Observation of the \chi_{{\cPqb}1}\textrm{(3P)} and \chi_{{\cPqb}2}\textrm{(3P)} and measurement of their masses

Observation of the $χ_\mathrm{b1}$(3P) and $χ_\mathrm{b2}$(3P) and measurement of their masses


The  and  states are observed through their decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13\TeVand correspond to an integrated luminosity of 80.0\fbinv. The \PgUc mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to \EEpairs in the silicon tracker, leading to a  mass resolution of 2.2\MeV. This is the first time that the and 2 states are well resolved and their masses individually measured: and ; they are determined with respect to the world-average value of the \PgUc mass, which has an uncertainty of 0.5\MeV. The mass splitting is measured to be .







Although quantum chromodynamics (QCD) is well established as the theory of the strong interaction, a complete understanding of the (nonperturbative) processes that lead to the binding of quarks and gluons into hadrons is still lacking [1, 2, 3]. The bottomonium family, comprised of beauty quark-antiquark bound states, \bbbar, plays a special role in understanding how the strong force binds quarks into hadrons because the large quark mass allows two important theoretical simplifications. First, the hard-scattering production of a proto-quarkonium quark-antiquark pair can be described in perturbation theory [4, 5, 6]. Second, the binding of the quark-antiquark pair can be described in terms of lattice-calculable nonrelativistic potentials [7, 8, 9]. Particularly stringent tests of current theories of quarkonium production can be achieved by examining the individual spin states of the quarkonium multiplets [10, 11, 12, 13, 14].

The , observed at a mass of 10.5\GeVby the ATLAS, D0, and LHCb Collaborations [15, 16, 17, 18], is especially interesting given that its properties could be affected by the proximity of the open-beauty () threshold. Measurements of the masses of the  triplet states, with total angular momentum , 1, and 2, probe details of the \bbbar interaction and test theoretical treatments of the influence of open-beauty states on the bottomonium spectrum. These measurements may also help clarify the nature of several unexpected charmonium-like states, including the enigmatic  [19]. Contending interpretations include the possibility that it is a mixture of a  state and a  molecule or a compact tetraquark [20, 21, 22] or that it is the , modified by strong-interaction effects associated with the coincident  threshold [23]. The bottomonium analogues of the  and  states would be the (\bbbar)  state and a possible  state at the  threshold. Confirming that the  is well below the open-beauty threshold would suggest differences with the charmonium system, where the  state is expected approximately 100\MeVabove the  threshold [24]. Among various possibilities, the 10.5\GeVpeak could be the  or a mixture of the  and the  [25]; it could also simply be the conventional (unresolved) , in which case an hypothetical  might exist with a mass close to the  threshold. The observation of a doublet structure in the 10.5\GeVpeak and a precise measurement of the mass splitting should confirm the nature of the state and clarify the existence or absence of effects induced by the nearby open-beauty threshold.

This Letter reports the first observation of resolved  and  states, and the measurement of their masses. The analysis uses the decay channel, with the \PgUc decaying to a dimuon and the photon converting into an \EEpair. It is based on \Pp\Pp data samples collected at the CERN LHC by the CMS experiment, at a center-of-mass energy of 13\TeV, in 2015, 2016, and 2017, corresponding to integrated luminosities of 2.7, 35.2, and 42.1\fbinv, respectively [26, 27, 28]. As happens in the , , and  cases, the state of the  multiplet is expected to have a negligible radiative-decay branching fraction and not be observable in the present data sample.

The central feature of the CMS apparatus is a superconducting solenoid of 6\unitm internal diameter, providing a magnetic field of 3.8\unitT. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [29].

The data used in this analysis were collected using a two-level trigger system [30]. The first level consists of custom hardware processors and uses information from the muon system to select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass within 8.5–11.5\GeV, a dimuon vertex fit probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5\unitcm. The trigger also requires dimuon transverse momentum \GeV(2015–2016) or 11.9\GeV(2017), and dimuon rapidity (2015–2016) or (2017). The analysis uses photons detected through their conversions to \EEpairs, following the data reconstruction and selection procedures used in Refs. [31, 32].

The muon track must have more than five hits in the tracker, at least one of them being in a pixel detector layer. The muons selected offline must match, in pseudorapidity and azimuthal angle, those that triggered the detector readout. They are combined to form \PgU candidates, which are kept for further processing if and \GeV. The selected dimuon sample contains about 10 million \PgUa, 3.9 million \PgUb, and 2.6 million \PgUc. Figure 1 shows the invariant mass distributions of the selected dimuons, in two halves of the covered rapidity range. Fitting such distributions in fine bins reveals that the dimuon mass resolution varies quadratically from 60\MeVat to 120\MeVat . The background in the mass distribution of the  candidates is reduced by selecting dimuons with invariant mass between and , where is the world-average \PgUc mass [33]. The low-mass edge of the \PgUc signal window is defined by for and for , to minimize the contamination from the \PgUb resonance.

Figure 1: The dimuon invariant mass distribution, in two equidistant ranges. The midrapidity dimuons have a significantly better mass resolution.

