Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers

Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers

Guang Hao Low guanghao.low@microsoft.com    Nicholas P. Bauman    Christopher E. Granade    Bo Peng    Nathan Wiebe    Eric J. Bylaska    Dave Wecker    Sriram Krishnamoorthy    Martin Roetteler    Karol Kowalski    Matthias Troyer    Nathan A. Baker
July 30, 2019
Abstract
\subfile

./abstract.tex

\newaffil

PNNLPacific Northwest National Laboratory, Richland, Washington 99354, USA \newnewsc \newscPrepare \newscSelect \newscHad \newscX \newscY \newscZ \newscNot \newrmini \newscCnot \lst@AddToHookEveryLine \lstMakeShortInline[style=QSharp]" \WarningFilterrevtex4-1Repair the float

\affilMSRQuArC\affilPNNL\affilMSRQuArC\affilPNNL\affilMSRQuArC\affilPNNL\affilMSRQuArC\affilPNNL\affilMSRQuArC\affilPNNL\affilMSRQuArC\affilPNNL\lstMakeShortInline

[style=nwchem]@

I Introduction

\subfile

./intro.tex

Ii Review

\subfile

./review.tex

ii.1 Quantum computing and programming

\subfile

./review_introqc.tex

ii.1.1 Developing quantum algorithms in Q#

\subfile

./review_qsharp.tex

ii.1.2 Running Q# quantum algorithms

\subfile

./review_run_qsharp.tex

ii.2 Quantum chemistry

\subfile

./review_qchem.tex

\subfile

./review_nwchem.tex

ii.3 Quantum simulation

\subfile

./review_simulation.tex

ii.3.1 The Jordan–Wigner transformation

\subfile

./review_jordan_wigner.tex

ii.3.2 Trotter–Suzuki simulation methods

\subfile

./review_trotter.tex

ii.3.3 Qubitization simulation methods

\subfile

./review_qubitization.tex

ii.3.4 Circuit optimizations for qubitization

\subfile

./review_qubitization_chem_optimized.tex

ii.3.5 Phase estimation

\subfile

./algo.tex

Iii The Broombridge schema for representing electronic structure problems

\subfile

./representation.tex

Iv Simulating quantum chemistry with the Microsoft Quantum Development Kit

\subfile

./simulation_introduction.tex

iv.1 Constructing qubit Hamiltonians from chemistry Hamiltonians

\subfile

./simulation_construct_hamiltonian.tex

iv.2 Synthesizing quantum simulation circuits

\subfile

./simulation_q_sharp.tex

iv.3 Estimating eigenvalues

\subfile

./simulation_estimate_energy.tex

V Example applications

\subfile

./applications.tex

Vi Conclusions

\subfile

./conclusions.tex

Acknowledgements.
We thank the broader Microsoft Quantum team for insightful comments and discussions. The PNNL portion of this research was funded by the Quantum Algorithms, Software, and Architectures (QUASAR) Initiative, conducted under the Laboratory Directed Research and Development Program at PNNL. KK and EJB also acknowledge support from the ‘Embedding Quantum Computing into Many-body Frameworks for Strongly Correlated Molecular and Materials Systems’ project, which is funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Biosciences. The development of NWChem was supported from Environmental Molecular Sciences Laboratory (EMSL) operations. Environmental Molecular Sciences Laboratory (EMSL) operations are supported by the DOE Office of Biological and Environmental Research. The Pacific Northwest National Laboratory, is operated for the U.S. DOE by Battelle under Contract Number DE-AC05-76RL01830.

