Velocities of 2046 Nearby FGKM Stars

Precise Radial Velocities of 2046 Nearby FGKM Stars and 131 Standards

Abstract

We present radial velocities with an accuracy of 0.1 km sfor 2046 stars of spectral type F,G,K, and M, based on 29000 spectra taken with the Keck I telescope. We also present 131 FGKM standard stars, all of which exhibit constant radial velocity for at least 10 years, with an RMS less than 0.03 km s. All velocities are measured relative to the solar system barycenter. Spectra of the Sun and of asteroids pin the zero-point of our velocities, yielding a velocity accuracy of 0.01 km sfor G2V stars. This velocity zero-point agrees within 0.01 km swith the zero-points carefully determined by Nidever et al. (2002) and Latham et al. (2002). For reference we compute the differences in velocity zero-points between our velocities and standard stars of the IAU, the Harvard-Smithsonian Center for Astrophysics, and l’Observatoire de Geneve, finding agreement with all of them at the level of 0.1 km s. But our radial velocities (and those of all other groups) contain no corrections for convective blueshift or gravitational redshifts (except for G2V stars), leaving them vulnerable to systematic errors of 0.2 km sfor K dwarfs and 0.3 km sfor M dwarfs due to subphotospheric convection, for which we offer velocity corrections. The velocities here thus represent accurately the radial component of each star’s velocity vector. The radial velocity standards presented here are designed to be useful as fundamental standards in astronomy. They may be useful for Gaia (Crifo et al., 2010; Gilmore et al., 2012) and for dynamical studies of such systems as long-period binary stars, star clusters, Galactic structure, and nearby galaxies, as will be carried out by SDSS, RAVE, APOGEE, SkyMapper, HERMES, and LSST.

Subject headings:
stars: fundamental parameters — techniques: radial velocities — techniques: spectroscopic — stars: kinematics — stars: late-type — reference systems — Galaxy:kinematics and dynamics — binaries: spectroscopic
11

1. Introduction

Doppler shifts of stellar spectra provide information about the line-of-sight component of the velocity vector of the target stars in the frame of the telescope. When transformed to the frame of the center of mass of the Solar System, those ”barycentric” radial velocities represent the star’s velocity component measured relative to a well defined, and commonly adopted, inertial frame within our Milky Way Galaxy, suitable for studying the motions of stars in a wide variety of astronomical settings.

Barycentric radial velocities enable study of the kinematics, structure, and mass distribution of the Milky Way Galaxy, including the disk components, bulge, nucleus, and halo. Doppler measurements also provide a primary tool for detecting and characterizing binary stars in many environments such as in the general field, open clusters, star forming regions, planet-hosting stars, globular clusters, and the Galactic center. Radial velocities also serve to measure the dynamics and mass content, both luminous and dark, of star clusters and galaxies. Moreover, radial velocities are vital for measuring the infalling extragalactic matter into our Galaxy, as well as the dynamically important motions of stars within other galaxies in the local group.

When combined with the proper motion and positions measured using, e.g., the Hipparcos telescope or the upcoming Gaia space telescope, one can measure the three dimensional velocity vectors of stars and stellar systems. Such three dimensional velocity measurements offer information about the origin, history, future, and mass distribution of the components of the Galaxy. Precise radial velocities measured over time can reveal the acceleration of stars, caused surely by gravitational forces exerted by unseen nearby objects including orbiting planets, brown dwarfs, and stars, as well as by nearby compact objects such as white dwarfs, neutron stars, and black holes.

Many new observational facilities are now, or soon will be, providing kinematic and positional information about stars in the Galaxy. The RAdial Velocity Experiment (RAVE) is studying the properties and origin of the structure in the Galactic disc (Wilson et al., 2011) by measuring velocities with an accuracy of 2 km sfor up to 500,000 stars. The Sloan Digital Sky Survey and the Sloan Extension for Galactic Understanding and Exploration (SEGUE), with its imaging and radial velocity capability (with 10 km saccuracy) are performing extraordinary measurements on the kinematics of the Galaxy and its halo (Schoenrich et al., 2010). Some groups are combining spectroscopy with these kinematic measurements to gain unprecedented information about the coupled chemical and kinematic properties of the solar neighborhood in the Galactic context (Casagrande et al., 2011). The Gaia-ESO Survey with VLT/Flames will be particularly valuable with its spectroscopy of 100,000 stars in all stellar populations and will nicely complementing the measurements of Gaia (Gilmore et al., 2012).

Radial velocity standard stars of a wide range of stellar types provide useful Doppler calibrators for the many different instruments doing this kinematic work. The radial velocity standard stars provide touchstones of comparions for both zero-points and the velocity scales of the different instruments and observatories.

Despite these current and future uses of radial velocities, one might wonder whether highly precise, absolute radial velocities have value in the modern era. After all, it is relative velocities not absolute barycentric velocities that are used to discover orbiting exoplanets, measure orbits of binary stars, measure velocity dispersions in virialized systems of stars, and to measure masses of compact objects including supermassive black holes. Moreover accurate radial velocities could be obtained by using carefully chosen reference template spectra, either observed (of asteroids, for example) or synthetic. These arguments for the obsolescence of absolute velocities may have some validity for those specialists performing radial velocity measurements. But for the majority of astronomers there remains a widespread need to measure radial velocities as part of a larger project for which exhaustive calibration is not practical. Radial velocity standards offer a sound method at the telescope to place one’s Doppler measurements on a well established scale and to learn their accuracy by observing multiple standard stars with one’s particular (and sometimes peculiar) instrument. Further, new spectrometers on the ground or in space often come online with uncertain wavelength scales, structural and thermal instabilities, or errors that depend on stellar temperature, all of which can be mitigated by a real-time determination of the velocity zero-point and scale. Radial velocity standard stars offer that metric to establish and demonstrate accuracy and internal precision.

Some information about radial velocity standards is maintained by the International Astronomical Union (IAU), Commission 30 found at http://sb9.astro.ulb.ac.be/iauc30/. The IAU has constructed a precise definition of “radial velocity” described by Lindegren & Dravins (2003).

The old standard source of radial velocities was the General Catalog of Stellar Radial Velocities (BCRV) prepared at the Mount Wilson Observatory in Pasadena, California (Wilson, 1953). The modern era of radial velocity standards occurred with the work by the Geneva group led by Michel Mayor and Stephane Udry, the University of Victoria group led by Collin Scarfe and Robert McClure, and the group at the Harvard-Smithsonian Center for Astrophysics led by David Latham and Robert Stefanik (Mayor & Maurice, 1985; Scarfe et al., 1990; Latham et al., 1991, 2002). An excellent summary of the history of radial velocity standards through 1999 is provided by Stefanik et al. (1999).

Three excellent radial velocity programs provided standards with high accuracy and integrity (Stefanik et al., 1999; Udry et al., 1999a, b), all of them constituting a modern velocity zero-point with accuracy better than 0.3 km s. Additional excellent stellar radial velocity measurements were made by Nordström et al. (2004); Famaey et al. (2005) at accuracies of 0.3 km s, and also by the Fick Observatory at Iowa State University, and at the Mt. John University Observatory in Christchurch, New Zealand (Beavers & Eitter, 1986; Hearnshaw & Scarfe, 1999). The Pulkova Radial Velocity Catalog compiles the mean velocities for over 35000 Hipparcos stars (Gontcharov, 2006). The velocities come from over 200 publications, yielding a median accuracy of 0.7 km s.

The largest modern catalog of radial velocity standard stars was established by Nidever et al. (2002) who measured the radial velocities of 889 FGKM-type stars with an accuracy of 0.1 km sin the solar system barycentric frame. Nidever et al. (2002) made multiple radial velocity measurements with the Keck 1 telescope and High Resolution Echelle Spectrometer (Vogt et al. 1994) over a typical time span of 3-7 years, thereby revealing any velocity variability. Use of an iodine cell to impose a wavelength scale yielded relative radial velocities with a precision of 0.003 km s(RMS, with no zero-point) able to detect tiny velocity variability at the level of 0.01 km son time scales of years. Thus, the radial velocity standard stars in Nidever et al. (2002) met the highest standard for constancy in velocity. We adhere to that standard here.

Nidever et al. (2002) contained more stellar radial velocities at the highest viable accuracy of 0.1 km sthan any prevous radial velocity survey, and they provided statistically robust comparisons of the zero-points of other radial velocity surveys. The radial velocity measurements of Nidever et al. (2002) thus uphold high integrity for a wide range of spectral types and provide standard stars at all RA and northward of declination -30 deg.

Here we extend the work of Nidever et al. (2002) with 9 additional years of radial velocity measurements from the same Keck 1 telescope and spectrometer. These measurements supersede those in the Nidever et al. paper by providing more velocity measurements over a longer time baseline, and we include more stars. We include only those 2046 stars for which we obtained Keck-HIRES spectra using the modern CCD detector in HIRES that was installed in June 2004, as we use only the near-IR portion of the spectrum made available at that time. Thus some stars listed in Nidever et al. are not included here. We establish 131 standard stars, with radial velocities measured relative to the barycenter of the solar system for spectral types FGKM that are stable at the level of 0.01 km sduring a decade, and we provide barycentric velocities for 2046 FGKM stars. The final velocities have an precision of typically better than 0.1 km s, and they reside on the Nidever et al. velocity scale. We compare these velocities to extant velocities by other groups.

2. Spectroscopic Observations and Velocity Measurements

We obtained spectra using the HIRES echelle spectrometer on the 10-m Keck 1 telescope between 2004 August and 2011 January, as part of the California Planet Survey (CPS) to detect exoplanets by the Doppler technique, using iodine to calibrate both wavelength and the instrumental profile spectrometer at each wavelength (Marcy et al., 2008; Johnson et al., 2011). Before each observing night we positioned the CCD so that the (observatory-frame) wavelengths land on the same pixels within 1/2 pixel as on all previous observing nights. This produced a nearly identical wavelength scale on all nights. At the beginning and end of each observing night, we took spectra of a thorium-argon lamp, providing the linear and non-linear portion of the wavelength scale information, but not the zero-point of the wavelength scale which was instead established by absorption lines formed in the Earth’s atmosphere (see below). We found that the wavelength dispersion of HIRES varies by about 1 part in 2000 over the course of months and years, presumably due to slow mechanical and thermal changes in the spectrometer optics and to changes in air pressure. All 29000 spectra of the 2046 stars and all calibration spectra are available on the Keck Observatory Archive (after the nominal proprietary period of 18 months), made possible by a NASA-funded collaboration between the NASA Exoplanet Science Institute (NExSci) and the W. M. Keck Observatory12.

We employed an exposure meter to set exposure times for each observation, promoting uniform and high signal-to-noise spectra during the seven years of observations (Kibrick et al., 2006). The spectra had a typical S/N  150 per pixel at 720 nm, which is near the center of the near-IR wavelength domain, 654 - 800 nm, used in this paper. The spectral resolution was, R = 55,000 and the pixel spacing corresponds to a Doppler shift of 1.3 km s per pixel at the blaze wavelength of all spectral orders. The dispersion was found to vary by 10% along the free spectral range of each order. The spectrometer instrumental profile had a typical FWHM of 4.2 pixels, varying by 10-20% as a function of wavelength. In this current work, we used both types of spectra obtained as part of the CPS planet-search program, namely those with the iodine cell in front of the spectrometer slit for which the starlight passed through the molecular iodine gas  (Marcy & Butler, 1992) and those with the iodine cell not in the beam that contain no iodine lines. The presence of iodine cell has little effect on the Doppler measurements because the iodine lines are less than 1% deep in the near-IR wavelength regions used here.

We carefully determined a wavelength scale for each spectrum. We first fit a fifth-order polynomial to the positions of the thorium lines, with their associated wavelengths, to determine a first-approximation to the wavelength scale (called ”thid” files). We used a spline to map the spectra onto a logarithmic wavelength scale, based on the original wavelength scale from the thorium-argon spectra. The new array pixels were designed to be separated by equal intervals in delta . This logarithmic wavelength scale offers the advantage that a certain difference in radial velocity, , causes the spectrum to be displaced by the same distance in units of pixels at all wavelengths, given by . The typical pixel size for a Keck HIRES spectrum corresponds to a Doppler shift of 1.3 km s, and this thorium-based wavelength scale determined the relative wavelength scale to 6 significant digits ( 0.1 pixel), based on the scatter in the fits. The wavelength zero-point remained to be set accurately (using telluric lines, as described below). Instead of cross-correlation, we used the chi-square statistic to determine the relative shifts between a template spectrum and observed spectrum. To measure fractional pixel shifts, we oversampled, at 0.01 km sper pixel, a subarray around the minimum of each chi-squared function and interpolated with a spline function.

To determine a secure wavelength zero-point for each spectrum, we followed the suggestion of Griffin (1973) by using telluric lines to determine the wavelength scale. We used the telluric A and B absorption bands, at wavelengths of 759.4-762.1 nm  and 686.7-688.4 nm  respectively, due to absorption by molecular oxygen in the Earth’s atmosphere. We again used a minimization method to find the displacement of the telluric lines in the program star relative to those in the reference B-type star spectrum of HD 79439. Figure 1 shows the telluric lines in both that reference spectrum and in the representative spectrum of a program star, HD 182488. The program star spectrum has telluric lines clearly displaced by a fraction of a pixel (redward), in this case by +0.437 pixels, an amount representative of the typical shifts in wavelength zero-point from observation to observation over the time scale of days, months, and years covered by the spectra presented here. This measureable displacement of telluric lines provides the key correction to the wavelength zero-point that accounts for small changes (typically less than 1 km s) in the CCD position, the spectrometer optics, and (importantly) for the non-uniform illumination of the starlight on the entrance slit of the spectrometer.

This approach corrects for the dominant systematic errors that often compromise normal radial velocity measurements that do not use an absorbing gas to establish the wavelength scale of a slit-fed (rather than fiber-fed) spectrometer. We subtracted this displacement from the apparent shift of the stellar lines in order to find the net (true) Doppler shift. In this way we found the radial velocity determined by the Doppler shift of stellar absorption lines, including a correction for the shift in the wavelength zero-point. Using telluric lines to set the wavelength zero-point leaves systematic errors of 0.01 km scaused by typical winds in the Earth’s atmosphere. Also, the telluric lines we used (the A and B bands) are not distributed in wavelength coincident with the stellar lines we employed. An additional Doppler error may accrue due to unaccounted for nonlinear errors in the wavelength scale. We find such errors to be several tens of meters per second.

We chose four wavelength segments in the near-IR that are rich in stellar absorption lines in FGKM stars, but nearly free of telluric lines. Using a spectrum of the A5 star, HR 3662, we determined which regions of the spectra in the near-IR of HIRES spectra are largely unpolluted by telluric lines. The resulting four wavelength regions were 679.5-686.7 nm, 706.7-714.6 nm, 739.8-748.9 nm, and 751.8-759.3 nm. In these wavelength regions, we carried out Doppler measurements by using standard chi-square minimization as a function of Doppler shift between the spectra of the program star and template reference star. We averaged the velocities from the four wavelength segments of the spectrum, and we recorded that average value as the star’s radial velocity. We employed two template spectra. For the FGK stars, we used a spectrum of sun-light reflected off Vesta as a solar proxy. As Vesta is unresolved, its use ensured that the spectrometer optics were illuminated in nearly the same way as by the program stars. For M dwarfs we used a spectrum of HIP 80824 (spectral type M3.5). We applied a barycentric correction to the velocity for each spectrum in the frame of the solar system barycenter.

The resulting ”raw” radial velocities were systematically different from those of Nidever et al. (2002) by an arbitrary constant amount due to the radial velocity and barycentric correction of the template spectrum. We calculated this constant by taking a sample of 110 standard FGKM stars in Nidever et al. (2002) and comparing those velocities to our measured raw velocities for those stars. We determined the average difference between our raw velocities and those of Nidever et al. (2002), constituting the constant to be applied to all of our velocity measurements. This automatically forces our radial velocities to have the same zero-point as those of Nidever et al. (2002).

Thus our velocity measurements reside on the scale of Nidever et al. (2002) by construction. These radial velocities of stars are measured relative to a hypothetical inertial frame located at the barycenter of the Solar System. This transformation is accomplished by using the JPL ephemeris of the Solar System to determine the velocity vector of the Keck 1 telescope at the instant of the photon-weighted midpoint of the exposure of the spectrum (accurate to within a few seconds). Our transformation to the barycentric frame is performed using the JPL ephemeris13, accessed and interpreted with utilities from the IDL Astronomy User’s Library14 and custom driver codes written by the California Planet Survey. We carried out extensive tests of our barycentric transformation code, finding discrepancies of 0.1 m sin comparison with TEMPO 1.1 which is similar to that of TEMPO 2 (Edwards et al., 2006). Errors of that magnitude, 10 km s, are negligible compared to other sources of error in this present work.

As usual for such transformations to the Solar System barycenter, we do not include the effects of the solar gravitational potential at that location (near the surface of the Sun) that would cause a (meaningless) gravitational blueshift. Similarly, we do not account for the gravitational blueshift caused by starlight falling into the potential well of the Sun at the location of the Earth, a 3 m seffect. We also do not take into account the gravitational redshift as light departs the photosphere of the star, an effect of hundreds of m sthat depends on stellar mass and radius.

We further ignore the convective blueshift of the starlight caused by the Doppler asymmetry between the upwelling hot gas and the downflowing cool gas. Convective blueshift depends on spectral type (Dravins, 1999), and we do not include any theoretical estimates of this photospheric hydrodynamic effect here. Both gravitational redshift and convective blueshift amount to a few tenths of a kilometer per second, and while they are opposite in sign they may not cancel each other. However see Section 4 for a quantitative discussion of these two effects, that appear to largely cancel each other. We note that several efforts have been successful at measuring the convective blueshift in a few stars, especially for the Sun and the alpha Centauri system (Ramírez et al., 2010; Dravins, 2008; Nordlund, 2008; Pourbaix et al., 2002).

2.1. Radial Velocity Standard Stars

We identified standard stars from among the 2046 total sample of stars based on several criteria. We examined the iodine-based relative velocities, having a precision of 3 m s, for each of the 2046 stars. We established a severe criterion of stability during 10 years in order for a star to be qualified as a ”radial velocity standard star”. All standard stars must exhibit an RMS of their iodine-based relative velocities under 0.03 km s(Marcy & Butler, 1992) and a duration of such velocity measurements of at least 10 years. Figure 2 displays the iodine-based relative velocities for three representative standard stars. The absolute radial velocity relative to the Solar System sets the zero-point and the relative velocities come from the iodine-based Doppler measurements. The velocities of the three representative cases exhibit an RMS of under 0.010 km s(10 m s) and span over 10 years, typical of the standard stars, promoting their integrity as standard stars at the more relaxed level of 0.1 km s.

Thus, our radial velocity standard stars must demonstrate constant velocity during a decade within a tolerance of 30 m sRMS during that time. We required that at least 3 spectra be obtained over a 10 year time period to demonstrate the decade-long stability. We identified 131 standard stars based on these criteria. Among them, only 12 exhibit an RMS scatter in their iodine-based RVs of more than 0.01 km s, and none over 0.03 km s, during 10 years of observations. Thus, the 131 standard stars all exhibit radial velocity stability during a decade at the level of 0.03 km s.

The barycentric radial velocities for the 131 standard stars are reported in Tables 1 and 2. In Table 1, primary and alternate star names are given in the first three columns, and the spectral type is given in column 4. Columns 5, 6, and 7 give the Julian dates of the first and last observations, and the duration of observations in years. Column 8 lists the radial velocity of the star relative to the solar system barycenter given by Nidever et al. (2002). Column 9 lists the unweighted average of all radial velocity measurements from this current work. In the next two columns we list the standard deviation of the multiple velocities we measured here for the star and the number of spectra used. We report the final velocity for each standard star as the average of the Nidever et al. (2002) and present velocities. We consider this final radial velocity to be robust as both sets of velocities have high integrity and we do not rank one set significantly higher in integrity than the other. Importantly, the Nidever et al. velocities and these new velocities were determined using completely different Doppler algorithms and different wavelength regions. Thus the Nidever and present radial velocities offer considerable resistance to unexpected errors associated with any particular method or wavelength. The Nidever et al. velocities had a wavelength scale rooted in the iodine lines and measured using the 500-600 nm wavelength region, quite different from the wavelength scale here rooted in telluric lines at 670 and 760 nm and measured using the near IR spectrum.

The radial velocity uncertainty recorded in Tables 1 and 2 is the largest of three values: the difference between our present velocity and Nidever’s, the uncertainty in the mean, or 0.03 km s, which we deemed our base accuracy, to prevent artificially low uncertainties. Table 2 lists the same standard stars, but in a format more suitable for observing. We give the primary name, position in RA and DEC, magnitude, spectral type, final absolute radial velocity, and uncertainty.

Establishing and maintaining a single, well-defined velocity scale, including zero-point accuracy and precision, is important to make the radial velocities more useful. The velocity scale must be compared to other well–known scales. In particular, our velocities are compared here to those from Geneva, Harvard-Smithsonian, and the California Planet Survey15.