Photon candidates are formed from two oppositely-charged tracks, of which one has at least four tracker hits and the other at least three. The tracks must have a small angular separation, a small distance of closest approach, a conversion vertex at least 1.5\cmaway from the beam axis, and a probability of the kinematic fit imposing zero mass and a common vertex that exceeds 0.05%. A more detailed account of the selection criteria is given in Ref. [32]. Only photons with pseudorapidity and are kept.

The dimuon is combined with the converted photon to form the  candidate. A kinematic fit of the dimuon-photon system is performed with the following conditions: the mass of the dimuon is fixed to the \PgUc world-average mass, 10.3552\GeV [33]; the electron-positron pair is constrained to have a common vertex and zero mass; and the two muons and the photon are constrained to have a common vertex. The  candidate is kept if the probability of the kinematic fit exceeds 1%. Two or more candidates are found in about 1% of the events; only the one with the best fit is retained.

To accurately measure the invariant mass of the  candidate, the photon energy scale (PES) must be calibrated. The PES, defined as the ratio between the reconstructed and true energy, is measured using a sample of events, through the ratio , where and are the and invariant masses, and and are the world-average masses [33] of the  and \PJGy states. The values are obtained in several bins of photon energy, profiting from a large data sample collected in the same running periods as the data. The energy spectrum of the photons covers the range relevant for the analysis. The PES values, shown in Fig. 2 as a function of the measured photon energy, , are parametrized with the function , where , , and are free parameters in the fit. The resulting function is then used for the event-by-event correction of the photon energy in the computation of the invariant mass.

Figure 2: The PES as a function of the measured photon energy, obtained using decays from the 2015–2016 (open circles) and 2017 (filled circles) data samples. The points are drawn at the average in each bin. The curve represents the parametrization mentioned in the text.
Figure 3: The invariant mass distributions of the candidates (), after the PES correction. The inset shows the \Pbgci and \Pbgcia masses fitted before (open squares) and after (filled circles) the PES correction, with vertical bars representing the statistical uncertainties. The world-average values [33] are shown by the horizontal bands, with dashed lines representing their total uncertainties.

Figure 3 shows the PES-corrected -photon invariant mass distributions, with . The and events are selected with the same criteria as used for the events, except that the dimuon invariant mass is required to be between and and within , respectively.

The prominent  and  peaks seen in the and distributions in Fig. 3 are fit using a procedure analogous to the one described in the next paragraph. The resulting \Pbgci and \Pbgcia masses are in agreement with the world-average values [33], as shown in the inset, confirming the validity of the PES correction function.

Figure 4: The invariant mass distribution of the candidates. The vertical bars are the statistical uncertainties. The curves represent the fitted contributions of the two signal peaks, the background, and their sum.

Figure 4 shows the invariant mass distribution along with the result of an unbinned extended maximum-likelihood fit. The background is described by , where is the  candidate invariant mass, and are free parameters, and is fixed to 10.4\GeV. The  and  signal peaks are modeled with a double-sided Crystal Ball function [34], which complements a Gaussian core with low- and high-mass power-law tails, defined by the transition points () and the power-law exponents (). The tails of the signal functions, identical for both peaks, are defined by the parameters and , for the low-mass tail, and by and , for the high-mass tail. These values reflect studies of simulated distributions, generated with \PYTHIA 8.230 [35], complemented by \EVTGEN 1.6.0 [36] to simulate the quarkonium decays and by \PHOTOS 3.61 [37] for the modeling of final-state radiation. The generated events undergo a full simulation of the detector response, according to the implementation of the CMS detector within \GEANTfour [38]; the samples include multiple \Pp\Pp interactions in the same or nearby beam crossings. The simulation studies show that the resolution of the mass measurement is linearly proportional to the difference between the mass of the parent P-wave state and the mass of the daughter S-wave state, so that one can impose a linear relationship between the Gaussian widths of the two signal shapes: . This relation assumes that the natural widths of the resonances are negligible with respect to the instrumental resolution. Fitting without this constraint gives a ratio in agreement with the assumption, albeit with a large uncertainty.

The fitted number of signal events is and the fit is 46, for 57 degrees of freedom. The masses of the two resonances are measured to be and , where the uncertainties are statistical only. The corresponding mass difference is , where the statistical uncertainty takes into account the correlation between the two fitted mass values. The mass resolution of the low-mass peak is , which agrees with the expectations from simulation studies. The corresponding resolutions in the and mass distributions are 7 and 15\MeV, respectively, justifying why only the distribution is used in this analysis. The local significance of the double-peak structure was evaluated for several fixed values of using a likelihood ratio of two hypotheses, one of them fixing the yield of the second peak to zero: it exceeds nine standard deviations in the range .

The mass measurements are expected to be essentially insensitive to the event selection criteria. The analysis was repeated splitting the data sample into subsamples, using different dimuon rapidity or \ptranges, or different data collection periods. The results are also consistent when the photon thresholds are varied between 400 and 600\MeV, the dimuon \pt thresholds are varied between 12 and 16\GeV, a broader \PgUc mass window is used, , and the minimum dimuon-photon 4-track vertex-fit probability is increased to 1.5%. Given the absence of significant changes in the results, the systematic uncertainty related to the selection criteria is considered negligible. There is also no significant change in the results if the ratio is left free in the fit.

