Quintessence Saves Higgs Instability

Quintessence Saves Higgs Instability

Chengcheng Han, Shi Pi and Misao Sasaki
Kavli Institute for the Physics and Mathematics of the Universe (WPI), Chiba 277-8583, Japan
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan
July 1, 2019
Abstract

We study a model where quintessence potential coupled to Higgs potential. We calculate the evolution of the quintessence, and track the running of the effective Higgs self coupling. We find it slightly larger than that of the standard model in the past. Requiring the electroweak vacuum to be absolutely stable in inflationary era, we find a lower bound , where the uncertainty is mainly from the measurement of the top quark mass. This lower bound, together with the upper bound from the observation for dark energy , narrows down the parameter space and makes it possible to test this model in the near future. Interestingly, the bound on , if actually shown to be the case by observation, supports the recently proposed Swampland Conjecture.

pacs:
preprint: IPMU18-0150

Introduction  The accelerated expansion of our universe may be the most important discovery in cosmology in the last 30 years Riess:1998cb (); Perlmutter:1998np (). This requires that the energy density of the universe is dominated by some kind of dark energy with equation of motion around . Currently whether the dark energy is a cosmological constant or a slow-rolling scalar field dubbed “quintessence” is still not clear, and more accurate observational data are expected. A small cosmological constant may be realized in Type IIB string theory by KKLT construction Kachru:2003aw (); Kachru:2003sx (). A quintessence field is a scalar field minimally coupled to gravity with a relatively flat potential, and the slow-rolling can drive the universe to accelerateCopeland:1997et (); Zlatev:1998tr (); Ratra:1987rm (). A typical quintessence potential of has been studied earlier in Ratra:1987rm (); Wetterich:1987fm (); Wetterich:1994bg (); Lucchin:1984yf (); Halliwell:1986ja (); Ferreira:1997au (); Ferreira:1997hj (); Copeland:1997et (); Caldwell:1997ii (); Tsujikawa:2013fta (), and analyzed recently to constrain the parameter by the recent observational data Agrawal:2018own (); Heisenberg:2018yae (); Akrami:2018ylq (); Heisenberg:2018rdu (); Cicoli:2018kdo (); Marsh:2018kub (); Murayama:2018lie ().

There is also an accelerated expansion of the universe in the past, the primordial inflation  Brout:1977ix (); Sato:1980yn (); Guth:1980zm (); Linde:1981mu (); Albrecht:1982wi (). During inflation, the Hubble parameter is nearly a constant of order GeV, and any scalar field whose mass is smaller than will have quantum fluctuations of order . The rapidly expanding universe can bring the quantum fluctuations generated deep inside the Hubble horizon to cosmological scales, which seeds as the initial condition for the primordial scalar and tensor perturbations we need to explain the cosmic microwave background anisotropy and the large scale structure today Starobinsky:1979ty (); Mukhanov:1981xt ().

The only scalar field we have observed in Nature is the Higgs boson Englert:1964et (); Higgs:1964pj (). The self coupling of Higgs boson receives quantum corrections from itself and the other standard model (SM) particles Sher:1988mj (); Degrassi:2012ry (); EliasMiro:2011aa (). According to the best-fit observational data of the Higgs boson mass Aad:2015zhl () and the top quark mass ATLAS:2014wva (), the Higgs self coupling would become negative at an energy scale around , with absolute stable electroweak (EW) vacuum excluded at confidence level (CL). This may raise a serious problem during inflation since the quantum fluctuations of the Higgs boson becomes very large to render the probability of ending up in the true vacuum substantially high, which means our universe is a real miracle.

Here in this paper, we study a recently proposed model of quintessence which coupled to the Higgs boson (Denef:2018etk ()

(1)

where , is the Higgs vacuum expectation value (VEV), is a coupling constant, is the current effective cosmological constant, and we set the value of the present quintessence field to be 0 for convenience. It can pass the test of equivalence principle according to the discussions in Denef:2018etk (), and it is difficult to be detected in collider experiments since the interactions are suppressed by the Planck mass. Here in this paper our main concern is the Higgs instability during inflation. We compute the correction to the Higgs self coupling from the evolution of the dilaton-like coefficient back in time up to the inflation era, and consider the condition on for the Higgs stability. Requiring that the Higgs potential to be absolutely stable during inflation, we obtain a lower bound of . We find it it detectable in the near future.