We compared our ”present” velocities to those of the standard stars of Udry et al. (1999a). The average of the differences (i.e. zero–point difference) is:

Thus there is a statistically significant difference in the zero-points. That this difference is less than 0.1 km soffers some scale to the integrity of the discrepancies in the two systems of radial velocities. The RMS of the differences is 0.072 km s(RMS) for the 30 standard stars in common, as shown in Figure 3. Thus the two sets of velocities agree within 0.1 km sin zero point and scatter. However, the differences in the velocities appear to be correlated with stellar B-V color, suggesting a systematic error. Inspection of Figure 3 shows that it is the M dwarfs, with B-V 0.9 where the systematic difference resides of (present - Udry) = +0.10 km s. Thus, while the FGK stars of Udry et al. and the present set have different velocity zero-points by 0.063 km s, the M dwarfs differ by 0.10 km s.

We also compared our velocities to those of Stefanik et al. (1999). Considering the 25 standard stars in common, as seen in Figure 4, the average of the differences is:

The differences in the 25 velocities have a scatter of 0.13 km s(RMS). Thus the present velocities differ in zero-point from those of Stefanik et al. (1999) by a statistically significant amount (see Section 4 for the explanation).

A useful compilation of velocities was provided by Crifo et al. (2010) based on various past surveys. They show that the velocities from Nidever et al. (2002) are valuable because of the accuracy ( 0.1 km s), the large number of observations, and the long duration of the velocity time series. They compare the Nidever et al. velocities to those from past CORAVEL measurements that have typical accuracy of 0.3 km s, finding good agreement within errors. They offer a preliminary list of standard stars drawn heavily from Nidever et al. (2002). Thus the zero-point and scale of the velocities in Crifo et al. naturally agree with those here.

We also compare our measurements of M dwarfs to those of Marcy et al. (1987). We find that the velocity differences scatter by 0.26 km s(RMS) and our zero–points are different by

for the 17 stars in common (see Figure 5). As the velocities from Marcy et al. (1987) are expected to carry precision of only 0.2 km s, this scatter of 0.26 km sRMS is consistent with most of the error residing in Marcy et al. (1987) and only 0.1 km sresiding in the errors in the present velocities of M dwarfs.

The differences in the velocities between those of Nidever et al. (2002) and those of both Udry et al. (1999a) and Stefanik et al. (1999) exhibted a scatter of less than 0.1 km s(RMS), and our present velocities differ from those previous standard measurements within a margin of 0.1 km s(RMS). Thus, the velocities reported here agree with the best established standard stars to within 0.1 km sin precision, with modest zero-point differences of comparable magnitude.

We show in section 2.3, that the radial velocities measured here for 428 stars in common with Nidever et al. (2002) agree within 0.13 km s(RMS) and that there is little dependence on the color of the stars. This comparison of 428 stars offers further weight to the suggestion that the standard stars in Tables 1 and 2 have integrity at the level of 0.1 km s. We also show in Section 4 that the zero-point of the velocity scale has integrity at the level of 0.1 km s.

2.2. Uncertainty in the Velocities of Standard Stars

We compute the uncertainty of the radial velocity for each of the 131 standard stars by considering two separate estimates of the uncertainty. The first estimate is the uncertainty of the mean velocity measurement, defined as , where is the standard deviation of the ensemble of velocities for a particular star. This estimate offers a measure of the internal uncertainty revealed by the scatter in the individual velocity measurements. As a second estimate of uncertainty we compute the difference between the radial velocity measured here and the radial velocity published in Nidever et al. (2002). This difference in radial velocities offers a measure of agreement in the two radial velocity measurements despite two different methods used to compute them and two different sets of spectra used to measure them in the two papers. The largest of these two uncertainty estimates, but not less than 0.030 km s, is listed in Tables 1 and 2 as the final estimate of the 1-sigma uncertainty for the radial velocity of each standard star. We adopted this floor 0.030 km sfor the stated uncertainty because this was the uncertainty of the velocities given in Nidever et al. (2002). Any fortuitous agreement between the current velocities and those in Nidever et al. that happens to be smaller than 0.030 km scould well be spurious. This adopted floor at 0.030 km sprevents our quoted measurement uncertainty from dropping lower than the level below which we have no useful comparison with the Nidever et al. velocities.

To broaden the scope of this uncertainy assessment for the standard stars, we compared the measured radial velocities here to those in common with Nidever et al. (2002) among the full set of 2046 stars, not just the standard stars. We display the difference between our present radial velocities and those of Nidever et al. (2002) in Figure 6 for FGK stars and Figure 7 for the M dwarfs. For the 428 FGK stars in common, the differences have an RMS of 0.13 km s. Thus the combined errors in the present work and in Nidever et al. amount to 0.13 km sfor the FGK stars, as described in more detail in Section 2.3. For the 52 M dwarfs in common, the differences exhibit an RMS of 0.13 km s(with three outliers near 0.4 km s) indicating the level of combined errors among M dwarfs in the two studies. The errors in the final velocities for the standard stars will be smaller than quoted above for the entire set of 2046 stars because the standards typically have more observations and have constant radial velocities by their selection.

2.3. Radial Velocities of 2046 Stars

Table 3 reports the radial velocities of all 2046 stars (including the standards) relative to the solar system barycenter. The same technique that was used to determine the radial velocities of the standard stars was used to determine the radial velocities for all 2046 stars. In Table 3, the primary star name is given in column 1, and the template type in column 2. The symbol ”V” represents the Vesta spectrum (solar), and ”M” represents the constructed M-dwarf template described above. The 3rd column gives the unweighted mean of the Julian Dates of our observations, and the 4th column gives the number of days between the first and last observation. For each star, we compute the unweighted average of all radial velocity measurements from all spectra we obtained for that star. The 5th column gives that average radial velocity for the star, measured in the frame of the barycenter of the solar system. The 6th column gives the number of radial velocity observations, and the 7th column gives the standard deviation of all radial velocity measurements of that star, a measure of both the uncertainty and of the intrinsic variation of the radial velocities.

Examination of Table 3 shows that among the 2046 stars with measured radial velocities, some stars have only one or two velocity measurements while others have over 30 measurements. The time span between the first and last spectrum is typically over a year, and often many years. The standard deviation of the velocities given in the last column is a measure of the combined errors and acceleration of the star during the time span of observations. The median standard deviation is 0.12 km s, representing the uncertainty of our individual velocity measurements, but increased slightly by the actual velocity variations of the stars.

One measure of the 1-sigma errors of the radial velocities in Table 3 is given by the uncertainty in the mean, namely, . However, because of systematic errors caused by convection of 0.1 km sdescribed in Section 4, we prefer to avoid stating the formal uncertainties that could be misinterpreted as useful uncertainties. Also, some stars exhibit intrinsic velocity variation caused by unseen orbiting companions, thus artifically augmenting the formal uncertainty in the mean.

Nonetheless, examination of in the last column of Table 3 shows scatter of typically 0.15 km sfor individual velocity measurements, serving as an upper limit to the typical errors. Thus any values of in Table 3 greater than 0.45 km s(3 sigma) are likely “real”, i.e. indicating actual changes in the radial velocity of that star by an amount given by that standard deviation on a time scale constrained by the time span of the observations.

We have compared the present velocities to those of Nidever et al. (2002). Nidever et al. used the iodine lines and the visible portion of the spectrum to measure Doppler shifts, a method quite independent of that used here. Thus a comparison of the two sets of the velocities for stars in common offers a method of identifying random and systematic errors that stem from the Doppler methods themselves. Figure 6 shows the difference between the present velocities and those of Nidever et al. (2002) as a function of stellar color, B-V, for all 428 stars in common classified as F, G, or K spectral type. The plot shows that the differences in the velocities are typically less than 0.2 km s, with an RMS of the differences of 0.13 km s, and there is no evidence of a dependence on stellar color. (We removed HD 217165 from the RMS calculation, which is a binary star.) This suggests that the accuracy and zero-points of the present and Nidever et al. velocities are similar within 0.13 km s(RMS).

However, Figure 6 reveals six stars (with one off scale) for which the difference between present and Nidever et al. velocities are over 0.5 km s(3 sigma differences). These stars are HD 87359 (+0.81 km s), HD 114174 (+0.58 km s), HD 180684 (+0.61 km s), HD 196201 (+0.65 km s), HD 91204 (-0.74 km s), and HD217165 (-2.2 km s). Examination of the iodine-based relative velocities (precise to 0.002 km sRMS) for these six stars reveals all of them to exhibit long-term trends of velocity of over 0.5 km s. These are certainly long period binary stars. The difference between the present velocities and those of Nidever et al. (2002) is simply due to the orbital motion that has occurred since the spectra were taken for the work of Nidever et al. (prior to 2002) and those here that were taken after 2004 June. Thus, the present velocities offer a sieve for binary stars,

Figure 7 shows a similar comparison of present velocities and those of Nidever et al. (2002) for the 52 M dwarfs in common. The RMS of the differences of 0.13 km sindicates larger errors for the M dwarfs than for the FGK-type stars. This error is reminiscent of that seen in Figure 4 for which the difference between the present velocities and those of Udry et al. (1999a) among the M dwarfs was 0.15 km s. These metrics suggests that the M dwarf velocities in general, from all surveys, remain uncertain at the level of 0.2 km s(RMS) and harbor uncertain zero points at the level of 0.15 km s.

Figure 8 shows the location of the stars in equatorial coordinates in a Mollweide projection on the sky. The broad distribution at all RA, and northward of DEC = -50 offers a set of secondary standard stars. The dots are color-coded with blue representing stars approaching and red representing stars receding from the barycenter of the solar system. The size of the dots is proportional to the square root of the absolute value of the radial velocity, an arbitrary functional form for ease in display. The solar apex is shown as a cross, the direction of the motion of the sun relative to the G dwarfs in the solar neighborhood (Abad et al., 2003). Analysis of such all-sky measurements of Doppler shifts can, in principle and after removal of the solar apex motion, reveal effects from gravitational redshift including tests of general relativity (Hentschel, 1994).

Those stars exhibiting a standard deviation of their measured velocities less than 0.1 km sas listed in Table 3 (last column) and having a time span of observations over a few years constitute secondary standard stars. Their lack of radial velocity variation above 0.1 km sduring several years indicates a constant velocity suitable for many purposes. In contrast, the standard stars listed in Tables 1 and 2 met a higher standard of constant radial velocity within 0.1 km sduring a time span of a full 10 years and all of them also exhibted precise radial velocities (using iodine as wavelength reference) constant to within 0.025 km s, thereby ensuring their integrity as standard stars.

3. Binary Stars

We compared our radial velocities with those previously published, noting a subset of stars that show differences of over 2 km s, indicating likely binary stars. We made great use of the Pulkovo Catalog of Radial Velocities (Gontcharov, 2006). The Pulkovo catalog gives the weighted mean absolute velocities for over 35000 Hipparcos stars drawn from over 200 publications. Despite the inhomogeneous sources, the median accuracy of the final radial velocities in the Pulkovo Catalog is 0.7 km s, adequate to identify binaries in comparison with the absolute velocities presented here. The times of observations from the Pulkovo Catalog were typically 10-30 years ago, offering a time difference of typically over 10 years between those measurements and the radial velocities presented here. Thus, binary stars with periods over a decade can be identified. Thanks are due to Charles Francis and Erik Anderson for their critical evaluation of the velocities in this work compared to those in the Pulkovo Catalog of Radial Velocities.

Among the 2046 stars reported here in Table 3, we identified those having a difference between the present velocities and those in the Pulkovo Catalog of more the 3 , i.e. 2 km s. Velocity differences of over 2 km soffer a sign, but not convincing evidence, of long term binary motion with orbital periods over a year. For binaries with periods of between a year and several decades, the velocity variation will be many km son time scales of a decade, allowing some of them to be detected.

Table 4 gives a list of the stars showing differences of over 2 km sbetween the present and Pulkovo velocities, indicating a possible binary. The first and second columns give the HD and Hipparcos identities of the star. The third column gives the radial velocity from the present work, and the fourth column give the radial velocity from the Pulkovo Catalog (Gontcharov, 2006). For each of the stars in Table 4, we examined the relative, precise iodine-based radial velocities (precision of 2 m s) to detect any obvious velocity variations. Indeed, for many of the stars in Table 4, the precise, iodine-based RVs reveal large velocity variations of over 1 km s, confirming the binary nature. For them, we note the measured time derivative of the variation of precise radial velocities (”PRV var”) in the last column of Table 4 under ”Comments”. For the remaining stars in Table 4, we do not have precise relative RVs, and must rely on the difference between the present and Pulkovo velocities as the indicator of a binary star. Certainly a few of these entries may be false binaries, due to unavoidable errors in the Pulkovo compilation. But we suspect that the vast majority of the stars in Table 4 are actual binaries, and we are alerting the community to this likelihood. In addition, we discovered several double-line spectroscopic binaries among our target stars, so indicated in the Comments in Table 4.

4. Velocity Zero Point

The present velocities share, by construction, the zero-point of the velocity scale with that of Nidever et al. (2002). The Nidever zero-point in velocity was determined by using spectra of both the day sky and of the asteroid, Vesta, yielding a zero-point accurate to within 0.01 km sfor G2V stars. The present velocities have a similarly accurate zero-point for G2V stars.

However one must consider the effects of general relativistic gravitational redshifts upon departure of the light from the star (but we do include the general relativistic blueshift caused by entry of light into the potential wells of the solar system, an effect of only 0.003 km s). One must also consider the “convective blueshift” caused by the hydrodynamic effects in the photospheres of FGKM stars (Dravins, 2008). We emphasize that our present velocities were constructed to have the correct velocity for the Sun and Vesta, thus automatically accounting for gravitational redshift and convective blueshift for G2V stars. Here we estimate these two effects on the velocity zero-point as a function of stellar mass along the main sequence.

The gravitational redshift of light upon departure from stars is = 0.635() where K is given in km sand M and R are the stellar mass and radius given in solar units. As is nearly proportional to along the main sequence, the gravitational redshift varies little among the main sequence stars, and remains 0.6 km sfor FGKM stars.

But the convective velocities decrease substantially for the lower mass stars that have lower luminosities, requiring lower convective velocities to carry the energy. Scaling the convective energy transport with stellar mass suggests that convective velocities will vary linearly with stellar mass. Indeed, the RV “jitter” decreases from 2 m sfor G dwarfs to less than 1 m sfor M dwarfs, in part caused by the decrease in sub-photospheric convective hydrodynamics, not necessarily due to spots. We note that convective blueshift depends on the technique used to measure radial velocity because it stems from a net displacement and distortion of the absorption line profiles. These displacements and shapes of the lines arise from the integrated velocity field with depth in the photosphere, implying that each radial velocity technique with its particular set of absorption lines will sample a different portion of that velocity field. Given this physical situation, it is noteworthy that the present velocities and those of Nidever et al. (2002) show negligible discrepancies as they sample the near-IR and green/optical portions of the spectrum, respectively.

One may anticipate that M dwarfs of 0.5 solar masses will suffer a convective blueshift that is only half that of solar type stars, and hence half that necessary to cancel the gravitational redshift. This suggests that the radial velocities of M dwarfs presented here may suffer from a net surplus of gravitational redshift compared to convective blueshift of 0.3 km s.

To quantify this imbalance of convective blueshift against gravitational redshift, Nidever et al. (2002) draw from hydrodynamic models of stellar atmospheres of Dravins (1999) to estimate the resulting systematic errors. Based on them and on computed gravitational redshifts, we estimate that our present radial velocities are too low by 0.56 km sfor F5V stars. For those stars convective blueshift causes a greater blueshift than the gravitational redshift. For G2V stars, our present radial velocities have a zero-point accurate to within 0.01 km s, by construction (using the Sun and Vesta). For K0V and M0V stars, our present velocities are probably too high by 0.15 and 0.30 km s, respectively.

We caution that the asymmetries in absorption lines leading to convective blueshift vary from line to line depending on the velocity fields at their depth of formation, with variations of 0.1 km/s. The asymmetries also vary with time during a magnetic cycle as the surface fields influence the convective flow patterns. Moreover, the convective blueshift will be a function of spectral resolution and of the algorithm used to measure it, i.e. cross-correlation or other, that implicity apply weights along the line profile.

Thus, to obtain kinematically robust measures of radial velocity, d/d, we recommend applying the corrections listed above, to the velocities in Tables 1, 2, and 3, i.e. adding 0.56 km sto our velocities of F5V stars, zero for G2V, subtracting 0.15 km sfor K0V, and subtracting 0.3 km sfor M0V. A useful linear relation that approximately represents the correction (in km s) to be applied is:

This correction to our radial velocities is pinned to the zero-point established by the spectra of the Sun and asteroids, and applies only to main sequence stars.

We check the velocity zero-point assessment described above, as follows. A careful assessment of gravitational redshifts is provided by Pasquini et al. (2011). They compared the radial velocities of main sequence stars and giants within the open cluster, M67, expecting to find a larger gravitational redshift from the main sequence stars due to their smaller radii. Remarkably, their radial velocities of main sequence stars and giants showed no difference in systemtic velocities of the two stellar populations. Pasquini et al. (2011) find an upper limit of 0.1 km sin the net difference in the systemic radial velocities between main sequence stars and giants. This lack of RV difference indicates that the spectral lines in main sequence stars are sufficiently blueshifted, compared to those in giant stars (that suffer only a small gravitational redshift due to their large radii), such that the gravitational redshift and convective blueshift nearly cancel each other in FGK main sequence stars, at the level of 0.1 km s. This cancellation provides some assurance that our velocity zero-point, which is forced to be zero for G2V stars, is not highly sensitive to changes in convective blueshift along the main sequence.

We further check our velocity zero-point by comparison with Center for Astrophysics (CfA) radial velocity results that targeted asteroids having known ephemerides to establish the instantaneous velocity vectors relative to the observatory (Latham et al., 2002). This effort is similar to that employed by Nidever et al. (2002) who used Vesta to set their zero-point. The CfA group finds that their native radial velocities require a correction of +0.139 km sto achieve agreement with the actual dynamical orbital velocities of the asteroids (Latham et al., 2002).

This asteroid-derived correction of +0.139 km sto the CfA radial velocities may be combined with the measured zero-point difference between the present radial velocities and those from the CfA. In Section 2.1 we noted that the velocities of the present standard stars differed from those of the CfA (Stefanik et al., 1999), with a zero–point difference: = +0.15 km s. But the CfA radial velocities should be corrected by +0.139 based on their asteroid reference. Doing so reduces the difference between the present and (corrected) CfA velocity zero point to 0.15-0.139 km s= 0.011 km s. Thus, the radial velocities presented here differ from the dynamically derived velocity zero-point at the CfA by only 0.011 km s.

The lines of evidence presented in this section indicate that the radial velocities presented here are accurate measures of the time rate of change of the distance of the star from the solar system barycenter for solar type stars. In summary, our velocity zero-point was pinned to Nidever et al. (2002) that stemmed from spectra of the Sun and Vesta. Pasquini et al. (2011) show that gravitational redshift and convective blueshift nearly cancel for main sequence FGK stars. The asteroid measurements at the CfA (Latham et al., 2002) yield a zero-point of the velocity scale that agrees with that here, within 0.01 km s. Thus, the present velocities represent the actual time rate of change of distance, d/d, of the solar-type stars. For other spectral types, corrections to velocities should be applied for convective blueshift, as noted above. We caution that even after applying such corrections, the present radial velocities may carry systematic errors of 0.1 km sor more, especially for spectral types far from G2V.

5. Discussion

We have provided barycentric radial velocities with an internal precision of 0.1 km sfor 2046 stars, of which 131 are standards. The error estimates come from both the internal errors found from our measurements and from the comparison with the standard velocities of Nidever et al. (2002), Stefanik et al. (1999) and Udry et al. (1999a). Our absolute radial velocities were constructed to share the velocity zero–point defined by Nidever et al. (2002) and apparently the resulting velocity scale differs by only 0.063 km sfrom that of Udry et al. (1999a), by 0.15 km sfrom that of Stefanik et al. (1999), and 0.007 km sfrom that of Marcy et al. (1987), which adds confidence to the zero points of all four sets of velocities.

The 1-sigma errors of the radial velocities in Table 3 are 0.12 km s. Any stars exhibiting a scatter among their individual velocity measurements, listed as in the last column of Table 3, that is greater than 0.36 km srepresents a 3-sigma departure from a constant velocity. Such scatter likely indicates physical changes in the radial velocity of that star by an amount given by that standard deviation and occurring on a time scale constrained by (shorter than) the time span of the observations. In such cases of velocity variability, the individual radial velocities and their times of observation offer information about the coherence, if any, and the time scale of the acceleration of the star. Certainly long term trends and periodicities in the radial velocities offer information on the cause of the velocity variation and on the orbital or physical behavior.

Such accelerations are likely caused by gravitational forces within a multiple star system. Other possible causes are gravitational forces exerted by orbiting giant planets, passing stars including compact objects, structural pulsations in the star itself, rapid rotation coupled with surface inhomogeneities such as starspots, Rossiter McLaughlin effect from orbiting objects, or stochastic surface velocities from magnetic events such as flares.

The precise barycentric radial velocities presented here may serve as useful reference measurements for calibrations of other spectroscopic programs. They may be used to construct velocity metrics for studies of the kinematics of the Galaxy or of other galaxies. We intended for these velocities to be useful to surveys of Galactic kinematics and dynamics such as Gaia, SDSS, RAVE, APOGEE, SkyMapper, HERMES, and LSST. They may assist in Doppler searches for long-period binary stars. Indeed, these velocities will help identify long period orbiting or passing companions to the 2046 stars themselves, most of which reside within 100 pc thus making them interesting targets for future high contrast imaging.

