Pion Interferometry in Au+Au and Cu+Cu Collisions at \sqrt{s_{\rm{NN}}} = 62.4 and 200 GeV

Pion Interferometry in Au+Au and Cu+Cu Collisions at = 62.4 and 200 GeV

B. I. Abelev University of Illinois at Chicago, Chicago, Illinois 60607, USA    M. M. Aggarwal Panjab University, Chandigarh 160014, India    Z. Ahammed Variable Energy Cyclotron Centre, Kolkata 700064, India    B. D. Anderson Kent State University, Kent, Ohio 44242, USA    D. Arkhipkin Particle Physics Laboratory (JINR), Dubna, Russia    G. S. Averichev Laboratory for High Energy (JINR), Dubna, Russia    J. Balewski Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    O. Barannikova University of Illinois at Chicago, Chicago, Illinois 60607, USA    L. S. Barnby University of Birmingham, Birmingham, United Kingdom    J. Baudot Institut de Recherches Subatomiques, Strasbourg, France    S. Baumgart Yale University, New Haven, Connecticut 06520, USA    D. R. Beavis Brookhaven National Laboratory, Upton, New York 11973, USA    R. Bellwied Wayne State University, Detroit, Michigan 48201, USA    F. Benedosso NIKHEF and Utrecht University, Amsterdam, The Netherlands    M. J. Betancourt Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    R. R. Betts University of Illinois at Chicago, Chicago, Illinois 60607, USA    A. Bhasin University of Jammu, Jammu 180001, India    A. K. Bhati Panjab University, Chandigarh 160014, India    H. Bichsel University of Washington, Seattle, Washington 98195, USA    J. Bielcik Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    J. Bielcikova Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    B. Biritz University of California, Los Angeles, California 90095, USA    L. C. Bland Brookhaven National Laboratory, Upton, New York 11973, USA    M. Bombara University of Birmingham, Birmingham, United Kingdom    B. E. Bonner Rice University, Houston, Texas 77251, USA    M. Botje NIKHEF and Utrecht University, Amsterdam, The Netherlands    J. Bouchet Kent State University, Kent, Ohio 44242, USA    E. Braidot NIKHEF and Utrecht University, Amsterdam, The Netherlands    A. V. Brandin Moscow Engineering Physics Institute, Moscow Russia    E. Bruna Yale University, New Haven, Connecticut 06520, USA    S. Bueltmann Old Dominion University, Norfolk, VA, 23529, USA    T. P. Burton University of Birmingham, Birmingham, United Kingdom    M. Bystersky Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    X. Z. Cai Shanghai Institute of Applied Physics, Shanghai 201800, China    H. Caines Yale University, New Haven, Connecticut 06520, USA    M. Calderón de la Barca Sánchez University of California, Davis, California 95616, USA    O. Catu Yale University, New Haven, Connecticut 06520, USA    D. Cebra University of California, Davis, California 95616, USA    R. Cendejas University of California, Los Angeles, California 90095, USA    M. C. Cervantes Texas A&M University, College Station, Texas 77843, USA    Z. Chajecki Ohio State University, Columbus, Ohio 43210, USA    P. Chaloupka Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    S. Chattopadhyay Variable Energy Cyclotron Centre, Kolkata 700064, India    H. F. Chen University of Science & Technology of China, Hefei 230026, China    J. H. Chen Kent State University, Kent, Ohio 44242, USA    J. Y. Chen Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    J. Cheng Tsinghua University, Beijing 100084, China    M. Cherney Creighton University, Omaha, Nebraska 68178, USA    A. Chikanian Yale University, New Haven, Connecticut 06520, USA    K. E. Choi Pusan National University, Pusan, Republic of Korea    W. Christie Brookhaven National Laboratory, Upton, New York 11973, USA    R. F. Clarke Texas A&M University, College Station, Texas 77843, USA    M. J. M. Codrington Texas A&M University, College Station, Texas 77843, USA    R. Corliss Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    T. M. Cormier Wayne State University, Detroit, Michigan 48201, USA    M. R. Cosentino Universidade de Sao Paulo, Sao Paulo, Brazil    J. G. Cramer University of Washington, Seattle, Washington 98195, USA    H. J. Crawford University of California, Berkeley, California 94720, USA    D. Das University of California, Davis, California 95616, USA    S. Dash Institute of Physics, Bhubaneswar 751005, India    M. Daugherity University of Texas, Austin, Texas 78712, USA    L. C. De Silva Wayne State University, Detroit, Michigan 48201, USA    T. G. Dedovich Laboratory for High Energy (JINR), Dubna, Russia    M. DePhillips Brookhaven National Laboratory, Upton, New York 11973, USA    A. A. Derevschikov Institute of High Energy Physics, Protvino, Russia    R. Derradi de Souza Universidade Estadual de Campinas, Sao Paulo, Brazil    L. Didenko Brookhaven National Laboratory, Upton, New York 11973, USA    P. Djawotho Texas A&M University, College Station, Texas 77843, USA    S. M. Dogra University of Jammu, Jammu 180001, India    X. Dong Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    J. L. Drachenberg Texas A&M University, College Station, Texas 77843, USA    J. E. Draper University of California, Davis, California 95616, USA    F. Du Yale University, New Haven, Connecticut 06520, USA    J. C. Dunlop Brookhaven National Laboratory, Upton, New York 11973, USA    M. R. Dutta Mazumdar Variable Energy Cyclotron Centre, Kolkata 700064, India    W. R. Edwards Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    L. G. Efimov Laboratory for High Energy (JINR), Dubna, Russia    E. Elhalhuli University of Birmingham, Birmingham, United Kingdom    M. Elnimr Wayne State University, Detroit, Michigan 48201, USA    V. Emelianov Moscow Engineering Physics Institute, Moscow Russia    J. Engelage University of California, Berkeley, California 94720, USA    G. Eppley Rice University, Houston, Texas 77251, USA    B. Erazmus SUBATECH, Nantes, France    M. Estienne Institut de Recherches Subatomiques, Strasbourg, France    L. Eun Pennsylvania State University, University Park, Pennsylvania 16802, USA    P. Fachini Brookhaven National Laboratory, Upton, New York 11973, USA    R. Fatemi University of Kentucky, Lexington, Kentucky, 40506-0055, USA    J. Fedorisin Laboratory for High Energy (JINR), Dubna, Russia    A. Feng Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    P. Filip Particle Physics Laboratory (JINR), Dubna, Russia    E. Finch Yale University, New Haven, Connecticut 06520, USA    V. Fine Brookhaven National Laboratory, Upton, New York 11973, USA    Y. Fisyak Brookhaven National Laboratory, Upton, New York 11973, USA    C. A. Gagliardi Texas A&M University, College Station, Texas 77843, USA    L. Gaillard University of Birmingham, Birmingham, United Kingdom    D. R. Gangadharan University of California, Los Angeles, California 90095, USA    M. S. Ganti Variable Energy Cyclotron Centre, Kolkata 700064, India    E. J. Garcia-Solis University of Illinois at Chicago, Chicago, Illinois 60607, USA    Geromitsos SUBATECH, Nantes, France    F. Geurts Rice University, Houston, Texas 77251, USA    V. Ghazikhanian University of California, Los Angeles, California 90095, USA    P. Ghosh Variable Energy Cyclotron Centre, Kolkata 700064, India    Y. N. Gorbunov Creighton University, Omaha, Nebraska 68178, USA    A. Gordon Brookhaven National Laboratory, Upton, New York 11973, USA    O. Grebenyuk Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    D. Grosnick Valparaiso University, Valparaiso, Indiana 46383, USA    B. Grube Pusan National University, Pusan, Republic of Korea    S. M. Guertin University of California, Los Angeles, California 90095, USA    K. S. F. F. Guimaraes Universidade de Sao Paulo, Sao Paulo, Brazil    A. Gupta University of Jammu, Jammu 180001, India    N. Gupta University of Jammu, Jammu 180001, India    W. Guryn Brookhaven National Laboratory, Upton, New York 11973, USA    B. Haag University of California, Davis, California 95616, USA    T. J. Hallman Brookhaven National Laboratory, Upton, New York 11973, USA    A. Hamed Texas A&M University, College Station, Texas 77843, USA    J. W. Harris Yale University, New Haven, Connecticut 06520, USA    W. He Indiana University, Bloomington, Indiana 47408, USA    M. Heinz Yale University, New Haven, Connecticut 06520, USA    S. Heppelmann Pennsylvania State University, University Park, Pennsylvania 16802, USA    B. Hippolyte Institut de Recherches Subatomiques, Strasbourg, France    A. Hirsch Purdue University, West Lafayette, Indiana 47907, USA    E. Hjort Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. M. Hoffman Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    