A systematic uncertainty is assigned to account for the fact that the parameters , , and are fixed in the signal and background fit models. The measured mass distribution was refitted 1000 times, each time with different values of those parameters, randomly generated according to Gaussian distributions with nominal mean values and standard deviations reflecting their (correlated) uncertainties. The and uncertainties are evaluated as the difference between the fitted values from the measured and simulated \Pbgci peaks in the mass distribution, while the uncertainty is evaluated from a fit to the data leaving as a free parameter. The rms of the distribution of the 1000 fit results is taken as the corresponding uncertainty. The choice of the analytical function describing the background shape induces a systematic uncertainty that is evaluated by redoing the fit with two alternative options: a power-law function, with fixed to 10.4\GeV, and a Chebychev polynomial of second order. The total fit-model systematic uncertainty is 0.05\MeV, both in the mass and mass difference measurements.

The uncertainty in the final results reflecting the precision of the PES correction function is evaluated with pseudo-experiments, randomly generating 400 correction functions by drawing new values for its parameters from suitable Gaussian functions, respecting the corresponding covariance matrix to account for the correlations among the parameters. The uncertainty associated with the choice of a specific function to fit the photon energy dependence of the PES is evaluated by using a constant correction factor, taken as the average correction in the range (\GeV) relevant for the photons emitted in the decays. The systematic uncertainty reflecting the PES correction is 0.16\MeVfor and 0.17\MeVfor .

The total systematic uncertainties are obtained by adding the individual terms in quadrature. The invariant mass of the  candidates is determined by fixing the dimuon mass to the world-average \PgUc mass [33], presently affected by an uncertainty of 0.5\MeV. The measurement is insensitive to this uncertainty. The mass difference between the two states is measured to be , while the two masses are determined to be and .

These values can be compared to the predictions of theoretical calculations [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Out of 19 predictions, 18 range from 8 to 18\MeV, mostly depending on the potentials describing the \bbbar nonperturbative interaction. The only exception gives , the negative sign reflecting the coupling with the open-beauty threshold, whose proximity could have a striking influence on the  splitting [45, 46]. The measurement reported in this Letter shows that the mass gap between the and 2 states is significantly larger than 2\MeV, an observation that strongly disfavours the breaking of the conventional pattern of splittings as presented in that specific calculation and supports the standard mass hierarchy, where the state is heavier than the state. It is also worth noting that the measured agrees with the value of 10.5\MeVthat was assumed in Ref. [18].

In summary, data samples of \Pp\Pp collisions at , collected by CMS in the years 2015–2017, corresponding to an integrated luminosity of 80.0\fbinv, were used to measure the invariant mass distribution of the candidates, with the \PgUc mesons detected in the dimuon decay channel and the photons reconstructed through conversions to \EEpairs. The measured distribution is well reproduced by the superposition of the  and  quarkonium states, overlaid on a smooth continuum. This is the first time that the two states are individually observed. Their mass difference is , and their masses, assuming that the state is the lighter one, are and , having an additional 0.5\MeVuncertainty reflecting the present precision of the world-average \PgUc mass. This measurement fills a gap in the spin-dependent bottomonium spectrum below the open-beauty threshold and should significantly contribute to an improved understanding of the nonperturbative spin-orbit interactions affecting quarkonium spectroscopy.

We thank Geoff Bodwin, Estia Eichten, and Chris Quigg for important theoretical input on short notice. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Appendix A The CMS Collaboration


Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan \cmsinstskipInstitut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth\cmsAuthorMark1, V.M. Ghete, J. Hrubec, M. Jeitler\cmsAuthorMark1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck\cmsAuthorMark1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz\cmsAuthorMark1, M. Zarucki \cmsinstskipInstitute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez \cmsinstskipUniversiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel \cmsinstskipVrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs \cmsinstskipUniversité Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang \cmsinstskipGhent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\cmsAuthorMark2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis \cmsinstskipUniversité Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec \cmsinstskipCentro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles \cmsinstskipUniversidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\cmsAuthorMark3, E. Coelho, E.M. Da Costa, G.G. Da Silveira\cmsAuthorMark4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\cmsAuthorMark3, F. Torres Da Silva De Araujo, A. Vilela Pereira \cmsinstskipUniversidade Estadual Paulista , Universidade Federal do ABC , São Paulo, Brazil
S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, SandraS. Padula \cmsinstskipInstitute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov \cmsinstskipUniversity of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov \cmsinstskipBeihang University, Beijing, China
W. Fang\cmsAuthorMark5, X. Gao\cmsAuthorMark5, L. Yuan \cmsinstskipInstitute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen\cmsAuthorMark6, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao \cmsinstskipState Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu \cmsinstskipTsinghua University, Beijing, China
Y. Wang \cmsinstskipUniversidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado \cmsinstskipUniversity of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac \cmsinstskipUniversity of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac \cmsinstskipInstitute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\cmsAuthorMark7, T. Susa \cmsinstskipUniversity of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski \cmsinstskipCharles University, Prague, Czech Republic
M. Finger\cmsAuthorMark8, M. Finger Jr.\cmsAuthorMark8 \cmsinstskipEscuela Politecnica Nacional, Quito, Ecuador
E. Ayala \cmsinstskipUniversidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin \cmsinstskipAcademy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
H. Abdalla\cmsAuthorMark9, A.A. Abdelalim\cmsAuthorMark10\cmsAuthorMark11, M.A. Mahmoud\cmsAuthorMark12\cmsAuthorMark13 \cmsinstskipNational Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken \cmsinstskipDepartment of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen \cmsinstskipHelsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi \cmsinstskipLappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva \cmsinstskipIRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov \cmsinstskipLaboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam\cmsAuthorMark14, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche \cmsinstskipUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram\cmsAuthorMark15, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte\cmsAuthorMark15, J.-C. Fontaine\cmsAuthorMark15, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove \cmsinstskipCentre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat \cmsinstskipUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\cmsAuthorMark16, V. Sordini, M. Vander Donckt, S. Viret \cmsinstskipGeorgian Technical University, Tbilisi, Georgia
T. Toriashvili\cmsAuthorMark17 \cmsinstskipTbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze\cmsAuthorMark8 \cmsinstskipRWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov\cmsAuthorMark16 \cmsinstskipRWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Endres, M. Erdmann, T. Esch, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, S. Knutzen, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, D. Teyssier \cmsinstskipRWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl\cmsAuthorMark18 \cmsinstskipDeutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras\cmsAuthorMark19, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo\cmsAuthorMark20, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann\cmsAuthorMark21, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev \cmsinstskipUniversity of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, D. Troendle, A. Vanhoefer, B. Vormwald \cmsinstskipKarlsruher Institut fuer Technology
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann\cmsAuthorMark18, S.M. Heindl, U. Husemann, F. Kassel\cmsAuthorMark18, I. Katkov\cmsAuthorMark16, S. Kudella, H. Mildner, S. Mitra, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf \cmsinstskipInstitute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-Giotis \cmsinstskipNational and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis \cmsinstskipNational Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos, G. Tsipolitis \cmsinstskipUniversity of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis \cmsinstskipMTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók\cmsAuthorMark22, M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres \cmsinstskipWigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\cmsAuthorMark23, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi \cmsinstskipInstitute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\cmsAuthorMark24, A. Makovec, J. Molnar, Z. Szillasi \cmsinstskipInstitute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari \cmsinstskipIndian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari \cmsinstskipNational Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati\cmsAuthorMark25, C. Kar, P. Mal, K. Mandal, A. Nayak\cmsAuthorMark26, D.K. Sahoo\cmsAuthorMark25, S.K. Swain \cmsinstskipPanjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, G. Walia \cmsinstskipUniversity of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma \cmsinstskipSaha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj\cmsAuthorMark27, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep\cmsAuthorMark27, D. Bhowmik, S. Dey, S. Dutt\cmsAuthorMark27, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur\cmsAuthorMark27 \cmsinstskipIndian Institute of Technology Madras, Madras, India
P.K. Behera \cmsinstskipBhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla \cmsinstskipTata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma \cmsinstskipTata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity\cmsAuthorMark28, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar\cmsAuthorMark28 \cmsinstskipIndian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma \cmsinstskipInstitute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani\cmsAuthorMark29, E. Eskandari Tadavani, S.M. Etesami\cmsAuthorMark29, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh\cmsAuthorMark30, M. Zeinali \cmsinstskipUniversity College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald \cmsinstskipINFN Sezione di Bari , Università di Bari , Politecnico di Bari , Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, A. Di Florio, F. Errico, L. Fiore, A. Gelmi, G. Iaselli, M. Ince, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen, G. Zito \cmsinstskipINFN Sezione di Bologna , Università di Bologna , Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, C. Ciocca, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, P. Giacomelli, C. Grandi, L. Guiducci, F. Iemmi, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, F. Primavera\cmsAuthorMark18, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi \cmsinstskipINFN Sezione di Catania , Università di Catania , Catania, Italy
S. Albergo, A. Di Mattia, R. Potenza, A. Tricomi, C. Tuve \cmsinstskipINFN Sezione di Firenze , Università di Firenze , Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, G. Latino, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\cmsAuthorMark31, G. Sguazzoni, D. Strom, L. Viliani \cmsinstskipINFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo \cmsinstskipINFN Sezione di Genova , Università di Genova , Genova, Italy