We are indebted to the University of California and NASA for allocation of telescope time on the Keck telescope. We thank Charles Francis and Erik Anderson for a critical review of the velocities compared to past measurements. We thank Guillermo (Willie) Torres and Dimitri Pourbaix for valuable suggestions that improved the manuscript. This work benefited from valuable discussions about radial velocity standard stars with Dave Latham, Stephane Udry, and Dainis Dravins. We are grateful to UCLA for hospitality during the writing of some of the paper. This work made use of the Exoplanet Orbit Database and the Exoplanet Data Explorer at www.exoplanets.org. All 29000 spectra are archived and publicly available, thanks to the Keck Observatory Archive made possible by a NASA-funded collaboration between the NASA Exoplanet Science Institute and the W. M. Keck Observatory. We acknowledge support by NASA grants NAG5-8299, NNX11AK04A, NSF grants AST95-20443 (to GWM) and AST-1109727 (to JTW), and by Sun Microsystems. This research was made possible by the generous support from the Watson and Marilyn Albert SETI Chair fund (to GWM) and by generous donations from Howard and Astrid Preston. The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University, the Eberly College of Science, and the Pennsylvania Space Grant Consortium. This research has made use of NASA’s Astrophysics Data System and the SIMBAD database, operated at CDS, Strasbourg, France. We thank R.Paul Butler and Steven Vogt for help making observations. We thank the staff of the W.M Keck Observatory and Lick Observatory for their valuable work maintaining and improving the telescopes and instruments, without which the observations would not be possible. We appreciate the State of California for its support of operations at both observatories. We thank the University of California, Caltech, the W.M. Keck Foundation, and NASA for support that made the Keck Observatory possible. We appreciate the indigenous Hawaiian people for the use of their sacred mountain, Mauna Kea.
HD# HIP Gliese Spec. JD JD t RV16 RV17 18 19 RV20 Unc21
Type (-2440000) (-2440000) (yr) (km/s) (km/s) (km/s) (km/s) (km/s)
166 544 5 K0 6960 15252 23 -6.537 -6.350 0.118 12 -6.444 0.187
283 616 9003 K0 10367 14457 11 -43.102 -43.247 0.077 7 -43.174 0.145
3651 3093 27 K0 7048 15251 22 -32.961 -32.919 0.108 63 -32.940 0.042
3765 3206 28 K2 10462 15252 13 -63.202 -63.179 0.119 62 -63.191 0.030
4256 3535 31.4 K2 10367 15172 13 9.460 9.393 0.104 49 9.426 0.067
4628 3765 33 K2 7047 15252 22 -10.230 -10.228 0.121 79 -10.229 0.030
8389 6456 57.1 K0 10367 15016 13 34.647 34.606 0.110 58 34.626 0.041
9562 7276 59.2 G2 10367 15230 13 -14.989 -14.990 0.132 7 -14.990 0.050
10002 7539 62 K0 10463 14431 11 11.562 11.494 0.045 5 11.528 0.068
10145 7902 9059 G5 10462 15110 13 17.838 17.938 0.158 4 17.888 0.100
10476 7981 68 K1 7048 15172 22 -33.647 -33.650 0.103 137 -33.648 0.030
10700 8102 71 G8 7047 15232 22 -16.619 -16.640 0.121 466 -16.629 0.030
12051 9269 82.1 G5 10419 15257 13 -35.102 -35.163 0.146 117 -35.133 0.061
13043 9911 9073 G2 10367 15232 13 -39.333 -39.326 0.102 122 -39.329 0.030
14412 10798 95 G5 10366 15232 13 7.383 7.297 0.129 73 7.340 0.086
16141 12048 9085 G5 10366 15230 13 -50.971 -50.909 0.109 18 -50.940 0.062
18803 14150 120.2 G8 10367 15135 13 9.878 9.847 0.092 69 9.862 0.031
20165 15099 9112 K1 10366 15173 13 -16.676 -16.667 0.164 28 -16.672 0.031
20619 15442 135 G1.5 10366 15135 13 22.689 22.637 0.130 40 22.663 0.052
22484 16852 147 F9 7049 15261 22 28.080 28.253 0.073 3 28.167 0.173
22879 17147 147.1 F9 10366 15173 13 120.356 120.325 0.107 31 120.340 0.031
23439 17666 1064 K1 10463 15134 13 50.704 50.572 0.119 25 50.638 0.132
24365 18208 3254 G8 10463 15172 13 19.278 19.274 0.083 6 19.276 0.034
24238 18324 15 K0 10463 15257 13 38.809 38.736 0.136 31 38.772 0.073
26794 19788 165.2 K3 10420 14456 11 56.573 56.402 0.112 7 56.487 0.171
26965 19849 166A K1 7049 15261 22 -42.331 -42.344 0.118 83 -42.337 0.030
28187 20638 - G3 10366 14024 10 18.321 18.324 0.137 3 18.322 0.079
31253 22826 - F8 10839 14807 11 12.184 12.285 0.167 14 12.235 0.101
31560 22907 2037 K3 10366 14780 12 6.203 6.208 0.112 8 6.205 0.040
32147 23311 183 K3 7047 15286 23 21.552 21.536 0.115 126 21.544 0.030
34721 24786 198 G0 10366 15081 13 40.448 40.503 0.130 32 40.475 0.055
34411 24813 197 G0 7049 15322 23 66.511 66.482 0.135 88 66.497 0.030
36003 25623 204 K5 10367 15109 13 -55.527 -55.588 0.111 69 -55.558 0.061
36395 25878 205 M1.5 10420 15257 13 8.665 8.687 0.169 13 8.676 0.047
245409 26335 208 K7 10420 15257 13 22.046 22.333 0.273 6 22.190 0.287
37124 26381 209 G4 10420 15230 13 -23.076 -23.032 0.094 28 -23.054 0.044
38858 27435 1085 G4 10419 15262 13 31.543 31.471 0.093 76 31.507 0.072
39881 28066 224 G5 10366 14865 12 0.333 0.307 0.085 14 0.320 0.030
42581 29295 229A M1 10420 15199 13 4.724 4.753 0.115 14 4.738 0.031
42618 29432 3387 G4 10366 15322 14 -53.501 -53.499 0.127 164 -53.500 0.030
45184 30503 3394 G2 10366 15199 13 -3.856 -3.863 0.119 117 -3.859 0.030
48682 32480 245 G0 7049 15343 23 -23.933 -23.881 0.101 33 -23.907 0.052
265866 33226 251 M3 10784 15173 12 22.914 22.969 0.165 24 22.942 0.055
51866 33852 257.1 K3 10462 15134 13 -21.624 -21.688 0.128 33 -21.656 0.064
52711 34017 262 G4 7049 15230 22 24.604 24.566 0.115 95 24.585 0.038
- 36208 273 M3.5 7049 15290 23 18.216 18.203 0.095 20 18.210 0.030
65583 39157 295 G8 10419 15345 13 14.832 14.760 0.114 61 14.796 0.072
67767 40023 - G7 10419 15345 13 -44.318 -44.225 0.091 5 -44.272 0.093
71334 41317 306.1 G4 10462 14130 10 17.286 17.493 0.148 3 17.389 0.207
73667 42499 315 K1 10462 15290 13 -12.088 -12.159 0.102 29 -12.123 0.071
84035 47690 365 K5 10462 15199 13 -12.225 -12.317 0.104 23 -12.271 0.092
84737 48113 368 G0.5 6960 15351 23 4.900 4.862 0.128 32 4.881 0.038
88230 49908 380 K5 7195 15017 21 -25.729 -25.692 0.118 18 -25.710 0.037
88371 49942 - G2 10463 14811 12 82.497 82.430 0.070 4 82.463 0.067
88725 50139 9322 G1 10463 14131 10 -22.045 -21.987 0.187 3 -22.016 0.108
89269 50505 3593 G5 10419 15351 14 -7.551 -7.563 0.125 94 -7.557 0.030
- - 388 M4.5 8020 15198 20 12.420 12.486 0.104 30 12.453 0.066
90156 50921 3597 G5 10419 15352 14 26.934 26.902 0.147 70 26.918 0.032
90711 51257 3603 K0 10462 14642 11 29.940 29.867 0.090 21 29.903 0.073
95735 54035 411 M2 6959 15343 23 -84.689 -84.678 0.136 149 -84.683 0.030
96700 54400 412.2 G2 10419 14928 12 12.769 12.805 0.170 5 12.787 0.076
97101 54646 414 K8 8649 15351 18 -16.376 -15.942 0.107 24 -16.159 0.434
97343 54704 3648 G8 10419 15352 14 39.794 39.783 0.132 66 39.789 0.030
97658 54906 3651 K1 10463 15352 13 -1.654 -1.758 0.122 151 -1.706 0.104
98281 55210 423.1 G8 10462 15352 13 13.330 13.294 0.128 70 13.312 0.036
99491 55846 429A K0 10419 15320 13 4.190 4.151 0.134 109 4.171 0.039
100180 56242 3669A G0 10419 15351 14 -4.854 -4.867 0.118 39 -4.860 0.030
100623 56452 432A K0 10419 15352 14 -21.959 -21.970 0.111 54 -21.964 0.030
101259 56830 3679 G6 10462 14808 12 96.905 96.718 0.156 3 96.812 0.187
104067 58451 1153 K2 10462 15315 13 15.021 14.963 0.110 40 14.992 0.058
105631 59280 3706 K0 10463 15231 13 -2.428 -2.516 0.121 120 -2.472 0.088
106156 59572 3715 G8 10463 15174 13 -7.415 -7.256 0.069 4 -7.336 0.159
111515 62607 3752 G8 10463 14549 11 2.548 2.578 0.069 7 2.563 0.030
116442 65352 3781A G5 10463 15315 13 28.421 28.401 0.151 37 28.411 0.030
116443 65355 3782B G5 10463 15320 13 27.416 27.351 0.117 82 27.383 0.065
- 65859 514 M0.5 10546 14964 12 14.556 14.506 0.107 25 14.531 0.050
119850 67155 526 M1.5 10546 15257 13 15.809 15.748 0.110 20 15.778 0.061
120467 67487 529 K4 10546 15315 13 -37.806 -37.450 0.089 21 -37.628 0.356
122120 68337 535 K5 10546 15285 13 -57.444 -57.440 0.105 45 -57.442 0.030
122652 68593 - F8 10832 15232 12 1.409 1.558 0.107 5 1.484 0.149
125184 69881 541.1 G5 10277 13985 10 -12.377 -12.285 0.117 12 -12.331 0.092
125455 70016 544 K1 10276 15315 14 -9.806 -9.906 0.117 26 -9.856 0.100
132142 73005 31.4 K1 10546 15345 13 -14.771 -14.806 0.104 32 -14.789 0.035
136713 75253 1191 K2 10277 15256 14 -6.037 -6.067 0.127 93 -6.052 0.030
136834 75266 1192 K3 10276 13935 10 -26.374 -26.460 0.018 3 -26.417 0.086
139323 76375 591 K3 10546 15261 13 -67.101 -67.108 0.131 123 -67.105 0.030
141004 77257 598 G0 6960 15315 23 -66.416 -66.363 0.126 179 -66.390 0.053
144585 78955 - G5 10547 14295 10 -14.067 -13.961 0.116 17 -14.014 0.106
146233 79672 616 G2 10284 15352 14 11.748 11.763 0.124 114 11.756 0.030
151541 81813 637.1 K1 10546 15285 13 9.475 9.470 0.131 39 9.473 0.030
151288 82003 638 K5 10602 15343 13 -31.357 -31.341 0.121 35 -31.349 0.030
154345 83389 54.2 G8 10547 15351 13 -46.930 -46.959 0.122 88 -46.945 0.030
154363 83591 653 K5 10276 15322 14 34.146 34.044 0.118 34 34.095 0.102
157214 84862 672 G0 6958 15351 23 -78.546 -78.572 0.119 40 -78.559 0.030
157881 85295 673 K5 10276 15081 13 -23.199 -23.037 0.065 3 -23.118 0.162
159222 85810 56.3 G5 10547 15322 13 -51.605 -51.506 0.121 90 -51.556 0.099
- 86162 687 M3.5 10604 15016 12 -28.779 -28.660 0.109 73 -28.720 0.119
- 86287 686 M1 10605 15043 12 -9.515 -9.483 0.112 37 -9.499 0.032
161848 87089 9605 K1 10276 13935 10 -94.929 -94.982 0.124 3 -94.955 0.072
- 87937 699 M4 6958 14930 22 -110.506 -110.326 0.132 75 -110.416 0.180
164922 88348 700.2 K0 10276 15321 14 20.248 20.224 0.098 100 20.236 0.030
165222 88574 701 M1 6959 15352 23 32.671 32.571 0.160 58 32.621 0.100
166620 88972 706 K2 6959 15261 23 -19.418 -19.512 0.107 42 -19.465 0.094
170493 90656 715 K3 10276 15043 13 -54.752 -54.801 0.109 44 -54.776 0.049
170657 90790 716 K1 9201 15322 17 -43.131 -43.142 0.161 13 -43.137 0.045
172051 91438 722 G5 10284 15136 13 37.103 37.087 0.121 43 37.095 0.030
173701 91949 725.1 K0 10548 14987 12 -45.602 -45.658 0.093 31 -45.630 0.056
175541 92895 736 G8 10284 15352 14 19.698 19.650 0.112 41 19.674 0.048
176982 93518 740.1 G5 10284 14024 10 -6.793 -6.856 0.062 3 -6.825 0.063
182488 95319 758 G8 11005 15319 12 -21.508 -21.462 0.134 55 -21.485 0.046
182572 95447 759 G8 10367 15319 14 -100.292 -100.285 0.126 61 -100.289 0.030
187923 97767 4126 G0 10277 15319 14 -20.611 -20.626 0.138 99 -20.619 0.030
188512 98036 771A G8 6960 15319 23 -40.109 -40.039 0.122 20 -40.074 0.070
190404 98792 778 K1 10276 15016 13 -2.527 -2.543 0.155 30 -2.535 0.030
191785 99452 783.2 K1 10277 15111 13 -49.286 -49.291 0.119 28 -49.289 0.030
196761 101997 796 G8 10277 15318 14 -41.987 -41.873 0.115 46 -41.930 0.114
197076 102040 797A G5 10366 15318 14 -35.409 -35.395 0.110 160 -35.402 0.030
- 102401 806 M1.5 7374 15015 21 -24.702 -24.692 0.116 41 -24.697 0.030
199305 103096 809 M0.5 10602 14984 12 -17.161 -17.127 0.133 19 -17.144 0.034
202751 105152 825.3 K2 10366 15111 13 -27.427 -27.468 0.104 39 -27.448 0.041
204587 106147 830 K5 10366 15084 13 -84.186 -84.021 0.103 20 -84.103 0.165
210302 109422 849.1 F6 11342 15136 10 -16.259 -16.049 0.194 36 -16.154 0.210
216259 112870 - K0 10276 14809 12 1.291 1.192 0.125 63 1.241 0.099
216899 113296 880 M1.5 10666 14809 11 -27.317 -27.194 0.156 24 -27.255 0.123
217357 113576 884 K5 10366 15135 13 16.420 16.502 0.105 49 16.461 0.082
217877 113896 - F8 11006 15019 11 -12.676 -12.800 0.100 3 -12.738 0.124
218566 114322 4313 K3 10367 15198 13 -37.804 -37.846 0.119 31 -37.825 0.042
219538 114886 4320 K2 10462 15111 13 9.990 9.943 0.108 46 9.967 0.047
220339 115445 894.5 K2 10367 15173 13 34.001 33.966 0.112 41 33.984 0.035
221356 116106 9829 F8 10277 15017 13 -12.713 -12.537 0.327 4 -12.625 0.176
- 117473 908 M2 7047 15199 22 -71.147 -71.022 0.169 52 -71.084 0.125
223498 117526 4366 G7 10367 14839 12 -23.985 -24.025 0.037 3 -24.005 0.040
Table 1Radial Velocities of Standard Stars
Star Name RA DEC V Spectral Final RV Unc
(2000) (2000) Type (km s) (km s)
HD 166 0 6 36.8 29 1 17.4 6.13 K0 -6.444 0.187
HD 283 0 7 32.5 -23 49 7.4 8.70 K0 -43.174 0.145
HD 3651 0 39 21.8 21 15 1.7 5.80 K0 -32.940 0.042
HD 3765 0 40 49.3 40 11 13.8 7.36 K2 -63.191 0.030
HD 4256 0 45 4.9 1 47 7.9 8.03 K2 9.426 0.067
HD 4628 0 48 23.0 5 16 50.2 5.75 K2 -10.229 0.030
HD 8389 1 23 2.6 -12 57 57.8 7.84 K0 34.626 0.041
HD 9562 1 33 42.8 -7 1 31.2 5.76 G2 -14.990 0.050
HD 10002 1 37 8.6 -29 23 35.7 8.13 K0 11.528 0.068
HD 10145 1 41 37.7 66 54 35.8 7.70 G5 17.888 0.100
HD 10476 1 42 29.8 20 16 6.6 5.20 K1 -33.648 0.030
HD 10700 1 44 4.1 -15 56 14.9 3.50 G8 -16.629 0.030
HD 12051 1 59 6.6 33 12 34.8 7.14 G5 -35.133 0.061
HD 13043 2 7 34.3 0 -37 2.7 6.87 G2 -39.329 0.030
HD 14412 2 18 58.5 -25 56 44.5 6.34 G5 7.340 0.086
HD 16141 2 35 19.9 -3 33 38.2 6.78 G5 -50.940 0.062
HD 18803 3 2 26.0 26 36 33.3 6.62 G8 9.862 0.031
HD 20165 3 14 47.2 8 58 50.9 7.83 K1 -16.672 0.031
HD 20619 3 19 1.9 -2 50 35.5 7.10 G1.5 22.663 0.052
HD 22484 3 36 52.4 0 24 6.0 4.28 F9 28.167 0.173
HD 22879 3 40 22.1 -3 13 1.1 6.74 F9 120.340 0.031
HD 23439 3 47 2.1 41 25 38.2 8.18 K1 50.638 0.132
HD 24365 3 53 37.7 28 8 53.2 7.87 G8 19.276 0.034
HD 24238 3 55 3.8 61 10 0.5 7.85 K0 38.772 0.073
HD 26794 4 14 30.3 3 1 19.4 8.81 K3 56.487 0.171
HD 26965 4 15 16.3 -7 39 10.3 4.41 K1 -42.337 0.030
HD 28187 4 25 23.8 -35 40 32.0 7.80 G3 18.322 0.079
HD 31253 4 54 43.7 12 21 7.9 7.14 F8 12.235 0.101