References

  • Koch and Holthausen (2001) W. Koch and M. C. Holthausen, Journal of the American Chemical Society (Wiley-VCH Verlag GmbH, Weinheim, FRG, 2001).
  • Bartlett and Musiał (2007) R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Reviews of Modern Physics 79, 291 (2007).
  • Schollwöck (2005) U. Schollwöck, “The density-matrix renormalization group,” Reviews of Modern Physics 77, 259 (2005).
  • Nielsen and Chuang (2004) M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 1st ed. (Cambridge University Press, 2004).
  • Reiher et al. (2017) M. Reiher, N. Wiebe, K. M. Svore, D. Wecker,  and M. Troyer, “Elucidating reaction mechanisms on quantum computers,” Proceedings of the National Academy of Sciences 114, 7555 (2017)arXiv:1605.03590 .
  • Wecker et al. (2015) D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,  and M. Troyer, “Solving strongly correlated electron models on a quantum computer,” Physical Review A 92, 062318 (2015).
  • Bauer et al. (2016) B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings,  and M. Troyer, “Hybrid Quantum-Classical Approach to Correlated Materials,” Physical Review X 6, 031045 (2016).
  • Lloyd (1996) S. Lloyd, “Universal Quantum Simulators,” Science 273, 1073 (1996).
  • Aharonov and Ta-Shma (2003) D. Aharonov and A. Ta-Shma, “Adiabatic quantum state generation and statistical zero knowledge,” in Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC ’03, STOC ’03 (ACM Press, New York, New York, USA, 2003) p. 20.
  • Berry et al. (2007) D. W. Berry, G. Ahokas, R. Cleve,  and B. C. Sanders, “Efficient Quantum Algorithms for Simulating Sparse Hamiltonians,” Communications in Mathematical Physics 270, 359 (2007).
  • Berry and Childs (2012) D. W. Berry and A. M. Childs, “Black-box Hamiltonian simulation and unitary implementation,” Quantum Information & Computation 12, 29 (2012)arXiv:0910.4157 .
  • Berry et al. (2015) D. W. Berry, A. M. Childs, R. Cleve, R. Kothari,  and R. D. Somma, “Simulating Hamiltonian Dynamics with a Truncated Taylor Series,” Physical Review Letters 114, 090502 (2015).
  • Low and Chuang (2017) G. H. Low and I. L. Chuang, “Optimal Hamiltonian Simulation by Quantum Signal Processing,” Physical Review Letters 118, 010501 (2017)arXiv:1606.02685 .
  • Low and Chuang (2016) G. H. Low and I. L. Chuang, “Hamiltonian Simulation by Qubitization,” arXiv preprint arXiv:1610.06546  (2016)arXiv:1610.06546 .
  • Haah et al. (2018) J. Haah, M. Hastings, R. Kothari,  and G. H. Low, “Quantum Algorithm for Simulating Real Time Evolution of Lattice Hamiltonians,” in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), FOCS ’18 (IEEE, Washington, DC, USA, 2018) pp. 350–360.
  • Low and Wiebe (2018) G. H. Low and N. Wiebe, “Hamiltonian Simulation in the Interaction Picture,” arXiv preprint arXiv:1805.00675  (2018)arXiv:1805.00675 .
  • Campbell (2018) E. Campbell, “A random compiler for fast Hamiltonian simulation,” arXiv preprint arXiv:1811.08017  (2018)arXiv:1811.08017 .
  • Abrams and Lloyd (1997) D. S. Abrams and S. Lloyd, “Simulation of Many-Body Fermi Systems on a Universal Quantum Computer,” Physical Review Letters 79, 2586 (1997).
  • Whitfield et al. (2011) J. D. Whitfield, J. Biamonte,  and A. Aspuru-Guzik, “Simulation of electronic structure Hamiltonians using quantum computers,” Molecular Physics 109, 735 (2011).
  • Babbush et al. (2016) R. Babbush, D. W. Berry, I. D. Kivlichan, A. Y. Wei, P. J. Love,  and A. Aspuru-Guzik, “Exponentially more precise quantum simulation of fermions in second quantization,” New Journal of Physics 18, 033032 (2016).
  • Wecker et al. (2014) D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings,  and M. Troyer, “Gate-count estimates for performing quantum chemistry on small quantum computers,” Physical Review A 90, 022305 (2014).