F. Ferro, F. Ravera, E. Robutti, S. Tosi \cmsinstskipINFN Sezione di Milano-Bicocca , Università di Milano-Bicocca , Milano, Italy
A. Benaglia, A. Beschi, L. Brianza, F. Brivio, V. Ciriolo\cmsAuthorMark18, S. Di Guida\cmsAuthorMark18, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, T. Tabarelli de Fatis, D. Zuolo \cmsinstskipINFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, A. Di Crescenzo, F. Fabozzi, F. Fienga, G. Galati, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\cmsAuthorMark18, P. Paolucci\cmsAuthorMark18, C. Sciacca, E. Voevodina \cmsinstskipINFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi, N. Bacchetta, D. Bisello, A. Boletti, A. Bragagnolo, R. Carlin, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S.Y. Hoh, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, J. Pazzini, P. Ronchese, R. Rossin, F. Simonetto, A. Tiko, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle \cmsinstskipINFN Sezione di Pavia , Università di Pavia , Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo \cmsinstskipINFN Sezione di Perugia , Università di Perugia , Perugia, Italy
M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga \cmsinstskipINFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa , Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, L. Bianchini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, F. Fiori, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini \cmsinstskipINFN Sezione di Roma , Sapienza Università di Roma , Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, B. Marzocchi, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio \cmsinstskipINFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, D. Soldi, A. Staiano \cmsinstskipINFN Sezione di Trieste , Università di Trieste , Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, A. Da Rold, G. Della Ricca, F. Vazzoler, A. Zanetti \cmsinstskipKyungpook National University
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang \cmsinstskipChonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh \cmsinstskipHanyang University, Seoul, Korea
J. Goh\cmsAuthorMark32, T.J. Kim \cmsinstskipKorea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh \cmsinstskipSejong University, Seoul, Korea
H.S. Kim \cmsinstskipSeoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu \cmsinstskipUniversity of Seoul, Seoul, Korea
D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park \cmsinstskipSungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu \cmsinstskipVilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus \cmsinstskipNational Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\cmsAuthorMark33, F. Mohamad Idris\cmsAuthorMark34, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli \cmsinstskipUniversidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada \cmsinstskipCentro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
M.C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo, G. Ramirez-Sanchez, I. Heredia-De La Cruz\cmsAuthorMark35, R.I. Rabadan-Trejo, R. Lopez-Fernandez, J. Mejia Guisao, R Reyes-Almanza, M. Ramirez-Garcia, A. Sanchez-Hernandez \cmsinstskipUniversidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia \cmsinstskipBenemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada \cmsinstskipUniversidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda \cmsinstskipUniversity of Auckland, Auckland, New Zealand
D. Krofcheck \cmsinstskipUniversity of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler \cmsinstskipNational Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas \cmsinstskipNational Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski \cmsinstskipInstitute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\cmsAuthorMark36, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak \cmsinstskipLaboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela \cmsinstskipJoint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\cmsAuthorMark37\cmsAuthorMark38, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin \cmsinstskipPetersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim\cmsAuthorMark39, E. Kuznetsova\cmsAuthorMark40, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev \cmsinstskipInstitute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin \cmsinstskipInstitute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin \cmsinstskipMoscow Institute of Physics and Technology, Moscow, Russia
T. Aushev \cmsinstskipNational Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov\cmsAuthorMark41, M. Danilov\cmsAuthorMark41, P. Parygin, D. Philippov, S. Polikarpov\cmsAuthorMark41, E. Tarkovskii \cmsinstskipP.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\cmsAuthorMark38, I. Dremin\cmsAuthorMark38, M. Kirakosyan\cmsAuthorMark38, S.V. Rusakov, A. Terkulov \cmsinstskipSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin\cmsAuthorMark42, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev \cmsinstskipNovosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov\cmsAuthorMark43, V. Blinov\cmsAuthorMark43, T. Dimova\cmsAuthorMark43, L. Kardapoltsev\cmsAuthorMark43, Y. Skovpen\cmsAuthorMark43 \cmsinstskipState Research Center of Russian Federation, Institute for High Energy Physics of NRC ’Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov \cmsinstskipNational Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov \cmsinstskipUniversity of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\cmsAuthorMark44, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic \cmsinstskipCentro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi \cmsinstskipUniversidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz \cmsinstskipUniversidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia \cmsinstskipInstituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte \cmsinstskipUniversity of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage \cmsinstskipCERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita\cmsAuthorMark45, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Guilbaud, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban\cmsAuthorMark21, J. Kieseler, A. Kornmayer, M. Krammer\cmsAuthorMark1, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\cmsAuthorMark46, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo\cmsAuthorMark18, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi\cmsAuthorMark47, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\cmsAuthorMark48, A. Stakia, J. Steggemann, M. Tosi, D. Treille, A. Tsirou, V. Veckalns\cmsAuthorMark49, W.D. Zeuner \cmsinstskipPaul Scherrer Institut, Villigen, Switzerland
L. Caminada\cmsAuthorMark50, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr \cmsinstskipETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Quittnat, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu \cmsinstskipUniversität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\cmsAuthorMark51, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta \cmsinstskipNational Central University, Chung-Li, Taiwan
Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu \cmsinstskipNational Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Arun Kumar, Y.y. Li, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen \cmsinstskipChulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee \cmsinstskipÇukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci\cmsAuthorMark52, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos\cmsAuthorMark53, C. Isik, E.E. Kangal\cmsAuthorMark54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir\cmsAuthorMark55, S. Ozturk\cmsAuthorMark56, D. Sunar Cerci\cmsAuthorMark52, B. Tali\cmsAuthorMark52, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez \cmsinstskipMiddle East Technical University, Physics Department, Ankara, Turkey
B. Isildak\cmsAuthorMark57, G. Karapinar\cmsAuthorMark58, M. Yalvac, M. Zeyrek \cmsinstskipBogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya\cmsAuthorMark59, O. Kaya\cmsAuthorMark60, S. Tekten, E.A. Yetkin\cmsAuthorMark61 \cmsinstskipIstanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen\cmsAuthorMark62 \cmsinstskipInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov \cmsinstskipNational Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk \cmsinstskipUniversity of Bristol, Bristol, United Kingdom
