Quasi Normal Modes and P-V Criticallity for scalar perturbations in a class of dRGT massive gravity around Black Holes

Quasi Normal Modes and P-V Criticallity for scalar perturbations in a class of dRGT massive gravity around Black Holes

Prasia P Prasia P. Department of Physics
Cochin University of Science and Technology
Cochin-682022
22email: prasiapankunni@cusat.ac.inKuriakose V. C. Department of Physics
Cochin University of Science and Technology
Cochin-682022
44email: vck@cusat.ac.in
   Kuriakose V C Prasia P. Department of Physics
Cochin University of Science and Technology
Cochin-682022
22email: prasiapankunni@cusat.ac.inKuriakose V. C. Department of Physics
Cochin University of Science and Technology
Cochin-682022
44email: vck@cusat.ac.in
Received: date / Accepted: date
Abstract

We investigate black holes in a class of dRGT massive gravity for their quasi normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iteration Method (Improved AIM) and their thermodynamic behavior. The QNMs are studied for different values of the massive parameter for both neutral and charged dRGT black holes under a massless scalar perturbation. As increases, the magnitude of the quasi normal frequencies are found to be increasing. The results are also compared with the Schwarzchild de Sitter (SdS) case. P-V criticallity of the aforesaid black hoels under massles scalar perturbation in the de Sitter space are also studied in this paper. It is found that the thermodynamic behavior of a neutral black hole shows no physically feasible phase transition while a charged black hole shows a definite phase transition.

Keywords:
Quasi Normal Modes dRGT Massive Gravity P-V Criticallity

1 Introduction

The existence of black holes is an outcome of Einstein’s General Theory of Relativity (GTR). The question then is how to realize their existence and one natural way to identify them is to try to perturb and know their responses to the perturbation. Regge and Wheeler1 () started way back in 1950s studying perturbations of black-hole space times and later, serious studies were initiated by Zerilli2 (). It was Vishveshwara3 () who first noticed the existence of quasinormal modes (QNMs) by studying the scattering of gravitational waves by Schwarzschild black holes. Later, scattering of scalar, electromagnetic and Fermi fields by different black-hole spacetimes have been studied by manyref7 (); ref8 (); ref9 () and references cited therein. In the frame work of general relativity, QNMs arise as perturbations of black hole spacetimes. QNMs are the solutions to perturbation equations and they are distinguished from ordinary normal modes because they decay at certain rates, having complex frequencies. The remarkable property of the black hole QNMs(”ring down” of black holes) is that their frequencies are uniquely determined by the mass, angular momentum and charge(if any) of black holes. Black holes can be detected by observing the QNMs through gravitational waves. When a star collapses to form a black hole or when two black holes collide or a black hole and a star collide, Gravitational Waves (GWs) are emitted. The result of these processes is a black hole with higher mass that absorbs the GWs 6 (). Hence the emitted GWs decay quickly. The decay of oscillations are characterized by complex frequencies.

The Quasi normal modes were first introduced by Vishveshwara 7 (); 8 (). Later, perturbation calculations have been done by many to get QNM oscillations 9 (); 10 (); 11 (). To study the black hole QNMs, the solution of the perturbed field equation are separated for the radial and angular parts, whose radial part is the so called Regge-Wheeler equation. But this technique is time consuming and complicated that makes it difficult to survey QNMs for a wide range of parameter values. A semi analytic method has then been explored 12 () that has its own limitations of accuracy. Later, the Continued Fraction Method (CFM) was proposed by Leaver. This method is a hybrid of analytic and numerical and can calculate QNM frequencies by making use of analytic infinite series representation of solution 13 (). Another method is WKB approximation which is very commonly employed and a powerful one too. However all these methods have their own limitations. In recent years a new approach has been introduced to study black hole QNMs called Asymptotic Iteration Method (AIM) which is previously used to solve eigenvalue problems 14 (). This method has been shown to be efficient and accurate for calculating QNMs of black holes 15 (); 16 ().