G. W. Hoffmann University of Texas, Austin, Texas 78712, USA    D. J. Hofman University of Illinois at Chicago, Chicago, Illinois 60607, USA    R. S. Hollis University of Illinois at Chicago, Chicago, Illinois 60607, USA    H. Z. Huang University of California, Los Angeles, California 90095, USA    T. J. Humanic Ohio State University, Columbus, Ohio 43210, USA    G. Igo University of California, Los Angeles, California 90095, USA    A. Iordanova University of Illinois at Chicago, Chicago, Illinois 60607, USA    P. Jacobs Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    W. W. Jacobs Indiana University, Bloomington, Indiana 47408, USA    P. Jakl Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    C. Jena Institute of Physics, Bhubaneswar 751005, India    F. Jin Shanghai Institute of Applied Physics, Shanghai 201800, China    C. L. Jones Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    P. G. Jones University of Birmingham, Birmingham, United Kingdom    J. Joseph Kent State University, Kent, Ohio 44242, USA    E. G. Judd University of California, Berkeley, California 94720, USA    S. Kabana SUBATECH, Nantes, France    K. Kajimoto University of Texas, Austin, Texas 78712, USA    K. Kang Tsinghua University, Beijing 100084, China    J. Kapitan Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    D. Keane Kent State University, Kent, Ohio 44242, USA    A. Kechechyan Laboratory for High Energy (JINR), Dubna, Russia    D. Kettler University of Washington, Seattle, Washington 98195, USA    V. Yu. Khodyrev Institute of High Energy Physics, Protvino, Russia    D. P. Kikola Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    J. Kiryluk Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. Kisiel Ohio State University, Columbus, Ohio 43210, USA    S. R. Klein Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. G. Knospe Yale University, New Haven, Connecticut 06520, USA    A. Kocoloski Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    D. D. Koetke Valparaiso University, Valparaiso, Indiana 46383, USA    M. Kopytine Kent State University, Kent, Ohio 44242, USA    W. Korsch University of Kentucky, Lexington, Kentucky, 40506-0055, USA    L. Kotchenda Moscow Engineering Physics Institute, Moscow Russia    V. Kouchpil Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    P. Kravtsov Moscow Engineering Physics Institute, Moscow Russia    V. I. Kravtsov Institute of High Energy Physics, Protvino, Russia    K. Krueger Argonne National Laboratory, Argonne, Illinois 60439, USA    M. Krus Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    C. Kuhn Institut de Recherches Subatomiques, Strasbourg, France    L. Kumar Panjab University, Chandigarh 160014, India    P. Kurnadi University of California, Los Angeles, California 90095, USA    M. A. C. Lamont Brookhaven National Laboratory, Upton, New York 11973, USA    J. M. Landgraf Brookhaven National Laboratory, Upton, New York 11973, USA    S. LaPointe Wayne State University, Detroit, Michigan 48201, USA    J. Lauret Brookhaven National Laboratory, Upton, New York 11973, USA    A. Lebedev Brookhaven National Laboratory, Upton, New York 11973, USA    R. Lednicky Particle Physics Laboratory (JINR), Dubna, Russia    C-H. Lee Pusan National University, Pusan, Republic of Korea    J. H. Lee Brookhaven National Laboratory, Upton, New York 11973, USA    W. Leight Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    M. J. LeVine Brookhaven National Laboratory, Upton, New York 11973, USA    Li Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    C. Li University of Science & Technology of China, Hefei 230026, China    Y. Li Tsinghua University, Beijing 100084, China    G. Lin Yale University, New Haven, Connecticut 06520, USA    S. J. Lindenbaum City College of New York, New York City, New York 10031, USA    M. A. Lisa Ohio State University, Columbus, Ohio 43210, USA    F. Liu Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    J. Liu Rice University, Houston, Texas 77251, USA    L. Liu Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    T. Ljubicic Brookhaven National Laboratory, Upton, New York 11973, USA    W. J. Llope Rice University, Houston, Texas 77251, USA    R. S. Longacre Brookhaven National Laboratory, Upton, New York 11973, USA    W. A. Love Brookhaven National Laboratory, Upton, New York 11973, USA    Y. Lu University of Science & Technology of China, Hefei 230026, China    T. Ludlam Brookhaven National Laboratory, Upton, New York 11973, USA    G. L. Ma Shanghai Institute of Applied Physics, Shanghai 201800, China    Y. G. Ma Shanghai Institute of Applied Physics, Shanghai 201800, China    D. P. Mahapatra Institute of Physics, Bhubaneswar 751005, India    R. Majka Yale University, New Haven, Connecticut 06520, USA    O. I. Mall University of California, Davis, California 95616, USA    L. K. Mangotra University of Jammu, Jammu 180001, India    R. Manweiler Valparaiso University, Valparaiso, Indiana 46383, USA    S. Margetis Kent State University, Kent, Ohio 44242, USA    C. Markert University of Texas, Austin, Texas 78712, USA    H. S. Matis Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    Yu. A. Matulenko Institute of High Energy Physics, Protvino, Russia    T. S. McShane Creighton University, Omaha, Nebraska 68178, USA    A. Meschanin Institute of High Energy Physics, Protvino, Russia    R. Milner Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    N. G. Minaev Institute of High Energy Physics, Protvino, Russia    S. Mioduszewski Texas A&M University, College Station, Texas 77843, USA    A. Mischke NIKHEF and Utrecht University, Amsterdam, The Netherlands    J. Mitchell Rice University, Houston, Texas 77251, USA    B. Mohanty Variable Energy Cyclotron Centre, Kolkata 700064, India    D. A. Morozov Institute of High Energy Physics, Protvino, Russia    M. G. Munhoz Universidade de Sao Paulo, Sao Paulo, Brazil    B. K. Nandi Indian Institute of Technology, Mumbai, India    C. Nattrass Yale University, New Haven, Connecticut 06520, USA    T. K. Nayak Variable Energy Cyclotron Centre, Kolkata 700064, India    J. M. Nelson University of Birmingham, Birmingham, United Kingdom    P. K. Netrakanti Purdue University, West Lafayette, Indiana 47907, USA    M. J. Ng University of California, Berkeley, California 94720, USA    L. V. Nogach Institute of High Energy Physics, Protvino, Russia    S. B. Nurushev Institute of High Energy Physics, Protvino, Russia    G. Odyniec Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. Ogawa Brookhaven National Laboratory, Upton, New York 11973, USA    H. Okada Brookhaven National Laboratory, Upton, New York 11973, USA    V. Okorokov Moscow Engineering Physics Institute, Moscow Russia    D. Olson Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    M. Pachr Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    B. S. Page Indiana University, Bloomington, Indiana 47408, USA    S. K. Pal Variable Energy Cyclotron Centre, Kolkata 700064, India    Y. Pandit Kent State University, Kent, Ohio 44242, USA    Y. Panebratsev Laboratory for High Energy (JINR), Dubna, Russia    S. Y. Panitkin Brookhaven National Laboratory, Upton, New York 11973, USA    T. Pawlak Warsaw University of Technology, Warsaw, Poland    T. Peitzmann NIKHEF and Utrecht University, Amsterdam, The Netherlands    V. Perevoztchikov Brookhaven National Laboratory, Upton, New York 11973, USA    C. Perkins University of California, Berkeley, California 94720, USA    W. Peryt Warsaw University of Technology, Warsaw, Poland    S. C. Phatak Institute of Physics, Bhubaneswar 751005, India    M. Planinic University of Zagreb, Zagreb, HR-10002, Croatia    J. Pluta Warsaw University of Technology, Warsaw, Poland    N. Poljak University of Zagreb, Zagreb, HR-10002, Croatia    A. M. Poskanzer Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    B. V. K. S. Potukuchi University of Jammu, Jammu 180001, India    D. Prindle University of Washington, Seattle, Washington 98195, USA    C. Pruneau Wayne State University, Detroit, Michigan 48201, USA    N. K. Pruthi Panjab University, Chandigarh 160014, India    J. Putschke Yale University, New Haven, Connecticut 06520, USA    R. Raniwala University of Rajasthan, Jaipur 302004, India    S. Raniwala University of Rajasthan, Jaipur 302004, India    R. L. Ray University of Texas, Austin, Texas 78712, USA    R. Redwine Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    R. Reed University of California, Davis, California 95616, USA    