F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold\cmsAuthorMark63, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton \cmsinstskipRutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\cmsAuthorMark64, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley \cmsinstskipImperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash\cmsAuthorMark65, A. Nikitenko\cmsAuthorMark7, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee\cmsAuthorMark18, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz \cmsinstskipBrunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid \cmsinstskipBaylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. Mcmaster, N. Pastika, C. Smith \cmsinstskipCatholic University of America, Washington DC, USA
R. Bartek, A. Dominguez \cmsinstskipThe University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West \cmsinstskipBoston University, Boston, USA
D. Arcaro, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou \cmsinstskipBrown University, Providence, USA
G. Benelli, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan\cmsAuthorMark66, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Piperov, S. Sagir\cmsAuthorMark67, R. Syarif, E. Usai, D. Yu \cmsinstskipUniversity of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang \cmsinstskipUniversity of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev \cmsinstskipUniversity of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates \cmsinstskipUniversity of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\cmsAuthorMark68, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta \cmsinstskipUniversity of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo \cmsinstskipCalifornia Institute of Technology, Pasadena, USA
D. Anderson, A. Bornheim, J.M. Lawhorn, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu \cmsinstskipCarnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg \cmsinstskipUniversity of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, E. MacDonald, T. Mulholland, K. Stenson, K.A. Ulmer, S.R. Wagner \cmsinstskipCornell University, Ithaca, USA
J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek \cmsinstskipFermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro\cmsAuthorMark69, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck \cmsinstskipUniversity of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, M. Carver, D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, J. Wang, S. Wang \cmsinstskipFlorida International University, Miami, USA
Y.R. Joshi, S. Linn \cmsinstskipFlorida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, V. Sharma, R. Yohay \cmsinstskipFlorida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva \cmsinstskipUniversity of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang \cmsinstskipThe University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki\cmsAuthorMark70, W. Clarida, K. Dilsiz\cmsAuthorMark71, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\cmsAuthorMark72, Y. Onel, F. Ozok\cmsAuthorMark73, A. Penzo, C. Snyder, E. Tiras, J. Wetzel \cmsinstskipJohns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You \cmsinstskipThe University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang \cmsinstskipKansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze \cmsinstskipLawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright \cmsinstskipUniversity of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong \cmsinstskipMassachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong \cmsinstskipUniversity of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud \cmsinstskipUniversity of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros \cmsinstskipUniversity of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger \cmsinstskipState University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani \cmsinstskipNortheastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, A. Hortiangtham, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood \cmsinstskipNorthwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco \cmsinstskipUniversity of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\cmsAuthorMark37, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard \cmsinstskipThe Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin \cmsinstskipPrinceton University, Princeton, USA
S. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully \cmsinstskipUniversity of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg \cmsinstskipPurdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie \cmsinstskipPurdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar \cmsinstskipRice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang \cmsinstskipUniversity of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, R. Taus, M. Verzetti \cmsinstskipRutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker \cmsinstskipUniversity of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier, K. Thapa \cmsinstskipTexas A&M University, College Station, USA
O. Bouhali\cmsAuthorMark74, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\cmsAuthorMark75, S. Luo, R. Mueller, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov \cmsinstskipTexas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang \cmsinstskipVanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu \cmsinstskipUniversity of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia \cmsinstskipWayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski \cmsinstskipUniversity of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods \cmsinstskip†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Cairo University, Cairo, Egypt
10: Also at Helwan University, Cairo, Egypt
11: Now at Zewail City of Science and Technology, Zewail, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Now at British University in Egypt, Cairo, Egypt
14: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
17: Also at Tbilisi State University, Tbilisi, Georgia
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Brandenburg University of Technology, Cottbus, Germany
22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
23: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
25: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
26: Also at Institute of Physics, Bhubaneswar, India
27: Also at Shoolini University, Solan, India
28: Also at University of Visva-Bharati, Santiniketan, India
29: Also at Isfahan University of Technology, Isfahan, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Kyunghee University, Seoul, Korea
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
37: Also at Institute for Nuclear Research, Moscow, Russia
38: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
40: Also at University of Florida, Gainesville, USA
41: Also at P.N. Lebedev Physical Institute, Moscow, Russia
42: Also at California Institute of Technology, Pasadena, USA
43: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
44: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
45: Also at INFN Sezione di Pavia , Università di Pavia , Pavia, Italy
46: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
47: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
48: Also at National and Kapodistrian University of Athens, Athens, Greece
49: Also at Riga Technical University, Riga, Latvia
50: Also at Universität Zürich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Gaziosmanpasa University, Tokat, Turkey
57: Also at Ozyegin University, Istanbul, Turkey
58: Also at Izmir Institute of Technology, Izmir, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Hacettepe University, Ankara, Turkey
63: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
64: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
65: Also at Monash University, Faculty of Science, Clayton, Australia
66: Also at Bethel University, St. Paul, USA
67: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
68: Also at Utah Valley University, Orem, USA
69: Also at Purdue University, West Lafayette, USA
70: Also at Beykent University, Istanbul, Turkey
71: Also at Bingol University, Bingol, Turkey
72: Also at Sinop University, Sinop, Turkey
73: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
74: Also at Texas A&M University at Qatar, Doha, Qatar
75: Also at Kyungpook National University, Daegu, Korea