The studies of Hawking and Bekenstein made in 1970s17 (); 18 () helped us to view that black holes are thermal objects possessing temperature and entropy and that laws of black hole dynamics are analogous to the laws of classical thermodynamics. An immediate consequence of these studies is that they bring together quantum theory, gravity and thermodynamics and one can hope for a quantum theory of quantum gravity. Various methods 19 (); 20 () have been developed to study the thermodynamics of black holes. An important fact is that certain black holes make a transition from a stable phase to an unstable phase and some are thermodynamically unstable21 (). If the thermodynamic variables, pressure and volume, are identified, then an equation of state corresponding to the black hole can be found out and the critical points can be determined. The P-V isotherms then show their thermodynamic behavior.

GTR helped us to have a model for our universe and the universe can be considered as a dynamical system and most of the cosmological and astronomical observations could find a meaningful explanations under GTR. But there are some fundamental issues like quantization of gravity, the initial stages of the evolution of the Universe under Big-Bang theory and also certain astronomical observations like dark matter and the late time accelerating expansion of the universe which lacked proper explanations under GTR 22 (); 23 (). Hence attempts are being made for an alternative theory of gravitation.

From the perspective of the modern particle physics, GTR can be thought of as the unique theory of a massless spin 2 particle called graviton 26 (); 27 (); 28 (). If the assumption behind the uniqueness theorem is broken, it can lead to alternative theories of gravity. Theories concerning the breaking of Lorentz invariance and spin have been explored in depth. Representing gravity as a manifestation of a higher order spin, thereby maintaining the Lorentz invariance and spin has also been explored largely 29 (). Yet another possibility that has been recently explored is the so called ’Massive Gravity’(MG) theory30 (); ref12 (); ref13 (). In this model gravity is considered to be propagated by a massive spin 2 particle. The theory gets complicated especially when the massive spin 2 field interacts with matter. In that case, the theory goes completely non-linear and consequently non renormalizable. A non self interacting massive graviton model was first suggested by Fierz and Pauli31 () which is now called as ’linear massive gravity’. However this model suffers from a pathology32 () thereby ruling out the theory on the basis of solar system tests. Later, Vainshtein33 () proposed that the linear massive gravity model can be recovered to GTR through ’Vainshtein Mechanism’ at small scales by including non linear terms in the hypothetical massive gravity theory. But the Vainshtein mechanism is later found to suffer from the so called ’Boulware-Deser’(BD) ghost34 (). Recently it is shown by de Rham, Gabadadze and Tolly in their series of works 35 (); 36 (); 37 () that the BD ghost can be avoided for a sub class of massive potentials. This is called dRGT massive gravity which includes one dynamical and one fixed metric. This also holds true for its bi gravity extension 30 (); 32 (); ref3 ().

This paper deals with the study of quasinormal modes coming out of massless scalar perturbations of a class of dRGT massive gravity around both neutral and charged black holes. We use the Improved Asymptotic Iteration Method (AIM) to calculate the QNMs. The P-V criticality condition of such black holes are also verified in the de Sitter space. Section 2 deals with a review of the Asymptotic Iteration Method. In section 3, the quasinormal modes of neutral and charged black holes coming under a class of dRGT massive gravity, proposed by Ghosh, Tannukij and Wongjun 39 (), are found out. Section 4 deals with the P-V criticality in the extended phase space of black holes described in Section 3. Section 5 concludes the paper.

2 Review of Asymptotic Iteration Method

Asymptotic Iteration Method(AIM) was proposed initially for finding solutions of the second order differential equations of the form 40 (),

(1)

where and are coefficients of the differential equation and are well defined functions and sufficiently differentiable. By differentiating (1) with respect to ,

(2)

where the new coefficients are and . Differentiating twice with respect to leads to,

(3)

where the new coefficients are and . This process is continued to get the derivative of with respect to as,

(4)

where the new coefficients are related to the older ones through the following expressions,

(5)
(6)

where

The ratio of derivative and derivative can be obtained from as,

By introducing the asymptotic concept that for sufficiently large values of ,

(7)

where is a constant, we get,

from which a general expression for can be found outref10 (). From we can write,

(8)

The roots of this equation are used to obtain the eigenvalues of . The energy eigenvalues will be contained in the coefficients. To get the eigenvalues, each derivative of and are found out and expressed in terms of the previous iteration. Then by applying the quantization condition given by , a general expression for the eigenvalue can be arrived at. Cifti et al. 41 () first noted that this procedure has a difficulty in that, the process of taking the derivative of and terms of the previous iteration at each step can consume time and also affect the numerical precision of calculations. To overcome this difficulty, an improved version of AIM has been proposed that bypasses the need to take derivative at each iteration. This is shown to improve both accuracy and speed of the method. For that, and are expanded in a Taylor series around the point at which AIM is performed, ,

