Abstract
A measurement of the elliptic flow () of prompt mesons in high-multiplicity collisions is reported using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy . Prompt mesons decaying into two muons are reconstructed in the rapidity region in the nucleon-nucleon center-of-mass frame (), corresponding to either or . The average result from the two rapidity ranges is reported over the transverse momentum () range from 0.2 to 10. Positive values are observed for the prompt meson, as extracted from long-range two-particle correlations with charged hadrons, for . The prompt results are compared with previous CMS measurements of elliptic flow for open charm mesons () and strange hadrons. From these measurements, constraints can be obtained on the collective dynamics of charm quarks produced in high-multiplicity events arising from small systems.
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)
CERN-EP-2018-256
2019/\two@digits7/\two@digits19
CMS-HIN-18-010
Observation of prompt meson elliptic flow in high-multiplicity collisions at
The CMS Collaboration111See Appendix A for the list of collaboration members
Abstract
Please replace the default abstract using the abstract command.
Submitted to Physics Letters B
© 2019 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license
1 Introduction
Strong collective behavior is found in the azimuthal correlations of particles emitted in relativistic nucleus-nucleus (AA) collisions at the BNL RHIC [1, 2, 3, 1, 4] and at the CERN LHC [5, 6, 7, 8, 9, 10]. These correlations, which are long-range in pseudorapidity (), suggest the formation of a strongly interacting quark-gluon plasma (QGP) that exhibits nearly ideal hydrodynamic behavior [11, 12, 13]. The azimuthal correlation structure of emitted particles is typically characterized by its Fourier components [14]. In particular, within a hydrodynamic picture, the second and third Fourier anisotropy components are known as elliptic () and triangular () flow, respectively, and reflect the QGP medium response to the initial collision geometry and its fluctuations [15, 16, 17]. In recent years, similar long-range collective azimuthal correlations have also been observed in events with high final-state particle multiplicity in proton-proton () [18, 19, 20, 21], proton-nucleus () [22, 23, 24, 25, 26, 27, 28, 29, 30], and lighter AA collisions [31, 32, 33], raising the question of whether a fluid-like QGP is created in these much smaller systems. While experimental measurements in these small systems are consistent with the hydrodynamic expansion of a tiny QGP droplet, alternative scenarios based on gluon saturation in the initial state also claim to capture the main features of the correlation data (recent reviews are provided in Refs. [34, 35]).
Heavy-flavor quarks (charm and bottom) are primarily produced at a very early stage via initial hard scattering because of their large masses. As such, they are largely decoupled from the bulk production of soft gluons and light-flavor quarks at a later stage in AA collisions, and thereby probe the properties and dynamics of the QGP through its entire evolution [36]. A strong elliptic flow () signal has been observed for open heavy-flavor mesons in both AuAu collisions at RHIC [37] and PbPb collisions at the LHC [38, 39, 40], suggesting that charm quarks may develop strong collective flow behavior. Furthermore, a recent measurement of the elliptic flow of mesons in PbPb collisions at [41] has provided additional evidence for the collective behavior of charm quarks in the QGP.
In the study of collectivity in small systems, such as that occurring in or collisions, a key open question is whether the strong collective behavior observed for bulk constituents in high-multiplicity events also extends to charm and bottom quarks. Long-range correlations involving inclusive muons at high transverse momentum () reveal a hint of heavy-flavor quark collectivity in collisions [42]. Furthermore, the recent observation of a significant elliptic flow signal for prompt mesons in collisions has provided evidence for charm quark collectivity in a small system [43]. The signal for mesons is found to be smaller than that of light-flavor hadrons at a given , indicating that in these small systems there is a weaker collective motion for charm quarks, as compared to that of the bulk medium, than found in large AA systems. However, as the meson carries both a light and a charm quark, the relative contribution of these different flavor quarks to the observed signal is not fully constrained. Without detailed theoretical modeling, a scenario is not excluded where the meson signal is entirely carried by the light-flavor quark. The observation of an elliptic flow signal for mesons in a small system could provide more direct evidence of charm quark collectivity and could impose new constraints on the collective dynamics of heavy-quark production in such collisions. Furthermore, heavy-quark collectivity may also provide a hint of how, in small systems, hard probes interact with the QGP [36], assuming this is formed. A measurement of inclusive (combined charmonia and mesons from decay of open beauty hadrons) in collisions was reported in Ref. [44], where positive coefficients were found in the range of with center-of-mass rapidities or . A recent model calculation of in collisions suggests little signal arising from final-state interactions between charm quarks and the QGP medium [45].