Higgs instability  The running of the Higgs self coupling is determined by the renormalization group equation (RGE),

(2)

where is the top quark Yukawa coupling, and are the gauge couplings of and , respectively. The top Yukawa coupling would dominate the running, which decreases with the energy scale . The current best-fit data for the Higgs boson mass Aad:2015zhl () and the top quark mass ATLAS:2014wva () indicates that the self coupling becomes negative above an instability scale at around GeV. Since the lifetime of the metastable EW vacuum is much longer than the age of our universe, we do not have to worry about the doomsday of our current universe. However, during inflation, the quantum fluctuation of Higgs boson is of order , and our patch of the universe will be kicked out to the true vacuum with negative energy density just in one -fold. There are many papers discussing this issue Espinosa:2007qp (); EliasMiro:2012ay (); Lebedev:2012sy (); Fairbairn:2014zia (); Branchina:2014usa (); Bezrukov:2014ipa (); Herranen:2014cua (); Hook:2014uia (); Kamada:2014ufa (); Espinosa:2015qea (); Ballesteros:2015iua (); George:2015nza (); Gong:2015gxf (); Kawasaki:2016ijp (); Ema:2016ehh (); East:2016anr (); Saha:2016ozn (); Espinosa:2017sgp (); Espinosa:2018eve (), including introducing some heavy scalar, or requiring a high reheating temperature, to save our universe from the instability. Here we try to solve this problem in the framework of the quintessence-Higgs coupling (1).

In this model, the quintessence couples to the Higgs sector and effectively changes its self coupling as , while leaving the other SM interactions intact. At present the Higgs sector is the same as the standard model. However, in the early universe, the quintessence would have had a larger negative value, which would enhance the value of the Higgs self coupling. To discuss the Higgs stability at high energy scales, when , we define the effective potential as

(3)

where the renormalization scale is set to be . can be written as

(4)

Where is the value of at the renormalization scale . It is derived from the RGE running of with the initial value . And where is the anomalous dimension of the Higgs field. , are the one-loop and two-loop corrections of , respectively. In our calculation, we only count the effects from , , , and , and the Higgs mass and top mass are fixed to be 125 GeV and 173.34 GeV, respectively. The initial value of these parameters is set to be , , , , and  Buttazzo:2013uya () .

In Figure 1 we plot the RGE running of at two loops including the running of the three gauge couplings and the top quark Yukawa coupling for different values of . Note that here we ignore the interactions between and Higgs because it is suppressed by Planck scale. It clearly shows when , the electroweak vacuum becomes absolutely stable.

Figure 1: The 2 loop RGE running of with different values, where we fixed top mass as the central value 173.34 GeV. The gray solid, blue dashed, and red dotted curves represents , , and , respectively. When during inflation is fixed as is shown in (7), the curves correspond to , , and , respectively.

This increase of the self coupling by the quintessence factor seems easy to realize in the early universe since runs from a negative value. The key point is how large this enhancement could be when we trace back the evolution of quintessence to the era of inflation, and what range of can make the EW vacuum absolutely stable during inflation.

Evolution of Quintessence  Now we study the evolution of the quintessence field in the model (1) from the era of inflation until today. The Friedmann equation and the equation of motion for are

(5)
(6)

where , , and are the energy density of the radiation, non-relativistic matter, and dark energy at present, normalized by the current critical density . A full analysis of this set of differential equations in the normal quintessence model with potential can be found in Ferreira:1997au (); Ferreira:1997hj (); Copeland:1997et (); Tsujikawa:2013fta (). The evolution of this quintessence field may be described by an attractor solution, which is slow-roll in the dark energy dominated universe, and ultra-slow-roll in the universe dominated by matter or radiation. We can justify it after solving (6) under this assumption. To take into account the contribution of the Higgs potential, we approximate it by a step function which jumps from to at the EW symmetry breaking scale as one goes back in time. The value of in the very early universe, i.e., at times well before the EW phase transition, is found to be given by

(7)

where is the effective radiation degrees of freedom at the EW scale Kolb:1990vq (); Husdal:2016haj (). The leading order term is from the recent dark energy dominated universe. Its main correction from the early universe comes from near the EW phase transition, while all the other contributions are highly suppressed like thus completely negligible. This should be understood as the initial condition of the quintessence field during inflation. During inflation, (7) contributes to the effective Higgs self coupling, which may prevent it from being negative and make it absolutely stable as is discussed earlier. Referring to our result (7), we know the EW vacuum will be absolutely stable if . Comparing this with the initial value of given by (7), we find that if satisfies

(8)

the electroweak vacuum will be absolutely stable before the energy scale reaches , especially during inflation. The uncertainty in (8) originates from that of the measurement of the top quark mass, and we have used from the Planck 2018 data Aghanim:2018eyx (). This result is robust in the sense that it is independent of the physics of the early universe, and relies only on the recent expansion history after matter-radiation equality.