(9)
(10)

where and are the Taylor coefficients of and respectively. Substitution of equations and in and lead to the recursion relation for the coefficients as,

(11)
(12)

Applying and in , the quantization condition can be rewritten as,

(13)

This gives a set of recursion relations that do not require any derivatives. The coefficients given by and can be computed by starting at and iterating up to until the desired number of recursions are reached. The quantization condition given by contains only term. So, only the coefficients with where is the maximum number of iterations to be performed needs to be determined. The perturbed radial wave equation of a black hole can be written in the form of a second order differential equation similar to with the coefficients containing their quasinormal frequencies. Hence the condition can be employed to extract the QNMs of a black hole15 (); 16 (). This method is used in this paper to determine the QNMs of dRGT black hole.

3 Quasinormal modes of Black Holes in dRGT massive gravity

3.1 Neutral dRGT black hole

In the standard formalism of dRGT massive gravity theory, the Einstein-Hilbert action is given by 42 (); ref14 (),

(14)

where is the metric tensor, is the Ricci scalar, represents the graviton mass and is the effective potential for the graviton and is given by 43 (),

(15)

where and are two free parameters. These parameters are redefined by introducing two new parameters and as,

(16)
(17)

Varying the action given by with respect to the metric leads to the field equation,

(18)

where,

(19)

The constraints of this field equation can be obtained by using the Bianchi identity,

(20)

A spherically symmetric metric has a form given by,

(21)

with and where is a constant in terms of and ref4 (); ref5 (); ref6 (). The exact solution for this ansatz is complicated. It is simplified by choosing specific relations for the parameters. In this paper, we take . Since the fiducial metric acts like a Lagrangian multiplier to eliminate the BD ghost, to simplify the calculations, we choose the fiducial metric as, 44 (),

(22)

where is a constant. In this paper we consider only the diagonal branch of the physical metric for simplicity ie., . Then,

By taking we get,

The non-zero components of the Einstein tensor are given by39 (),

(23)
(24)
(25)
(26)

and the tensor as,

(27)
(28)
(29)
(30)

Solving using these expressions for and gives the form of the metric as,

(31)

where,

(32)
(33)
(34)

The details of the above calculations are given by Ghosh, Tannukij and Wagjun 39 (). When , and will determine the nature of the solution. ie., if we get a Schwarzschild-de Sitter type solution, if we will get a Schwarzschild-anti de Sitter type solution and when we get a Schwarzchild black hole.

In this paper, we consider a static spherically symmetric space time with vanishing Energy momentum tensor and hence the field perturbations in such background are not coupled to the perturbations of the metric and therefore are equivalent to test field in black hole background. Consider a massless scalar field that satisfies the Klein-Gordon equation in curved space-time,

(35)
(36)

where,

(37)

In order to separate out the angular variables we choose the ansatz:

(38)

where gives the frequency of the oscillations corresponding to the black hole perturbation, are the spherical harmonics and,

(39)

Substituting in and using and we get the radial wave equation,

(40)


By using tortoise coordinate , the above equation can be brought into the standard form45 (),

(41)

where,

(42)

The SdS black hole has three singularities given by the roots of , which are the event horizon, , the cosmological horizon, and at = -( + . The QNMs are defined as solutions of the above equation with boundary conditions: as and as for an time dependence that corresponds to ingoing waves at the horizon and out going waves at infinity. The surface gravity at these singular points are defined as,

(43)

In the present study we are using improved AIM for finding the QNMs of the dRGT black hole and hence it is convenient to make a change of variable as in leading to,

(44)

where,

(45)
(46)

In de Sitter space, the radial equation has got 3 singularities and these are represented as (Event horizon), (Cosmological horizon) and and hence we can write ref11 (); 15 (),

(47)

The idea is to scale out the divergent behavior at the cosmological horizon first and then rescale at the event horizon for a convergent solution. Now to scale out the divergent behavior at cosmological horizon, we take,

(48)

The master equation given by then takes the form,

(49)

The correct scaling condition of QNM at the event horizon implies,

(50)

The master equation then can be viewed of the form as,

(51)

where and are the coefficients of the second order differential equation. It can be seen from that the coefficient of includes the frequency . Therefore the quantization condition given by can be used to find out the of by iterating to some maximum. For calculating the QNMs, we have used the MATHEMATICA NOTEBOOK given in the reference 46 (). Initially the QNMs are calculated for the SdS by making and the results are compared with referenceref1 (); ref2 () in Table . It can be seen that the results agree quite well with those found in the existing literature.