A. Ridiger Moscow Engineering Physics Institute, Moscow Russia    H. G. Ritter Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    J. B. Roberts Rice University, Houston, Texas 77251, USA    O. V. Rogachevskiy Laboratory for High Energy (JINR), Dubna, Russia    J. L. Romero University of California, Davis, California 95616, USA    A. Rose Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    C. Roy SUBATECH, Nantes, France    L. Ruan Brookhaven National Laboratory, Upton, New York 11973, USA    M. J. Russcher NIKHEF and Utrecht University, Amsterdam, The Netherlands    R. Sahoo SUBATECH, Nantes, France    I. Sakrejda Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    T. Sakuma Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    S. Salur Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    J. Sandweiss Yale University, New Haven, Connecticut 06520, USA    M. Sarsour Texas A&M University, College Station, Texas 77843, USA    J. Schambach University of Texas, Austin, Texas 78712, USA    R. P. Scharenberg Purdue University, West Lafayette, Indiana 47907, USA    N. Schmitz Max-Planck-Institut für Physik, Munich, Germany    J. Seger Creighton University, Omaha, Nebraska 68178, USA    I. Selyuzhenkov Indiana University, Bloomington, Indiana 47408, USA    P. Seyboth Max-Planck-Institut für Physik, Munich, Germany    A. Shabetai Institut de Recherches Subatomiques, Strasbourg, France    E. Shahaliev Laboratory for High Energy (JINR), Dubna, Russia    M. Shao University of Science & Technology of China, Hefei 230026, China    M. Sharma Wayne State University, Detroit, Michigan 48201, USA    S. S. Shi Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    X-H. Shi Shanghai Institute of Applied Physics, Shanghai 201800, China    E. P. Sichtermann Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    F. Simon Max-Planck-Institut für Physik, Munich, Germany    R. N. Singaraju Variable Energy Cyclotron Centre, Kolkata 700064, India    M. J. Skoby Purdue University, West Lafayette, Indiana 47907, USA    N. Smirnov Yale University, New Haven, Connecticut 06520, USA    R. Snellings NIKHEF and Utrecht University, Amsterdam, The Netherlands    P. Sorensen Brookhaven National Laboratory, Upton, New York 11973, USA    J. Sowinski Indiana University, Bloomington, Indiana 47408, USA    H. M. Spinka Argonne National Laboratory, Argonne, Illinois 60439, USA    B. Srivastava Purdue University, West Lafayette, Indiana 47907, USA    A. Stadnik Laboratory for High Energy (JINR), Dubna, Russia    T. D. S. Stanislaus Valparaiso University, Valparaiso, Indiana 46383, USA    D. Staszak University of California, Los Angeles, California 90095, USA    M. Strikhanov Moscow Engineering Physics Institute, Moscow Russia    B. Stringfellow Purdue University, West Lafayette, Indiana 47907, USA    A. A. P. Suaide Universidade de Sao Paulo, Sao Paulo, Brazil    M. C. Suarez University of Illinois at Chicago, Chicago, Illinois 60607, USA    N. L. Subba Kent State University, Kent, Ohio 44242, USA    M. Sumbera Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    X. M. Sun Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    Y. Sun University of Science & Technology of China, Hefei 230026, China    Z. Sun Institute of Modern Physics, Lanzhou, China    B. Surrow Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    T. J. M. Symons Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. Szanto de Toledo Universidade de Sao Paulo, Sao Paulo, Brazil    J. Takahashi Universidade Estadual de Campinas, Sao Paulo, Brazil    A. H. Tang Brookhaven National Laboratory, Upton, New York 11973, USA    Z. Tang University of Science & Technology of China, Hefei 230026, China    T. Tarnowsky Purdue University, West Lafayette, Indiana 47907, USA    D. Thein University of Texas, Austin, Texas 78712, USA    J. H. Thomas Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    J. Tian Shanghai Institute of Applied Physics, Shanghai 201800, China    A. R. Timmins University of Birmingham, Birmingham, United Kingdom    S. Timoshenko Moscow Engineering Physics Institute, Moscow Russia    D. Tlusty Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic    M. Tokarev Laboratory for High Energy (JINR), Dubna, Russia    T. A. Trainor University of Washington, Seattle, Washington 98195, USA    V. N. Tram Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    A. L. Trattner University of California, Berkeley, California 94720, USA    S. Trentalange University of California, Los Angeles, California 90095, USA    R. E. Tribble Texas A&M University, College Station, Texas 77843, USA    O. D. Tsai University of California, Los Angeles, California 90095, USA    J. Ulery Purdue University, West Lafayette, Indiana 47907, USA    T. Ullrich Brookhaven National Laboratory, Upton, New York 11973, USA    D. G. Underwood Argonne National Laboratory, Argonne, Illinois 60439, USA    G. Van Buren Brookhaven National Laboratory, Upton, New York 11973, USA    M. van Leeuwen NIKHEF and Utrecht University, Amsterdam, The Netherlands    A. M. Vander Molen Michigan State University, East Lansing, Michigan 48824, USA    J. A. Vanfossen, Jr. Kent State University, Kent, Ohio 44242, USA    R. Varma Indian Institute of Technology, Mumbai, India    G. M. S. Vasconcelos Universidade Estadual de Campinas, Sao Paulo, Brazil    I. M. Vasilevski Particle Physics Laboratory (JINR), Dubna, Russia    A. N. Vasiliev Institute of High Energy Physics, Protvino, Russia    F. Videbaek Brookhaven National Laboratory, Upton, New York 11973, USA    S. E. Vigdor Indiana University, Bloomington, Indiana 47408, USA    Y. P. Viyogi Institute of Physics, Bhubaneswar 751005, India    S. Vokal Laboratory for High Energy (JINR), Dubna, Russia    S. A. Voloshin Wayne State University, Detroit, Michigan 48201, USA    M. Wada University of Texas, Austin, Texas 78712, USA    W. T. Waggoner Creighton University, Omaha, Nebraska 68178, USA    M. Walker Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA    F. Wang Purdue University, West Lafayette, Indiana 47907, USA    G. Wang University of California, Los Angeles, California 90095, USA    J. S. Wang Institute of Modern Physics, Lanzhou, China    Q. Wang Purdue University, West Lafayette, Indiana 47907, USA    X. Wang Tsinghua University, Beijing 100084, China    X. L. Wang University of Science & Technology of China, Hefei 230026, China    Y. Wang Tsinghua University, Beijing 100084, China    G. Webb University of Kentucky, Lexington, Kentucky, 40506-0055, USA    J. C. Webb Valparaiso University, Valparaiso, Indiana 46383, USA    G. D. Westfall Michigan State University, East Lansing, Michigan 48824, USA    C. Whitten Jr. University of California, Los Angeles, California 90095, USA    H. Wieman Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    S. W. Wissink Indiana University, Bloomington, Indiana 47408, USA    R. Witt United States Naval Academy, Annapolis, MD 21402, USA    Y. Wu Institute of Particle Physics, CCNU (HZNU), Wuhan 430079, China    W. Xie Purdue University, West Lafayette, Indiana 47907, USA    N. Xu Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    Q. H. Xu Shandong University, Jinan, Shandong 250100, China    Y. Xu University of Science & Technology of China, Hefei 230026, China    Z. Xu Brookhaven National Laboratory, Upton, New York 11973, USA    Yang Institute of Modern Physics, Lanzhou, China    P. Yepes Rice University, Houston, Texas 77251, USA    I-K. Yoo Pusan National University, Pusan, Republic of Korea    Q. Yue Tsinghua University, Beijing 100084, China    M. Zawisza Warsaw University of Technology, Warsaw, Poland    H. Zbroszczyk Warsaw University of Technology, Warsaw, Poland    W. Zhan Institute of Modern Physics, Lanzhou, China    S. Zhang Shanghai Institute of Applied Physics, Shanghai 201800, China    W. M. Zhang Kent State University, Kent, Ohio 44242, USA    X. P. Zhang Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    Y. Zhang Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA    Z. P. Zhang University of Science & Technology of China, Hefei 230026, China    Y. Zhao University of Science & Technology of China, Hefei 230026, China    C. Zhong Shanghai Institute of Applied Physics, Shanghai 201800, China    J. Zhou Rice University, Houston, Texas 77251, USA    R. Zoulkarneev Particle Physics Laboratory (JINR), Dubna, Russia    Y. Zoulkarneeva Particle Physics Laboratory (JINR), Dubna, Russia    J. X. Zuo Shanghai Institute of Applied Physics, Shanghai 201800, China
July 13, 2019
Abstract