HD 31560 4 55 41.9 -28 33 50.1 8.12 K3 6.205 0.040
HD 32147 5 0 49.0 -5 45 13.2 6.22 K3 21.544 0.030
HD 34721 5 18 50.5 -18 7 48.2 5.96 G0 40.475 0.055
HD 34411 5 19 8.5 40 5 56.6 4.70 G0 66.497 0.030
HD 36003 5 28 26.1 -3 29 58.4 7.64 K5 -55.558 0.061
HD 36395 5 31 27.4 -3 40 38.0 7.92 M1.5 8.676 0.047
HD 245409 5 36 31.0 11 19 40.3 8.89 K7 22.190 0.287
HD 37124 5 37 2.5 20 43 50.8 7.68 G4 -23.054 0.044
HD 38858 5 48 34.9 -4 5 40.7 5.97 G4 31.507 0.072
HD 39881 5 56 3.4 13 55 29.7 6.60 G5 0.320 0.030
HD 42581 6 10 34.6 -21 51 52.7 8.14 M1 4.738 0.031
HD 42618 6 12 0.6 6 46 59.1 6.87 G4 -53.500 0.030
HD 45184 6 24 43.9 -28 46 48.4 6.37 G2 -3.859 0.030
HD 48682 6 46 44.3 43 34 38.7 5.25 G0 -23.907 0.052
HD 265866 6 54 49.0 33 16 5.4 9.89 M3 22.942 0.055
HD 51866 7 1 38.6 48 22 43.2 8.00 K3 -21.656 0.064
HD 52711 7 3 30.5 29 20 13.5 5.93 G4 24.585 0.038
GJ 273 7 27 24.5 5 13 32.8 9.89 M3.5 18.210 0.030
HD 65583 8 0 32.1 29 12 44.5 6.94 G8 14.796 0.072
HD 67767 8 10 27.2 25 30 26.4 5.73 G7 -44.272 0.093
HD 71334 8 25 49.5 -29 55 50.1 7.82 G4 17.389 0.207
HD 73667 8 39 50.8 11 31 21.6 7.64 K1 -12.123 0.071
HD 84035 9 43 25.7 42 41 29.6 8.12 K5 -12.271 0.092
HD 84737 9 48 35.4 46 1 15.6 5.10 G0.5 4.881 0.038
HD 88230 10 11 22.1 49 27 15.3 6.61 K5 -25.710 0.037
HD 88371 10 11 48.1 23 45 18.7 8.43 G2 82.463 0.067
HD 88725 10 14 8.3 3 9 4.7 7.74 G1 -22.016 0.108
HD 89269 10 18 51.9 44 2 54.0 6.65 G5 -7.557 0.030
GJ 388 10 19 36.3 19 52 11.9 9.43 M4.5 12.453 0.066
HD 90156 10 23 55.3 -29 38 43.9 6.95 G5 26.918 0.032
HD 90711 10 28 12.1 -6 36 2.1 7.90 K0 29.903 0.073
HD 95735 11 3 20.2 35 58 11.5 7.49 M2 -84.683 0.030
HD 96700 11 7 54.4 -30 10 28.4 6.54 G2 12.787 0.076
HD 97101 11 11 5.2 30 26 45.7 8.31 K8 -16.159 0.434
HD 97343 11 12 1.2 -26 8 12.0 7.04 G8 39.789 0.030
HD 97658 11 14 33.2 25 42 37.4 7.78 K1 -1.706 0.104
HD 98281 11 18 22.0 -5 4 2.3 7.31 G8 13.312 0.036
HD 99491 11 26 45.3 3 0 47.2 6.49 K0 4.171 0.039
HD 100180 11 31 44.9 14 21 52.2 6.20 G0 -4.860 0.030
HD 100623 11 34 29.5 -32 49 52.8 5.98 K0 -21.964 0.030
HD 101259 11 39 0.4 -24 43 15.9 6.42 G6 96.812 0.187
HD 104067 11 59 10.0 -20 21 13.6 7.93 K2 14.992 0.058
HD 105631 12 9 37.3 40 15 7.4 7.47 K0 -2.472 0.088
HD 106156 12 12 57.5 10 2 15.8 7.92 G8 -7.336 0.159
HD 111515 12 49 44.8 1 11 16.9 8.10 G8 2.563 0.030
HD 116442 13 23 39.2 2 43 24.0 7.06 G5 28.411 0.030
HD 116443 13 23 40.8 2 43 31.0 7.36 G5 27.383 0.065
GJ 514 13 29 59.8 10 22 37.8 9.04 M0.5 14.531 0.050
HD 119850 13 45 43.8 14 53 29.5 8.46 M1.5 15.778 0.061
HD 120467 13 49 44.8 -22 6 39.9 8.16 K4 -37.628 0.356
HD 122120 13 59 19.4 22 52 11.1 9.04 K5 -57.442 0.030
HD 122652 14 2 31.6 31 39 39.1 7.17 F8 1.484 0.149
HD 125184 14 18 0.7 -7 32 32.6 6.50 G5 -12.331 0.092
HD 125455 14 19 34.9 -5 9 4.3 7.58 K1 -9.856 0.100
HD 132142 14 55 11.0 53 40 49.2 7.73 K1 -14.789 0.035
HD 136713 15 22 36.7 -10 39 40.0 7.99 K2 -6.052 0.030
HD 136834 15 22 42.5 1 25 7.1 8.30 K3 -26.417 0.086
HD 139323 15 35 56.6 39 49 52.0 7.56 K3 -67.105 0.030
HD 141004 15 46 26.6 7 21 11.1 4.43 G0 -66.390 0.053
HD 144585 16 7 3.4 -14 4 16.6 6.32 G5 -14.014 0.106
HD 146233 16 15 37.3 -8 22 10.0 5.50 G2 11.756 0.030
HD 151541 16 42 38.6 68 6 7.8 7.56 K1 9.473 0.030
HD 151288 16 45 6.4 33 30 33.2 8.11 K5 -31.349 0.030
HD 154345 17 2 36.4 47 4 54.8 6.74 G8 -46.945 0.030
HD 154363 17 5 3.4 -5 3 59.4 7.73 K5 34.095 0.102
HD 157214 17 20 39.6 32 28 3.9 5.40 G0 -78.559 0.030
HD 157881 17 25 45.2 2 6 41.1 7.54 K5 -23.118 0.162
HD 159222 17 32 1.0 34 16 16.1 6.56 G5 -51.556 0.099
GJ 687 17 36 25.9 68 20 20.9 9.15 M3.5 -28.720 0.119
GJ 686 17 37 53.3 18 35 30.2 9.62 M1 -9.499 0.032
HD 161848 17 47 42.1 4 56 22.7 8.91 K1 -94.955 0.072
GJ 699 17 57 48.5 4 41 36.2 9.54 M4 -110.416 0.180
HD 164922 18 2 30.9 26 18 46.8 6.99 K0 20.236 0.030
HD 165222 18 5 7.6 -3 1 52.8 9.37 M1 32.621 0.100
HD 166620 18 9 37.4 38 27 28.0 6.37 K2 -19.465 0.094
HD 170493 18 29 52.4 -1 49 5.2 8.05 K3 -54.776 0.049
HD 170657 18 31 19.0 -18 54 31.7 6.82 K1 -43.137 0.045
HD 172051 18 38 53.4 -21 3 6.7 5.87 G5 37.095 0.030
HD 173701 18 44 35.1 43 49 59.8 7.52 K0 -45.630 0.056
HD 175541 18 55 40.9 4 15 55.2 8.03 G8 19.674 0.048
HD 176982 19 2 44.4 0 -42 40.4 8.35 G5 -6.825 0.063
HD 182488 19 23 34.0 33 13 19.1 6.36 G8 -21.485 0.046
HD 182572 19 24 58.2 11 56 39.9 5.16 G8 -100.289 0.030
HD 187923 19 52 3.4 11 37 42.0 6.10 G0 -20.619 0.030
HD 188512 19 55 18.8 6 24 24.3 3.71 G8 -40.074 0.070
HD 190404 20 3 52.1 23 20 26.5 7.28 K1 -2.535 0.030
HD 191785 20 11 6.1 16 11 16.8 7.33 K1 -49.289 0.030
HD 196761 20 40 11.8 -23 46 25.9 6.37 G8 -41.930 0.114
HD 197076 20 40 45.1 19 56 7.9 6.45 G5 -35.402 0.030
GJ 806 20 45 4.1 44 29 56.7 10.79 M1.5 -24.697 0.030
HD 199305 20 53 19.8 62 9 15.8 8.54 M0.5 -17.144 0.034
HD 202751 21 18 3.0 0 9 41.7 8.23 K2 -27.448 0.041
HD 204587 21 30 2.8 -12 30 36.3 9.10 K5 -84.103 0.165
HD 210302 22 10 8.8 -32 32 54.3 4.92 F6 -16.154 0.210
HD 216259 22 51 26.4 13 58 11.9 8.30 K0 1.241 0.099
HD 216899 22 56 34.8 16 33 12.4 8.66 M1.5 -27.255 0.123
HD 217357 23 0 16.1 -22 31 27.6 7.89 K5 16.461 0.082
HD 217877 23 3 57.3 -4 47 41.5 6.68 F8 -12.738 0.124
HD 218566 23 9 10.7 -2 15 38.7 8.60 K3 -37.825 0.042
HD 219538 23 16 18.2 30 40 12.7 8.09 K2 9.967 0.047
HD 220339 23 23 4.9 -10 45 51.3 7.80 K2 33.984 0.035
HD 221356 23 31 31.5 -4 5 14.7 6.49 F8 -12.625 0.176
GJ 908 23 49 12.5 2 24 4.4 8.98 M2 -71.084 0.125
HD 223498 23 50 5.7 2 52 37.8 8.41 G7 -24.005 0.040
Table 2Radial Velocity Standard Stars with Coordinates
Star Name Template22 JD T RV Obs
-2450000 (days) (km s) (km s)
HD 224983 V 4176 1619 -17.486 8 0.136
HD 225021 V 4646 832 -6.225 7 0.176
HD 225118 V 3810 594 10.869 9 0.069
HD 225261 V 3585 692 7.493 2 0.022
HIP 428 M 4292 1933 -0.287 13 0.175
HD 225213 M 4290 1474 25.379 34 0.094
HD 38b M 4219 1480 -1.700 18 0.101
HD 38a M 4172 1482 1.654 10 0.142
HD 105 V 3955 1778 2.162 4 0.200
HD 166 V 4128 1326 -6.444 12 0.118
HD 283 V 4153 1219 -43.174 7 0.077
HD 377 V 3670 1961 1.321 19 0.175
HD 457 V 3604 0 -19.447 1
HD 533 V 3605 0 24.101 1
HD 531a V 3422 367 13.338 2 0.149
HD 531b V 3422 367 14.525 2 0.157
HIP 916 V 4723 4 -11.418 4 0.302
HD 691 V 4241 1776 -2.864 4 0.043
HD 745 V 5379 0 -2.357 1
HD 804 V 3695 3 -47.871 4 0.077
HD 834 V 4294 405 5.199 3 0.112
HIP 1055 V 4736 87 -36.137 7 0.317
HD 1100 V 4663 795 22.749 7 0.132
HIP 1294 V 4779 2 -0.325 4 0.079
HD 1205 V 4944 1355 6.561 14 0.183
HD 1293 V 4652 507 45.140 10 0.082
HIP 1368 M 3972 2137 2.822 4 0.223
HD 1388 V 3856 1487 28.574 3 0.157
HD 1384 V 4987 973 -35.185 30 0.135
HD 1326 M 4037 1796 11.817 44 0.110
HD 1326b M 3928 0 10.960 1
HD 1461 V 4330 2143 -10.158 437 0.116
HIP 1532 V 5042 476 -10.994 22 0.146
HD 1497 V 3867 525 -7.488 2 0.210
HD 1502 V 4988 1037 -10.024 43 0.114
HD 1605 V 4371 1632 9.775 18 0.104
WASP-1 V 4345 6 -13.430 37 0.089
HIP 1734 M 3702 150 16.928 3 0.076
HIP 1780 V 3695 2 -47.094 3 0.045
HD 1835 V 5232 0 -2.280 1
HD 1832 V 3585 692 -30.492 2 0.034
HD 2025 V 4052 2140 3.094 4 0.153
HD 2085 V 4024 0 -47.402 2 0.950
HD 2331 V 3928 6 -16.702 5 0.055
HIP 2247 V 4816 468 2.913 5 0.188
HD 236427 V 4747 832 -12.479 6 0.081
HD 2589 V 3754 0 13.743 2 0.026
HD 2946 V 4682 795 10.460 11 0.174
HD 2992 V 4024 0 -16.150 1
HD 3074a V 4201 1412 29.412 3 0.064
HD 3141 V 4136 679 0.606 4 0.108
HD 3404 V 4411 317 5.770 6 0.080
HD 3458 V 4585 507 -4.607 6 0.365
HD 3545 V 4773 1174 -24.951 28 0.107
HD 3592 V 3695 2 7.395 3 0.034
HD 3578 V 3695 2 3.187 3 0.034
GJ 26 M 3966 1776 -0.383 14 0.115
HD 3651 V 3949 2140 -32.940 63 0.109
HD 3684 V 4158 295 -23.238 3 0.064
HIP 3143 M 3766 354 12.249 4 0.169
HD 3700 V 3689 893 -1.356 3 0.141
HD 3795 V 4515 1844 -45.481 4 0.278
HD 3765 V 4160 2137 -63.191 60 0.107
HD 3861 V 4258 0 -14.786 3 0.023
HD 4113 V 4242 677 4.944 7 0.096
HIP 3418 V 4816 469 -36.313 5 0.192
HD 4208 V 4843 1566 56.785 5 0.074
HD 4203 V 4452 1657 -14.092 14 0.131
HD 4075 V 3642 693 -9.485 3 0.110
HD 4256 V 4387 1980 9.426 52 0.109
HD 4313 V 4927 1038 14.482 30 0.113
HD 4395 V 4710 795 -0.439 7 0.158
HD 4406 V 4007 1223 2.431 13 0.353
HD 4628 V 4859 1319 -10.229 79 0.121
HD 4614 V 5017 789 8.397 37 0.117
HD 4614b M 4862 1147 11.196 26 0.107
HD 4747 V 4506 1960 10.078 23 0.117
HD 4635 V 4349 1443 -31.508 5 0.107
HD 4813 V 4516 1292 8.303 3 0.135
HD 4917 V 5039 916 -11.482 31 0.114
HD 4915 V 4687 1448 -3.729 49 0.129
HIP 3998 V 5189 2 6.693 4 0.036
HD 4741 V 3495 513 11.513 2 0.017
HD 5035 V 3931 0 -7.177 1
HD 5133 V 4408 1239 -13.071 4 0.072
HD 232301 V 3693 7 -15.072 4 0.094
HD 5294 V 4065 615 -8.202 3 0.029
HD 5319 V 4289 2013 0.344 44 0.105
HIP 4353 V 4722 2 7.727 4 0.154
HD 5372 V 3931 0 0.698 1
HIP 4454 V 5101 112 -51.402 5 0.072
HD 5891 V 5006 916 -96.564 22 0.241
HD 5946 V 3983 2 -2.850 4 0.057
GJ 47 M 4654 1445 7.599 2 0.094
HD 6019 V 4827 459 -23.812 5 0.247
HIP 4845 M 4879 478 9.538 6 0.149
GJ 48 M 4475 1771 1.377 15 0.122
GJ 49 M 4136 409 -5.895 2 0.114
HD 6268 V 3983 0 38.966 1
HIP 5004 V 3422 367 45.432 2 0.169
HD 6512 V 4257 405 10.246 3 0.038
HD 6558 V 3422 367 8.839 2 0.127
HIP 5247 V 4861 413 2.661 5 0.034
HD 6697 V 4226 405 -24.752 2 0.001
HD 6734 V 4661 1625 -94.606 8 0.103
HD 6715 V 3999 1192 -23.680 5 0.080
HD 6872b V 3996 1486 -35.158 3 0.626
HD 6872a V 3586 694 -34.681 2 0.121
HD 6963 V 4307 1950 -31.840 6 0.090
HIP 5643 M 3605 0 27.840 1
HIP 5663 V 5041 478 -4.765 22 0.145
HD 7530 V 4717 734 55.245 6 0.073
HD 7510 V 4072 447 -35.616 5 0.097
HIP 5938 V 4461 1994 8.327 6 0.133
HD 7931 V 4661 794 11.248 6 0.049
HD 8038 V 3422 367 9.606 2 0.112
HIP 6276 V 4302 1935 10.549 5 0.099
HD 8110 V 3697 0 9.519 1
HIP 6344 V 4816 470 -20.485 5 0.163
HD 8250 V 5257 0 5.364 1
HD 7924 V 4620 2046 -22.711 374 0.122
HD 8407 V 4664 794 -6.833 7 0.064
HD 8389 V 4387 1778 34.626 57 0.109
HD 8446 V 4210 405 19.785 5 0.123
HD 8328 V 3599 720 -3.874 2 0.076
HD 8467 V 4394 1958 14.712 7 0.111
HD 8508 V 4930 916 9.086 18 0.149
HD 8553 V 4036 1193 6.898 7 0.112
HD 8574 V 4609 1958 19.041 6 0.094
HD 8648 V 4067 1787 0.859 3 0.099
HD 8765 V 3728 60 -23.399 11 0.076
HD 8859 V 3610 743 24.586 2 0.102
HD 8828 V 4256 1437 13.603 27 0.104
HIP 6778 V 3575 6 -0.659 3 0.138
HD 8912 V 3610 743 24.512 2 0.138
HD 8907 V 4379 1957 8.966 5 0.169
HD 8939 V 4024 0 -5.838 1
HD 9113 V 4073 825 -32.621 4 0.120
HD 9081 V 4226 405 28.668 2 0.049
HD 9070 V 3601 721 11.805 2 0.049
HD 9218 V 4662 794 11.171 6 0.056
HD 9156 V 4749 736 28.918 8 0.095
HD 9331 V 3600 722 -19.961 2 0.043
HD 9540 V 4672 0 2.598 1
HD 9540a V 3490 745 2.456 4 0.154
HD 9554 V 4630 507 -18.085 6 0.136
HD 9472 V 4657 1265 11.443 4 0.091
HD 9562 V 4410 1992 -14.990 7 0.132
HD 9625 V 4890 892 -26.883 12 0.640
HD 9407 V 4668 2046 -33.313 309 0.124
HD 9672 V 4724 0 -2.838 1
HD 9518a V 3600 722 -17.100 2 0.066
s11844 V 4080 1100 -17.089 6 0.133
HD 9782 V 3749 891 11.408 4 0.078
HD 9826 V 4085 0 -28.351 1
HD 10002 V 3945 1193 11.528 5 0.045
WASP18 V 5232 0 2.780 2 0.042
HD 10008 V 3971 620 11.689 5 0.026
HD 9986 V 4749 1776 -20.984 38 0.145
HD 10015 V 3983 2 2.281 4 0.105
HIP 7728 V 3695 2 -15.350 3 0.092
HD 10013 V 4072 447 -61.891 5 0.057
HIP 7830 V 5189 2 10.162 4 0.076
HD 10353 V 3695 2 -6.463 3 0.078
HD 10383 V 4947 1041 20.676 11 0.153
HD 10336 V 3689 0 -13.548 1
HD 10145 V 4257 1871 17.888 4 0.158
HIP 7924 V 3575 6 1.397 3 0.124
HD 10442 V 4827 1355 7.804 17 0.108
HD 10479 V 5106 704 2.045 15 0.191
HD 10195 V 3689 0 10.076 1
HD 10476 V 3966 2139 -33.648 136 0.103
HIP 8051 M 4528 1961 -25.945 18 0.212
HD 10436 V 4032 1541 -50.946 9 0.063
HD 10700 V 4309 1994 -16.629 460 0.121
HD 10697 V 4723 2139 -45.919 7 0.132
HD 10823 V 4940 916 25.650 19 0.138
HD 11020 V 3622 784 22.739 3 0.079
HIP 8361 V 5191 0 8.351 1
HD 10780 V 4045 1871 2.814 13 0.086
HD 11131 V 3753 53 -4.394 12 0.111
HD 11170 V 3798 596 -10.803 6 0.139
HD 10790 V 4564 1993 -25.689 7 0.122
HD 11271 V 4223 827 9.276 4 0.098
HD 11506 V 4633 2012 -7.421 55 0.117
HD 11373 V 3621 723 -27.449 5 0.191
HD 11616 V 3689 0 -11.790 1
HIP 8920 V 3933 0 -41.325 1
HD 11731 V 3804 436 -22.767 4 0.108
HIP 8943 V 3399 2 -4.714 2 0.051
HD 11791 V 3695 2 18.130 3 0.084
HD 11850 V 4369 1933 1.941 5 0.153
HD 11964a V 4049 2023 -9.306 76 0.150
HD 11997 V 3695 1 29.297 2 0.067
HD 12039 V 5092 424 6.341 4 0.273
HD 11970 V 4747 832 -14.377 6 0.734
HD 12051 V 4492 2017 -35.133 117 0.146
HD 12165 V 3695 2 -15.730 3 0.065
HD 12164 V 4718 735 -18.252 6 0.148
HD 12235 V 5257 0 -18.243 1
GJ 83.1 M 4003 1158 -28.308 6 0.192
HD 12137 V 4701 830 -12.799 7 0.192
g244-047 M 3837 1073 -84.256 3 0.116
HD 12484 V 4344 1537 4.960 9 0.101
HAT-P-32 V 4616 1039 -22.489 25 0.741
HD 12661 V 4566 1992 -47.309 20 0.141
HIP 9788 V 4920 541 -10.703 16 0.151
HD 12846 V 4297 1957 -4.694 86 0.105
HD 13043 V 4593 1994 -39.329 122 0.102
HD 13167 V 4886 892 15.780 11 0.075
HD 13361 V 4024 0 6.802 1
HIP 10072 M 5151 118 17.642 3 0.066
HD 13345 V 4024 0 22.362 1
s92823 V 3622 784 26.000 3 0.075
HD 13357 V 3622 784 25.145 3 0.093
HD 13382 V 4386 1779 20.026 7 0.112
HD 13483 V 3641 693 -12.077 3 0.152
GJ 87 M 4627 1238 -2.655 37 0.152
HD 13612b V 3605 729 -5.422 2 0.156
HD 13555 V 4085 0 5.771 1
HD 13584 V 3604 0 6.212 1
HIP 10337 V 4997 452 3.058 19 0.186
HIP 10416 V 4976 484 -8.576 7 0.081
HD 13747 V 5261 0 18.603 1
HIP 10449 V 3605 729 27.893 2 0.223