This Letter presents the first measurement of prompt meson elliptic flow (excluding contributions from hadron decays) from long-range two-particle correlations in very high multiplicity collisions at . The harmonics for prompt mesons in the ranges and are determined over a wide range from 0.2 to 10. To estimate the possible residual contribution from back-to-back jet-like correlations, the values are also presented after subtracting correlations obtained from low-multiplicity events (denoted as ), where jet-like correlations are assumed to dominate. The results are compared to those of the light strange-flavor and hadrons, and the open heavy-flavor prompt meson, which were previously reported by CMS [43] in the same range but in a different rapidity range of . In order to explore possible collectivity at the partonic level, a comparison is also presented in terms of the transverse kinetic energy per constituent quark (/, where , and is the number of constituent quarks).
2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range . Muons are measured in the range in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The silicon tracker measures charged particles within the range . For charged particles with and , the track resolutions are typically 1.5% in and 25–90 (45–150) in the transverse (longitudinal) impact parameter [46]. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [47].
3 Data selection and meson reconstruction
The data at used in this analysis were collected in 2016, and correspond to an integrated luminosity of 186. The beam energies are 6.5 for the protons and 2.56 per nucleon for the lead nuclei. Because of the asymmetric beam conditions, particles selected in the laboratory rapidity range of () have a corresponding nucleon-nucleon center-of-mass frame rapidity range of (), with positive rapidity defined in the proton beam direction. To minimize statistical uncertainties, the quoted meson results combine the individual values obtained for the proton and lead beam directions.
The data are analyzed in different ranges of , where is the number of primary charged particle tracks [46] with and . The main results are obtained with events in the high-multiplicity range . To select these events, dedicated triggers were developed, as discussed in Refs. [48, 49]. Events with are also used to estimate the possible contribution of residual back-to-back jet-like correlations. These lower-multiplicity events are selected online with a hardware-based trigger requiring two muon candidates in the muon detectors with no explicit momentum or rapidity threshold [50]. In the offline analysis, hadronic collisions are selected by requiring at least one HF calorimeter tower with more than 3 of total energy in each of the two HF detectors. Events must contain a primary vertex close to the nominal interaction point of the beams, within 15 cm along the beam direction, and 0.2 cm in the plane transverse to beam direction. The range limits correspond to fractional inelastic cross sections from 100 to 57% for , and from 0.33 to 0.01% for , respectively.
The offline muon reconstruction algorithm starts either by finding tracks in the muon detectors, which are then fitted together with tracks reconstructed in the silicon tracker (global muons), or by extrapolating tracks from the silicon tracker to match a hit on at least one segment of the muon detectors (tracker muons). The muon candidates are required to pass the identification criteria of the particle-flow algorithm [51], which suppresses contamination of “punch-through” hadrons misidentified as muons, based on energy deposition in the calorimeters. The soft muon selection criteria are also imposed, as defined in Ref. [52], to further improve the purity of muons.
The meson candidates are formed from pairs of oppositely charged muons, originating from a common vertex. Based on the vertex probability distributions for signal and background candidates, the probability that the dimuon pair shares a common vertex is required to be larger than 1%, lowering the background from random combinations as well as from semileptonic decays of bottom and charm hadrons. Because of the long lifetime of hadrons compared to that of mesons, the nonprompt meson component can be reduced by placing constraints on the pseudo-proper decay length [53]. This is defined by , where is the distance between the primary and dimuon vertices, is the Particle Data Group [54] world average value of the meson mass (assumed for all dimuon candidates), and is the dimuon momentum. The upper limit (decreasing as a function of ) imposed on the value is based on Monte Carlo (MC) studies with simulated event samples of pythia 8.209 [55, 56], and found to reject 75–90% (from low to high ) of nonprompt mesons, largely independent of multiplicity. The residual nonprompt meson fraction in the data is estimated to be approximately 5% across the full range, and its effect on the measurement is propagated as a systematic uncertainty, as described in Section 5.
