Quantum automorphism groups

On the structure of quantum automorphism groups

Christian Voigt School of Mathematics and Statistics
University of Glasgow
15 University Gardens
Glasgow G12 8QW
United Kingdom

We compute the -theory of quantum automorphism groups of finite dimensional -algebras in the sense of Wang. The results show in particular that the -algebras of functions on the quantum permutation groups are pairwise non-isomorphic for different values of .
Along the way we discuss some general facts regarding torsion in discrete quantum groups. In fact, the duals of quantum automorphism groups are the most basic examples of discrete quantum groups exhibiting genuine quantum torsion phenomena.

2000 Mathematics Subject Classification:
19D55, 81R50
This work was supported by the Engineering and Physical Sciences Research Council Grant EP/L013916/1.

1. Introduction

Quantum automorphism groups were introduced by Wang [Wangqsymmetry] in his study of noncommutative symmetries of finite dimensional -algebras. These quantum groups are quite different from -deformations of compact Lie groups, and interestingly, they appear naturally in a variety of contexts, including combinatorics and free probability, see for instance [BBCsurvey], [BCSdefinetti]. The -algebraic properties of quantum automorphism groups were studied by Brannan [Brannanquantumautomorphism], revealing various similarities with free group -algebras.
An interesting subclass of quantum automorphism groups is provided by quantum permutation groups. Following [BSliberation], we will write for the quantum permutation group on letters. According to the definition of Wang, the quantum group is the universal compact quantum group acting on the abelian -algebra . If one replaces by a general finite dimensional -algebra, one has to add the data of a state and restrict to state-preserving actions in the definition of quantum automorphism groups. Indeed, the choice of state is important in various respects. This is illustrated, for instance, by the work of De Rijdt and Vander Vennet on monoidal equivalences among quantum automorphism groups [dRV].
The aim of the present paper is to compute the -theory of quantum automorphism groups. Our general strategy follows the ideas in [Voigtbcfo], which in turn build on methods from the Baum-Connes conjecture, formulated in the language of category theory following Meyer and Nest [MNtriangulated]. In fact, the main result of [Voigtbcfo] implies rather easily that the appropriately defined assembly map for duals of quantum automorphism groups is an isomorphism. The main additional ingredient, discussed further below, is the construction of suitable resolutions, entering the left hand side of the assembly map in the framework of [MNtriangulated].
The reason why this is more tricky than in [Voigtbcfo] is that quantum automorphism groups have torsion. At first sight, the presence of torsion may appear surprising because these quantum groups behave like free groups in many respects. Indeed, the way in which torsion enters the picture is different from what happens for classical discrete groups. Therefore quantum automorphism groups provide an interesting class of examples also from a conceptual point of view. Indeed, a better understanding of quantum torsion seems crucial in order to go beyond the class of quantum groups studied in the spirit of the Baum-Connes conjecture so far [MNcompact], [Voigtbcfo], [VVfreeu]. We have therefore included some basic considerations on torsion in discrete quantum groups in this paper.
From our computations discussed below one can actually see rather directly the effect of torsion on the level of -theory. In particular, the -groups of monoidally equivalent quantum automorphism groups can differ quite significantly due to minor differences in their torsion structure. Our results also have some direct operator algebraic consequences, most notably, they imply that the reduced -algebras of functions on quantum permutation groups can be distinguished by -theory.
Let us now explain how the paper is organised. In section 2 we collect some definitions and facts from the theory of compact quantum groups and fix our notation. Section 3 contains more specific preliminaries on quantum automorphism groups and their actions. In section LABEL:sectorsion we collect some basic definitions and facts regarding torsion in discrete quantum groups. In the quantum case, this is studied most efficiently in terms of ergodic actions of the dual compact quantum groups, and our setup generalises naturally previous considerations by Meyer and Nest [MNcompact], [Meyerhomalg2]. Finally, section LABEL:seckqaut contains our main results.
Let us conclude with some remarks on notation. We write for the algebra of adjointable operators on a Hilbert module . Moreover denotes the algebra of compact operators. The closed linear span of a subset of a Banach space is denoted by . Depending on the context, the symbol denotes either the tensor product of Hilbert spaces, the spatial tensor product of -algebras, or the exterior tensor product of Hilbert modules.