  1. Quarkonium Working Group Collaboration, N. Brambilla et al., “Heavy Quarkonium Physics”. CERN Yellow Reports: Monographs. CERN, Geneva, 2005. doi:10.5170/CERN-2005-005,
  2. N. Brambilla et al., “Heavy quarkonium: progress, puzzles, and opportunities”, Eur. Phys. J. C 71 (2011) 1534, doi:10.1140/epjc/s10052-010-1534-9, arXiv:1010.5827.
  3. N. Brambilla et al., “QCD and strongly coupled gauge theories: Challenges and perspectives”, Eur. Phys. J. C 74 (2014) 2981, doi:10.1140/epjc/s10052-014-2981-5, arXiv:1404.3723.
  4. G. C. Nayak, J.-W. Qiu, and G. F. Sterman, “Fragmentation, factorization and infrared poles in heavy quarkonium production”, Phys. Lett. B 613 (2005) 45, doi:10.1016/j.physletb.2005.03.031, arXiv:hep-ph/0501235.
  5. G. Nayak, J.-W. Qiu, and G. Sterman, “Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production”, Phys. Rev. D 72 (2005) 114012, doi:10.1103/PhysRevD.72.114012, arXiv:hep-ph/0509021.
  6. G. C. Nayak, J.-W. Qiu, and G. F. Sterman, “NRQCD factorization and velocity-dependence of NNLO poles in heavy quarkonium production”, Phys. Rev. D 74 (2006) 074007, doi:10.1103/PhysRevD.74.074007, arXiv:hep-ph/0608066.
  7. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “Potential NRQCD: An effective theory for heavy quarkonium”, Nucl. Phys. B 566 (2000) 275, doi:10.1016/S0550-3213(99)00693-8, arXiv:hep-ph/9907240.
  8. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “The QCD potential at O(1/m)”, Phys. Rev. D 63 (2000) 014023, doi:10.1103/PhysRevD.63.014023, arXiv:hep-ph/0002250.
  9. N. Brambilla, A. Pineda, J. Soto, and A. Vairo, “Effective field theories for heavy quarkonium”, Rev. Mod. Phys. 77 (2005) 1423, doi:10.1103/RevModPhys.77.1423, arXiv:hep-ph/0410047.
  10. G. Bodwin, E. Braaten, and P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium”, Phys. Rev. D 51 (1995) 1125, doi:10.1103/PhysRevD.51.1125, arXiv:hep-ph/9407339. [Erratum: \DOI10.1103/PhysRevD.55.5853].
  11. G. Bodwin et al., “Fragmentation contributions to hadroproduction of prompt \PJGy, , and (2S) states”, Phys. Rev. D 93 (2016) 034041, doi:10.1103/PhysRevD.93.034041, arXiv:1509.07904.
  12. P. Faccioli et al., “Quarkonium production at the LHC: A data-driven analysis of remarkably simple experimental patterns”, Phys. Lett. B 773 (2017) 476, doi:10.1016/j.physletb.2017.09.006, arXiv:1702.04208.
  13. P. Faccioli et al., “From identical S- and P-wave \ptspectra to maximally distinct polarizations: Probing NRQCD with states”, Eur. Phys. J. C 78 (2018) 268, doi:10.1140/epjc/s10052-018-5755-7, arXiv:1802.01106.
  14. P. Faccioli, C. Lourenço, M. Araújo, and J. Seixas, “Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production”, Eur. Phys. J. C 78 (2018) 118, doi:10.1140/epjc/s10052-018-5610-x, arXiv:1802.01102.
  15. ATLAS Collaboration, “Observation of a new state in radiative transitions to \PgUa and \PgUb at ATLAS”, Phys. Rev. Lett. 108 (2012) 152001, doi:10.1103/PhysRevLett.108.152001, arXiv:1112.5154.
  16. D0 Collaboration, “Observation of a narrow mass state decaying into in collisions at \TeV”, Phys. Rev. D 86 (2012) 031103, doi:10.1103/PhysRevD.86.031103, arXiv:1203.6034.
  17. LHCb Collaboration, “Study of  meson production in \Pp\Pp collisions at and 8\TeVand observation of the decay ”, Eur. Phys. J. C 74 (2014) 3092, doi:10.1140/epjc/s10052-014-3092-z, arXiv:1407.7734.
  18. LHCb Collaboration, “Measurement of the  mass and of the relative rate of \Pbgci and \Pbgcii production”, JHEP 10 (2014) 088, doi:10.1007/JHEP10(2014)088, arXiv:1409.1408.
  19. Belle Collaboration, “Observation of a narrow charmonium-like state in exclusive decays”, Phys. Rev. Lett. 91 (2003) 262001, doi:10.1103/PhysRevLett.91.262001, arXiv:hep-ex/0309032.
  20. M. Karliner, J. L. Rosner, and T. Skwarnicki, “Multiquark states”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 17, doi:10.1146/annurev-nucl-101917-020902, arXiv:1711.10626.
  21. A. Esposito, A. Pilloni, and A. D. Polosa, “Multiquark resonances”, Phys. Rept. 668 (2017) 1, doi:10.1016/j.physrep.2016.11.002, arXiv:1611.07920.
  22. S. L. Olsen, “A new hadron spectroscopy”, Front. Phys. 10 (2015) 121, doi:10.1007/S11467-014-0449-6, arXiv:1411.7738.