Conclusion According to the quantum corrections from all the SM particles, especially from the top quark, the Higgs self coupling becomes negative at around . The Higgs instability is a serious problem during the inflationary era in the early universe, since the quantum fluctuations of the Higgs boson could have easily exceeded the instability scale. We find that in the recently proposed quintessence model where the quintessence field is coupled to Higgs boson as , this problem can be solved. This is because the evolution of can make slightly larger in the early universe, which can contribute to the effective Higgs self coupling. By requiring that the Higgs EW vacuum is absolutely stable during inflation, we derive a lower bound from the current observational data of dark energy density, matter density, the Higgs mass, the Higgs VEV, and the top quark mass, which is independent of the other parameters and of the physics in the early universe such as phase transitions and inflation.

The lower bound for , together with the upper bound recently obtained by the observational constraints in Agrawal:2018own (); Heisenberg:2018yae (); Akrami:2018ylq (); Heisenberg:2018rdu (), at 2 CL, sets a testable parameter space for the model (1). With Stage-4 surveys such as DESI, LSST, Euclid Abell:2009aa (); Laureijs:2011gra (); Amendola:2012ys (); Levi:2013gra (), it is possible to constrain up to within a decade or so. This means that whether the model (1) can solve the Higgs instability problem could be tested in the near future.

Recently, the “Swampland Conjecture” is proposed Brennan:2017rbf (); Obied:2018sgi (), which states that all the scalar fields consistent with quantum gravity should satisfy , with being an constant. In the current model (1), we have . Thus the Swampland Conjecture implies . For recent discussions on the Swampland Conjecture and its applications to cosmology, see Agrawal:2018mkd (); Agrawal:2018own (); Andriot:2018wzk (); Dvali:2018fqu (); Banerjee:2018qey (); Aalsma:2018pll (); Achucarro:2018vey (); Garg:2018reu (); Lehners:2018vgi (); Kehagias:2018uem (); Dias:2018ngv (); Colgain:2018wgk (); Brandenberger:2018fdd (); Ghalee:2018qeo (); Roupec:2018mbn (); Andriot:2018ept (); Ghosh:2018fbx (); Matsui:2018bsy (); Ben-Dayan:2018mhe (); Chiang:2018jdg (); Heisenberg:2018rdu (); Damian:2018tlf (); Conlon:2018eyr (); Kinney:2018nny (); Dasgupta:2018rtp (); Cicoli:2018kdo (); Kachru:2018aqn (); Akrami:2018ylq (); Nakai:2018hhf (); Cho:2018alk (); Heisenberg:2018yae (); Murayama:2018lie (); Marsh:2018kub (); Brahma:2018hrd (); Choi:2018rze (); Quintin:2018loc (); Das:2018hqy (); Danielsson:2018qpa (); Wang:2018duq (). Very interestingly, our result (8) implies that the Higgs stability and the Swampland Conjecture are satisfied at the same time if . Apparently if the Swampland Conjecture is to be satisfied, it should be so during inflation as well. The Swampland Conjecture for inflation has been discussed in several recent papers, including the cases of multi-filed inflation Achucarro:2018vey (), the curvaton scenario Kehagias:2018uem (), -inflation Kinney:2018nny (), a non-Bunch-Davies vacua Brahma:2018hrd (), and warm inflation Das:2018hqy (). It is therefore not only interesting but also important to see if there exists any consistent model of inflation that smoothly matches to the model considered here. We will leave this issue for future studies.

Acknowledgment  We thank Shinji Mukohyama and Masahito Yamazaki for useful discussions. This work was supported by the MEXT/JSPS KAKENHI Nos. 15H05888 and 15K21733, and by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.