HD 13773 V 4172 295 9.193 2 0.068
HD 13836 V 3642 693 1.076 3 0.121
HD 13579 V 3899 1059 -12.859 3 0.121
HD 13999 V 3695 1 18.536 2 0.133
HD 13997 V 3793 1193 -20.788 6 0.112
HD 13931 V 4815 2022 30.586 27 0.139
HD 14223 V 3604 0 31.544 1
HD 14412 V 4062 1993 7.340 73 0.129
HD 14374 V 3623 783 25.195 3 0.315
HD 14655 V 3899 1863 0.787 37 0.108
HIP 11000 V 4933 539 26.409 9 0.102
HD 14651 V 3793 1104 53.685 5 0.427
HIP 11048 M 4457 1896 -37.964 18 0.151
HD 14787 V 4863 892 -8.220 10 0.077
HD 15337 V 3814 420 -3.995 2 0.089
HD 11437 V 5259 6 25.574 3 0.133
HD 15336 V 4756 734 -30.453 6 0.186
HD 15391 V 4899 582 28.682 6 0.192
HD 15367 V 3604 0 -64.275 1
HD 15335 V 3722 724 41.202 3 0.095
HD 15928 V 4778 916 11.064 7 0.129
HD 16141 V 4387 1992 -50.940 17 0.112
HD 16160 V 4695 1299 25.756 62 0.142
HD 16249 V 3695 2 6.924 3 0.018
HD 16297 V 4311 1204 -1.032 4 0.032
HD 16178 V 4664 796 -24.585 7 0.107
GJ 105b M 4104 1896 26.159 9 0.194
HD 16417 V 4673 8 11.096 18 0.102
HD 16175 V 5256 0 21.949 1
HD 16275 V 3831 1436 -7.552 4 0.057
HD 16397 V 3587 693 -99.654 2 0.115
HD 16623 V 3551 744 17.541 3 0.097
HD 16559 V 5261 0 -12.757 1
HIP 12493 V 4817 470 72.885 5 0.119
HIP 12635 V 5049 0 -3.455 1
HD 16760 V 4126 1092 -3.566 18 0.372
HIP 12709 V 4740 69 34.053 4 0.171
HD 16984 V 4664 796 69.677 7 0.258
GJ 107b M 3601 722 25.784 2 0.012
GJ 109 M 4479 1896 30.458 11 0.149
HD 17152 V 3241 0 27.857 1
HD 17354 V 3320 158 16.794 2 0.851
HD 17190 V 4341 523 14.045 5 0.052
HD 17230 V 4619 2042 11.006 32 0.110
HD 17311 V 4778 916 18.516 7 0.114
HD 17449 V 3694 0 -48.965 1
HD 17075 V 3695 2 -34.298 3 0.044
HD 17382 V 3833 407 5.841 4 0.441
HD 17620 V 4826 798 1.340 7 0.099
HD 17156 V 4197 1425 -3.207 38 0.110
HD 17660 V 4248 1540 -28.997 7 0.118
HIP 13342 V 4961 541 0.313 17 0.129
HIP 13375 M 4945 540 -49.470 8 0.095
HIP 13447 V 3695 2 -1.291 3 0.038
HD 18015 V 4778 916 19.008 7 0.140
HD 18131 V 5261 0 14.493 1
HD 18143 V 4543 1475 31.970 44 0.145
HD 18436a V 3642 323 30.598 3 0.058
HD 18445 V 3839 1004 50.465 5 0.487
HD 18645 V 4714 794 -2.656 7 0.122
HD 18632 V 3541 743 28.924 3 0.144
HD 18667 V 4702 528 3.660 8 0.364
HD 18742 V 4868 916 -13.831 18 0.106
HD 18702 V 3820 1189 71.313 5 0.162
HD 18747 V 4489 1628 49.424 6 0.105
HD 18752 V 3562 269 20.248 2 0.391
HIP 14113 V 3762 269 40.386 4 0.065
HD 18803 V 3909 1796 9.862 68 0.093
HD 18975 V 3676 613 35.268 2 0.073
HD 19034 V 3551 744 -20.281 3 0.051
HD 19019 V 4148 1896 24.867 7 0.122
HD 18916 V 3654 729 -51.057 3 0.139
HD 18993 V 4159 375 -19.391 4 0.119
HD 19056 V 3695 2 41.549 3 0.029
HD 19467 V 3607 744 7.002 4 0.090
HD 19308 V 3551 744 32.828 3 0.168
HD 19522 V 4727 834 57.359 7 0.118
HD 19659 V 3828 556 1.974 7 0.077
HD 19373 V 4001 1957 49.400 128 0.114
HAT-P-10 V 4748 643 4.779 10 0.153
HD 19676 V 4636 0 -41.965 1
HD 19668 V 4148 1896 14.664 7 0.062
HD 19638 V 4428 0 -1.124 1
HD 19618 V 3984 3 -26.551 4 0.094
HD 19617 V 4073 447 -27.372 5 0.133
HIP 14729 V 4928 483 39.134 6 0.080
HD 19502 V 4024 0 -8.604 1
HD 19773 V 4029 1001 21.789 11 0.116
HIP 14809 V 3694 0 5.203 1
HIP 14810 V 4202 1591 -4.971 64 0.300
HD 20155 V 3320 158 -7.949 2 0.070
HIP 15095 V 5002 484 15.315 8 0.153
HD 20165 V 4510 1803 -16.672 28 0.164
HD 19961 V 3695 1 -11.626 2 0.092
HD 20439 V 3813 209 32.234 10 0.133
HD 20619 V 4588 1895 22.663 40 0.130
HD 20618 V 5261 0 -4.708 1
HD 20781 V 3604 0 40.135 1
HIP 15563 V 5212 70 31.102 4 0.114
HD 20678 V 3705 62 35.051 5 0.154
HD 20675 V 4584 1230 23.029 2 0.487
HIP 15673 V 4856 386 -40.148 5 0.072
HD 20670 V 4416 785 15.573 2 0.050
HD 21019a V 3970 2016 41.737 4 0.207
HIP 15904 V 3779 1104 86.643 4 0.047
HD 21197 V 3472 744 -13.023 5 0.130
HD 21340 V 4861 357 21.900 4 0.096
HD 21316 V 3695 2 40.584 3 0.065
HD 21313 V 3969 0 -20.188 1
HIP 16134 V 4724 1 34.050 3 0.020
HD 21581 V 4726 734 152.943 6 0.119
HD 21449 V 3870 706 -5.328 14 0.123
HD 21774 V 3983 0 -3.116 1
HIP 16404 V 3604 731 -161.665 2 0.134
HD 21847 V 3540 746 30.289 3 0.094
HD 22049 V 5217 151 16.428 8 0.087
HD 21742 V 4055 678 -36.126 3 0.093
HD 22072 V 3542 744 11.039 3 0.107
HD 22233 V 4747 916 19.434 7 0.127
HD 22282 V 3512 745 -4.945 4 0.145
HD 22484 V 5209 150 28.167 3 0.073
HD 22657 V 4887 892 65.610 11 0.115
HD 22670 V 3709 57 9.937 4 0.078
HD 22879 V 4317 1934 120.340 31 0.107
HD 22778 V 4172 414 -24.909 3 0.082
HD 23134 V 4747 916 18.831 7 0.091
HIP 17346 V 4928 483 16.023 6 0.078
HD 22844 V 5062 912 -26.972 8 0.107
HD 23249 V 4040 2016 -6.189 38 0.177
HD 23221 V 3695 2 46.649 3 0.047
HII 152 V 5087 450 5.807 3 0.044
HD 23356 V 4257 1858 25.278 30 0.114
HIP 17496 V 4861 412 83.869 5 0.115
HII 514 V 5087 450 4.976 3 0.070
HII 1101 V 5087 450 5.563 3 0.357
HD 23439 V 4425 1896 50.638 25 0.119
HD 23486 V 3985 0 -19.860 1
HD 23825 V 4832 945 -16.793 7 0.080
HD 24148 V 4876 946 49.483 8 0.101
HD 24040 V 4086 1833 -9.379 18 0.077
HD 24316 V 4934 892 52.272 12 0.103
HD 24213 V 3541 747 -39.627 3 0.141
HD 281309 V 3695 2 20.526 3 0.088
HD 24365 V 4089 1934 19.276 6 0.083
HD 24521 V 3969 0 -0.159 1
HD 24496 V 4586 2046 18.869 118 0.138
s130811 V 4645 2047 62.441 25 0.190
HD 24341 V 3611 746 142.692 2 0.100
HD 24505 V 4081 1747 -12.696 6 0.179
HD 24238 V 4559 1856 38.772 30 0.138
HD 24727 V 3540 744 -18.076 3 0.136
HD 24612 V 3985 0 33.976 1
HD 24892 V 3600 743 45.545 4 0.250
HD 24916 V 3412 783 3.585 7 0.234
HD 24451 V 4264 1441 17.585 7 0.081
HD 25311 V 4012 1833 -40.043 11 0.075
HD 25565 V 4044 1470 -27.168 3 0.098
HD 25457 V 3997 2017 17.846 10 0.196
HD 25445 V 3695 2 7.638 3 0.034
HD 25329 V 4327 1772 -25.845 33 0.107
HD 25622 V 4827 917 -1.817 7 0.096
HD 25682 V 3554 785 -30.338 3 0.161
HD 26007 V 4870 946 9.167 7 0.089
HD 281540 V 4264 561 110.315 2 0.106
HD 25825 V 3555 784 37.625 3 0.139
HIP 19165 V 4019 2022 25.068 22 0.111
HD 25894 V 3779 2 -15.393 3 0.080
HD 26151 V 4438 2017 -6.752 7 0.151
HD 25998 V 5057 424 26.066 3 0.234
HD 26257 V 3387 61 33.841 5 0.083
HD 25665 V 4406 1795 -13.556 18 0.121
HD 26161 V 3984 0 12.870 1
HD 26140 V 4748 972 -6.970 7 0.142
HIP 19472 V 5188 0 45.412 1
HD 26634 V 4790 917 8.476 7 0.118
HD 26633 V 5262 0 91.484 1
HD 26756 V 3778 1 38.162 2 0.001
HD 26794 V 4019 1216 56.487 7 0.112
HD 26736 V 4276 1061 37.430 13 0.118
FP Tau V 5229 58 4.617 3 0.289
HD 26965 V 4174 2021 -42.337 83 0.118
HD 26874 V 3399 0 61.401 1
HD 27063 V 4034 101 -9.580 2 0.093
HD 284253 V 4336 0 38.183 1
HIP 19946 V 3695 2 145.427 3 0.015
HIP 19981 V 5204 72 27.994 5 0.064
HD 27297 V 4846 922 42.493 6 0.136
HD 27250 V 3778 1 38.520 2 0.003
HD 27282 V 3765 55 37.949 8 0.107
HD 281934 V 4413 1862 16.294 7 0.644
HD 27530 V 4084 1469 42.209 7 0.098
HD 27371 V 4336 0 38.581 1
HIP 20218 V 4162 1958 18.253 7 0.093
HD 27496 V 3785 238 27.783 8 0.083
HIP 20359 V 5208 72 -78.582 4 0.130
XO-3 V 4876 420 -10.702 43 0.532
HD 27697 V 4336 0 37.470 1
HD 27732 V 4016 715 38.507 3 0.035
HD 284414 V 4336 0 39.585 1
HD 27771 V 4336 0 39.601 1
HD 27956 V 4793 917 45.984 7 0.131
HD 27859 V 4493 0 37.692 1
HAT-P-15 V 4558 857 31.668 25 0.155
HD 28187 V 3554 784 18.322 3 0.137
HD 27990 V 4336 0 42.593 1
HD 27748 V 3695 2 -23.892 3 0.019
HIP 20705 V 3767 288 23.394 4 0.041
HD 28185 V 3884 1089 50.253 2 0.298
HD 28099 V 4016 715 38.431 3 0.018
HD 28192 V 3778 1 -4.138 2 0.005
HD 28137 V 3779 2 18.922 3 0.092
HD 28005 V 4448 1627 34.729 21 0.108
HD 28388 V 4481 388 20.406 4 0.462
HD 28237 V 4162 1957 39.690 7 0.147
HD 28258 V 4336 0 40.436 1
HD 28307 V 4336 0 39.281 1
HD 28305 V 4336 0 38.442 1
HD 28437 V 3806 598 26.731 3 0.453
HD 28097 V 3884 710 8.375 6 0.120
HD 28343 M 4466 1797 -35.000 17 0.158
HD 283704 V 3779 1 38.509 2 0.142
HD 285773 V 4336 0 39.992 1
HD 28462 V 3778 1 40.090 2 0.022
HIP 21091 V 3710 60 14.402 4 0.101
HD 28593 V 3778 1 39.666 2 0.046
HD 28678 V 4968 973 61.465 13 0.152
HD 28737 V 4770 922 -5.702 6 0.203
HD 28946 V 3875 1059 -46.327 8 0.101
HD 28992 V 3778 1 40.214 2 0.074
DN Tau V 5200 96 18.462 3 0.061
HD 232979 M 4153 1526 34.269 24 0.131
HIP 21556 M 4641 1273 -6.831 9 0.080
HD 29461 V 4680 1146 40.326 3 0.239
LkCa15 V 5259 54 18.187 2 0.011
HD 29528 V 3554 783 -18.789 3 0.254
HD 29621 V 3779 2 35.022 3 0.102
HD 285968 M 4725 1886 26.244 39 0.139
HD 29980 V 4084 1116 32.286 6 0.089
HD 29883 V 4198 1951 17.776 25 0.111
HD 30128 V 4798 917 20.863 7 0.149
HD 29818 V 3696 1 46.573 2 0.017
HD 30286 V 3779 2 18.334 3 0.113
HD 30090 V 3697 0 23.377 1
HD 30246 V 3778 1 41.721 2 0.029
HIP 22288 V 4987 456 27.274 9 0.092
HD 30166 M 4701 794 -32.300 6 0.114
HD 30339 V 3696 2 8.686 3 0.561
HD 30572 V 3778 1 32.450 2 0.051
HD 30663 V 3715 83 -15.485 4 0.063
HD 30856 V 4901 916 35.457 11 0.130
HD 30712 V 4130 1 42.593 2 0.174
HD 30708 V 3985 0 -55.696 1
HD 30649 V 4977 509 32.241 2 0.067
HIP 22627 M 4844 1278 -8.865 21 0.080
HD 31018 V 3892 1002 -4.147 12 0.107
HIP 22762 M 4727 1450 -14.554 25 0.132
HD 30882 V 4915 974 -39.511 7 0.089
HD 31392 V 4419 1917 29.447 8 0.114
HD 31253 V 4152 1566 12.235 14 0.167
gmaur V 4385 1891 16.180 6 0.994
HD 31560 V 4159 1440 6.205 8 0.112
HD 31412 V 4876 391 42.118 5 0.226
HD 31452 V 3360 30 15.151 3 0.106
HD 31543 V 4669 590 -6.940 8 0.144
HD 31693 V 4686 922 29.318 6 0.170
HD 31609 V 3695 2 42.825 3 0.074
HD 31451 M 4794 859 0.644 7 0.108
HD 31664 V 5314 0 -8.368 1
HD 31966 V 3532 743 -17.897 3 0.214
HD 32147 V 4496 1946 21.544 125 0.112
HD 32259 V 3779 2 28.075 3 0.093
HD 31675 V 4546 1 16.049 2 0.063
HIP 23512 M 3661 645 15.432 2 0.095
HIP 23516 V 4779 2 122.509 4 0.130
HD 31864 V 3992 705 -26.445 6 0.095
HD 32483 V 5262 0 9.115 1
HD 32673 V 4024 0 -6.714 1
HD 32923 V 4673 1339 20.594 48 0.115
HD 33142 V 4971 973 33.525 27 0.126
HD 33021 V 4655 1262 -22.388 2 0.132
HD 33240 V 4938 946 10.465 18 0.133
HD 32963 V 4913 1911 -62.295 19 0.127
HD 33283 V 3981 1917 4.721 30 0.139
HD 33108 V 3695 2 55.861 3 0.050
HIP 24121 V 4862 413 115.339 5 0.032
HD 33334 V 3825 1834 83.122 11 0.122
HD 33298 V 4931 945 -6.983 6 0.139
HIP 24141 V 3694 0 -7.256 1
HD 33822 V 3723 1059 -6.639 3 0.173
HD 33636 V 4705 1982 5.710 12 0.138
HD 33844 V 4931 973 36.307 20 0.135
HIP 24284 M 4548 1827 -24.999 15 0.113
HD 34445 V 4712 1973 -78.867 57 0.122
HD 34721 V 4311 1682 40.475 32 0.130
HD 34411 V 4147 1983 66.497 87 0.135
HD 34745 V 3725 597 35.225 2 0.090
HD 34909 V 4736 973 -0.426 6 0.090
HD 34957 V 4560 1567 0.909 31 0.419
HD 34575 V 4309 707 -23.592 5 0.113
HD 34887 V 4346 1975 -25.569 26 0.115
HIP 25220 V 4987 484 38.254 10 0.138
HD 35627 V 3626 597 27.220 3 0.054
HD 35974 V 3725 597 76.502 2 0.045
HD 36003 V 4168 1769 -55.558 69 0.111
DQ Tau V 3339 0 44.489 1
HD 278253 V 3779 2 12.896 3 0.062
HD 36215 V 3849 738 -16.323 7 0.131
HD 36308 V 3662 646 26.064 2 0.111
HD 36395 M 4313 1917 8.676 12 0.170
HD 36387 V 3779 2 37.290 3 0.061
HIP 26080 V 3779 2 -14.572 3 0.044
HD 244992 V 3749 148 11.340 8 0.110
g097-054 M 3870 558 37.572 5 0.114
HIP 26196 V 5154 332 29.980 7 0.176
HD 37213 V 3427 0 12.264 1
HD 245409 M 3733 1206 22.190 5 0.200
HD 37124 V 4118 1990 -23.054 27 0.096
HD 36974 V 4646 471 15.106 6 0.847
HD 36130 V 3697 654 -62.445 2 0.145
HD 37484 V 4305 1380 24.019 4 0.483
HD 37445 V 4885 973 38.804 8 0.153
HD 37008 V 3931 1772 -45.861 35 0.116
HD 37250 V 5299 29 43.275 2 0.005
HD 37216 V 4441 1771 11.418 5 0.097
HD 37605 V 4264 1191 -22.197 12 0.286
HD 37962 V 3427 0 2.949 1
HD 37394 V 4064 1946 1.323 7 0.114
HD 233153 M 3711 626 2.061 2 0.031
HD 37986 V 3813 1060 59.202 4 0.093
HIP 26857 M 4359 561 106.040 3 0.037
HD 37977 V 3779 2 20.667 3 0.056
HD 38392 V 3517 684 -9.570 5 0.183
HD 38393 V 5116 480 -9.152 3 0.088
HD 38467 V 3999 1091 -17.783 5 0.126
HD 38308 V 3642 349 43.522 3 0.149
HD 38230 V 4128 1886 -29.212 46 0.110
HD 37006 V 4356 1771 -11.556 4 0.154
HD 38529 V 4564 1570 30.247 30 0.177
HD 38505 V 4826 981 75.613 9 0.329
HD 38400 V 3339 0 18.969 1
HD 38801 V 4315 1093 -25.370 12 0.184
HD 38949 V 4471 1746 3.485 8 0.136
HD 233165 V 3696 1 27.870 2 0.017
HD 38858 V 3849 1922 31.507 76 0.093
HD 37879 V 3339 0 -28.427 1
HD 39142 V 4938 981 8.977 12 0.121
HD 39352 V 3339 0 48.226 1
HD 39094 V 4206 447 10.170 10 0.106
HD 39796 V 3724 745 62.824 3 0.105
HD 39251 V 3398 0 -9.594 1
HIP 27793 V 3930 1116 7.549 5 0.047
HD 39480 V 3340 0 48.733 1
HD 39997 V 4024 0 10.263 1
HD 39715 V 3468 385 -33.724 3 0.170
HD 39731 V 4812 981 32.695 7 0.103
HD 39833 V 3817 791 24.891 3 0.064
HD 40126 V 3339 0 35.865 1
HD 39828 V 4781 974 28.802 9 0.097
HD 39881 V 4214 1438 0.320 13 0.087
HD 40397 V 3993 1789 143.356 54 0.098
HD 40537 V 4736 886 53.783 8 0.123
HD 40330 V 3779 2 56.603 3 0.059
g192-13 M 4036 1001 1.939 6 0.047
HD 41700 V 4149 1804 27.944 5 0.359
HD 40979 V 4075 1772 32.597 7 0.127
HD 41484 V 3339 0 0.385 1
HD 40647 V 4489 1771 -14.112 6 0.287
HD 41593 M 3974 674 -9.644 7 0.133
HIP 29052 M 4016 1029 13.640 9 0.091
HIP 29067 V 5190 1 -1.799 3 0.060
HD 42182 V 3339 0 60.735 1
GJ 226 M 4421 1858 -1.682 9 0.070
HD 42698 V 3750 52 18.707 2 0.013
HD 42581 M 4033 1830 4.738 13 0.119
HD 42618 V 4626 1923 -53.500 164 0.127
HIP 29548 V 5207 72 21.739 4 0.088
HD 43162 V 4114 1533 22.089 8 0.092
HD 42250 V 3577 353 19.806 2 0.263
HD 43745 V 3401 0 -2.423 1
HD 43691 V 4156 1689 -28.916 4 0.045
HD 43947 V 4377 1798 40.880 6 0.221
HIP 30112 V 5179 332 31.760 10 0.129
HD 43296 V 3779 2 -8.388 3 0.057