2. Compact quantum groups

In this preliminary section we collect some definitions from the theory of compact quantum groups and fix our notation. We will mainly follow the conventions in [Voigtbcfo] as far as general quantum group theory is concerned.
Let us start with the following definition.

Definition 2.1.

A compact quantum group is given by a unital Hopf -algebra , that is, a unital -algebra together with a unital -homomorphism , called comultiplication, such that


For every compact quantum group there exists a Haar state, namely a state satisfying the invariance conditions for all . The image of in the GNS-representation of is denoted , and called the reduced -algebra of functions on . We will write for the GNS-Hilbert space of , and notice that the GNS-representation of on is faithful.
A unitary representation of on a Hilbert space is a unitary element such that . In analogy with the classical theory for compact groups, every unitary representation of a compact quantum group is completely reducible, and irreducible representations are finite dimensional. We write for the set of equivalence classes of irreducible unitary representations of . The linear span of matrix coefficients of all unitary representations of forms a dense Hopf -algebra of .
The full -algebra of functions on is the universal -completion of . It admits a comultiplication as well, satisfying the density conditions in definition 2.1. The quantum group can be equivalently described in terms of or , or in fact, using . One says that is coamenable if the canonical quotient map is an isomorphism. In this case we will simply write again for this -algebra. By slight abuse of notation, we will also write if a statement holds for both and .
The regular representation of is the representation of on corresponding to the multiplicative unitary determined by

where is the image of under the GNS-map. The comultiplication of can be recovered from by the formula

One defines the algebra of functions on the dual discrete quantum group by

together with the comultiplication

for , where . We remark that there is no need to distinguish between and in the discrete case.
Since we are following the conventions of Kustermans and Vaes [KVLCQG], there is a flip map built into the above definition of , so that the comultiplication of corresponds to the opposite multiplication of . This is a natural choice in various contexts, but it is slightly inconvenient when it comes to Takesaki-Takai duality. We will write for , that is, for the Hopf -algebra equipped with the opposite comultiplication , where denotes the flip map. By slight abuse of terminology, we shall refer to both and as the dual quantum group of , but in the sequel we will always work with instead of . According to Pontrjagin duality, the double dual of in either of the two conventions is canonically isomorphic to .
An action of a compact quantum group on a -algebra is a coaction of on , that is, an injective nondegenerate -homomorphism such that and . In a similar way one defines actions of discrete quantum groups, or in fact arbitrary locally compact quantum groups. We will call a -algebra equipped with a coaction of a --algebra. Moreover we write - for the category of all --algebras and equivariant -homomorphisms.
The reduced crossed product of a --algebra is the -algebra

The crossed product is equipped with a canonical dual action of , which turns it into a --algebra. Moreover, one has the following analogue of the Takesaki-Takai duality theorem [BSUM].

Theorem 2.2.

Let be a regular locally compact quantum group and let be a --algebra. Then there is a natural isomorphism

of --algebras.

We will use Takesaki-Takai duality only for discrete and compact quantum groups, and in this setting regularity is automatic. At some points we will also use the full crossed product of a --algebra , and we refer to [NVpoincare] for a review of its definition in terms of its universal property for covariant representations.

3. Quantum automorphism groups

In this section we review some basic definitions and results on quantum automorphism groups of finite dimensional -algebras and fix our notation. We refer to [Wangqsymmetry], [Banicageneric], [Banicafusscatalan] for more background on quantum automorphism groups.
Let us start with the definition of the quantum automorphism group of a finite dimensional -algebra , compare [Wangqsymmetry] [Banicageneric]. If denotes the multiplication map then a faithful state on is called a -form for if with respect to the Hilbert space structures on and implemented by the GNS-constructions for and , respectively.

Definition 3.1.

Let be a finite dimensional -algebra and let be a -form on for some . The quantum automorphism group is the universal compact quantum group acting on such that is preserved.
That is, if is any compact quantum group together with a coaction then there exists a unique morphism of quantum groups such that the diagram

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description