We present a systematic analysis of two-pion interferometry in Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum dependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.

STAR Collaboration

I Introduction

One of the definitive predictions of quantum chromodynamics (QCD) is that at sufficiently high temperature or density McLerran:1980pk () strongly interacting matter will be in a state with colored degrees of freedom, i.e. quarks and gluons. The central goal of the experiments with relativistic heavy ion collisions is to create and study this hypothesized form of matter, called the quark-gluon plasma (QGP), which might have existed in the microsecond old universe. Numerous experimental observables have been proposed as signatures of QGP creation in heavy ion collisions Adams:2005dq (). One of these predictions is based on the expectation that the increased number of degrees of freedom associated with the color deconfined state increases the entropy of the system which should survive subsequent hadronization and freeze-out (final interactions). The increased entropy is expected to lead to an increased spatial extent and duration of particle emission, thus providing a significant probe for the QGP phase transition Rischke:1996em (); Rischke:1996nq ().

The information about the space-time structure of the emitting source can be extracted with intensity interferometry techniques Goldhaber:1960sf (). This method, popularly known as Hanbury Brown and Twiss (HBT) correlations, was originally developed to measure angular sizes of stars HanburyBrown:1954wr (). The momentum correlations of the produced particles from hadronic sources however include dynamical as well as interference effects, hence the term femtoscopy Lednicky:2002fq () is more appropriate. The primary goal of femtoscopy, performed at mid-rapidity and low transverse momentum, is to study the space-time size of the emitting source and freeze-out processes of the dynamically evolving collision system. Femtoscopic correlations have been successfully studied in most of the heavy ion experiments (see  Lisa:2005dd () for a recent review).

Experimentally, the two-particle correlation function is the ratio,

(1)

where ) is the distribution of pairs of particles with relative momentum and average momentum from the same event, and ) is the corresponding distribution for pairs of particles taken from different events Kopylov:1972qw (); Heinz:1999rw (). The correlation function is normalized to unity at large . With the availability of high statistics data and development of new techniques, it has become possible to measure three-dimensional decompositions of  Bertsch:1988db (); Pratt:1986cc (); Chapman:1994yv (), providing better insight into the collision geometry.

Previous femtoscopic measurements at RHIC in Au+Au collisions at = 130 GeV Adler:2001zd (); Adcox:2002uc () and 200 GeV Adler:2004rq (); Adams:2004yc () obtained qualitatively similar source sizes. However, detailed comparisons with smaller colliding systems and energies are required in order to understand the dynamics of the source during freeze-out. The crucial information provided from such femtoscopic studies with pions will help to improve our understanding of the reaction mechanisms and to constrain theoretical models of heavy ion collisions Baym:1997ce (); Padula:2004ba (); Shuryak:1972kq (); McLerran:1988rn (); Heinz:1996bs (); Wiedemann:1999qn (); Heinz:1996rw (); Tomasik:2002rx ().

In this paper we present a systematic analysis of two-pion interferometry in Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 GeV and 200 GeV using the Solenoidal Tracker at RHIC (STAR) detector at the Relativistic Heavy Ion Collider (RHIC). The article is organized as follows : Section II explains the detector set-up, along with the necessary event, particle and pair cuts. In Section III, the analysis and construction of the correlation function is discussed. The presented results are compared with previous STAR measurements for Au+Au collisions at = 200 GeV in Section IV. This section also includes a compilation of freeze-out volume estimates for all available heavy ion results from AGS, SPS and RHIC. Section V contains a summary and conclusions.

Ii Experimental Setup, Event and Particle Selection

ii.1 The STAR detector and Trigger details

The STAR detector Ackermann:2002ad (), which has a large acceptance and is azimuthally symmetric, consists of several detector sub-systems and a solenoidal magnet. In the present study the central Time Projection Chamber (TPC) Ackermann:1999kc () provided the main information used for track reconstruction. It is 4.2 m long and 4 m in diameter. The TPC covers the pseudo-rapidity region 1.8 with full azimuthal coverage (- ). It is a gas chamber filled with P10 gas (10 methane, 90 argon) with inner and outer radii of 50 and 200 cm, respectively, in a uniform electric field of 135 V/cm. The paths of the particles passing through the gas are reconstructed from the release of secondary electrons that drift to the readout end caps at both ends of the chamber. The readout system is based on multi-wire proportional chambers with cathode pads. There are 45 pad-rows between the inner and outer radii of the TPC.