(for dRGT) (for SdS)
0 0.483644 – 0.0967588 i 0 0.48364 - 0.09677 i
-0.02 0.434585 – 0.0885944 i 0.02 0.43461 - 0.08858 i
-0.04 0.380784 – 0.0787610 i 0.04 0.38078 - 0.07876 i
-0.06 0.320021 – 0.0668449 i 0.06 0.32002 - 0.06685 i
-0.08 0.247470 – 0.0519043 i 0.08 0.24747 - 0.05197 i
-0.09 0.202960 – 0.0425584 i 0.09 0.20296 - 0.04256 i
-0.10 0.146610 – 0.0306869 i 0.10 0.14661 - 0.03069 i
-0.11 0.0461689 – 0.0063134 i 0.11 0.04617 - 0.00963 i
Table 1: Column 2 shows QNMs calculated for for different values of shown in column 1. These are compared with the SdS case calculated in ref1 () shown in column 4. The results are found to agree quite well.

We have executed iterations while calculating the QNMs. We have taken while calculating the QNMs so that the results of the calculations will correspond to that in de Sitter space.

Table shows the quasi normal frequencies obtained through improved AIM method. The values of and are chosen so that remains negative. We have chosen the values in these calculations. The table shows the quasinormal modes calculated for and respectively for the same range of and values. It can be seen that for the same and , increasing the value of increases the magnitude of the cosmological constant, which is obvious from . Also as increases, the quasinormal frequencies are seen to be increasing in magnitude for both and modes. As for every , both the real and imaginary parts of the quasinormal frequencies are seen to be continuously increasing in magnitude as increases. Comparing these quasinormal frequencies with Table , it can be seen that the values of the quasinormal frequencies when takes a finite value are higher in magnitude than when which corresponds to a Schwarzschild case.

-0.080 -0.80 1.9840 1.15155 – 0.348046 i 1.62914 – 0.341517 i
-0.088 -0.80 1.9904 1.15615 – 0.350418 i 1.63572 – 0.343749 i
-0.096 -0.80 1.9968 1.16081 – 0.352759 i 1.64237 – 0.346001 i
-0.104 -0.80 2.0032 1.16552 – 0.355121 i 1.64910 – 0.348271 i
-0.112 -0.80 2.0096 1.17030 – 0.357501 i 1.65590 – 0.350560 i
-0.120 -0.80 2.0160 1.17512 – 0.359902 i 1.66278 – 0.352868 i
-0.128 -0.80 2.0224 1.18001 – 0.362322 i 1.66974 – 0.355195 i


-0.100 -1.00 3.1000 2.81587 – 1.049800 i 3.90051 – 1.026860 i
-0.110 -1.00 3.1100 2.83013 – 1.057140 i 3.91984 – 1.033950 i
-0.120 -1.00 3.1200 2.84445 – 1.064510 i 3.93924 – 1.041070 i
-0.130 -1.00 3.1300 2.85881 – 1.071910 i 3.95870 – 1.048210 i
-0.140 -1.60 3.1400 2.87322 – 1.079340 i 3.97823 – 1.055380 i
-0.150 -1.75 3.1500 2.88768 – 1.086800 i 3.99781 – 1.062580 i
-0.160 -1.90 3.1600 2.90220 – 1.094280 i 4.10746 – 1.069800 i
Table 2: Quasinormal modes of black hole for massless scalar perturbations calculated by AIM (with iterations ) for a class of de- Sitter dRGT massive gravity for and modes.The and values are kept same while QNMs are calculated by varying the values

3.2 Charged dRGT black hole

Consider a charged black hole from the class of dRGT massive gravity with the metric,

(52)

where39 (),

(53)

where corresponds to the charge. Proceeding as in section , the wave equation is found as,

(54)

where,

(55)
(56)

Scaling out the divergent behavior at the event horizon leads to the master equation,

(57)

Again, the correct scaling condition of QNMs at the event horizon implies,

(58)

where,

(59)

The master equation is now in the form of so that the quantization condition given by can be employed to find out the QNMs.