  • Poulin et al. (2015) D. Poulin, M. B. Hastings, D. Wecker, N. Wiebe, A. C. Doberty, M. Troyer, A. C. Doherty,  and M. Troyer, “The Trotter step size required for accurate quantum simulation of quantum chemistry,” Quantum Information & Computation 15, 361 (2015)arXiv:1406.4920 .
  • Hastings et al. (2015) M. B. Hastings, D. Wecker, B. Bauer,  and M. Troyer, ‘‘Improving Quantum Algorithms for Quantum Chemistry,” Quantum Information & Computation 15, 1 (2015).
  • Babbush et al. (2015) R. Babbush, J. McClean, D. Wecker, A. Aspuru-Guzik,  and N. Wiebe, “Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation,” Physical Review A 91, 022311 (2015).
  • Childs et al. (2018) A. M. Childs, D. Maslov, Y. Nam, N. J. Ross,  and Y. Su, “Toward the first quantum simulation with quantum speedup,” Proceedings of the National Academy of Sciences 115, 9456 (2018).
  • Babbush et al. (2018) R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler,  and H. Neven, “Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity,” arXiv (2018).
  • McClean et al. (2016) J. R. McClean, J. Romero, R. Babbush,  and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18, 023023 (2016).
  • Rubin et al. (2018) N. C. Rubin, R. Babbush,  and J. McClean, “Application of fermionic marginal constraints to hybrid quantum algorithms,” New Journal of Physics 20, 053020 (2018).
  • Cao et al. (2018) Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis,  and A. Aspuru-Guzik, “Quantum Chemistry in the Age of Quantum Computing,” arXiv preprint arXiv:1812.09976  (2018)arXiv:1812.09976 .
  • Green et al. (2013) A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger,  and B. Valiron, “Quipper,” in ACM SIGPLAN Notices, Vol. 48 (ACM, 2013) p. 333.
  • Wecker and Svore (2014) D. Wecker and K. M. Svore, “LIQUi: A Software Design Architecture and Domain-Specific Language for Quantum Computing,” arXiv preprint arXiv:1402.4467  (2014)arXiv:1402.4467 .
  • Steiger et al. (2018) D. S. Steiger, T. Häner,  and M. Troyer, “ProjectQ: an open source software framework for quantum computing,” Quantum 2, 49 (2018).
  • Cross et al. (2017) A. W. Cross, L. S. Bishop, J. A. Smolin,  and J. M. Gambetta, “Open Quantum Assembly Language,” arXiv preprint arXiv:1707.03429  (2017)arXiv:1707.03429 .
  • Svore et al. (2018) K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim, V. Kliuchnikov, M. Mykhailova, A. Paz,  and M. Roetteler, “Q#: Enabling scalable quantum computing and development with a high-level domain-specific language,” in Proceedings of the Real World Domain Specific Languages Workshop 2018 on - RWDSL2018, RWDSL2018 (ACM Press, New York, New York, USA, 2018) pp. 1–10.
  • McClean et al. (2017a) J. R. McClean, T. Häner, D. S. Steiger,  and R. Babbush, FermiLib v0. 1, Tech. Rep. (Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2017).
  • McClean et al. (2017b) J. R. McClean, K. J. Sung, I. D. Kivlichan, Y. Cao, C. Dai, E. S. Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, O. Higgott, C. Huang, J. Izaac, Z. Jiang, X. Liu, S. McArdle, M. Neeley, T. O’Brien, B. O’Gorman, I. Ozfidan, M. D. Radin, J. Romero, N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, D. S. Steiger, M. Steudtner, Q. Sun, W. Sun, D. Wang, F. Zhang,  and R. Babbush, “OpenFermion: The Electronic Structure Package for Quantum Computers,” arXiv preprint arXiv:1710.07629  (2017b)arXiv:1710.07629 .
  • Preskill (2018) J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
  • Kandala et al. (2017) A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,  and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549, 242 (2017).