A minimum bias trigger is obtained using the charged particle hits from an array of scintillator slats arranged in a barrel, called the Central Trigger Barrel, surrounding the TPC, two Zero-Degree Calorimeters (ZDCs) Adler:2000bd () at 18 m from the detector center along the beam line, and two Beam-Beam Counters. The ZDCs measure neutrons at beam rapidity which originate from the break-up of the colliding nuclei. The centrality determination which is used in this analysis is the uncorrected multiplicity of charged particles in the pseudo-rapidity region 0.5 () as measured by the TPC.

cross-section
0-5 373
5-10 372-313
10-20 312-222
20-30 221-154
30-40 153-102
40-50 101-65
50-60 64-38
60-70 37-20
70-80 19-9
Table 1: Collision centrality selection in terms of percentage of total Au-Au inelastic cross-section, number tracks in TPC, average number of participating nucleons and average number of binary nucleon-nucleon collisions for Au+Au at = 62.4 GeV.
cross-section
0-10 139
10-20 138-98
20-30 97-67
30-40 66-46
40-50 45-30
50-60 29-19
Table 2: Collision centrality selection in terms of percentage of total Cu-Cu inelastic cross-section, number tracks in TPC, average number of participating nucleons and average number of binary nucleon-nucleon collisions for Cu+Cu at = 200 GeV.
cross-section
0-10 101
10-20 100-71
20-30 70-49
30-40 48-33
40-50 32-22
50-60 21-14
Table 3: Collision centrality selection in terms of percentage of total Cu-Cu inelastic cross-section, number tracks in TPC, average number of participating nucleons and average number of binary nucleon-nucleon collisions for Cu+Cu at = 62.4 GeV.

ii.2 Event and Centrality Selection

For this analysis we selected events with a collision vertex within 30 cm measured along the beam axis from the center of the TPC. This event selection is applied to all the data sets discussed here.

The events are further binned according to collision centrality which is determined by the measured charged hadron multiplicity within the pseudo-rapidity range 0.5. In Table 1 we list the centrality bins for Au+Au at = 62.4 GeV along with the multiplicity bin definitions, average number of participating nucleons and average number of binary nucleon-nucleon collisions Adams:2005cy (); Miller:2007ri (). For the present analysis we chose six centrality bins corresponding to 0-5, 5-10, 10-20, 20-30, 30-50, 50-80 of the total inelastic nucleus-nucleus hadronic cross-section. A dataset of 2 million minimum-bias trigger events which passed the event cuts is used in the analysis.

Tables 2 and 3 list the six centrality bins for Cu+Cu at = 200 GeV and 62.4 GeV corresponding to 0-10, 10-20, 20-30, 30-40, 40-50, 50-60 of the total hadronic cross-section. The number of events used is 15 million and 24 million for 62.4 GeV and 200 GeV Cu+Cu datasets, respectively, after the event cuts.

ii.3 Particle Selection

We selected particle tracks in the rapidity region 0.5. Particle identification was performed by correlating the specific ionization of particles in the TPC gas with their measured momenta. For this analysis pions are selected by requiring the specific ionization to be within 2 standard deviations from their theoretical Bichsel value Bichsel:2006cs (); abelevstar:2008ez (). In order to remove the kaons and protons which could satisfy this condition, particles are also required to be more than 2 standard deviations from the Bethe-Bloch value for kaons and protons. Charged particle tracks reconstructed and used for this analysis are accepted if they have space points on at least 15 pad rows in TPC. Tracks with fewer space points may be broken track fragments. These cuts are similar to those in our previous analysis of Au+Au collisions at = 200 GeV Adams:2004yc () since the detector setup was identical.

ii.4 Pair Cuts

Two types of particle track reconstruction errors directly affect measured particle pair densities at the small relative momentum values studied here. Track splitting, in which one particle trajectory is reconstructed as two or more “particles,” increases the apparent number of pairs at low relative . To address this problem we developed a split track filter algorithm, described in our previous analysis of Au+Au collisions at = 200 GeV Adams:2004yc (), where values of the splitting level parameter from 0.5 to 0.6 Adams:2004yc () ensured valid tracks. The inefficiencies arising due to track merging, in which two or more particle trajectories are reconstructed as one track, was completely eliminated by requiring that the fraction of merged hits (overlapping space-charge depositions in the TPC gas) be less than 10 for every track pair used in the correlation function.

In the present analysis, we used the same cuts to remove splitting and merging as were used for Au+Au collisions at = 200 GeV Adams:2004yc (). The track pairs are required to have an average transverse momentum ( ( )2) in one of 4 bins corresponding to [150,250] MeV/c, [250,350] MeV/c, [350,450] MeV/c and [450,600] MeV/c. The results are presented and discussed as a function of and (= ) in each of those bins.

Iii Analysis Method

iii.1 Correlation function

The numerator and denominator of the two particle correlation function in Eq.(1) are constructed by filling histograms corresponding to particle pairs from the same event and from mixed events, respectively. The background pairs are constructed from mixed events Kopylov:1972qw () where by pairing each particle in a given event is mixed with all particles from other events within a subset of ten similar events. The events for mixing are selected within the given centrality bin such that their respective primary vertex positions are all within 10 cm of one another.

iii.2 Bertsch-Pratt Parametrizations and Coulomb interactions

We decompose the relative momentum according to the Bertsch-Pratt (or “out-side-long”) convention Podgoretsky (); Grassberger (); Bertsch:1988db (); Pratt:1986cc (); Chapman:1994yv (). The relative momentum is decomposed into the variables along the beam direction, parallel to the transverse momentum of the pair ( )/2, and perpendicular to and .

In addition to the correlation arising from the quantum statistics of two identical (boson) particles, correlations can also arise from two-particle final state interactions even for non-identical particles lednicky (); Gyulassy:1979yi (); Boal:1990yh (). For identical pions the effects of strong interactions are negligible, but the long range Coulomb repulsion causes a suppression of the measured correlation function at small .

In this paper we follow the procedure used in our previous analysis of Au+Au collisions at = 200 GeV Adams:2004yc (). For an azimuthally integrated analysis at mid-rapidity in the longitudinal co-moving system (LCMS) the correlation function in Eq. (1) can be decomposed as Lisa:2005dd (); Sinyukov:1998fc ():

(2)

where is, to a good approximation, the squared nonsymmetrized Coulomb wave function integrated over a Gaussian source (corresponding to the LCMS Gaussian radii , , ). Assuming perfect experimental particle identification and a purely chaotic (incoherent) source, lambda represents the fraction of correlated pairs Lisa:2008gf ().

We assumed a spherical Gaussian source of 5 fm for Au+Au collisions at = 62.4 GeV and a 3 fm source for Cu+Cu collisions at = 62.4 and 200 GeV. The first term (1 - ) in Eq.(III.2) accounts for those pairs which do not interact or interfere and the second term represents those pairs where both Bose-Einstein effects and Coulomb interactions are present Adams:2004yc ().

iii.3 Systematic Uncertainties

We studied several sources of systematic errors similar to a previously published STAR pion interferometry analysis for Au+Au collisions at = 200 GeV Adams:2004yc (). The following effects are considered: track merging, track splitting, source size assumed for the Coulomb correction, particle identification purity, and particle pair acceptance effects for unlike-sign charged pions. The estimated systematic errors are less than 10 for , , , in all centrality and bins for the present datasets and are similar to those in Adams:2004yc (). This similarity is expected since the detector setup was identical and similar particle and pair selection cuts are used for Au+Au and Cu+Cu collisions. Results shown in the figures for the present datasets include statistical errors only.

Iv Results and Discussion

iv.1 Au+Au collisions at = 62.4 GeV

Figure 1: (Color Online) The femtoscopic parameters vs. for 6 different centralities for Au+Au collisions at = 62.4 GeV. Only statistical errors are shown. The estimated systematic errors are less than 10 for , , , in all centrality and bins.
Figure 2: (Color Online) The comparison of femtoscopic measurements of Au+Au collisions at = 200 GeV and 62.4 GeV for 0-5 most central events. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV are less than 10 for , , , in 0-5 most central events and all bins. The 200 GeV results are from Adams:2004yc ().
Figure 3: (Color Online) The energy dependence of femtoscopic parameters for AGS, SPS and RHIC from Refs. Adler:2001zd (); Adams:2004yc (); Back:2004ug (); Ahle:2002mi (); Adamova:2002wi (); Lisa:2000hw (); Bearden:1998aq (); Alt:2007uj (); Soltz:1999iy (); Aggarwal:2002tm (). Energy dependences of pion femtoscopic parameters for central Au+Au, Pb+Pb and Pb+Au collisions are shown for mid-rapidity and 0.2-0.3 GeV/c. Error bars on NA44, NA49, CERES, PHOBOS and STAR results at = 130 and 200 GeV include systematic uncertainties; error bars on other results are statistical only. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV; the estimated systematic errors are less than 10 for , , . The PHOBOS results from  Back:2004ug () for = 62.4 and 200 GeV are slightly shifted horizontally for visual clarity.