HD 44420 V 3713 623 -0.439 2 0.285
HD 44663 V 3369 0 5.919 1
HD 44614 V 3484 0 32.807 1
HD 45184 V 4113 1800 -3.859 117 0.119
HD 45067 V 3414 26 47.311 2 0.261
HD 44985 V 3401 0 32.481 1
HD 256714 V 3779 2 19.505 3 0.090
HD 45210 V 4866 943 53.781 10 0.565
HD 45588 V 3973 1145 36.220 2 0.086
HD 45350 V 4308 1982 -20.649 18 0.089
HD 45652 V 3941 651 -5.021 4 0.188
HIP 30979 V 4856 386 43.193 5 0.055
WASP12 V 5239 125 18.921 14 0.232
HD 45410 V 5273 34 39.477 2 0.139
HD 46375 V 4602 1918 -0.906 6 0.095
HD 46013 V 3779 2 -67.985 3 0.078
HD 45161 V 3780 3 -16.441 3 0.167
HD 47186 V 4618 1947 4.322 11 0.103
HIP 31546 V 3695 2 6.343 3 0.046
GJ 239 M 4633 1921 -58.224 31 0.113
HD 47157 V 4725 1469 25.215 27 0.056
HD 47562 V 4744 886 17.309 8 0.100
HD 47309 V 3779 2 27.765 3 0.049
HD 47752 V 3940 1411 -44.389 10 0.148
HD 47625 V 3441 86 31.181 2 0.237
HD 48122 V 4803 913 2.698 8 0.148
HIP 32132 V 3719 83 16.220 6 0.123
HD 48345 V 5290 0 24.701 1
COROT7 V 5321 0 31.020 1
HD 48938 V 3401 0 -10.293 1
HD 48682 V 4730 1199 -23.907 33 0.101
COROT1 V 5232 0 23.802 1
HD 49197 V 4437 1738 10.398 3 0.126
HIP 32769 V 4946 483 -52.417 7 0.103
HIP 32892 V 3695 2 23.587 3 0.073
HD 49674 V 4647 1944 12.034 22 0.148
HIP 32919 V 4868 386 19.244 5 0.134
HD 50499 V 4507 1946 36.883 16 0.206
HD 50281 V 3969 1742 -6.985 3 0.149
GJ 250b M 4791 1796 -7.280 25 0.120
HD 50275 V 5006 945 84.308 9 0.132
HD 50806 V 3713 623 72.443 2 0.167
HD 50639 V 5099 447 -4.066 3 0.096
HD 50554 V 4637 1916 -3.919 7 0.094
HD 265866 M 4530 1775 22.942 24 0.165
HIP 33241 V 3864 1177 15.007 5 0.162
HD 50692 V 4466 1974 -14.968 64 0.178
HIP 33287 V 5188 0 31.134 1
HD 51219 V 3401 0 -7.809 1
HD 51419 V 5041 1257 -26.804 89 0.124
HD 51845 V 3601 349 23.616 2 0.089
HD 51046 V 3381 32 0.470 5 0.088
HD 51813 V 3778 1 36.427 2 0.076
HD 0748-01711-1 V 5234 101 8.338 6 0.109
HD 52265 V 3806 1857 53.763 29 0.126
HD 52456 V 3383 87 -12.138 2 0.036
HD 51866 V 4442 1735 -21.656 32 0.118
HD 52919 V 4201 1411 -30.526 6 0.090
HD 52711 V 4599 1861 24.585 95 0.115
HD 51067a V 3778 0 13.184 1
HD 51067b V 3778 0 13.548 1
HD 53665 V 3713 623 -14.543 2 0.200
HD 53532 V 4077 417 42.868 6 0.102
HD 55696 V 4335 1799 19.631 9 0.135
HIP 35093 V 3695 2 -50.685 3 0.053
HD 56083 V 4497 1573 -11.680 7 0.132
HD 55575 V 4923 1214 84.769 47 0.135
HD 56274 V 3383 88 66.529 2 0.134
HD 55647 V 3695 2 -16.717 3 0.084
HD 56303 V 3401 0 8.431 1
HD 56957 V 3398 0 54.806 1
HD 56122 V 5290 0 24.363 1
XO-4 V 5270 29 1.620 2 0.046
HD 57204 V 4165 447 -13.211 8 0.072
GJ 272 M 4778 0 -31.158 1
HD 57813 V 3984 3 46.063 4 0.036
GJ 273 M 4278 1921 18.210 20 0.095
HD 58781 V 3383 88 4.920 2 0.115
HD 58727 V 3984 3 -13.584 4 0.047
HD 59062 V 3481 0 46.114 1
HIP 36338 M 3659 1176 1.685 6 0.208
HIP 36551 V 4862 385 65.876 5 0.070
HIP 36635 M 5322 0 -17.917 1
HAT-P-33 V 4925 524 23.460 18 0.163
HD 60491 V 4154 1888 -9.586 5 0.142
HIP 36834 M 4027 1090 -41.708 13 0.141
HD 60234 V 3590 328 -0.242 2 0.408
HD 61005 V 4910 1177 22.558 5 0.081
HD 60521 V 3725 0 29.355 1
HD 60803 V 3697 0 47.102 1
HD 60041 V 3481 0 -77.051 1
HD 61236 V 3601 349 3.903 2 0.691
HD 60737 V 5149 450 6.448 5 0.045
HD 61447 V 3587 378 89.308 2 0.133
HIP 37217 M 3853 1178 -28.833 4 0.147
HD 61364 V 3705 31 -10.536 3 0.033
HD 61606 V 4154 1888 -18.085 5 0.144
HD 62128 V 4087 1090 107.066 6 0.231
HD 61995 V 5290 0 -36.443 1
HD 62068 V 5290 0 -66.510 1
HIP 37766 M 4018 1177 26.643 11 0.149
HIP 37798 V 5161 331 -34.465 7 0.229
HD 62857 V 3778 1 13.142 2 0.029
HD 62694 V 3779 2 -30.779 3 0.172
HD 61994 V 4207 1828 -16.429 5 0.920
XO-2 V 4667 884 46.856 3 0.071
HIP 38117 V 5043 420 -7.653 11 0.236
HD 63754 V 3383 88 44.963 2 0.117
HD 56322 V 3778 0 6.295 1
HIP 38340 V 4493 0 18.816 2 0.020
HD 64502 V 3558 436 55.165 2 0.048
HD 64413 V 5052 952 15.856 16 0.122
HD 64324 V 4203 1767 17.182 6 0.105
HD 64730 V 4812 952 15.976 9 0.194
HD 64942 V 3935 1538 -8.022 7 0.084
HD 62613 V 4141 1943 -7.861 50 0.137
HD 65080 V 3715 82 -8.280 4 0.120
HD 65277 V 4371 1974 -4.457 25 0.146
HD 65486 V 4010 1827 -8.135 10 0.090
HIP 38969 V 5245 126 53.208 7 0.076
HD 65430 V 4614 1566 -28.568 18 0.322
HD 65368 V 3695 2 -11.239 2 0.078
HD 65583 V 4071 1975 14.796 61 0.114
HD 66221 V 3481 0 26.216 1
HD 66428 V 4057 1944 44.143 19 0.119
HD 66485 V 3864 735 25.094 5 0.054
HD 67458 V 3383 88 -15.689 2 0.186
HD 67346 V 3370 0 26.906 1
HD 66171 V 3384 28 36.520 2 0.152
HIP 39939 V 3695 2 -8.074 3 0.050
HD 67767 V 4424 1919 -44.272 5 0.091
HD 68017 V 4314 1946 29.496 103 0.139
HD 68168 V 4244 1125 9.076 10 0.086
HD 68165 V 5290 0 -69.928 1
HD 68978 V 3536 503 51.726 3 0.126
HIP 40375 V 5036 511 21.316 16 0.106
HD 69076 V 3598 383 -8.894 5 0.491
HD 69056 V 3340 0 20.395 1
GJ 2066 M 4524 1921 61.992 19 0.114
HD 69027 V 3779 2 2.670 3 0.391
HIP 40671 V 4923 483 13.385 6 0.123
HD 68988 V 4441 1943 -69.383 20 0.153
HD 69830 V 4988 1261 30.207 143 0.124
HD 69809 V 3507 415 17.486 3 0.100
HIP 40910 V 4879 358 6.992 5 0.129
HD 69960 V 3727 1060 32.292 6 0.117
HD 70573 V 4862 1146 20.133 5 0.049
HIP 41130 V 4879 358 -27.105 5 0.078
HD 70516 V 4335 1804 8.481 5 0.153
HD 71334 V 3751 761 17.389 3 0.148
HIP 41443 V 5027 455 55.036 9 0.117
HD 71479 V 3507 415 60.142 3 0.100
HD 71835 V 3572 349 -1.204 2 0.250
HIP 41689 M 4913 1975 -51.570 21 0.128
HD 71881 V 3426 0 13.699 1
HD 71067 V 3778 0 -1.017 1
HD 72673 V 3969 1915 14.666 45 0.128
HD 72429 V 4658 798 79.290 7 0.282
HD 72003 V 4830 1134 -6.950 9 0.130
HD 72687 V 5144 450 21.951 5 0.109
HD 72490 V 4992 943 31.512 18 0.121
HD 72659 V 4299 1974 -18.294 27 0.135
HD 72616 V 3481 0 24.101 1
HD 72440 V 4871 1096 -33.261 7 0.119
HD 73256 V 4677 1834 29.736 6 0.253
HIP 42220 M 4532 1917 11.309 20 0.290
HD 73226 V 3968 1693 25.670 10 0.120
HD 72905 V 4285 1827 -12.715 8 0.122
HD 73534 V 4355 1765 9.720 32 0.137
HAT-P-13 V 5068 742 14.766 101 0.165
HIP 42491 V 4105 1802 -20.050 5 0.160
HD 73667 V 4515 1920 -12.123 29 0.102
HD 74104 V 3587 320 -4.258 2 0.007
HIP 42567 V 4923 453 54.509 6 0.049
HD 73940 V 3634 323 13.057 3 0.163
GJ 317 M 4543 1862 87.728 29 0.117
HD 74156 V 4818 1947 3.833 27 0.090
HIP 42731 V 3779 2 24.067 3 0.123
HD 73933 V 4131 0 0.598 1
HD 74390 V 4870 1134 -58.086 8 0.148
HD 74669 V 5288 52 26.821 2 0.094
HIP 43151 V 3695 2 15.962 3 0.076
HD 74777 V 3696 1 -20.251 2 0.080
HIP 43212 V 4866 920 2.819 7 0.127
HD 75407 V 5321 1 -25.430 2 0.034
HIP 43534 V 4950 483 -22.259 15 0.149
HD 75784 V 4333 1892 45.415 13 0.105
HD 75732 V 4565 2013 27.360 378 0.130
HD 75732b M 4433 1495 27.356 15 0.104
HIP 43667 V 4949 410 45.614 7 0.082
HD 75898 V 4340 1885 21.790 30 0.122
HD 75576 V 3484 0 -12.343 1
HD 76151 V 5232 0 32.276 1
HD 76218 V 4252 1766 -12.576 4 0.125
HD 76078 V 3696 1 -34.605 2 0.051
HD 76445 V 4750 913 -16.402 8 0.121
HIP 44072 V 4856 386 -50.545 5 0.051
HD 76780 V 4305 1384 31.129 6 0.145
HD 76617 V 3861 646 5.565 4 0.177
HD 76909 V 3547 355 3.286 2 0.004
HD 77172 V 4997 1162 -15.808 12 0.130
HD 77519 V 3481 0 28.397 1
HD 76539 V 3779 2 15.328 2 0.269
HD 77803 V 3695 2 2.006 3 0.048
HD 76974 V 3778 0 -40.520 1
HD 77818 V 4764 1096 -44.051 8 0.128
HD 78277 V 3481 0 2.832 1
HD 78538 V 3778 1 5.087 2 0.088
HD 78752 V 3481 0 72.179 1
HIP 45042 V 4995 235 -27.301 4 0.069
HD 79282 V 3779 2 4.031 3 0.129
HD 79210 M 4069 1829 11.224 8 0.107
HD 79211 M 3722 1176 12.683 6 0.274
HD 79498 V 3481 0 20.023 1
HD 80367 V 3985 1086 50.896 6 0.134
WASP13 V 5243 25 9.940 2 0.058
HIP 45839 V 4808 5 36.642 4 0.165
HD 80355 V 3845 407 -6.714 4 0.065
HD 80811 V 4755 913 30.014 8 0.113
HD 80846 V 3779 2 34.993 3 0.160
HD 80903 V 3725 0 41.726 1
HD 80606 V 4703 1976 3.948 47 0.241
HD 81110 V 3481 0 30.443 1
HIP 46018 V 5190 0 0.645 1
HD 81324 V 3779 2 33.418 3 0.134
HIP 46199 V 5237 73 1.016 3 0.082
g161-29 V 3517 383 22.226 3 0.138
HD 81505 V 3481 0 17.279 1
HIP 46343 V 4922 412 -6.589 11 0.087
HIP 46417 V 4949 454 -18.190 7 0.175
HD 81856 V 3587 321 17.028 2 0.020
HIP 46627 V 3697 0 18.432 1
HD 233641 V 3398 56 36.237 2 0.041
HIP 46655 M 3772 1177 46.107 4 0.228
HIP 46769 M 4330 1916 19.894 15 0.199
HD 82460 V 3779 2 9.579 3 0.115
HD 82943 V 4791 1975 8.111 38 0.137
HD 83024 V 4750 913 4.556 8 0.159
HD 82886 V 4993 1156 12.554 24 0.119
GJ 357 M 4424 1920 -34.484 15 0.092
HD 82905 V 3779 2 5.058 3 0.141
HIP 47201 V 4866 358 -36.400 6 0.077
HD 83443 V 4292 1829 28.990 4 0.112
HIP 47261 V 5190 0 -4.277 1
HD 83394 V 4933 1162 40.345 9 0.138
HIP 47455 V 3779 2 27.370 3 0.153
HIP 47513 M 4341 1892 11.493 8 0.109
HD 83983 V 3778 1 30.812 2 0.117
HD 84117 V 4739 2006 34.687 70 0.146
HIP 47650 M 3546 472 6.495 3 0.063
HD 84035 V 4600 1829 -12.271 23 0.104
HD 84501 V 3481 0 2.795 1
HD 84453 V 5334 89 -44.436 2 0.125
HD 84703 V 3481 0 22.288 1
HD 84737 V 4825 1296 4.881 33 0.134
HIP 48139 V 4893 357 -20.978 6 0.108
HIP 48205 V 3697 0 15.718 1
HIP 48411 V 4808 5 21.452 4 0.155
HD 85301 V 4588 1861 15.345 17 0.101
HD 85440 V 4940 1069 -4.184 10 0.127
HD 85725 V 3921 1854 61.744 4 0.201
WASP19 V 5232 0 21.001 1
HD 85689 V 4378 1483 8.562 21 0.133
HD 85472 V 4869 1068 -9.954 8 0.100
HD 86081 V 3824 1479 30.882 29 0.184
HIP 48714 M 4118 1440 15.430 6 0.080
HIP 48740 V 5155 332 -4.735 6 0.114
HIP 48855 V 4851 1104 50.236 8 0.154
HD 86359 V 5333 87 17.864 2 0.016
HD 86728 V 4074 2005 55.955 64 0.145
HIP 49091 M 5154 332 51.409 4 0.125
HIP 49197 V 5059 546 30.204 9 0.138
HD 87230 V 4975 1157 42.625 11 0.123
HD 87001 V 3779 2 -26.036 3 0.134
HD 87359 V 4545 1 0.553 2 0.044
HD 87424 M 3705 1178 -11.723 4 0.316
HD 87669 V 4889 1161 8.257 10 0.107
HD 87836 V 4017 1558 -42.128 3 0.116
HD 87883 V 4947 739 9.188 35 0.126
HD 88072 V 3573 350 -17.778 2 0.276
HD 88218 V 3427 0 36.322 1
HD 88134 V 4799 1096 21.617 8 0.094
HD 88133 V 4122 1825 -3.454 12 0.119
HD 88230 M 4390 932 -25.710 18 0.170
HD 88371 V 4186 1441 82.463 4 0.070
GJ 382 M 4147 1945 8.021 10 0.162
g195-59 M 3623 380 -3.548 3 0.105
HD 88656 V 4049 1441 8.252 6 0.186
HD 88402 V 3779 2 34.453 3 0.140
HD 88654 V 5055 1159 -6.933 13 0.102
HD 88725 V 3761 733 -22.016 3 0.187
HD 88609 V 4258 0 -38.237 1
HD 88775 V 3779 2 -26.633 3 0.131
HD 88986 V 4167 1920 29.106 3 0.033
HIP 50341 M 5337 30 -10.688 2 0.155
HD 89022 V 3779 2 -33.598 3 0.057
HD 89391 V 4608 1096 29.603 12 0.108
HD 89269 V 4745 1981 -7.557 94 0.125
HD 89454 V 3576 356 18.872 2 0.205
GJ 388 M 3803 1859 12.453 30 0.104
HD 89886 V 3425 0 12.990 1
HD 89793 V 4051 1090 32.705 4 0.121
HD 90028 V 3479 0 12.098 2 0.005
HD 90043 V 5062 571 7.088 29 0.123
HD 90054 V 4112 950 48.645 3 0.205
HD 90156 V 4567 1954 26.918 70 0.147
HD 90125 V 4325 1980 -13.933 5 0.100
HIP 50960 V 5094 332 19.415 5 0.091
HD 90211 V 3479 0 17.551 1
HIP 51007 M 4174 1945 21.800 6 0.371
HD 90323 V 3479 0 10.565 1
HD 90383 V 3779 2 -34.012 3 0.087
HD 90711 V 4552 187 29.903 21 0.090
HD 90722 V 3618 440 40.113 2 0.111
HD 90792 V 4784 1069 32.556 8 0.105
HD 90681 V 3779 2 4.241 3 0.112
GJ 393 M 4436 1410 8.294 23 0.085
HD 90905 V 4495 1801 16.726 6 0.118
HIP 51443 V 5114 539 31.476 12 0.120
HD 237903 V 3777 1861 8.885 7 0.143
HD 90875 V 4900 1920 4.968 22 0.109
GJ 397 V 4252 1818 20.613 9 0.152
HD 91148 V 3779 2 -23.126 3 0.124
HD 91204 V 4315 1834 -9.619 2 0.553
HD 91332 V 3779 2 -43.504 3 0.111
HD 91348 V 3779 2 8.193 3 0.145
HD 91331 V 3779 2 -13.428 3 0.119
HD 91275 V 3779 2 -18.634 3 0.138
HD 91702 V 3941 651 -46.684 4 0.145
HD 91856 V 3779 2 46.234 3 0.138
HD 91876 V 3820 456 -2.873 4 0.199
HD 91909 V 3779 2 20.943 3 0.138
HD 92194 V 3778 1 -0.588 2 0.075
HD 92222b V 3501 377 7.904 6 0.178
HD 92222a V 3687 384 8.339 6 0.077
HD 92266 V 5320 61 5.744 2 0.013
HD 92320 V 3779 2 2.805 3 0.246
HD 92719 V 4370 1954 -17.924 38 0.120
HD 92788 V 4311 1823 -4.399 7 0.180
HD 92945 V 5073 615 22.900 4 0.057
HD 92885 V 3779 2 14.992 3 0.046
HD 93215 V 3941 651 -15.301 4 0.139
HD 93396 V 4788 1103 34.959 8 0.127
HD 93461 V 4788 1103 13.093 8 0.114
HD 93745 V 3494 326 38.200 4 0.390
HD 93664 V 3839 1003 -1.315 4 0.087
HD 93849 V 3479 0 8.919 1
HIP 52942a V 4357 1945 24.538 13 0.114
HD 93864 V 4809 1097 15.935 8 0.101
HD 93932 V 3479 0 43.653 1
HD 93811 V 3778 1 -0.814 2 0.045
HIP 53020 M 3796 1178 -0.794 4 0.295
HD 94151 V 4038 1775 4.553 6 0.180
HD 94178 V 5320 61 9.958 2 0.019
HD 94292 V 3779 2 27.630 3 0.125
HD 94375 V 3479 0 28.754 1
HD 94482 V 3479 0 29.395 1
HD 94383 V 3779 2 44.596 3 0.137
HIP 53327 V 5116 416 -26.223 4 0.118
HD 94587 V 3779 2 8.757 3 0.108
GJ 406 M 3918 1092 19.321 9 0.145
HIP 53541 V 4808 4 -34.087 4 0.092
HD 94834 V 4940 1164 2.813 11 0.107
HD 95022 V 4052 1090 19.377 4 0.127
bd-103166 V 4838 1983 26.787 4 0.153
HD 95089 V 4932 1157 8.081 25 0.128
HD 95088 V 4345 1483 0.263 17 0.119
HD 95128 V 5096 449 11.293 24 0.108
HD 95188 V 4362 1827 6.023 7 0.083
GJ 408 M 4383 1920 3.181 10 0.131
HD 95456 V 3620 444 -1.227 2 0.148
twhya V 4962 655 12.600 2 0.334
HD 95526 V 4906 1098 22.059 8 0.183
HD 95622 V 4042 1395 -8.861 11 0.147
HD 95650 M 3806 1915 -13.832 12 0.104
HD 95735 M 4245 2004 -84.683 148 0.136
HD 95900 V 5337 88 4.483 3 0.086
HD 96063 V 5042 1156 -1.373 12 0.104
HD 96108 V 3369 0 -11.083 1
HD 96167 V 4057 1805 12.031 41 0.132
GJ 412a M 4453 1828 68.675 103 0.139
HD 96361 V 4004 650 12.921 5 0.135
HD 96529 V 4148 1090 -14.752 6 0.129
HD 96700 V 4368 1530 12.787 5 0.170
HD 96683 V 4991 836 17.922 8 0.143