Table shows the quasinormal modes calculated using the improved AIM method for different values of and . We have chosen the values and in these calculations. The QNMs are studied as in the prevoius section by varying the value while keeping the values of and the same. It can be seen that as increases, the real part of the quasi normal frequency deceases while the magnitude of the imaginary part increases. For each the quasi normal frequency vary continuously. A black hole is stable only when the imaginary part in its Quasi normal spectrum is negative47 (). It is noted while calculating the Quasinormal modes that the roots of the frequency, give positive as well as negative imaginary frequencies. Here we are interested in the stable modes and therefore considered only the negative imaginary parts of . iterations have been done for calculating the QNMs.

-0.080 -0.80 1.9840 2.43544 – 0.523799 i 1.67618 – 0.168257 i
-0.088 -0.80 1.9904 2.43455 – 0.535763 i 1.67635 – 0.180489 i
-0.096 -0.80 1.9968 2.43252 – 0.547233 i 1.67351 – 0.195613 i
-0.104 -0.80 2.0032 2.42939 – 0.558215 i 1.67069 – 0.209057 i
-0.112 -0.80 2.0096 2.42523 – 0.568718 i 1.66693 – 0.222338 i
-0.120 -0.80 2.0160 2.42021 – 0.578624 i 1.66230 – 0.235427 i
-0.128 -0.80 2.0224 2.41399 – 0.588313 i 1.65677 – 0.248391 i


-0.10 -1.00 3.1000 0.304084 – 2.99974 i 0.9866449 – 4.93190 i
-0.11 -1.00 3.1100 0.342169 – 3.05263 i 1.0195500 – 5.01834 i
-0.12 -1.00 3.1200 0.378347 – 3.10442 i 1.0531600 – 5.10348 i
-0.13 -1.00 3.1300 0.413140 – 3.15511 i 1.0872800 – 5.18734 i
-0.14 -1.60 3.1400 0.446882 – 3.20472 i 1.1219000 – 5.26998 i
-0.15 -1.75 3.1500 0.479812 – 3.25326 i 1.1570200 – 5.35141 i
-0.16 -1.90 3.1600 0.512100 – 3.30072 i 1.1926600 – 5.43168 i
Table 3: The Quasinormal modes (after iterations) for massless scalar perturbations of a charged black hole for the charge for the and modes.The and values are kept same while QNMs are calculated by varying the values

4 P-V Criticality of black holes

4.1 Black holes in dRGT massive gravity

In this section we look into the thermodynamic critical behavior of black holes described by the metric in the extended phase space. We intend to check whether the black hole exhibits any phase transition by showing an inflection point in the indicator diagram. Here, the cosmological constant, is treated as representing a negative pressure 48 () as,

(60)

For the metric given by would lead to the case of a de Sitter space provided is negative. Keeping this in mind we take,

(61)

where is the pressure. The boundary of the black hole is described by the black hole horizon, and is determined by the condition, . From this condition, the mass of the black hole can be expressed in terms of as,

(62)

and the black hole mass is considered to be the enthalpy of the system. The thermodynamic volume, is given by,49 (); 50 ()

(63)

Varying partially with respect to the pressure P, we get

(64)

The temperature of the black hole, described by the metric in , given by the Hawking temperature can be written as 51 (),

(65)

Substituting for from in the above equation and rearranging it we get an expression for the cosmological constant,

(66)

But from , the cosmological constant can be related to the pressure as . Therefore can be written in terms of as,

(67)

Or,

(68)

where,

(69)
(70)

From , can be treated as a shifted temperature. From , thermodynamic volume is a monotonic function of the horizon radius . and hence can be considered to be corresponding to . Therefore, can be treated as an equation of state describing the black hole. The critical point is then determined by the conditions,

(71)

and

(72)

Substituting for P from in the above differential equation it is found that the conditions given by and are not simultaneously satisfied. The condition,

(73)

gives the critical horizon as,

(74)

Evaluation of gives a non zero value which can imply either a local maximum or a local minimum depending on whether the value is greater than or less than zero. The critical pressure is found out by substituting in which gives,

