the schrödinger equation, J. Comput. Phys. 83 (1989) 361–372.
  • (60) R. Radovitzky, M. Ortiz, Error estimation and adaptive meshing in strongly nonlinear dynamic problems, Comput. Methods Appl. Mech. Eng. 172 (1999) 203–240.
  • (61) T. Ishida, K. Ohno, On the asymptotic behavior of hartree-fock orbitals, Theor. Chim. Acta 81 (1992) 355–364.
  • (62) O. Karakashian, C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comput. 67 (1998) 479–499.
  • (63) O. Karakashian, C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807.
  • (64) A. Ávila, A. Meister, M. Steigemann, An adaptive Galerkin method for the time-dependent complex Schrödinger equation, Appl. Numer. Math. 121 (2017) 149–169.
  • (65) J. Wang, A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J. Sci. Comput. 60 (2014) 390–407.
  • (66) D. Shi, X. Liao, L. Wang, Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation, Appl. Math. Comput. 289 (2016) 298–310.
  • (67) D. Shi, J. Wang, Unconditional superconvergence analysis of a Crank–Nicolson Galerkin FEM for nonlinear Schrödinger equation, J. Sci. Comput. 72 (2017) 1093–1118.
  • (68) W. Auzinger, T. Kassebacher, O. Koch, M. Thalhammer, Convergence of a Strang splitting finite element discretization for the Schrödinger–Poisson equation, ESAIM Math. Model Numer. Anal. 51 (2017) 1245–1278.
  • (69) H. Zhang, J. Wang, Superconvergence analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, Numer. Methods Part. D. E. 34 (2018) 799–820.
  • (70) E. K. U. Gross, W. Kohn, Local density-functional theory of frequency-dependent linear response, Phys. Rev. Lett. 55 (1985) 2850–2852.
  • (71) D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566–569.
  • (72) L. Kleinman, D. M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett. 48 (1982) 1425–1428.
  • (73) P. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
  • (74) S. Blanes, F. Casas, J. Oteo, J. Ros, The magnus expansion and some of its applications, Phys. Rep. 470 (2009) 151–238.
  • (75) M. Hochbruck, C. Lubich, On magnus integrators for time-dependent schrödinger equations, SIAM J. Numer. Anal. 41 (2003) 945–963.
  • (76) K. Bathe, Finite Element Procedures, Prentice Hall International, 1996.
  • (77) J. P. Boyd, Chebyshev and Fourier spectral methods, Courier Corporation, 2001.
  • (78) A. Castro, M. A. Marques, A. Rubio, Propagators for the time-dependent Kohn–Sham equations, J. Chem. Phys. 121 (2004) 3425–3433.
  • (79) L. N. Trefethen, D. Bau III, Numerical linear algebra, Philadelphia, 1997.
  • (80) M. Hochbruck, C. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998) 1552–1574.
  • (81) C.-L. Cheng, J. S. Evans, T. Van Voorhis, Simulating molecular conductance using real-time density functional theory, Phys. Rev. B 74 (2006) 155112.
  • (82) N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993–2006.
  • (83) M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Comput. Phys. Commun. 119 (1999) 67–98.
  • (84) T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, Rev. Mod. Phys. 72 (2000) 545.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description