4 Analysis technique
The azimuthal anisotropy of mesons is extracted from the long-range () two-particle azimuthal correlations, following an identical procedure to that described in Refs. [21, 27, 43]. A two-dimensional (2D) correlation function is constructed by pairing each candidate with reference primary charged-particle tracks with and (denoted “ref” particles), and calculating
(1) |
where and are the differences in and in the azimuthal angle () of the pair. The same-event pair distribution, , represents the yield of particle pairs normalized by the number of candidates from the same event. The mixed-event pair yield distribution, , is constructed by pairing candidates in each event with the reference primary charged-particle tracks from 20 different randomly selected events, from the same range and having a primary vertex falling in the same 2 cm wide range of reconstructed coordinate. The analysis procedure is performed in each and invariant mass () range of candidates. A correction for the acceptance and efficiency of the meson yields is applied, but found to have a negligible effect on the measurements. The correlation functions averaged over (to remove short-range correlations, such as jet fragmentation) are then obtained from the 2D distributions and fitted by the first three terms of a Fourier series (including additional terms has a negligible effect on the fit results): {linenomath}
(2) |
Here, are the Fourier coefficients and represents the total number of same-event pairs per candidate for a given invariant mass interval. By assuming that is the product of single-particle anisotropies of mesons and reference charged particles [57], , the anisotropy harmonics for candidates can be extracted as a function of invariant mass, . With the current data, only the second order () elliptic anisotropy harmonic can be measured with meaningful statistical precision.

To extract the genuine values of the meson signal (), the contribution from background candidates () has to be subtracted from the values of all meson candidates, as obtained in the previous step. The procedure is to first fit the dimuon mass spectrum with a function composed of three components: two Crystal Ball functions [58] with different widths but common mean and tail parameters for the signal (the tail parameters are fixed to the values obtained from simulation), , and an exponential function to model the combinatorial background, . Then, the signal plus background distribution is fitted with: {linenomath}
(3) |
where {linenomath}
(4) |
Here, for the background candidates is modeled as an exponential function of the invariant mass, and is the signal fraction obtained from the mass spectrum fit. An example of fits to the mass spectrum and in the interval 6.0–8.0 for the multiplicity range is shown in Fig. 1. The residual contribution of back-to-back dijets to the measured results is estimated from low-multiplicity events and is removed from the signal after accounting for the jet yield ratio of the selected events, following a jet subtraction procedure similar to that established in Refs. [57, 21, 43]. The Fourier coefficients, , extracted from Eq. (2) for , are subtracted from the coefficients obtained in the high-multiplicity region, with {linenomath}
(5) |
Here, represents the jet yield obtained by integrating the difference of the short-range () and long-range event-normalized associated yields for each multiplicity class. The ratio, /, is introduced to account for the enhanced jet correlations resulting from the selection of higher-multiplicity events. For , the jet yield ratio cannot be directly estimated from the two-particle azimuthal correlations, as the candidates tend to have larger values than the acceptance for charged particles. Therefore, the value is assumed to be the same as that for the high- region, where no dependence has been observed. It was also previously observed that the values of jet yield ratio for and strange particle species show little dependence on over the full range [43].
5 Systematic uncertainties
Sources of systematic uncertainties on the prompt meson measurement include the meson yield correction (acceptance and efficiency correction derived from pythia simulation), the nonprompt meson contamination, the background function form, the signal and background invariant mass PDF, the jet subtraction procedure, the contamination of events containing more than one interaction (pileup), and the trigger bias. In this Letter, the quoted uncertainties in are absolute values, and are found to have no dependence on , except those for the jet subtraction procedure. Systematic uncertainties originating from different sources are added in quadrature to obtain the overall systematic uncertainty shown as boxes in the figures.