  • Valiev et al. (2010) M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus,  and W. de Jong, ‘‘NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations,” Computer Physics Communications 181, 1477 (2010).
  • Waldrop (2016) M. M. Waldrop, “The chips are down for Moore’s law,” Nature 530, 144 (2016).
  • Meszaros (2007) G. Meszaros, xUnit test patterns: Refactoring test code (Pearson Education, 2007).
  • Bernholdt et al. (1995) D. E. Bernholdt, E. E. Aprà, H. A. Früchtl, M. F. Guest, R. J. Harrison, R. A. Kendall, R. A. Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Littlefield,  and J. Nieplocha, “Parallel computational chemistry made easier: The development of NWChem,” International Journal of Quantum Chemistry 56, 475 (1995).
  • Kendall et al. (2000) R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. Straatsma, T. L. Windus,  and A. T. Wong, “High performance computational chemistry: An overview of NWChem a distributed parallel application,” Computer Physics Communications 128, 260 (2000).
  • Purvis and Bartlett (1982) G. D. Purvis and R. J. Bartlett, “A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples,” The Journal of Chemical Physics 76, 1910 (1982).
  • Geertsen et al. (1989) J. Geertsen, M. Rittby,  and R. J. Bartlett, “The equation-of-motion coupled-cluster method: Excitation energies of Be and CO,” Chemical Physics Letters 164, 57 (1989).
  • Comeau and Bartlett (1993) D. C. Comeau and R. J. Bartlett, ‘‘The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states,” Chemical Physics Letters 207, 414 (1993).
  • Stanton and Bartlett (1993) J. F. Stanton and R. J. Bartlett, “The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties,” The Journal of Chemical Physics 98, 7029 (1993).
  • Feynman (2018) R. P. Feynman, Feynman lectures on computation (CRC Press, 2018).
  • Bhatia (1997) R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, Vol. 169 (Springer New York, New York, NY, 1997).
  • Seeley et al. (2012) J. T. Seeley, M. J. Richard,  and P. J. Love, “The Bravyi-Kitaev transformation for quantum computation of electronic structure,” The Journal of Chemical Physics 137, 224109 (2012).
  • Poulin et al. (2018) D. Poulin, A. Kitaev, D. S. Steiger, M. B. Hastings,  and M. Troyer, ‘‘Quantum Algorithm for Spectral Measurement with a Lower Gate Count,” Physical Review Letters 121, 010501 (2018).
  • Berry et al. (2018) D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders, G. H. Low, N. Wiebe, C. Gidney,  and R. Babbush, “Improved techniques for preparing eigenstates of fermionic Hamiltonians,” npj Quantum Information 4, 22 (2018).
  • Shende et al. (2006) V. Shende, S. Bullock,  and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000 (2006).
  • Ross and Selinger (2016) N. J. Ross and P. Selinger, “Optimal Ancilla-free Clifford+T Approximation of Z-rotations,” Quantum Information & Computation 16, 901 (2016).
  • Low et al. (2018) G. H. Low, V. Kliuchnikov,  and L. Schaeffer, “Trading T-gates for dirty qubits in state preparation and unitary synthesis,”  (2018)arXiv:1812.00954 .
  • Zetie et al. (2000) K. P. Zetie, S. F. Adams,  and R. M. Tocknell, “How does a Mach-Zehnder interferometer work?” Physics Education 35, 46 (2000).
  • Ferrie et al. (2013) C. Ferrie, C. E. Granade,  and D. G. Cory, ‘‘How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies,” Quantum Information Processing 12, 611 (2013).
  • Gilyén et al. (2018) A. Gilyén, Y. Su, G. H. Low,  and N. Wiebe, “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics,” arXiv preprint arXiv:1806.01838  (2018)arXiv:1806.01838 .
  • Kimmel et al. (2015) S. Kimmel, G. H. Low,  and T. J. Yoder, “Robust calibration of a universal single-qubit gate set via robust phase estimation,” Physical Review A 92, 062315 (2015).