References

  • (1) A. G. Riess et al. [Supernova Search Team], “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998) doi:10.1086/300499 [astro-ph/9805201].
  • (2) S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of Omega and Lambda from 42 high redshift supernovae,” Astrophys. J. 517, 565 (1999) doi:10.1086/307221 [astro-ph/9812133].
  • (3) S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68, 046005 (2003) doi:10.1103/PhysRevD.68.046005 [hep-th/0301240].
  • (4) S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P. McAllister and S. P. Trivedi, “Towards inflation in string theory,” JCAP 0310, 013 (2003) doi:10.1088/1475-7516/2003/10/013 [hep-th/0308055].
  • (5) E. J. Copeland, A. R. Liddle and D. Wands, “Exponential potentials and cosmological scaling solutions,” Phys. Rev. D 57, 4686 (1998) doi:10.1103/PhysRevD.57.4686 [gr-qc/9711068].
  • (6) I. Zlatev, L. M. Wang and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett. 82, 896 (1999) doi:10.1103/PhysRevLett.82.896 [astro-ph/9807002].
  • (7) B. Ratra and P. J. E. Peebles, “Cosmological Consequences of a Rolling Homogeneous Scalar Field,” Phys. Rev. D 37, 3406 (1988). doi:10.1103/PhysRevD.37.3406
  • (8) R. R. Caldwell, R. Dave and P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state,” Phys. Rev. Lett. 80, 1582 (1998) doi:10.1103/PhysRevLett.80.1582 [astro-ph/9708069].
  • (9) C. Wetterich, “Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B 302, 668 (1988) doi:10.1016/0550-3213(88)90193-9 [arXiv:1711.03844 [hep-th]].
  • (10) C. Wetterich, “The Cosmon model for an asymptotically vanishing time dependent cosmological ’constant’,” Astron. Astrophys. 301, 321 (1995) [hep-th/9408025].
  • (11) F. Lucchin and S. Matarrese, “Power Law Inflation,” Phys. Rev. D 32, 1316 (1985). doi:10.1103/PhysRevD.32.1316
  • (12) J. J. Halliwell, “Scalar Fields in Cosmology with an Exponential Potential,” Phys. Lett. B 185, 341 (1987). doi:10.1016/0370-2693(87)91011-2
  • (13) P. G. Ferreira and M. Joyce, “Structure formation with a selftuning scalar field,” Phys. Rev. Lett. 79 (1997) 4740 doi:10.1103/PhysRevLett.79.4740 [astro-ph/9707286].
  • (14) P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field,” Phys. Rev. D 58, 023503 (1998) doi:10.1103/PhysRevD.58.023503 [astro-ph/9711102].
  • (15) S. Tsujikawa, “Quintessence: A Review,” Class. Quant. Grav. 30, 214003 (2013) doi:10.1088/0264-9381/30/21/214003 [arXiv:1304.1961 [gr-qc]].
  • (16) P. Agrawal, G. Obied, P. J. Steinhardt and C. Vafa, “On the Cosmological Implications of the String Swampland,” Phys. Lett. B 784, 271 (2018) doi:10.1016/j.physletb.2018.07.040 [arXiv:1806.09718 [hep-th]].
  • (17) L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, “Dark Energy in the Swampland,” arXiv:1808.02877 [astro-ph.CO].
  • (18) M. Cicoli, S. de Alwis, A. Maharana, F. Muia and F. Quevedo, “De Sitter vs Quintessence in String Theory,” arXiv:1808.08967 [hep-th].
  • (19) Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, “The landscape, the swampland and the era of precision cosmology,” arXiv:1808.09440 [hep-th].
  • (20) L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, “Dark Energy in the Swampland II,” arXiv:1809.00154 [astro-ph.CO].
  • (21) H. Murayama, M. Yamazaki and T. T. Yanagida, “Do We Live in the Swampland?,” arXiv:1809.00478 [hep-th].
  • (22) M. C. D. Marsh, “The Swampland, Quintessence and the Vacuum Energy,” arXiv:1809.00726 [hep-th].
  • (23) R. Brout, F. Englert and E. Gunzig, “The Creation of the Universe as a Quantum Phenomenon,” Annals Phys. 115, 78 (1978).
  • (24) K. Sato, “First Order Phase Transition of a Vacuum and Expansion of the Universe,” Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