To evaluate the uncertainties arising from the efficiency correction to the meson yield, the values are compared to the uncorrected ones, yielding an uncertainty of 0.008. The effect on the measured due to the residual contribution from nonprompt mesons is evaluated by varying the requirement such that the nonprompt meson yield is doubled. The values are found not to change by more than , which is assigned as the systematic uncertainty due to the meson yield correction. Possible differences in the rejection efficiency of nonprompt mesons between data and simulation are investigated and found to be negligible. The systematic uncertainties from the background function form are evaluated by comparing values based on first-, second-, and third-order polynomial fits to the background distribution. The resulting signal values are found to vary by less than 0.009. Systematic effects related to signal invariant mass PDF are found to be negligible by releasing, one at a time, the fixed tail parameters of the Crystal Ball functions. The variation of , while changing the background invariant mass PDF to a second- or third-order polynomial function is also found to be negligible. In the jet subtraction procedure, the statistical precision of the jet yield ratio is limited. The results are found to be consistent within to (increasing with ) when varying the jet yield ratio by its statistical uncertainty. The systematic uncertainties from the potential pileup effect and the trigger bias are taken to be the same as for inclusive charged particles in Ref. [49], where they can be established with good statistical precision. The pileup and trigger bias uncertainties are negligible compared to the other sources of systematic uncertainties, as the fraction of residual pileup events is only a few % and the trigger efficiency is close to 100%.
6 Results
Figure 2 shows the results of prompt mesons at forward rapidities ( or ) for high-multiplicity () collisions, covering a range from 0.2 to 10. Results obtained separately for meson rapidity in the Pb- and p-going direction are compared, and found to be consistent within statistical uncertainties. Thus, as mentioned earlier, combined values are presented for the best statistical precision. The results for and hadrons (light, strange-flavor), and prompt mesons (open heavy-flavor), reported in a previous CMS publication [43] for the midrapidity region , are also shown for comparison.

Positive prompt meson values are observed over a wide range from about 2 to 8. The prompt meson results show a trend of first increasing up to and then decreasing toward higher . This observed trend appears to be in common with the other hadron species shown. In the range below 5, the values for and mesons are consistent with each other within the uncertainties, while an indication of smaller values for mesons than that for mesons is seen for . Over the full range, the signal values for both and hadrons are smaller than those for and hadrons. This observation is consistent with the earlier conclusion that charm quarks develop a weaker collective dynamics than light quarks in small systems [43], unlike what is seen in AA collisions. Because of experimental limitation, values for the prompt meson and the other meson species are not compared within the same rapidity range, possibly affecting their comparison. The rapidity dependence of values for charged particles in collisions has been measured [59, 60], suggesting up to around 15% variation from to .

To better study the elliptic flow signal coming purely from long-range collective correlations, the results are corrected for residual jet correlations. The resulting () values are shown in Fig. 3 (upper) for prompt mesons as a function of with , and compared to similarly corrected , , and hadron results [43]. The effect of the correction for all particle species is most noticeable at very high , while the overall dependence of the data remains unchanged. The mesons have a larger correction applied to their values (possibly because mesons are more correlated with the bulk multiplicity, and thus are biased toward stronger jet correlations due to the selection of high multiplicities) and their values after the correction tend to converge to those of the prompt and mesons at high .
A recent model calculation of in collisions, based on final-state interactions between produced charm quarks and a QGP medium, suggests a very small signal of less than 0.01 [45]. This calculation indicates that additional contributions, e.g., those from initial-state interactions, may be needed to account for the observed signal of prompt mesons reported in this Letter.
Motivated by the possible formation of a hydrodynamically expanding QGP medium in small systems, the elliptic flow signals for , , and hadrons are compared as a function of transverse kinetic energy () in Fig. 3 (lower), to account for the mass difference among the four hadron species [61, 62]. Here, the values of and are both divided by the number of constituent quarks, , to represent the collective flow signal at the partonic level in the context of the quark coalescence model [63, 64, 65], which postulates that the elliptic flow signal of a hadron is a sum of contributions from individual constituent quark flow values. As was previously reported in collisions [27, 43], a scaling of -normalized values is observed between the meson and baryon, shown in Fig. 3 (lower). This scaling between light baryon and meson species systems produced in the collision (known as the number-of-constituent-quark or NCQ scaling) was first discovered in AA colliding systems [66, 61, 62], indicating that collectivity is first developed among the partons, which later recombine into final-state hadrons. The elliptic flow signal per quark () for prompt mesons at low range is consistent with those of , , and prompt hadrons within large statistical uncertainties for the current data. There is a hint that the prompt meson data tend to fall on the same trend as those of and baryons, all of which are above the prompt meson data. A more definitive conclusion could be drawn with future high precision data. For , the for prompt and mesons are consistently below that of the meson. An indication of smaller values for mesons than for mesons is seen for . As mesons contain two charm quarks, while mesons contain a charm and a light-flavor quark, this observation would be consistent with a weaker collective behavior of heavy-flavor quarks than light quarks, possibly a consequence of the much smaller size of the collision system. Future data with improved precision will provide crucial insights to fully constrain the collective behavior of light- and heavy-flavor quarks in high-multiplicity, small systems.