  • Svore et al. (2013) K. M. Svore, M. B. Hastings,  and M. Freedman, “Faster Phase Estimation,” Quantum Information & Computation 14, 306 (2013)arXiv:1304.0741 .
  • Wiebe and Granade (2016) N. Wiebe and C. Granade, “Efficient Bayesian Phase Estimation,” Physical Review Letters 117, 010503 (2016)arXiv:1508.00869 [quant-ph] .
  • Schucan and Weidenmüller (1972) T. Schucan and H. Weidenmüller, “The effective interaction in nuclei and its perturbation expansion: An algebraic approach,” Annals of Physics 73, 108 (1972).
  • Hose and Kaldor (1980) G. Hose and U. Kaldor, “A General-Model-Space Diagrammatic Perturbation Theory,” Physica Scripta 21, 357 (1980).
  • Zarrabian and Paldus (1990) S. Zarrabian and J. Paldus, “Applicability of multi-reference many-body perturbation theory to the determination of potential energy surfaces: A model study,” International Journal of Quantum Chemistry 38, 761 (1990).
  • Finley et al. (1995) J. P. Finley, R. K. Chaudhuri,  and K. F. Freed, “Applications of multireference perturbation theory to potential energy surfaces by optimal partitioning of H : Intruder states avoidance and convergence enhancement,” The Journal of Chemical Physics 103, 4990 (1995).
  • Motta et al. (2017) M. Motta, D. M. Ceperley, G. K.-L. Chan, J. A. Gomez, E. Gull, S. Guo, C. A. Jiménez-Hoyos, T. N. Lan, J. Li, F. Ma, A. J. Millis, N. V. Prokof’ev, U. Ray, G. E. Scuseria, S. Sorella, E. M. Stoudenmire, Q. Sun, I. S. Tupitsyn, S. R. White, D. Zgid,  and S. Zhang, “Towards the Solution of the Many-Electron Problem in Real Materials: Equation of State of the Hydrogen Chain with State-of-the-Art Many-Body Methods,” Physical Review X 7, 031059 (2017).
  • Hachmann et al. (2006) J. Hachmann, W. Cardoen,  and G. K.-L. Chan, “Multireference correlation in long molecules with the quadratic scaling density matrix renormalization group,” The Journal of Chemical Physics 125, 144101 (2006).
  • Mahapatra et al. (1999a) U. S. Mahapatra, B. Datta,  and D. Mukherjee, “A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications,” The Journal of Chemical Physics 110, 6171 (1999a).
  • Mahapatra et al. (1999b) U. S. Mahapatra, B. Datta,  and D. Mukherjee, “Development of a size-consistent state-specific multireference perturbation theory with relaxed model-space coefficients,” Chemical Physics Letters 299, 42 (1999b).
  • Bhaskaran-Nair et al. (2008) K. Bhaskaran-Nair, O. Demel,  and J. Pittner, “Multireference state-specific Mukherjee’s coupled cluster method with noniterative triexcitations,” The Journal of Chemical Physics 129, 184105 (2008).
  • Bhaskaran-Nair et al. (2011) K. Bhaskaran-Nair, O. Demel, J. Šmydke,  and J. Pittner, “Multireference state-specific Mukherjee’s coupled cluster method with noniterative triexcitations using uncoupled approximation,” The Journal of Chemical Physics 134, 154106 (2011).
  • Bhaskaran-Nair et al. (2012) K. Bhaskaran-Nair, J. Brabec, E. Aprà, H. J. J. van Dam, J. Pittner,  and K. Kowalski, “Implementation of the multireference Brillouin-Wigner and Mukherjee’s coupled cluster methods with non-iterative triple excitations utilizing reference-level parallelism,” The Journal of Chemical Physics 137, 094112 (2012).
  • Noga and Bartlett (1987) J. Noga and R. J. Bartlett, “The full CCSDT model for molecular electronic structure,” The Journal of Chemical Physics 86, 7041 (1987).
  • Noga and Bartlett (1988) J. Noga and R. J. Bartlett, “Erratum: The full CCSDT model for molecular electronic structure [J. Chem. Phys. 8 6 , 7041 (1987)],” The Journal of Chemical Physics 89, 3401 (1988).
  • Scuseria and Schaefer (1988) G. E. Scuseria and H. F. Schaefer, “A new implementation of the full CCSDT model for molecular electronic structure,” Chemical Physics Letters 152, 382 (1988).