  • (25) A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems,” Phys. Rev. D 23, 347 (1981) ;
  • (26) A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. B 108, 389 (1982) ;
  • (27) A. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett. 48, 1220 (1982).
  • (28) A. A. Starobinsky, JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)].
  • (29) V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)].
  • (30) F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13, 321 (1964). doi:10.1103/PhysRevLett.13.321
  • (31) P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13, 508 (1964). doi:10.1103/PhysRevLett.13.508
  • (32) M. Sher, “Electroweak Higgs Potentials and Vacuum Stability,” Phys. Rept. 179, 273 (1989).
  • (33) G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO,” JHEP 1208, 098 (2012) [arXiv:1205.6497 [hep-ph]].
  • (34) J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, “Higgs mass implications on the stability of the electroweak vacuum,” Phys. Lett. B 709, 222 (2012) [arXiv:1112.3022 [hep-ph]].
  • (35) G. Aad et al. [ATLAS and CMS Collaborations], “Combined Measurement of the Higgs Boson Mass in Collisions at and 8 TeV with the ATLAS and CMS Experiments,” Phys. Rev. Lett. 114, 191803 (2015) [arXiv:1503.07589 [hep-ex]].
  • (36) [ATLAS and CDF and CMS and D0 Collaborations], “First combination of Tevatron and LHC measurements of the top-quark mass,” arXiv:1403.4427 [hep-ex].
  • (37) F. Denef, A. Hebecker and T. Wrase, “The dS swampland conjecture and the Higgs potential,” arXiv:1807.06581 [hep-th].
  • (38) J. R. Espinosa, G. F. Giudice and A. Riotto, “Cosmological implications of the Higgs mass measurement,” JCAP 0805, 002 (2008) [arXiv:0710.2484 [hep-ph]] ;
  • (39) J. Elias-Miro, J. R. Espinosa, G. F. Giudice, H. M. Lee and A. Strumia, “Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect,” JHEP 1206, 031 (2012) [arXiv:1203.0237 [hep-ph]].
  • (40) O. Lebedev and A. Westphal, “Metastable Electroweak Vacuum: Implications for Inflation,” Phys. Lett. B 719, 415 (2013) [arXiv:1210.6987 [hep-ph]]. See also EliasMiro:2012ay (); Fairbairn:2014zia ().
  • (41) M. Fairbairn and R. Hogan, “Electroweak Vacuum Stability in light of BICEP2,” Phys. Rev. Lett. 112, 201801 (2014) [arXiv:1403.6786 [hep-ph]].
  • (42) V. Branchina, E. Messina and A. Platania, “Top mass determination, Higgs inflation, and vacuum stability,” JHEP 1409, 182 (2014) doi:10.1007/JHEP09(2014)182 [arXiv:1407.4112 [hep-ph]].
  • (43) F. Bezrukov, J. Rubio and M. Shaposhnikov, “Living beyond the edge: Higgs inflation and vacuum metastability,” Phys. Rev. D 92, no. 8, 083512 (2015) [arXiv:1412.3811 [hep-ph]].
  • (44) M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, “Spacetime curvature and the Higgs stability during inflation,” Phys. Rev. Lett. 113, no. 21, 211102 (2014) [arXiv:1407.3141 [hep-ph]].
  • (45) A. Hook, J. Kearney, B. Shakya and K. M. Zurek, “Probable or Improbable Universe? Correlating Electroweak Vacuum Instability with the Scale of Inflation,” JHEP 1501, 061 (2015) [arXiv:1404.5953 [hep-ph]].
  • (46) K. Kamada, “Inflationary cosmology and the standard model Higgs with a small Hubble induced mass,” Phys. Lett. B 742, 126 (2015) [arXiv:1409.5078 [hep-ph]].
  • (47) J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L. Senatore, A. Strumia and N. Tetradis, “The cosmological Higgstory of the vacuum instability,” JHEP 1509, 174 (2015) [arXiv:1505.04825 [hep-ph]].
  • (48) G. Ballesteros and C. Tamarit, “Higgs portal valleys, stability and inflation,” JHEP 1509, 210 (2015) doi:10.1007/JHEP09(2015)210 [arXiv:1505.07476 [hep-ph]].