HIP 54459 V 5256 452 103.869 9 0.125
HIP 54498 V 3897 473 -11.462 4 0.150
HIP 54532 M 4527 1892 -3.821 12 0.098
HD 96937 V 3479 0 10.474 1
HD 97038 V 3479 0 -3.176 1
HD 97089 V 3398 0 -26.400 1
HD 97101b M 4567 1916 -15.421 17 0.098
HD 97101 V 4803 1981 -16.159 24 0.102
HIP 54651 V 5143 332 37.054 5 0.119
HD 97343 V 4803 1628 39.789 66 0.132
HIP 54810 V 4808 5 16.435 4 0.145
HD 97645 V 3780 3 -7.324 3 0.127
HD 97658 V 4999 1633 -1.706 178 0.119
HD 97584a M 3697 732 9.114 4 0.095
HD 97854 V 3849 156 -7.751 7 0.156
HD 98219 V 5044 1160 -10.458 15 0.119
HD 98281 V 4258 1983 13.312 70 0.128
HD 98427 V 3600 351 20.258 2 0.466
HIP 55360 M 4740 1887 60.466 15 0.132
HD 98553 V 4354 1829 -36.612 5 0.059
HIP 55368 V 3779 2 -13.224 3 0.153
HD 98630 V 3992 1470 13.530 6 0.954
HD 98618 V 3574 349 7.078 2 0.247
HD 98736 V 3370 1 -3.411 2 0.189
HIP 55507 V 5230 448 -5.554 14 0.159
HD 98744 V 3574 349 -40.311 2 0.281
HD 99109 V 3980 1975 33.069 16 0.143
HD 99491 V 4329 1896 4.171 110 0.134
HD 99492 V 4236 2038 3.676 73 0.138
HIP 55915 M 5337 30 -3.148 2 0.419
HD 99706 V 4981 916 -30.256 12 0.110
HD 99934 V 3492 436 -9.321 4 0.366
HD 100180 V 4539 2009 -4.860 40 0.117
HD 238008 V 3780 3 -18.913 3 0.185
HD 100337 V 4868 1096 -30.480 8 0.134
HD 100623 V 4376 1950 -21.964 56 0.110
GJ 433 M 4420 1921 17.934 14 0.110
HIP 56630 V 5114 357 -38.943 5 0.239
HD 101165 V 3778 0 18.010 1
HD 101259 V 3887 1438 96.812 3 0.156
HD 101348 V 4086 0 11.697 1
HD 101444 V 3778 0 -1.443 1
HD 101501 V 5052 243 -5.464 2 0.105
HIP 57050 M 4962 1886 -9.006 26 0.113
HIP 57058 V 4808 5 18.225 4 0.118
HIP 57087 M 4680 1982 9.544 169 0.107
HD 101675 V 3897 473 -13.786 4 0.143
HD 101847 V 3758 83 4.100 9 0.133
HD 101959 V 4234 1828 -0.912 6 0.058
HD 101904 V 3846 156 -10.364 9 0.139
HD 102071 V 4228 1828 -10.600 6 0.781
HIP 57274 V 5244 575 29.701 30 0.140
HD 102158 V 3576 354 28.124 2 0.174
HD 102195 V 4075 1605 1.930 18 0.153
HD 102365 V 4497 742 16.911 18 0.070
HD 102283 V 3778 0 -13.092 1
HIP 57450 V 3399 0 64.732 1
HD 102329 V 5042 1157 14.580 14 0.093
HIP 57493 V 5032 484 0.360 9 0.095
HD 102444 V 4951 1104 23.056 8 0.143
GJ 445 M 4315 1915 -111.750 18 0.110
HIP 57548 M 3428 114 -31.173 5 0.087
HIP 57683 V 4808 4 11.568 3 0.114
GJ 450 M 4434 1887 0.295 10 0.128
HD 102956 V 5181 1164 -26.025 23 0.113
HD 103047 V 5317 55 -4.593 2 0.013
HD 103432 V 3619 437 6.164 2 0.163
HD 103417 V 3937 473 -9.408 3 0.016
HD 103459 V 4372 1830 19.708 15 0.125
HD 103828 V 3898 473 -50.050 4 0.156
HD 103813 V 5333 86 42.203 2 0.170
HD 103847 V 4103 704 5.048 5 0.079
HD 103829 V 4173 1753 -2.162 3 0.481
HD 103890 V 3612 851 31.076 4 0.170
HD 103932 V 4195 1980 48.388 65 0.152
HD 104017 V 4935 1097 -4.577 8 0.134
HD 104067 V 4597 1914 14.992 40 0.110
HD 104263 V 3929 6 42.969 5 0.127
HD 104304 V 4805 1239 0.105 36 0.109
HD 104389 V 4005 474 -11.336 12 0.132
HD 104437 V 3898 473 -18.695 4 0.190
HD 104556 V 3635 354 -10.791 3 0.179
HD 104576 V 4493 0 -10.458 1
HD 104588 V 3898 473 -10.058 4 0.159
HD 104800 V 3565 472 10.027 3 0.142
HD 104860 V 3907 1798 -11.660 8 0.149
HD 104985 V 4128 1833 -20.102 3 0.277
HD 238069 V 3897 473 -10.063 4 0.203
HD 105113 V 3834 769 31.913 6 0.054
HD 105279 V 3923 1469 -13.199 5 0.080
HD 105304 V 4329 301 35.585 6 0.079
HD 105546 V 4258 0 18.195 1
HD 105618 V 3546 468 7.460 3 0.097
HD 105631 V 4558 1832 -2.472 120 0.121
HD 105811 V 5336 84 -37.612 3 0.138
HD 105844 V 3778 0 0.474 1
HIP 59406a M 3971 1177 -8.924 4 0.247
HIP 59406b M 3604 468 -9.281 2 0.100
HIP 59431 V 3778 0 -4.003 1
HD 105963 V 3778 0 -5.379 1
HIP 59496 V 5040 332 -9.977 4 0.119
HD 106088 V 4176 508 -14.107 9 0.112
HD 106116 V 3619 437 14.634 2 0.089
HD 106156 V 4336 1773 -7.336 4 0.069
HD 106279 V 4905 1127 -45.801 8 0.403
HD 106270 V 5016 1156 24.331 14 0.152
HD 106314 V 5332 84 -4.116 2 0.015
HD 106421 V 3666 686 6.222 8 0.078
HIP 59748 M 4957 114 -13.240 5 0.126
HD 106949 V 3481 0 6.936 1
HD 107087 V 3616 382 8.635 2 0.448
HD 107146 V 4245 1796 1.904 6 0.196
HD 107148 V 4289 1982 25.287 23 0.128
HIP 60093 M 5002 260 -0.665 7 0.118
HD 107211 V 3937 473 4.802 3 0.056
HIP 60357 M 5358 58 -22.105 4 0.103
HD 107990 V 4839 1097 -6.554 11 0.071
HIP 60559 M 3929 1146 51.096 3 0.306
HIP 60633 V 5358 58 12.841 4 0.078
HD 108189 V 4821 1104 -3.686 7 0.153
HD 108300 V 3778 0 1.004 1
HD 108351 V 3849 732 0.529 4 0.154
g60-06 V 3333 184 -17.519 2 0.179
HD 108863 V 5003 1160 -27.984 16 0.109
HD 108874 V 4512 1978 -30.069 23 0.101
HD 108942 V 3937 473 -11.008 3 0.025
HD 108916 V 3778 0 -0.020 1
HD 109202 V 3780 3 -9.391 2 0.024
HIP 61205 V 3935 35 -1.029 7 0.110
HD 109159 V 4908 1159 9.348 8 0.114
HD 109218 V 4894 1159 18.423 8 0.091
HD 109286 V 3778 0 -7.587 1
HD 109358 V 4278 1952 6.228 70 0.151
HD 109331 V 3954 354 6.143 2 0.105
HD 109409 V 3548 441 18.191 3 0.129
HD 109718 V 3898 473 -16.054 4 0.135
HD 109749 V 3820 1952 -13.135 20 0.122
HD 109929 V 3874 1438 -10.706 13 0.170
HIP 61706 M 5082 423 -4.334 14 0.179
HD 110044 V 4048 473 -6.730 7 0.148
HD 110315 V 4476 1828 24.357 39 0.129
HD 110537 V 3477 414 35.585 8 0.108
HD 110743 V 3927 1 -2.980 3 0.045
HD 110745 V 3779 2 -3.326 2 0.300
HD 110897 V 4667 1801 80.358 36 0.139
HD 111031 V 4751 1922 -20.346 55 0.118
HD 111153 V 3432 114 -24.307 12 0.147
HD 111096 V 3425 0 14.520 1
HIP 62406 V 5224 452 2.402 19 0.166
GJ 486 M 4083 1145 19.471 4 0.268
HD 111395 V 4283 1639 -8.911 5 0.107
HD 111484b V 3413 27 -19.037 4 0.377
HD 111484a V 3634 376 -20.797 3 0.157
HD 111515 V 4249 1148 2.563 7 0.069
HD 111528 V 3778 0 45.463 1
HD 111606 V 3778 0 -27.659 2 0.009
HD 111631 M 4456 1920 5.017 17 0.085
HD 111814 V 4157 1410 -2.185 11 0.121
HIP 62794 V 4929 0 9.818 2 0.106
HIP 62847 V 5023 444 11.596 12 0.106
HD 112019 V 3954 353 25.066 2 0.271
HD 112115 V 5175 832 3.973 10 0.101
HD 112337 V 4250 3 -20.215 3 0.096
HD 112257 V 4297 1772 -39.428 6 0.118
HD 112415 V 4060 474 7.530 4 0.045
HIP 63257 V 5321 2 -7.336 4 0.099
HD 112742 V 5333 86 7.046 2 0.008
HD 112973 V 4818 1097 -34.986 8 0.146
HD 112988 V 4989 1163 -32.842 13 0.184
HD 113039 V 3778 0 -4.714 1
HIP 63510 M 4609 997 -13.740 15 0.309
HD 113194 V 3748 0 10.632 1
HIP 63762 V 4887 236 -48.729 6 0.361
HIP 63759 V 5321 2 -17.423 4 0.045
HD 113595 V 5350 60 -40.717 2 0.029
HIP 63894 V 5317 8 -6.834 4 0.095
HD 113983 V 3452 151 0.495 4 0.194
HD 113938 V 3778 0 7.395 1
HIP 64048 V 5317 8 -8.371 4 0.086
HD 114174 V 3480 0 24.587 2 0.028
HD 114161 V 4893 1100 -7.180 9 0.157
HD 114375 V 4250 3 -39.976 4 0.144
HD 114506 V 3778 0 -26.778 1
HIP 64262 V 5331 25 18.703 7 0.078
HD 114659 V 4889 1081 -1.322 8 0.096
HD 114613 V 4476 1039 -13.095 28 0.061
HD 114783 V 4503 2138 -12.012 63 0.096
HD 114729 V 4957 1536 64.905 4 0.084
HD 114826 V 3778 0 -12.843 1
HD 114946 V 4552 1655 -48.283 2 0.159
HD 115404a V 3828 2015 7.853 6 0.209
HD 115589 V 3633 417 -21.193 2 0.544
HD 115617 V 4251 2011 -7.844 184 0.128
HIP 65016 M 5000 333 -11.540 5 0.109
HD 116029 V 4958 1163 -6.923 15 0.181
HD 116321 V 3475 201 -25.119 20 0.106
HD 116442 V 4141 1917 28.411 37 0.151
HD 116443 V 4309 2141 27.383 83 0.117
HD 116956 M 4148 794 -12.183 22 0.096
HD 117122 V 4093 473 0.280 6 0.123
HD 117176 V 4780 1442 4.882 37 0.124
HD 117378 V 3778 0 -9.485 1
HD 117207 V 4957 1536 -17.457 4 0.073
HD 117623 V 3530 515 -6.631 15 0.127
GJ 514 M 4519 1565 14.531 25 0.107
HD 117434 V 5334 89 2.879 2 0.039
HD 117497 V 3446 58 -6.618 9 0.064
HD 117576 V 3779 2 -25.532 2 0.275
HD 117762 V 4825 1103 -26.104 8 0.131
HIP 66074 V 5022 333 -30.851 6 0.122
HD 117936 V 3839 1991 -5.864 4 0.212
HD 118034 V 3778 0 -7.958 1
HIP 66193 V 5317 8 1.512 4 0.081
HD 118006 V 3778 0 -36.779 1
HIP 66222 M 5216 449 14.986 7 0.130
HD 117987 V 3725 0 -74.955 1
HD 118082 V 4799 1103 -26.805 8 0.129
HIP 66283 V 5327 31 7.892 5 0.100
HIP 66459 M 4066 1618 -14.518 11 0.124
HD 118722 V 3780 0 0.927 1
HD 118744 V 5017 1159 -0.025 15 0.107
HD 118914 V 3441 85 16.680 2 0.140
HAT-P-3 V 4305 1134 -23.372 11 0.155
HD 119824 V 3778 0 -2.630 1
HD 119850 M 4405 1291 15.778 20 0.110
HIP 67164 M 4090 1121 5.389 4 0.325
HD 120066 V 4604 1772 -30.559 3 0.045
HD 120528 V 4048 473 -22.803 7 0.181
GJ 528b V 4412 1922 -22.549 5 0.180
HD 120476a V 4037 1833 -20.238 3 0.106
HD 120531 V 4840 1069 24.663 9 0.278
HD 120467 V 4530 1979 -37.628 23 0.121
HD 120636 V 5334 89 -13.517 2 0.096
HD 120666 V 3780 3 -1.675 2 0.016
HIP 67691 V 4991 455 -45.112 8 0.246
HD 121135 V 4258 0 125.174 1
HD 121151 V 3778 0 -37.437 1
HIP 67842 M 5351 58 1.053 4 0.126
HD 121320 V 4275 1959 -11.944 5 0.079
HD 121550 V 4439 1085 -11.057 35 0.094
HD 121579 V 3670 1151 13.162 5 0.097
HD 122064 V 3950 2076 -26.524 85 0.120
HAT-P-12 V 4442 1135 -40.639 24 0.125
HD 122120 V 4305 1884 -57.442 45 0.105
HD 122253 V 4679 1098 -9.990 7 0.106
HD 122255 V 3389 29 25.546 3 0.103
HIP 68461 V 3870 185 15.141 2 0.097
HD 122303 M 4335 1895 -25.825 24 0.096
HD 122517 V 5366 23 -12.121 3 0.013
HD 122652 V 4235 1806 1.484 5 0.107
HD 122563 V 4258 0 -26.508 1
HD 122683 V 3495 206 6.077 3 0.065
HD 122973 V 4014 617 -11.875 9 0.138
HD 123265 V 4088 647 -41.642 4 0.052
HD 123239 V 4764 1025 41.990 8 0.090
HD 123613 V 3601 350 -1.890 2 0.119
HD 123812 V 4377 389 23.502 3 0.115
HD 124257b V 3671 559 3.091 4 0.098
HD 124257a V 3566 416 3.135 3 0.071
HD 124106 V 4765 1915 3.352 8 0.046
HD 124292 V 4711 1832 37.725 39 0.133
HD 124641 V 5049 743 11.842 5 0.424
HD 124642 M 3560 350 -16.049 3 0.105
HD 125184 V 3701 746 -12.331 12 0.117
HD 125390 V 4830 1162 -76.758 7 0.222
HD 125217 V 4778 1122 -6.304 8 0.430
HD 125455 V 4402 1979 -9.856 28 0.114
HD 125612 V 4671 1776 -18.255 42 0.107
GJ 546 V 4046 1806 -36.783 3 0.180
HD 126053 V 4385 1898 -19.287 43 0.121
HD 126203 V 3763 849 -29.360 10 0.090
HD 126532 V 3589 375 22.344 2 0.002
HD 126583 V 3512 416 0.702 5 0.090
HD 126631 V 4258 0 -19.112 1
HD 126614 V 4713 1537 -32.896 49 0.174
HD 126990 V 5288 54 7.697 2 0.242
HD 126991 V 4792 1097 -94.578 9 0.112
HD 126831 V 3456 55 19.391 2 0.104
HD 128642 V 3429 3 -35.902 6 0.723
HIP 70865 M 4600 1865 7.867 12 0.275
HD 127334 V 4678 1445 -0.401 51 0.118
HIP 70975 M 4120 1243 -1.351 4 0.351
HD 127374 V 4765 1027 -35.966 20 0.122
HD 127741 V 5320 0 9.336 1
WASP14 V 4843 348 -5.627 4 0.318
HD 128165 M 3560 350 11.441 3 0.218
HIP 71253 M 4223 459 -1.638 7 0.111
HD 128095 V 4861 1162 28.952 9 0.309
HD 128311 V 4368 2137 -9.521 38 0.191
HD 128720 V 4896 1122 16.832 8 0.100
HD 129333 V 4246 1771 -20.044 10 0.677
HD 128987 V 3961 1768 -22.948 7 0.073
HD 129010 V 3634 417 -7.671 2 0.602
HD 129191 V 3634 416 12.673 2 0.076
HD 129601 V 4892 1162 -14.491 8 0.150
HIP 71898 M 4549 1864 18.687 12 0.082
HD 129471 V 3925 643 26.166 2 0.073
HD 129814 V 3541 602 6.501 2 0.076
HD 130004 M 3537 347 -9.531 6 0.124
HD 130087 V 3634 416 -15.624 2 0.143
HD 130048 V 5320 0 -20.891 1
HD 130307 M 3455 58 12.844 2 0.160
HD 130322 V 4675 1952 -12.503 5 0.113
HD 130666 V 4250 3 -49.056 3 0.142
HD 130672 V 3604 0 -30.798 1
HD 130871 V 3426 0 -32.318 1
HD 131156b V 4839 0 2.610 1
HD 131156 V 4998 322 1.762 3 0.088
HD 130992 V 4264 1537 -57.193 51 0.127
HD 131117 V 3634 416 -28.754 2 0.139
HD 131183 V 4437 1627 -26.414 8 0.076
HD 131580 V 3778 0 -31.124 1
HD 131509 V 3503 603 -44.749 3 0.167
HD 131496 V 4983 1122 1.146 14 0.131
GJ 569a M 4307 1894 -7.217 4 0.246
HD 132142 V 4628 2106 -14.789 32 0.104
HD 132130 V 3778 0 11.222 1
HD 131977 V 4461 1388 27.063 3 0.140
HD 132133 V 3604 0 -30.056 1
HIP 73302 V 3778 0 -7.481 1
HD 132425 V 3763 29 -10.219 2 0.222
HD 132505 V 3426 0 -15.563 1
HIP 73427 V 5119 452 -26.337 6 0.133
HD 133125 V 3992 320 -14.263 5 0.050
HD 133233 V 3876 431 1.537 18 0.133
HD 133295 V 4354 1989 -2.174 6 0.208
HD 134319 V 4396 1805 -6.357 5 0.110
HD 134047 V 3842 0 3.039 1
HD 134048 V 3574 6 13.608 3 0.107
HD 135143 V 3778 0 -4.299 1
HD 134353 V 3651 350 -24.131 3 0.064
HD 134440 V 3427 0 310.001 1
HD 134439 V 3427 0 309.433 1
HIP 74346 V 5331 67 -69.158 4 0.132
HD 135101a V 4891 1719 -38.885 13 0.122
s101438b V 3501 599 -38.877 3 0.110
HD 135148 V 4258 0 -96.007 1
HD 134987 V 4523 1948 5.068 29 0.111
HD 238433 V 5046 1162 9.244 5 0.784
HD 135446 V 3562 30 -9.102 12 0.110
HD 135724 V 3778 0 12.252 1
HD 135872 V 5335 31 -20.488 2 0.108
HD 136159 V 5330 115 -11.975 3 0.070
HD 136028 V 3842 0 -13.813 1
HD 136274 V 3732 536 -30.515 3 0.125
HD 136418 V 5004 1158 -34.407 28 0.197
HIP 74995 M 4555 2136 -9.523 150 0.132
HAT-P-5 V 5055 1103 -1.317 47 0.093
HD 136442 V 4259 1960 -46.986 37 0.102
HD 136513 V 4972 1094 -59.606 15 0.152
HD 136618 V 3604 0 -18.962 1
HD 136352 V 4340 1039 -68.923 37 0.083
HD 136713 V 4446 2017 -6.052 93 0.127
HD 136834 V 3534 695 -26.417 3 0.018
HD 136925 V 3680 509 -49.011 2 0.028
HD 137368 V 5288 54 -8.820 2 0.146
HD 137631 V 3604 0 -50.093 1
HD 137778 V 4093 2082 7.911 6 0.295
HD 137985 V 3624 154 -0.660 3 0.100
HD 139813 V 4193 1805 -15.787 5 0.216
HD 138278 V 3399 1 -12.712 2 0.087
HD 138549 V 3774 534 11.927 3 0.038
HD 138600 V 3552 24 -37.465 7 0.085
HD 138776 V 3633 411 10.632 2 0.144
HD 139477 V 4370 1782 -8.630 2 0.077
HD 139323 V 4593 2135 -67.105 124 0.131
HD 139457 V 3534 695 37.592 3 0.049
HD 139907 V 3905 978 -29.394 5 0.171
HD 140025 V 4881 976 30.158 9 0.103
HD 140296 V 3778 0 -10.063 1
HD 139879 V 3604 0 -8.865 1
HD 140538a V 4181 2075 19.021 131 0.105