(75)

This critical point corresponds to a physically feasible one if is positive 52 (). From it can be seen that this happens only if is negative irrespective of the sign of . The relation between shifted temperature, , critical pressure, and horizon radius can be found out from and as,

(76)

This ratio is called the ‘Compressibility Ratio’. The value of compressibility ratio for a Van der Waal’s gas is . Hence, the black hole system, with the Compressibility Ratio given by , can be thought of as behaving like a near Van der Waal’s system. The diagram plotted for different shifted temperature is shown in Figure . In the first figure, the curves are plotted for , the curves are seen to show critical behavior but it likely does not correspond to a physical one because, from , for the above said values of and the critical pressure turns out to be negative for these curves. The second figure is plotted for , they show inflection point but there is no phase transition.

Figure 1: In the first figure diagram is plotted for the vale which shows critical behavior and the second figure shows plots for the value which shows an inflection.

4.2 Charged dRGT Black Hole

Consider a charged black hole with the metric of the form . The Hawking Temperature for this metric can be found out as,

(77)

From the above equation, the equation of state can obtained proceeding as described in Section . The mass, of the black hole can be written in terms of the horizon radius as,

(78)

Substituting in we get,

(79)

Writing this equation in terms of ,

(80)

Or,

(81)

where,

(82)
(83)
(84)

describes the equation of state. The critical point is then determined by the conditions,

(85)

and

(86)

Unlike in the Section , it is found that and are simultaneously satisfied which gives the solutions, for critical horizon as,

(87)

and for the critical temperature as,

(88)

Using , and , an expression for the critical pressure can be arrived at as,

(89)

The relation connecting shifted temperature , critical pressure, and critical horizon radius are found as,

(90)

which is exactly the same as in the case for a Van der Waal’s system. The P-V diagram plotted for different shifted temperature is shown in Figure . In the first figure, the curves are plotted for and . The second figure is plotted for and . The first figure shows an inflection point and a phase transition, but the second does not, as is obvious due to the sign change of .

Figure 2: In the first figure diagram is plotted for the vale and which shows a phase transition and the second figure shows plots for the value and which does not show any phase transition.

5 Conclusion

In this paper, the quasinormal modes coming out of massless scalar perturbations in black hole space-time in a class of dRGT massive gravity, is studied. We have used the Improved Asymptotic Iteration Method (Improved AIM) to find out the QNMs in the de Sitter space. We have done iterations for calculating the QNMs. The Quasi normal modes are studied by varying the massive parameter, . It is found that as increases the magnitude of the quasi normal frequencies increase for neutral black hole. These QNMs are also higher in magnitude compared to the SdS case. It is also found that as and tend to zero, the results converge to the SdS case. For a charged black hole, the real part of the quasi normal frequency decreases and the magnitude of imaginary part increases as is increased.

The criticality in the extended phase space of the aforesaid black holes are also determined. The neutral black holes show a near Van der Waal behavior with the compressibility ratio of . But it does not show any physically feasible phase transition for the de Sitter space. The charged black hole on the other hand exactly shows a Van der Waal’s behavior and clearly exhibits a phase transition.

Acknowledgements.
The authors would like to thank the reviewers for their valuable suggestions. One of us (PP) would like to thank UGC, New Delhi for financial support through the award of a Junior Research Fellowship (JRF) during 2010-12 and SRF during 2012-13. VCK would like to acknowledge Associateship of IUCAA, Pune.