  • (49) D. P. George, S. Mooij and M. Postma, “Quantum corrections in Higgs inflation: the Standard Model case,” JCAP 1604, no. 04, 006 (2016) doi:10.1088/1475-7516/2016/04/006 [arXiv:1508.04660 [hep-th]].
  • (50) J. O. Gong, C. Han and S. Pi, “Trail of the Higgs in the primordial spectrum,” arXiv:1511.07604 [hep-ph].
  • (51) M. Kawasaki, K. Mukaida and T. T. Yanagida, “Simple cosmological solution to the Higgs field instability problem in chaotic inflation and the formation of primordial black holes,” Phys. Rev. D 94, no. 6, 063509 (2016) doi:10.1103/PhysRevD.94.063509 [arXiv:1605.04974 [hep-ph]].
  • (52) Y. Ema, K. Mukaida and K. Nakayama, “Electroweak Vacuum Stabilized by Moduli during/after Inflation,” Phys. Lett. B 761, 419 (2016) doi:10.1016/j.physletb.2016.08.046 [arXiv:1605.07342 [hep-ph]].
  • (53) W. E. East, J. Kearney, B. Shakya, H. Yoo and K. M. Zurek, “Spacetime Dynamics of a Higgs Vacuum Instability During Inflation,” Phys. Rev. D 95, no. 2, 023526 (2017) [Phys. Rev. D 95, 023526 (2017)] doi:10.1103/PhysRevD.95.023526 [arXiv:1607.00381 [hep-ph]].
  • (54) A. K. Saha and A. Sil, “Higgs Vacuum Stability and Modified Chaotic Inflation,” Phys. Lett. B 765, 244 (2017) doi:10.1016/j.physletb.2016.12.031 [arXiv:1608.04919 [hep-ph]].
  • (55) J. R. Espinosa, D. Racco and A. Riotto, “Cosmological Signature of the Standard Model Higgs Vacuum Instability: Primordial Black Holes as Dark Matter,” Phys. Rev. Lett. 120, no. 12, 121301 (2018) doi:10.1103/PhysRevLett.120.121301 [arXiv:1710.11196 [hep-ph]].
  • (56) J. R. Espinosa, D. Racco and A. Riotto, “A Cosmological Signature of the SM Higgs Instability: Gravitational Waves,” arXiv:1804.07732 [hep-ph].
  • (57) D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 1312 (2013) 089 doi:10.1007/JHEP12(2013)089 [arXiv:1307.3536 [hep-ph]].
  • (58) E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69, 1 (1990).
  • (59) L. Husdal, “On Effective Degrees of Freedom in the Early Universe,” Galaxies 4, no. 4, 78 (2016) doi:10.3390/galaxies4040078 [arXiv:1609.04979 [astro-ph.CO]].
  • (60) N. Aghanim et al. [Planck Collaboration], “Planck 2018 results. VI. Cosmological parameters,” arXiv:1807.06209 [astro-ph.CO].
  • (61) P. A. Abell et al. [LSST Science and LSST Project Collaborations], “LSST Science Book, Version 2.0,” arXiv:0912.0201 [astro-ph.IM].
  • (62) R. Laureijs et al. [EUCLID Collaboration], “Euclid Definition Study Report,” arXiv:1110.3193 [astro-ph.CO].
  • (63) L. Amendola et al. [Euclid Theory Working Group], “Cosmology and fundamental physics with the Euclid satellite,” Living Rev. Rel. 16, 6 (2013) doi:10.12942/lrr-2013-6 [arXiv:1206.1225 [astro-ph.CO]].
  • (64) M. Levi et al. [DESI Collaboration], “The DESI Experiment, a whitepaper for Snowmass 2013,” arXiv:1308.0847 [astro-ph.CO].
  • (65) T. D. Brennan, F. Carta and C. Vafa, “The String Landscape, the Swampland, and the Missing Corner,” arXiv:1711.00864 [hep-th].
  • (66) G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, “De Sitter Space and the Swampland,” arXiv:1806.08362 [hep-th].
  • (67) P. Agrawal, J. Fan and M. Reece, “Clockwork Axions in Cosmology: Is Chromonatural Inflation Chrononatural?,” arXiv:1806.09621 [hep-th].
  • (68) D. Andriot, “On the de Sitter swampland criterion,” arXiv:1806.10999 [hep-th].
  • (69) G. Dvali and C. Gomez, “On Exclusion of Positive Cosmological Constant,” arXiv:1806.10877 [hep-th].
  • (70) S. Banerjee, U. Danielsson, G. Dibitetto, S. Giri and M. Schillo, “Emergent de Sitter cosmology from decaying AdS,” arXiv:1807.01570 [hep-th].