HD 141186 V 3633 236 -39.418 4 0.116
HD 141004 V 4211 1914 -66.390 179 0.126
HD 141399 V 5051 1954 -21.912 49 0.129
HD 141085 V 3604 0 -44.352 1
HD 141272 V 3878 1743 -26.394 7 0.076
HD 141712 V 4685 1121 -23.235 13 0.144
HD 141680 V 3842 0 -3.770 1
HD 142091 V 5330 116 -25.107 3 0.110
HD 141937 V 4391 2112 -2.815 14 0.135
HD 141885 V 3594 380 -15.963 3 0.106
HD 142245 V 4907 1122 6.708 12 0.117
HD 142626 V 3733 537 9.116 3 0.141
HD 142229 V 4199 1002 -22.315 5 0.221
HD 141943 V 4838 296 -0.907 2 0.369
HIP 77908 V 4929 1 5.462 2 0.026
HD 143174 V 4542 1806 -43.590 52 0.133
HD 142943 V 3399 1 -16.177 2 0.118
HD 143291 V 3502 598 -72.594 3 0.091
HD 143006 V 3809 1775 -1.800 14 0.167
pz99 j155847 V 4690 0 -7.436 1
WASP17 V 5232 0 -49.251 1
HD 143332 V 3472 149 -30.485 9 0.114
HIP 78423 V 5034 445 -35.942 5 0.136
rx j1600 V 4689 0 -0.901 1
HD 143761 V 5178 1449 17.873 79 0.111
XO-1 V 5232 0 1.972 1
HD 144287 V 4128 1297 -49.293 35 0.259
HD 144579 V 3919 2076 -59.457 61 0.099
HD 144585 V 4072 1055 -14.014 17 0.116
HD 145224 V 3778 0 -27.545 1
HD 145229 V 5026 542 -36.103 4 0.045
HD 144988 V 3335 191 -53.220 2 0.058
HD 145675 V 4515 2141 -13.803 90 0.124
HD 145331 V 3604 0 -58.052 1
HIP 79308 V 3744 534 -50.240 3 0.103
HIP 79431 M 5109 451 -4.656 21 0.196
HD 145934 V 4496 1916 -28.013 14 0.214
HD 145958b V 4144 1484 18.426 46 0.100
HD 145958a V 4244 1690 18.308 70 0.103
HD 145809 V 3425 365 21.158 3 0.027
HD 146278 V 4834 976 11.352 8 0.085
HD 146050 V 3729 392 -0.702 4 0.087
HD 146362b V 4509 1952 -14.828 37 0.107
HD 147231 V 3547 0 -16.654 1
pz99 j161459 V 4689 0 -0.987 1
HD 146233 V 4245 1901 11.756 117 0.128
HIP 79698 V 5007 451 -45.404 7 0.139
pz99 j161618 V 4690 0 -8.416 1
HD 146434 V 3604 0 -52.566 1
HD 147379a M 4128 1585 -18.864 8 0.060
HD 147379b M 4365 1556 -18.460 5 0.148
HD 146775 V 3400 240 -30.111 3 0.061
HD 147062 V 3604 0 -46.978 1
HD 147506 V 4274 1369 -19.930 119 0.305
HIP 80096 V 5329 32 -73.034 4 0.080
HD 147750 V 3642 723 -37.053 4 0.041
HD 148238 V 3778 0 -16.948 1
HD 147719 V 3571 0 14.619 1
HIP 80295 V 3516 178 -17.445 2 0.100
HD 147752 V 3928 6 -35.016 5 0.025
HD 147887 V 3604 0 6.721 1
HD 147776 V 4418 1743 7.218 2 0.060
GJ 625 M 4310 1915 -13.063 34 0.139
HD 148164 V 4150 1833 -64.494 13 0.132
HD 148284 V 4622 1751 -36.083 13 0.212
sr21 V 4690 0 -26.537 1
HD 148467 V 4671 1569 -36.189 23 0.090
HD 148428 V 3604 0 -23.092 1
HIP 80824 M 4507 1300 -21.249 36 0.115
HD 149026 V 3741 1924 -18.057 46 0.107
HD 150706 V 4402 1805 -17.191 7 0.114
HD 148979 V 5335 31 7.133 2 0.046
HD 234314 V 3845 680 -22.113 5 0.230
HD 149143 V 3970 1953 12.266 32 0.167
HD 149750 V 3962 978 15.330 6 0.213
HD 149661 V 4264 1896 -12.794 5 0.295
HD 149724 V 3682 504 -33.541 2 0.109
HD 149907 V 5333 86 -9.995 2 0.041
HD 149806 V 4530 1425 10.471 38 0.114
HD 149760 V 3604 0 9.309 1
HD 150122 V 3399 3 -58.657 3 0.096
HD 150237 V 3573 5 -46.708 2 0.198
HD 150554 V 4297 1804 -18.379 10 0.188
HD 150433 V 3360 240 -40.119 2 0.204
HD 150331 V 3818 744 -6.637 15 0.129
HD 150437 V 3360 240 14.142 2 0.128
HD 150420 V 3509 568 -11.217 3 0.181
HD 151541 V 4290 2141 9.473 41 0.136
HD 150698 V 3360 240 48.248 2 0.073
HD 151522 V 4469 670 -45.210 7 0.472
HD 150936 V 3604 0 -37.219 1
HD 151288 M 4926 1913 -31.349 33 0.132
HD 151329 V 3577 444 -26.417 5 0.482
HD 151627 V 3842 0 -14.058 1
HD 151504 V 4224 1128 -75.510 22 0.098
HD 151877 V 3938 1116 2.117 3 0.345
HD 152125 V 3960 680 -25.716 7 0.171
HD 151852 V 4823 1001 -38.440 7 0.157
HD 151995 V 3430 0 -5.554 1
HIP 82408 V 5380 0 -0.461 1
HD 152733 V 4693 1054 -27.517 9 0.113
HD 152792 V 3767 505 4.624 3 0.131
HD 152581 V 4902 1116 3.739 12 0.111
HD 152555 V 4337 1992 -15.891 5 0.241
HD 153525 V 4404 1886 -7.339 5 0.108
HD 153557 V 4187 1861 -6.564 3 0.020
HIP 83043 M 4726 1914 4.145 25 0.101
HD 153378 V 3803 1143 -24.765 9 0.083
HD 153458 V 3535 695 0.591 3 0.073
HD 154345 V 4456 1945 -46.945 89 0.121
HD 154325 V 3845 680 -28.603 5 0.206
HD 154144 V 3883 1002 -19.163 23 0.148
HD 154088 V 4463 2136 14.163 167 0.102
HD 154363 V 4478 1811 34.095 34 0.118
HAT-P-18 V 4790 863 -11.250 29 0.129
HD 154656 V 4121 648 -22.618 5 0.070
HIP 83762 M 3872 484 -50.725 6 0.172
HD 154697 V 3604 0 -33.717 1
HD 154994 V 4142 648 -58.311 6 0.051
HD 155456 V 3745 535 -59.531 3 0.125
HD 155524 V 5320 0 -6.037 1
HIP 84099 M 3551 696 -44.404 3 0.323
HD 155413 V 3955 142 -23.274 10 0.105
HD 156279 V 4908 2134 -20.670 36 0.289
HD 155415 V 3604 0 -5.489 1
HD 155712 V 4373 1923 19.778 54 0.108
HD 155817 V 3605 0 -54.182 1
HD 155968 V 3927 646 -29.848 2 0.025
HD 156026 V 4288 1896 0.061 5 0.179
HD 156079 V 3926 645 -103.318 2 0.085
HD 156342 V 4545 1174 -63.164 17 0.084
HD 156668 V 5042 1832 -44.547 254 0.110
HD 156985 V 4736 1950 -4.805 84 0.105
HD 156365 V 3360 240 -13.057 2 0.122
HD 156549 V 3552 24 16.765 7 0.123
GJ 667c M 4346 1688 6.448 7 0.202
HIP 84790 M 3479 0 -19.189 1
HD 156826 V 3422 366 -32.685 2 0.017
HAT-P-14 V 5180 715 -20.393 59 0.095
HD 156846 V 5071 419 -68.386 55 0.242
HD 157214 V 4511 1923 -78.559 40 0.119
HD 157481 V 5320 0 -52.955 1
HD 157261 V 5336 32 -1.087 2 0.004
HD 157172 V 3360 240 -78.978 2 0.057
HD 157299 V 3604 0 -47.361 1
HD 157347 V 4257 2081 -35.854 99 0.126
HD 157338 V 3718 1569 -24.248 18 0.110
HD 158633 V 4366 1915 -38.564 31 0.113
HD 158259 V 4405 1712 13.605 2 0.078
HD 157881 M 4119 1840 -23.118 4 0.217
HD 158038 V 4945 1121 19.632 14 0.159
HD 157719 V 4664 1042 -76.728 5 0.983
HD 158210 V 3573 5 -20.555 2 0.135
HD 158173 V 3604 0 -62.633 1
HD 158449 V 4807 1065 -26.926 8 0.098
HIP 85582 V 4751 238 -8.080 8 0.149
HD 159062 V 4188 1527 -83.967 40 0.115
s122446 M 4483 1536 -12.468 23 0.110
HD 159063 V 3431 0 -6.176 1
HD 159222 V 4148 1706 -51.556 90 0.121
HIP 85977 V 4749 209 -94.063 8 0.130
HD 159798 V 5320 0 -47.048 1
GJ 687 M 4339 1537 -28.720 73 0.109
HD 160215 V 4718 1087 -59.230 11 0.087
HD 160013 V 3635 415 1.327 2 0.250
GJ 686 M 4324 1434 -9.499 37 0.112
HD 160247 V 5312 0 -8.367 1
HD 159868 V 4297 89 -23.525 33 0.092
HD 160693 V 3683 505 33.975 2 0.176
HD 161284 V 4071 474 -7.570 13 0.145
HD 160371 V 5379 0 -8.715 1
HD 161897 V 4389 1587 -16.653 3 0.171
GJ 694 M 4487 1292 -14.328 14 0.084
HD 161131 V 5312 0 5.747 1
HD 161424 V 3604 0 -49.070 1
HIP 86961 M 4626 1842 -28.929 8 0.095
HD 161797 V 4843 587 -17.576 25 0.092
HD 161622 V 5379 0 -6.795 1
HIP 87062 V 3360 239 84.660 2 0.298
HD 161848 V 3551 696 -94.955 3 0.124
HIP 87123 V 4658 1064 -66.098 8 0.104
HD 162232 V 4550 1771 -72.674 20 0.083
TrES3 V 4343 1073 9.647 19 0.136
HIP 87464 V 4719 2 -24.462 4 0.061
HD 162808 V 3576 0 -30.173 1
TrES4 V 4829 913 -15.865 2 0.158
HD 162587 V 5379 0 -16.157 1
HD 163607 V 4791 1803 -10.118 38 0.142
HD 163528 V 4708 1122 -65.155 16 0.197
HD 163589 V 3966 824 -36.033 4 0.091
HD 163153 V 3532 364 -72.845 14 0.086
HD 163489 V 4320 1556 -49.414 18 0.144
HD 164330 V 3912 680 -12.803 4 0.694
GJ 699 M 4192 1692 -110.416 74 0.130
HD 164213 V 5320 0 -4.060 1
HD 164595 V 3724 490 2.120 2 0.340
HD 164507 V 3943 793 5.310 2 0.108
HD 164509 V 4810 1810 13.640 36 0.119
HD 165109 V 5330 116 -4.620 3 0.158
HD 164651 V 3393 308 -80.539 2 0.005
HD 164922 V 4151 2137 20.236 100 0.098
HD 165173 V 3583 725 0.164 3 0.061
HD 165222 M 4561 2142 32.621 62 0.141
HD 165401 V 4264 1710 -118.491 8 0.244
HD 165269 V 3490 118 -0.814 2 0.270
HD 165672 V 3604 0 -5.497 1
HD 166494 V 4594 1028 -30.304 10 0.147
HD 166435 V 3550 0 -14.487 1
HD 166620 V 4342 1992 -19.465 41 0.101
HD 167042 V 5317 121 -18.181 2 0.093
HIP 89087 V 4719 2 -39.517 4 0.135
HIP 89215 V 3394 306 -0.842 2 0.366
HD 167215 V 3696 292 -41.855 2 0.129
HD 167216 V 3561 721 -42.731 3 0.266
HD 167389 V 3720 483 -5.395 2 0.259
GJ 708 V 4279 0 2.332 1
HD 168009 V 4631 1380 -64.634 29 0.118
HD 167665 V 3852 1486 8.523 4 0.039
LHS 462 M 3706 454 0.491 2 0.252
HD 168603 V 3949 29 -32.771 2 0.007
HD 168443 V 4649 2140 -48.446 24 0.328
HD 168874 V 3550 0 -20.092 1
HD 168723 V 5218 377 9.219 4 0.086
HD 168746 V 4265 1437 -25.604 2 0.075
HD 168960 V 3678 258 -9.966 2 0.078
HIP 90075 V 3576 0 -36.087 1
HD 170003 V 5320 0 -3.058 1
HD 169889 V 3832 437 -17.691 3 0.031
HIP 90376 V 4719 2 -23.264 4 0.141
HD 169830 V 4583 1834 -17.197 18 0.133
HD 170174 V 3394 306 -28.564 2 0.519
HD 170469 V 4128 1827 -59.340 18 0.117
HD 170512 V 3830 1127 -36.281 11 0.107
HD 170493 V 4382 1466 -54.776 44 0.109
HD 170657 V 4212 2082 -43.137 13 0.161
HD 171010 V 5320 0 -33.552 1
g205-028 M 3721 483 -18.890 2 0.337
HD 171067 V 3754 414 -46.246 2 0.025
WASP-3 V 4655 350 -5.409 28 0.126
GJ 4063 M 3707 456 12.618 2 0.255
HD 171238 V 3604 0 21.446 1
HD 172043 V 5320 0 3.164 1
HD 171665 V 3393 307 -23.279 2 0.005
HD 171918 V 3393 307 -67.213 2 0.058
HD 171999 V 3604 0 -51.888 1
HD 172310 V 3661 363 31.210 2 0.146
HD 172051 V 4237 1898 37.095 41 0.110
HD 172365 V 5379 0 -20.204 1
HIP 91699 M 3758 421 -31.873 2 0.060
HD 172513 V 3547 0 -11.558 1
HD 173739 M 4325 1436 -0.794 31 0.122
HD 173740 M 4341 1436 1.118 30 0.135
HD 173701 V 4285 1439 -45.630 31 0.093
Kepler-8 V 5050 152 -52.890 36 0.355
HD 173818 V 3717 2084 15.468 5 0.059
HD 174080 V 3942 789 -7.083 2 0.016
HD 174622 V 3828 767 -49.990 3 0.130
HIP 92403 M 3575 695 -10.535 3 0.060
HD 175441 V 3574 6 -21.276 3 0.094
HD 174719 V 3944 786 -17.270 2 0.036
HD 175425 V 3845 680 -67.588 5 0.190
HD 175541 V 4592 2141 19.674 42 0.114
HIP 92922 V 4010 680 -39.302 8 0.203
HIP 93119 V 4720 4 -14.846 5 0.138
HD 176377 V 4845 1831 -40.681 71 0.096
HD 177274 V 4230 1067 -5.141 7 0.215
HD 176414 V 3539 98 33.544 9 0.108
HD 230409 V 3785 477 -2.415 2 0.064
HD 176650 V 5322 0 29.613 1
KIC 3323887 V 5359 35 2.187 10 0.100
Kepler-4 V 5075 93 -60.975 23 0.168
HD 176982 V 3604 784 -6.825 3 0.062
HD 177033 V 3604 0 -46.802 1
TrES1 V 4053 2052 -20.569 14 0.195
HD 177572 V 3720 483 -10.245 2 0.191
HIP 93703 V 5347 69 -41.083 15 0.086
HD 177830 V 4573 1841 -72.083 53 0.153
HIP 93871 V 4719 2 9.032 4 0.065
GJ 745a M 4555 845 32.263 8 0.106
GJ 745b M 4629 440 31.940 5 0.093
TrES2 V 4260 799 -0.640 63 0.059
g207-019 M 3757 410 -1.750 2 0.117
HD 178251 V 4805 982 91.769 14 0.118
HD 178911b V 4733 1770 -40.551 16 0.345
HD 179306 V 5347 69 5.136 15 0.107
HD 179079 V 4457 1715 19.440 70 0.107
HD 179152 V 5322 0 -20.725 1
HD 179957 V 4242 1871 -41.824 79 0.119
HD 179958 V 4271 1560 -41.162 75 0.125
HD 180161 V 4185 1738 -27.036 4 0.130
HD 179596 V 3480 1 -4.219 2 0.105
HD 180053 V 4999 1164 -5.874 84 0.135
Kepler-7 V 5134 1 0.222 2 0.575
KIC 10723750 V 5352 0 -12.784 1
HD 230999 V 3585 722 -81.456 3 0.192
HD 179949 V 4640 1468 -24.350 4 0.178
HD 180684 V 3632 783 -2.002 2 0.233
HD 180617 M 4668 1829 35.730 100 0.154
HD 181253 V 3768 1195 -28.168 21 0.153
HD 180902 V 4944 1041 -4.651 17 0.176
HD 231157 V 3604 0 -43.279 1
HD 181234 V 3604 784 -46.730 3 0.051
HD 181342 V 4952 1041 -0.837 21 0.135
HD 182488 V 4838 1448 -21.485 56 0.138
HD 182407 V 3654 1196 -30.323 11 0.122
HD 182619 V 3826 412 8.280 3 0.106
HD 182572 V 3886 2081 -100.289 60 0.125
HD 183298 V 5345 69 -19.122 16 0.071
COROT2 V 5286 0 23.603 1
HD 183473 V 4753 1123 -46.421 10 0.089
HD 183263 V 4530 1831 -50.240 29 0.107
HAT-P-7 V 4947 1039 -10.525 35 0.212
HD 183650 V 3584 723 -9.752 3 0.031
HD 183216 V 4852 326 -43.069 2 0.024
HD 183756 V 5322 0 -5.083 1
HD 183658 V 3570 784 58.219 9 0.089
HD 231701 V 4159 1748 -63.476 16 0.098
HD 183870 V 4025 2049 -48.823 4 0.304
KIC 7825899 V 5351 0 -21.275 1
HD 185144 V 4297 2138 26.620 424 0.112
KIC 7287995 V 5351 0 0.533 1
HD 185414 V 4461 1826 -15.771 36 0.189
HD 185269 V 5101 575 0.620 26 0.112
HD 185295 V 3758 422 -18.710 2 0.020
KIC 5972334 V 5352 0 -62.979 1
HD 186408 V 4692 1391 -27.391 49 0.122
HD 186427 V 4841 1423 -27.859 62 0.147
HD 186104 V 3604 0 -61.389 1
HIP 97051 V 5057 660 -12.314 15 0.127
HD 187091 V 5314 9 -14.941 6 0.050
HD 186932 V 3604 0 -57.813 1
HD 187123 V 4404 2105 -16.896 30 0.099
Kepler-6 V 5003 59 -49.222 11 0.107
HD 187237 V 3773 1098 -32.797 4 0.215
HD 187748 V 3944 789 -5.456 2 0.135
HAT-P-11 V 4885 1040 -63.511 114 0.101
HD 187944 V 3480 1 -12.006 2 0.130
HD 187923 V 4231 2079 -20.619 99 0.138
HD 188015 V 4201 2141 0.060 10 0.075
HD 187897 V 4749 120 -37.507 2 0.044
GJ 1245b M 4242 1434 5.081 10 0.178
HD 188345 V 4124 824 -85.627 3 0.073
HD 188268 V 4121 648 9.295 5 0.105
HD 188311 V 4121 648 9.773 5 0.114
HD 188386 V 5068 1041 -73.744 22 0.145
HD 188510 V 3604 729 -192.628 2 0.175
HD 188512 V 4401 1452 -40.074 21 0.119
HD 188298 V 3604 0 33.769 1
HD 188376 V 3936 1768 -16.090 5 0.122
HD 189087 V 3945 787 -30.109 2 0.203
Kepler-5 V 5020 125 -18.527 9 0.113
HD 189186 V 5322 0 56.577 1
HD 189733 V 3983 1618 -2.570 86 0.143
HD 189625 V 3752 544 -28.176 2 0.064
HD 189627 V 3604 0 -14.995 1
KIC 8394721 V 5351 0 -23.258 1
HD 190067 V 4207 1472 20.375 96 0.126
HD 190007 V 3761 1828 -30.270 11 0.105
HD 190228 V 4631 1827 -50.196 8 0.114
HD 190360 V 3979 2135 -45.253 88 0.141
HD 190404 V 4255 1777 -2.535 29 0.157
HD 190406 V 4549 1768 4.617 46 0.125
HD 190571 V 5321 2 37.432 2 0.101
HD 190594 V 4281 1086 -33.632 20 0.129
HD 190821 V 4024 1089 -8.951 12 0.128
HD 191067 V 5332 84 -3.437 2 0.120
HIP 99205 V 4822 311 -33.930 6 0.101
HD 190931 V 4397 1072 -25.905 10 0.098
HD 191359 V 5322 0 27.090 1
HIP 99332 V 4896 326 -7.735 9 0.124
HIP 99385 V 4719 1 21.998</