The correlation function in Eq.(III.2) is fitted to the 3D correlation data for Au+Au collisions at = 62.4 GeV for each centrality and bins as defined above. The analysis is performed separately for and pairs. The final histograms for the like-sign pairs do not show appreciable differences and may therefore be summed in order to increase statistics. Figure 1 presents the results for , , , and the ratio, . The three femtoscopic radii increase with increasing centrality as expected, whereas the values of and the ratio exhibit no clear centrality dependences.

We observe that for all centralities the three femtoscopic radii decrease with increasing whereas the parameter increases with . Such behavior is consistent with our previous measurements at = 200 GeV Adams:2004yc (). The increase of parameter with is due to the decreasing contribution of pions produced from long-lived resonance decays at higher transverse momenta. For comparison, in Fig. 2 we show the results for Au+Au collisions at = 62.4 GeV and 200 GeV for the most central collisions. We observe that the values are similar for both cases, but there are differences between the values of and . The ratio decreases with increasing , but the values are higher for = 62.4 GeV than for = 200 GeV.

The observed dependences of the three femtoscopic radii are qualitatively consistent with models with collective flow Kolb:2003dz (); Retiere:2003kf (); Hirano:2002hv (). Collective expansion results in position-momentum correlations in both transverse and longitudinal directions. In an expanding source the correlation between the space-time points where the pions are emitted and their energy-momentum produce a characteristic dependence of femtoscopic radii on  Pratt:1986cc (); Heinz:1996bs (); Wiedemann:1997cr (); Pratt:1984su (); Tomasik:1999ct (); Wiedemann:1995au (); Schlei:1996mc (); Schlei:1992jj (); Lisa:2005dd (). The decrease in the “out” and “side” components can be described by models including transverse flow  Heinz:1996bs (); Wiedemann:1997cr (); Tomasik:1999ct (); Adams:2004yc (), and the decrease in the “long” component by those with longitudinal flow Makhlin:1987gm (); Wiedemann:1997cr (); Wiedemann:1995au (); Adams:2004yc ().

iv.2 Energy dependence of femtoscopic radii

In Fig. 3 we present the energy dependences of the three femtoscopic radii and the ratio for the available data from AGS, SPS and RHIC. The results are compiled for Au+Au, Pb+Pb and Pb+Au collisions at mid-rapidity and for 0.2-0.3 GeV/c. The present measurements for Au+Au collisions at = 62.4 GeV are also included. The quality of the present STAR data with respect to statistical and systematic errors is significantly better than that reported by PHOBOS Back:2004ug () at the same energy. PHENIX results are not included because they were reported for broader centrality bins. WA97 results are also omitted because they were measured at higher transverse momenta.

Comparative studies are a necessary part of searches for nontrivial structures in the excitation function which might arise from a possible phase transition Rischke:1996em (). The radius parameter has the most direct correlation with the source geometry whereas encodes both geometry and time scale information. Experimental results show that decreases at AGS energies and then displays a modest rise with collision energy from SPS to RHIC. increases with collision energy after an initial decrease at the lower AGS energies. For the changes are very small.

Hydrodynamic model calculations  Rischke:1996em (); Rischke:1996nq () predict an enhancement in the ratio of with increasing beam energy. The experimental results show no such behavior. The measured ratios are better reproduced by the AMPT (A Multi-Phase Transport) model Lin:2002gc (), however the individual predicted radii have a steeper decrease compared to the experimental data Lisa:2005dd (). An alternative model using a relativistic quantum mechanical treatment of opacity and the refractive index is capable of reproducing the observed results Cramer:2004ih (), but strongly depends on the assumed initial conditions and neglects the time dependence of the corresponding optical potential. Hydrodynamic calculations Teaney:2003kp () including viscosity offer another possible explanation for the above deviation between the data and model calculations as recently shown in Romatschke:2007jx (). According to recent hydrodynamic calculations, the femtoscopic radii can be described either by using the initial Gaussian density profile Florkowski:2008xy () or by including the combination of several effects including: pre-thermal acceleration, a stiffer equation of state, and additional viscous corrections Pratt:2008qv (). Other recent studies with a granular source model Zhang:2007wg () also obtain a better description of the experimental measurements of pion femtoscopic radii.

iv.3 Cu+Cu collisions at = 62.4 and 200 GeV

The correlation functions are similarly constructed for Cu+Cu collisions at = 62.4 GeV and 200 GeV. The extracted femtoscopic radii, , and , along with the parameter and the ratio are presented in Figs. 4 and 5 for the 62.4 and 200 GeV data, respectively. The results are presented for six different centralities and four bins. The highest bin [450 - 600] MeV/c of the most peripheral centrality (50 - 60 ) in Cu+Cu collisions at = 62.4 GeV is omitted due to inadequate statistics for decomposition with the Bertsch-Pratt parametrization. For both collision energies the three femtoscopic radii increase with increasing centrality whereas the parameter shows no centrality dependence. The dependences of the femtoscopic radii are similar to that for Au+Au collisions. The ratios exhibit no clear centrality dependences for either energy.

Figure 4: (Color Online) Femtoscopic parameters vs. for six centralities for Cu+Cu collisions at = 62.4 GeV. Only statistical errors are shown. The estimated systematic errors are less than 10 for , , , in all centrality and bins.
Figure 5: (Color Online) Femtoscopic parameters vs. for six centralities for Cu+Cu collisions at = 200 GeV. Only statistical errors are shown. The estimated systematic errors are less than 10 for , , , in all centrality and bins.

iv.4 Comparison of femtoscopic radii for Cu+Cu and Au+Au collisions

In Fig. 6 the femtoscopic source parameters , , , and the ratio for central (0-5) Au+Au collisions at = 200 GeV Adams:2004yc () are compared with central (0-10) Cu+Cu collisions at same beam energy. As expected, the femtoscopic radii for Cu+Cu collisions are smaller than for Au+Au collisions at the same beam energy. It is interesting that the values of the ratio for the two systems are similar.

Figure 6: (Color Online) The comparison of system size dependence in femtoscopic measurements of STAR Au+Au and Cu+Cu collisions at = 200 GeV. Only statistical errors are shown for Cu+Cu collisions at = 200 GeV. The estimated systematic errors for Cu+Cu collisions at = 200 GeV are less than 10 for , , , in 0-10 most central events and bins. The Au+Au results are from Adams:2004yc ().
Figure 7: (Color Online) The comparison of femtoscopic measurements of STAR Cu+Cu collisions at = 200 and 62.4 GeV and Au+Au collisions at = 62.4 GeV. Only statistical errors are shown for STAR results. The estimated systematic errors for STAR results are less than 10 for , , , in all centrality and bins. The PHOBOS results Back:2004ug () for positive and negative pions in Au+Au collisions at = 62.4 GeV are compared with STAR results.