  • Kucharski and Bartlett (1991) S. A. Kucharski and R. J. Bartlett, “Recursive intermediate factorization and complete computational linearization of the coupled-cluster single, double, triple, and quadruple excitation equations,” Theoretica Chimica Acta 80, 387 (1991).
  • Oliphant and Adamowicz (1991) N. Oliphant and L. Adamowicz, “Coupled‐cluster method truncated at quadruples,” The Journal of Chemical Physics 95, 6645 (1991).
  • Evangelisti et al. (1987) S. Evangelisti, J. P. Daudey,  and J. P. Malrieu, “Qualitative intruder-state problems in effective Hamiltonian theory and their solution through intermediate Hamiltonians,” Physical Review A 35, 4930 (1987).
  • Martin et al. (1996) J. M. Martin, J. El-Yazal,  and J.-P. François, “On the structure and vibrational frequencies of C,” Chemical Physics Letters 248, 345 (1996).
  • Brabec et al. (1992) C. J. Brabec, E. B. Anderson, B. N. Davidson, S. A. Kajihara, Q.-M. Zhang, J. Bernholc,  and D. Tománek, “Precursors to C fullerene formation,” Physical Review B 46, 7326 (1992).
  • Zhang et al. (1992) B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu,  and C. T. Chan, ‘‘The geometry of small fullerene cages: C to C,” The Journal of Chemical Physics 97, 5007 (1992).
  • Raghavachari et al. (1993) K. Raghavachari, D. Strout, G. Odom, G. Scuseria, J. Pople, B. Johnson,  and P. Gill, “Isomers of C. Dramatic effect of gradient corrections in density functional theory,” Chemical Physics Letters 214, 357 (1993).
  • von Helden et al. (1993) G. von Helden, M. T. Hsu, N. Gotts,  and M. T. Bowers, “Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity,” The Journal of Physical Chemistry 97, 8182 (1993).
  • Grossman et al. (1995) J. C. Grossman, L. Mitas,  and K. Raghavachari, “Structure and Stability of Molecular Carbon: Importance of Electron Correlation,” Physical Review Letters 75, 3870 (1995).
  • Taylor et al. (1995) P. R. Taylor, E. Bylaska, J. H. Weare,  and R. Kawai, “C: fullerene, bowl or ring? New results from coupled-cluster calculations,” Chemical Physics Letters 235, 558 (1995).
  • Bylaska et al. (1996) E. J. Bylaska, P. R. Taylor, R. Kawai,  and J. H. Weare, “LDA Predictions of C Isomerizations: Neutral and Charged Species,” The Journal of Physical Chemistry 100, 6966 (1996).
  • Galli (1998) G. Galli, “Tight-binding molecular dynamics for carbon systems: Fullerenes on surfaces,” Computational Materials Science 12, 242 (1998).
  • Sokolova et al. (2000) S. Sokolova, A. Lüchow,  and J. B. Anderson, “Energetics of carbon clusters C from all-electron quantum Monte Carlo calculations,” Chemical Physics Letters 323, 229 (2000).
  • Grimme and Mück-Lichtenfeld (2002) S. Grimme and C. Mück-Lichtenfeld, “Structural isomers of C revisited: the cage and bowl are almost isoenergetic,” ChemPhysChem 3, 207 (2002).
  • An et al. (2005) W. An, Y. Gao, S. Bulusu,  and X. C. Zeng, “Ab initio calculation of bowl, cage, and ring isomers of C and C,” The Journal of Chemical Physics 122, 204109 (2005).
  • Jin et al. (2015) Y. Jin, A. Perera, V. F. Lotrich,  and R. J. Bartlett, “Coupled cluster geometries and energies of C carbon cluster isomers – A new benchmark study,” Chemical Physics Letters 629, 76 (2015).
  • Aprà and Kowalski (2016) E. Aprà and K. Kowalski, “Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture,” Journal of Chemical Theory and Computation 12, 1129 (2016).
  • Barkoutsos et al. (2018) P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo, S. Filipp,  and I. Tavernelli, “Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions,” Physical Review A 98, 022322 (2018).

Appendix A Running examples

\subfile

./apx-running-examples.tex

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
350924
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description