References

  • (1) Regge, T., Wheeler, J.A.:Stability of a Schwarzschild Singularity. Phys. Rev.108, 1063 (1957)
  • (2) Zerilli, F.J.:Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry. Phys. Rev. D.9, 860 (1974)
  • (3) Vishveswara, C.V.:Scattering of Gravitational Radiation by a Schwarzschild Black-hole. Nature 227, 936–938 (1970)
  • (4) Kokkotas, K. G. Schmidt, B. G.: Quasi-Normal Modes of Stars and Black Holes. Living Rev. Relativity. 2 (1999)
  • (5) Konoplya, R. A. Zhidenko, A.: Quasinormal modes of black holes: From astrophysics to string theory. Rev. Mod. Phys. 83, 793 (2011)
  • (6) Andersson, N. Jensen, B.:Scattering by Black Holes.arXiv:gr-qc/0011025v2 (2001)
  • (7) Barakat, T.:The asymptotic iteration method for the eigenenergies of the anharmonic oscillator potential . Phys. Lett. A. 344 (2005)
  • (8) Joan, C., John, G.B., Bernard, J.K., James R. van M.: Black-hole binaries, gravitational waves, and numerical relativity. Rev. Mod. Phys. 82, 3069 (2010)
  • (9) Edelstein, L.A., Vishveswara, C.V.:Differential Equations for Perturbations on the Schwarzschild Metric. Phys. Rev. D. 1, 3514(1970)
  • (10) Vishveswara, C.V.:Stability of the Schwarzschild Metric. Phys. Rev. D. 1, 2870 (1970)
  • (11) Iyer, S., Will, C.M.:Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Phys. Rev. D. 35, 3621 (1987)
  • (12) Iyer, S.:Black-hole normal modes: A WKB approach. II. Schwarzschild black holes. Phys. Rev. D. 35, 3632 (1987)
  • (13) Iyer, S., Seidel, M.:Black-hole normal modes: A WKB approach. II. Schwarzschild black holes. Phys. Rev. D. 41, 374 (1990)
  • (14) Ferrari, V., Mashhoon, B.:New approach to the quasinormal modes of a black hole. Phys. Rev. D. 30, 295 (1984)
  • (15) Leaver, E.W.:An Analytic Representation for the Quasi-Normal Modes of Kerr Black Holes. Proc. Royal Society. London A, 402, 285 (1985)
  • (16) Ciftci, H., Hall, R. L., Saad, N.:Asymptotic iteration method for eigenvalue problems. J. Phys. A: Math. Gen. 36, 11807 (2003)
  • (17) Cho, H.T.,Cornell, A.S., Jason, D., Wade N.:Black hole quasinormal modes using the asymptotic iteration method. Class. Quant.Grav. 27, 155004 (2010) arXiv:0912.2740v3
  • (18) Cho, H.T.,Cornell, A.S., Jason, D., Huang, T.R., Wade N.:A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method. Adv. Math. Phys., 2012, 281705 (2012)
  • (19) Hawking, S.W., Page, D.N.:Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)
  • (20) Bekenstein, J.:Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D. 9, 3292 (1974)
  • (21) Davies, P.C.W.:Thermodynamics of black holes. Rep. Prog. Phys. 41, (1978)
  • (22) Wald, R.M.:The Thermodynamics of black holes. Liv. Rev. Rel. 4, 6 (2001)
  • (23) Hut, P.:Charged black holes and phase transitions. Mon. Not. R. Astr. Soc. 180, 379 (1977)
  • (24) Capozziello, S., Francaviglia, M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Rel. Grav. 40, 357–420 (2008).
  • (25) Sotiriou, T.P., Faraoni, V.: Theories Of Gravity. Rev. Mod. Phys. 82, 451–497 (2010)
  • (26) Gupta, S.N.: Gravitation and Electromagnetism. Phys. Rev. 96, 1683 (1954)
  • (27) Weinberg, S.: Photons and Gravitons in Perturbation Theory: Derivation of Maxwell’s and Einstein’s Equations. Phys. Rev. B138, 988 (1965)
  • (28) Feynman, R.P., Morinigo, F.B., Wagner, W.G.: Feynman Lectures on Gravitation. Addison-Wesley, Reading, MA, (1995)
  • (29) Mattingly, D.: Modern Tests of Lorentz Invariance. Liv. Rev. Rel. 8, lrr-2005-5 (2005).
  • (30) Hinterbichler, K.: Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671–-710 (2012)
  • (31) Volkov, M. S.: Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity.Class. Quantum Grav. 30 184009 (2013)
  • (32) o Tasinato, G. Koyama, K. Niz, G.: Exact solutions in massive gravity. Class. Quantum Grav. 30184002 (2013)