In Fig. 7 we extend the comparison of femtoscopic source parameters to include central (0-5) Au+Au collisions at = 62.4 GeV, central (0-10) Cu+Cu collisions at = 62.4 and 200 GeV, and central (0-15) and correlations from Au+Au collisions at 62.4 GeV from the PHOBOS experiment Back:2004ug (). The femtoscopic radii for Cu+Cu collisions at = 62.4 GeV are smaller than those for Au+Au collisions at the same beam energy. The femtoscopic radii for Cu+Cu central collisions are similar for both energies. The variation of the ratio with is similar for the Au+Au and Cu+Cu collision data.

In Fig. 8 we present the dependences of the ratios of femtoscopic radii for the most-central Au+Au and Cu+Cu collisions at = 200 and 62.4 GeV. Ratios for the same colliding ion systems are close to unity whereas ratios of radii for Au+Au to Cu+Cu collisions are 1.5. Although the individual radii decrease significantly with increasing the ratios in Fig. 8 show that the femtoscopic radii for Au+Au and Cu+Cu collisions at 62.4 and 200 GeV share a common dependence. This result can be understood in terms of models Cramer:2004ih (); Miller:2005ji () which use participant scaling to predict the femtoscopic radii in Cu+Cu collisions from the measured radii for Au+Au collisions at = 200 GeV, assuming the radii are proportional to A, where A is the atomic mass number of the colliding nuclei.

Figure 8: (Color Online) Ratios of femtoscopic radii at top centralities for Au+Au and Cu+Cu collisions at = 200 and 62.4 GeV vs. . Only statistical errors are shown for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV are less than 10 for , , in all centrality and bins. The 200 GeV results are from Adams:2004yc ().

iv.5 Volume estimates and multiplicity scaling

Estimates of the pion freeze-out volume in terms of the femtoscopic radii are provided by the following expressions:

(3a)
(3b)

However, the correlation lengths (femtoscopic radii) decrease with increasing corresponding to an dependent region of homogeneity which, in expanding source models, is smaller than the true collision volume at freeze-out. The volume estimates [Eqs. (3a) and (3b)] are obtained from the lowest bin, corresponding to the region from 150 to 250 MeV/c as discussed in Sec. (II.4).

Figure 9: (Color Online) The energy dependence of the pion freeze-out volume for heavy ion collision data from the AGS, SPS and RHIC estimated using Eq. (3a). The references are given in the caption of Fig. 3. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV are less than 10 for , , in all centrality and bins.
Figure 10: (Color Online) Pion freeze-out volume estimates as a function of number of participants and charged particle multiplicity density for Au+Au at = 200 and 62.4 GeV. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV are less than 10 for , , in all centrality and bins. The 200 GeV Au+Au collision results are from Adams:2004yc (). The lines in each panel represent linear fits to the data.
Figure 11: (Color Online) Pion freeze-out volume estimates as a function of charged particle multiplicity density for Au+Au and Cu+Cu collisions. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV are less than 10 for , , in all centrality and bins. The 200 GeV Au+Au collision results are from Adams:2004yc (). The lines in each panel represent linear fits to the data.
Figure 12: (Color Online) The pion source radii dependences on charged particle multiplicity density for Au+Au and Cu+Cu collisions. Only statistical errors are shown for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV. The estimated systematic errors for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV are less than 10 for , , in all centrality and bins. The 200 GeV Au+Au collision results are from Adams:2004yc (). The lines represent linear fits to the data.

The measurements using Eq. (3a) as a function of are presented in Fig. 9 for Au+Au, Pb+Pb and Pb+Au collisions at mid-rapidity and for the lowest bin defined above. The results show two distinct domains: First, at the AGS where the volume measure decreases, and second, in the SPS and RHIC energy regimes where a monotonic increase is observed.

A detailed description of this non-trivial behavior was suggested in  Adamova:2002ff () based on the hypothesis of constant mean free path length of pions at freeze-out. The explanation provided in Adamova:2002ff () defines the pion mean free path length, , as:

(4)

where is the freeze-out density and is the total cross-section for pions to interact with the surrounding medium. The freeze-out density can be expressed as the number of particles in the estimated freeze-out volume , divided by , resulting in the second expression in Eq. (4). The denominator, , can be expanded as the sum of the pion-pion and pion-nucleon contributions. At AGS energies the pion-nucleon term dominates since the pion-nucleon cross-section is larger than the pion-pion cross-section. Also, the number of nucleons at these lower energies at mid-rapidity exceeds the number of pions. Hence, a decrease in the number of mid-rapidity nucleons leads to a decrease in the observed freeze-out volume () as a function of . At SPS and RHIC energies the pion-pion term dominates the denominator in Eq. (4) due to copious pion production leading to an increase in the observed .

Based on this interpretation we expect the volume estimates in the pion dominated RHIC regime to show a linear dependence on charged particle multiplicity. In Fig. 10 freeze-out volume estimates (using Eqs. (3a) and (3b)) are shown as a function of the number of participants (left panels) and charged particle multiplicity (right panels) for Au+Au collisions at = 62.4 and 200 GeV. The predicted linear increase with charged particle multiplicity is observed. Estimated freeze-out volumes for Au+Au collisions at the same centralities increase with collision energy indicating that is not a suitable scaling variable in this case. On the other hand, charged particle multiplicity provides better scaling properties.

Additional estimates of freeze-out volume dependences on charged particle multiplicity are presented in Fig. 11 for both the Au+Au and Cu+Cu results at = 62.4 and 200 GeV. Both freeze-out volume estimates for the four collision systems show an approximate, common linear dependence on charged particle multiplicity. The linear dependences of femtoscopic radii on for Au+Au and Cu+Cu collisions at = 62.4 and 200 GeV are shown in Fig. 12. The above common, linear dependences Lisa:2005dd () are consistent with the assumption of a universal pion mean-free-path length at freeze-out Adamova:2002ff ().

V Summary and Conclusions

We have presented systematic measurements of pion femtoscopy for Au+Au collisions at = 62.4 GeV and Cu+Cu collisions at = 62.4 and 200 GeV, and compared these new results with our previous analysis of Au+Au collisions at = 200 GeV Adams:2004yc (). For all the systems considered the three femtoscopic radii (, and ) increase with centrality, whereas the values of the parameter and ratio are approximately constant with centrality. The three femtoscopic radii decrease with increasing , whereas the parameter increases with . The increase of with is attributed to decreasing contamination from pions produced from long-lived resonance decays at higher transverse momentum.

The decrease of femtoscopic radii with increasing can be described by models with collective, transverse and longitudinal expansion or flow. The ratios of femtoscopic radii at top centralities for different colliding systems (Au+Au and Cu+Cu) at = 62.4 and 200 GeV show that the corresponding radii vary similarly with .

The predicted rise of the ratio with collision energy due to a possible phase transition Rischke:1996em () is not observed for Au+Au and Cu+Cu collisions. The compilation of freeze-out volume estimates as a function of collision energy (using Eq. (3a) along with the datasets presented in Fig. 3) shows two distinct domains: with increasing , decreases at the AGS, but steadily increases throughout the SPS and RHIC energy regimes. At AGS energies the decreasing number of baryons at mid-rapidity leads to a decrease in the observed freeze-out volume () as a function of . At higher beam energies from SPS to RHIC copious and increasing pion production causes the freeze-out volume to rise.

The dependences of the freeze-out volume estimate on number of participants and charged particle multiplicity are compared. Measurements for Au+Au collisions at the same centralities, but different energies yield different freeze-out volumes demonstrating that is not a suitable scaling variable. The freeze-out volume estimates for all four collision systems presented here show a linear dependence on final charged particle multiplicity which is consistent with the hypothesis of a universal mean-free-path length at freeze-out.