  23. E. J. Eichten, K. Lane, and C. Quigg, “New states above charm threshold”, Phys. Rev. D 73 (2006) 014014, doi:10.1103/PhysRevD.73.014014, arXiv:hep-ph/0511179. [Erratum: \DOI10.1103/PhysRevD.73.079903].
  24. E. J. Eichten, K. Lane, and C. Quigg, “Charmonium levels near threshold and the narrow state ”, Phys. Rev. D 69 (2004) 094019, doi:10.1103/PhysRevD.69.094019, arXiv:hep-ph/0401210.
  25. M. Karliner and J. L. Rosner, “, , and the  state”, Phys. Rev. D 91 (2015) 014014, doi:10.1103/PhysRevD.91.014014, arXiv:1410.7729.
  26. CMS Collaboration, “CMS luminosity measurement for the 2015 data-taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-15-001, 2017.
  27. CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.
  28. CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at ”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
  29. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
  30. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  31. CMS Collaboration, “Measurement of the relative prompt production rate of  and  in pp collisions at \TeV”, Eur. Phys. J. C 72 (2012) 2251, doi:10.1140/epjc/s10052-012-2251-3, arXiv:1210.0875.
  32. CMS Collaboration, “Measurement of the production cross section ratio in \Pp\Pp collisions at \TeV”, Phys. Lett. B 743 (2015) 383, doi:10.1016/j.physletb.2015.02.048, arXiv:1409.5761.
  33. Particle Data Group, C. Patrignani et al., “Review of particle physics”, Chin. Phys. C 40 (2016) 100001, doi:10.1088/1674-1137/40/10/100001.
  34. M. J. Oreglia, “A study of the reactions . PhD thesis, Stanford University, 1980. SLAC-R-236.
  35. T. Sjöstrand et al., “An introduction to \PYTHIA8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  36. D. J. Lange, “The \EVTGEN particle decay simulation package”, Nucl. Instrum. Meth. A 462 (2001) 152, doi:10.1016/S0168-9002(01)00089-4.
  37. E. Barberio and Z. Wa̧s, “\PHOTOS: A universal Monte Carlo for QED radiative corrections. Version 2.0”, Comput. Phys. Commun. 79 (1994) 291, doi:10.1016/0010-4655(94)90074-4.
  38. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
  39. B.-Q. Li and K.-T. Chao, “Bottomonium spectrum with screened potential”, Commun. Theor. Phys. 52 (2009) 653, doi:10.1088/0253-6102/52/4/20, arXiv:0909.1369.
  40. C. O. Dib and N. A. Neill, “ splitting predictions in potential models”, Phys. Rev. D 86 (2012) 094011, doi:10.1103/PhysRevD.86.094011, arXiv:1208.2186.
  41. J.-F. Liu and G.-J. Ding, “Bottomonium spectrum with coupled-channel effects”, Eur. Phys. J. C 72 (2012) 1981, doi:10.1140/epjc/s10052-012-1981-6, arXiv:1105.0855.
  42. Bhaghyesh and K. B. Vijaya Kumar, “Properties of bottomonium in a semi-relativistic model”, Chin. Phys. C 37 (2013) 023103, doi:10.1088/1674-1137/37/2/023103.
  43. W.-Z. Tian, L. Cao, Y.-C. Yang, and H. Chen, “Bottomonium states versus recent experimental observations in the QCD-inspired potential model”, Chin. Phys. C 37 (2013) 083101, doi:10.1088/1674-1137/37/8/083101, arXiv:1308.0960.
  44. W. W. Repko, M. D. Santia, and S. F. Radford, “Three-loop static QCD potential in heavy quarkonia”, Nucl. Phys. A 924 (2014) 65, doi:10.1016/j.nuclphysa.2014.01.005, arXiv:1211.6373.
  45. J. Ferretti, G. Galatà, and E. Santopinto, “Quark structure of the  and  resonances”, Phys. Rev. D 90 (2014) 054010, doi:10.1103/PhysRevD.90.054010, arXiv:1401.4431.
  46. J. Ferretti and E. Santopinto, “Higher mass bottomonia”, Phys. Rev. D 90 (2014) 094022, doi:10.1103/PhysRevD.90.094022, arXiv:1306.2874.
  47. S. Godfrey and K. Moats, “Bottomonium mesons and strategies for their observation”, Phys. Rev. D 92 (2015) 054034, doi:10.1103/PhysRevD.92.054034, arXiv:1507.00024.
  48. J. Segovia, P. G. Ortega, D. R. Entem, and F. Fernández, “Bottomonium spectrum revisited”, Phys. Rev. D 93 (2016) 074027, doi:10.1103/PhysRevD.93.074027, arXiv:1601.05093.
  49. Y. Lu, M. N. Anwar, and B.-S. Zou, “Coupled-channel effects for the bottomonium with realistic wave functions”, Phys. Rev. D 94 (2016) 034021, doi:10.1103/PhysRevD.94.034021, arXiv:1606.06927.
  50. W.-J. Deng, H. Liu, L.-C. Gui, and X.-H. Zhong, “Spectrum and electromagnetic transitions of bottomonium”, Phys. Rev. D 95 (2017) 074002, doi:10.1103/PhysRevD.95.074002, arXiv:1607.04696.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description