  • (33) Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. Ser. A. 173, 211–232 (1939)
  • (34) de Rham, C.: Massive Gravity. Liv. Rev. Rel. 17, 7 (2014)
  • (35) Vainshtein, A. I.: To the problem of nonvanishing gravitation mass. Phys. Lett. B. 39, 393-–394 (1972)
  • (36) Boulware, D.G., Deser S.: Can Gravitation Have a Finite Range?. Phys. Rev. D 6, 3368 (1972)
  • (37) de Rham, C., Gabadadze, G., Tolley, A.J.: Resummation of Massive Gravity. Phys. Rev. Lett. 106, 231101 (2011)
  • (38) de Rham, C., Gabadadze, G.: Unitarity check in gravitational Higgs mechanism. Phys. Rev. D. 82, 044020 (2010)
  • (39) de Rham, C., Gabadadze, G., Tolley, A.J.: Ghost free massive gravity in the Stuckelberg language. Phys. Lett. B. 711, 190 (2012) arXiv:1107.3820 [hep-th]
  • (40) Babichev,E., Fabbri, A.: A class of charged black hole solutions in massive (bi)gravity, JHEP 07, 016(2014)
  • (41) Sushant G. Ghosh, Lunchakorn Tannukij and Pitayuth Wongjun, A class of black holes in dRGT massive gravity and their thermodynamical properties, arXiv:1506.07119v1
  • (42) Rostami, A.: Asymptotic Iteration Method: A Powerful Approach For Analysis Of Inhomogeneous Dielectric Slab Waveguides. Progress in Electromagnetics Research B, 4, 171 (2008)
  • (43) Ciftci, H., Hall, R.L., Saad, N.:Perturbation theory in a framework of iteration methods. Physics Letters A 340 (5), 388–396 (2005).
  • (44) Berezhiani, L., Chkareuli, G., de Rham,C., Gabadadze, G., Tolley, A.J.:On black holes in massive gravity. Phys. Rev D, 85, 044024 (2012)
  • (45) Babichev, E. Brito, R.: Black holes in massive gravity. Class. Quantum Grav. 32, 154001 (2015)
  • (46) Kodama, H., Arraut, I.: Stability of the Schwarzschild-de Sitter black hole in the dRGT massive gravity theory. Prog. Theor. Exp. Phys., 023E02 (2014)
  • (47) Koyama,K. Niz, G. Tasinato, G.:Strong interactions and exact solutions in nonlinear massive gravity. Phys. Rev. D. 84, 064033 (2011) [arXiv:1104.2143 [hepth]].
  • (48) Koyama, K. Niz, G. Tasinato, G.:Analytic Solutions in Nonlinear Massive Gravity. Phys. Rev. Lett. 107, 131101 (2011) [arXiv:1103.4708[hep-th]].
  • (49) Sbisa, F. Niz, G. Koyama, K. Tasinato, G.:Characterizing Vainshtein solutions in massive gravity. Phys. Rev. D. 86, 024033 (2012) [arXiv:1204.1193 [hep-th]].
  • (50) Vegh, D.: Holography without translational symmetry. Report No. CERN-PH-TH/2013-357 (2013) (arXiv:1301.0537v2)
  • (51) Zerilli, F.J.: Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Phys. Rev. Lett., 24, 737 (1970)
  • (52) Moss, I. G. Norman, J. P.: Gravitational quasinormal modes for Anti-de Sitter black holes. Class. Quant. Grav. 19 (2002)
  • (53) Naylor W.: Black Holes: AIM.
    http://wade-naylor.com/aim/
    
  • (54) Zhidenko, A.: Quasi-normal modes of Schwarzschild–de Sitter black holes. Class. Quantum Grav. 21 273–280 (2004)
  • (55) Zhidenko, A.: Quasi-normal modes of Schwarzschild-de Sitter black holes.arXiv:gr-qc/0307012v4 (2003)
  • (56) Zhidenko, A.: Linear perturbations of black holes: stability, quasi-normal modes and tails. PhD Thesis, arXiv:0903.3555v2
  • (57) Creighton, J.D.E., Mann, R.B.: Quasilocal thermodynamics of dilaton gravity coupled to gauge fields. Phys. Rev. D 52, 4569 (1995)
  • (58) Kstor, D., Ray, S., Traschen, J.: Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav., 26, 195011 (2009)
  • (59) Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav., 28, 235017 (2011)
  • (60) Xu, J., Cao, L., Hu, Y.: P-V criticality in the extended phase space of black holes in massive gravity. Phys. Rev. D 91, 124033 (2015).
  • (61) Cai, R. Cao, L., Yang, R.: P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JHEP, 09, 005 (2013) arXiv:1306.6233v4
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
207528
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description