  • (71) L. Aalsma, M. Tournoy, J. P. Van Der Schaar and B. Vercnocke, “A Supersymmetric Embedding of Anti-Brane Polarization,” arXiv:1807.03303 [hep-th].
  • (72) A. Achúcarro and G. A. Palma, “The string swampland constraints require multi-field inflation,” arXiv:1807.04390 [hep-th].
  • (73) S. K. Garg and C. Krishnan, “Bounds on Slow Roll and the de Sitter Swampland,” arXiv:1807.05193 [hep-th].
  • (74) J. L. Lehners, “Small-Field and Scale-Free: Inflation and Ekpyrosis at their Extremes,” arXiv:1807.05240 [hep-th].
  • (75) A. Kehagias and A. Riotto, “A note on Inflation and the Swampland,” arXiv:1807.05445 [hep-th].
  • (76) M. Dias, J. Frazer, A. Retolaza and A. Westphal, “Primordial Gravitational Waves and the Swampland,” arXiv:1807.06579 [hep-th].
  • (77) E. Ó. Colgáin, M. H. P. M. Van Putten and H. Yavartanoo, “ tension and the de Sitter Swampland,” arXiv:1807.07451 [hep-th].
  • (78) R. Brandenberger, L. L. Graef, G. Marozzi and G. P. Vacca, “Back-Reaction of Super-Hubble Cosmological Perturbations Beyond Perturbation Theory,” arXiv:1807.07494 [hep-th].
  • (79) A. Ghalee, “Condensation of a scalar field non-minimally coupled to gravity in a cosmological context,” arXiv:1807.08620 [gr-qc].
  • (80) C. Roupec and T. Wrase, “de Sitter extrema and the swampland,” arXiv:1807.09538 [hep-th].
  • (81) D. Andriot, “New constraints on classical de Sitter: flirting with the swampland,” arXiv:1807.09698 [hep-th].
  • (82) J. K. Ghosh, E. Kiritsis, F. Nitti and L. T. Witkowski, “De Sitter and Anti-de Sitter branes in self-tuning models,” arXiv:1807.09794 [hep-th].
  • (83) H. Matsui and F. Takahashi, “Eternal Inflation and Swampland Conjectures,” arXiv:1807.11938 [hep-th].
  • (84) I. Ben-Dayan, “Draining the Swampland,” arXiv:1808.01615 [hep-th].
  • (85) C. I. Chiang and H. Murayama, “Building Supergravity Quintessence Model,” arXiv:1808.02279 [hep-th].
  • (86) C. Damian and O. Loaiza-Brito, arXiv:1808.03397 [hep-th].
  • (87) J. P. Conlon, “The de Sitter swampland conjecture and supersymmetric AdS vacua,” arXiv:1808.05040 [hep-th].
  • (88) W. H. Kinney, S. Vagnozzi and L. Visinelli, “The Zoo Plot Meets the Swampland: Mutual (In)Consistency of Single-Field Inflation, String Conjectures, and Cosmological Data,” arXiv:1808.06424 [astro-ph.CO].
  • (89) K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, “Quantum Corrections and the de Sitter Swampland Conjecture,” arXiv:1808.07498 [hep-th].
  • (90) S. Kachru and S. Trivedi, “A comment on effective field theories of flux vacua,” arXiv:1808.08971 [hep-th].
  • (91) Y. Nakai, Y. Ookouchi and N. Tanahashi, “Dyonic Catalysis in the KPV Vacuum Decay,” arXiv:1808.10235 [hep-th].
  • (92) K. Cho, K. Morand and J. H. Park, “Kaluza-Klein reduction on a maximally non-Riemannian space is moduli-free,” arXiv:1808.10605 [hep-th].
  • (93) S. Brahma and M. W. Hossain, “Avoiding the string swampland in single-field inflation: Excited initial states,” arXiv:1809.01277 [hep-th].
  • (94) K. Choi, D. Chway and C. S. Shin, “The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking,” arXiv:1809.01475 [hep-th].
  • (95) J. Quintin, R. H. Brandenberger, M. Gasperini and G. Veneziano, “String hole gas in -corrected dilaton gravity,” arXiv:1809.01658 [hep-th].
  • (96) S. Das, “A note on Single-field Inflation and the Swampland Criteria,” arXiv:1809.03962 [hep-th].
  • (97) U. H. Danielsson, “The quantum swampland,” arXiv:1809.04512 [hep-th].
  • (98) D. Wang, “The multi-feature universe: large parameter space cosmology and the swampland,” arXiv:1809.04854 [astro-ph.CO].
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
371374
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description