For the systems studied here the multiplicity and dependences of the femtoscopic radii are consistent with previously established trends at RHIC and at lower energies. The radii scale with the final state collision multiplicity which, in a static model, is consistent with an hypothesized universal mean-free-path length at freeze-out. This and similar studies establish the baseline systematics against which to compare future femtoscopic studies at the LHC Alessandro:2006yt ().

We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the resources provided by the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence ‘Origin and Structure of the Universe,’ CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Sci. and Tech., the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India and the Korea Sci. & Eng. Foundation. We wish to thank Polish State Committee for Scientific Research, grant: N202 013 31/0489.

References

References

  • (1) J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975); E. V. Shuryak, Phys. Rept. 61 (1980) 71; D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981); L. D. McLerran and B. Svetitsky, Phys. Lett. B 98, 195 (1981).
  • (2) J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005).
  • (3) D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608, 479 (1996).
  • (4) D. H. Rischke, Nucl. Phys. A 610, 88c (1996).
  • (5) G. Goldhaber, S. Goldhaber, W. Y. Lee and A. Pais, Phys. Rev. 120, 300 (1960).
  • (6) R. Hanbury Brown and R. Q. Twiss, Phil. Mag. 45, 663 (1954). R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956).
  • (7) R. Lednicky, arXiv:nucl-th/0212089.
  • (8) M. A. Lisa, S. Pratt, R. Soltz and U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005).
  • (9) G. I. Kopylov and M. I. Podgoretsky, Sov. J. Nucl. Phys. 15, 219 (1972) [Yad. Fiz. 15, 392 (1972)].
  • (10) U. W. Heinz and B. V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999).
  • (11) G. Bertsch, M. Gong and M. Tohyama, Phys. Rev. C 37, 1896 (1988).
  • (12) S. Pratt, Phys. Rev. D 33, 1314 (1986).
  • (13) S. Chapman, P. Scotto and U. W. Heinz, Phys. Rev. Lett. 74, 4400 (1995).
  • (14) C. Adler et al. [STAR Collaboration], Phys. Rev. Lett. 87, 082301 (2001).
  • (15) K. Adcox et al. [PHENIX Collaboration], Phys. Rev. Lett. 88, 192302 (2002).
  • (16) S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 93, 152302 (2004).
  • (17) J. Adams et al. [STAR Collaboration], Phys. Rev. C 71, 044906 (2005).
  • (18) G. Baym, Acta Phys. Polon. B 29, 1839 (1998).
  • (19) S. S. Padula, Braz. J. Phys. 35, 70 (2005).
  • (20) E. V. Shuryak, Phys. Lett. B 44, 387 (1973).
  • (21) L. D. McLerran, FERMILAB-CONF-88-068-T Presented at Int. Conf. on Physics and Astrophysics of the Quark Gluon Plasma, Bombay, India, Feb 8-12, 1988
  • (22) U. W. Heinz, arXiv:nucl-th/9609029.
  • (23) U. A. Wiedemann and U. W. Heinz, Phys. Rept. 319, 145 (1999).
  • (24) U. W. Heinz, Nucl. Phys. A 610, 264c (1996).
  • (25) B. Tomasik and U. A. Wiedemann, arXiv:hep-ph/0210250.
  • (26) K. H. Ackermann et al. [STAR Collaboration], Nucl. Instrum. Meth. A 499, 624 (2003).
  • (27) K. H. Ackermann et al. [STAR Collaboration], Nucl. Phys. A 661, 681 (1999).
  • (28) C. Adler, A. Denisov, E. Garcia, M. J. Murray, H. Strobele and S. White, Nucl. Instrum. Meth. A 470, 488 (2001).
  • (29) J. Adams et al. [STAR Collaboration], Phys. Rev. C 73, 034906 (2006)
  • (30) M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
  • (31) H. Bichsel, Nucl. Instrum. Meth. A 562, 154 (2006).
  • (32) B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 79, 034909 (2009)
  • (33) M. I. Podgoretsky, Sov.  J.  Nucl.  Phys. 37, 272 (1983).
  • (34) P. Grassberger, Nucl.  Phys.  B 120, 231 (1977)
  • (35) R. Lednicky and V. L. Lyuboshitz, Sov.  J.  Nucl.  Phys. 35, 770 (1982).
  • (36) M. Gyulassy, S. K. Kauffmann and L. W. Wilson, Phys. Rev. C 20, 2267 (1979).
  • (37) D. H. Boal, C. K. Gelbke and B. K. Jennings, Rev. Mod. Phys. 62, 553 (1990).
  • (38) Yu. Sinyukov, R. Lednicky, S. V. Akkelin, J. Pluta and B. Erazmus, Phys. Lett. B 432, 248 (1998).
  • (39) M. A. Lisa and S. Pratt, arXiv:0811.1352 [nucl-ex].
  • (40) P. F. Kolb and U. W. Heinz, arXiv:nucl-th/0305084.
  • (41) F. Retiere and M. A. Lisa, Phys. Rev. C 70, 044907 (2004).
  • (42) T. Hirano and K. Tsuda, Nucl. Phys. A 715, 821 (2003).
  • (43) B. Tomasik, U. A. Wiedemann and U. W. Heinz, Nucl. Phys. A 663, 753 (2000).
  • (44) U. A. Wiedemann, P. Scotto and U. W. Heinz, Phys. Rev. C 53, 918 (1996).
  • (45) U. A. Wiedemann, Phys. Rev. C 57, 266 (1998).
  • (46) S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).
  • (47) B. R. Schlei and N. Xu, Phys. Rev. C 54, R2155 (1996).
  • (48) B. R. Schlei, U. Ornik, M. Plumer and R. M. Weiner, Phys. Lett. B 293, 275 (1992).
  • (49) A. N. Makhlin and Y. M. Sinyukov, Z. Phys. C 39, 69 (1988).
  • (50) B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. C 73, 031901 (2006).
  • (51) L. Ahle et al. [E802 Collaboration], Phys. Rev. C 66, 054906 (2002).
  • (52) D. Adamova et al. [CERES Collaboration], Nucl. Phys. A 714, 124 (2003).
  • (53) M. A. Lisa et al. [E895 Collaboration], Phys. Rev. Lett. 84, 2798 (2000).
  • (54) I. G. Bearden et al. [NA44 Collaboration], Phys. Rev. C 58, 1656 (1998).
  • (55) C. Alt et al. [NA49 Collaboration], Phys. Rev. C 77, 064908 (2008).
  • (56) R. A. Soltz et al. [E866 Collaboration], Nucl. Phys. A 661, 439 (1999).
  • (57) M. M. Aggarwal et al. [WA98 Collaboration], Phys. Rev. C 67, 014906 (2003).
  • (58) Z. W. Lin, C. M. Ko and S. Pal, Phys. Rev. Lett. 89, 152301 (2002).
  • (59) J. G. Cramer, G. A. Miller, J. M. S. Wu and J. H. S. Yoon, Phys. Rev. Lett. 94, 102302 (2005).
  • (60) D. Teaney, Phys. Rev. C 68, 034913 (2003).
  • (61) P. Romatschke, Eur. Phys. J. C 52, 203 (2007).
  • (62) W. Florkowski, W. Broniowski, M. Chojnacki and A. Kisiel, arXiv:0811.3761 [nucl-th].
  • (63) S. Pratt, arXiv:0811.3363 [nucl-th].
  • (64) W. N. Zhang and C. Y. Wong, arXiv:hep-ph/0702120.
  • (65) G. A. Miller and J. G. Cramer, J. Phys. G 34, 703 (2007).
  • (66) D. Adamova et al. [CERES Collaboration], Phys. Rev. Lett. 90, 022301 (2003).
  • (67) B. Alessandro et al. [ALICE Collaboration], J. Phys. G 32, 1295 (2006).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
174705
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description