7 Summary
In summary, the elliptic flow harmonic () for prompt mesons in high-multiplicity proton-lead () collisions at is presented as a function of transverse momentum (). Positive values are observed for prompt mesons at forward rapidity ( or ) over a wide range (). This observation provides evidence for charm quark collectivity in high-multiplicity collisions, similar to that first observed for light-flavor hadrons. The observed ordering of among light-flavor, open and hidden heavy-flavor hadrons at intermediate and high- regions (e.g., above 4) adds support to the earlier conclusion that heavy quarks exhibit weaker collective behavior than light quarks or gluons in small systems, unlike what is found in AA collisions. For particle transverse kinetic energy per constituent quark values less than 1, the of prompt mesons is consistent with prompt , and hadrons, within current uncertainties. A model calculation based on final-state interactions between charm quarks and a QGP medium in collisions significantly underestimates the measured prompt signal. The new prompt meson results, together with previous results for light-flavor and open heavy-flavor hadrons, provide novel insights into the dynamics of the heavy quarks produced in small systems that lead to high final-state multiplicities.
Acknowledgments
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science - EOS” - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).
References
- [1] PHOBOS Collaboration, “System size dependence of cluster properties from two- particle angular correlations in Cu+Cu and Au+Au collisions at = 200”, Phys. Rev. C 81 (2010) 024904, doi:10.1103/PhysRevC.81.024904, arXiv:0812.1172.
- [2] STAR Collaboration, “Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at = 200”, Phys. Rev. Lett. 95 (2005) 152301, doi:10.1103/PhysRevLett.95.152301, arXiv:nucl-ex/0501016.
- [3] STAR Collaboration, “Long range rapidity correlations and jet production in high energy nuclear collisions”, Phys. Rev. C 80 (2009) 064912, doi:10.1103/PhysRevC.80.064912, arXiv:0909.0191.
- [4] PHOBOS Collaboration, “High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at = 200”, Phys. Rev. Lett. 104 (2010) 062301, doi:10.1103/PhysRevLett.104.062301, arXiv:0903.2811.
- [5] CMS Collaboration, “Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV”, JHEP 07 (2011) 076, doi:10.1007/JHEP07(2011)076, arXiv:1105.2438.
- [6] CMS Collaboration, “Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at = 2.76 TeV”, Eur. Phys. J. C 72 (2012) 2012, doi:10.1140/epjc/s10052-012-2012-3, arXiv:1201.3158.
- [7] ALICE Collaboration, “Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV”, Phys. Rev. Lett. 105 (2010) 252302, doi:10.1103/PhysRevLett.105.252302, arXiv:1011.3914.
- [8] ATLAS Collaboration, “Measurement of the azimuthal anisotropy for charged particle production in = 2.76 lead-lead collisions with the ATLAS detector”, Phys. Rev. C 86 (2012) 014907, doi:10.1103/PhysRevC.86.014907, arXiv:1203.3087.
- [9] CMS Collaboration, “Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV”, Phys. Rev. C 87 (2013) 014902, doi:10.1103/PhysRevC.87.014902, arXiv:1204.1409.
- [10] CMS Collaboration, “Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at = 2.76”, JHEP 02 (2014) 088, doi:10.1007/JHEP02(2014)088, arXiv:1312.1845.
- [11] J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D 46 (1992) 229, doi:10.1103/PhysRevD.46.229.
- [12] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123, doi:10.1146/annurev-nucl-102212-170540, arXiv:1301.2826.
- [13] C. Gale, S. Jeon, and B. Schenke, “Hydrodynamic modeling of heavy-ion collisions”, Int. J. Mod. Phys. A 28 (2013) 1340011, doi:10.1142/S0217751X13400113, arXiv:1301.5893.
- [14] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions”, Z. Phys. C 70 (1996) 665, doi:10.1007/s002880050141, arXiv:hep-ph/9407282.
- [15] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, “Triangular flow in hydrodynamics and transport theory”, Phys. Rev. C 82 (2010) 034913, doi:10.1103/PhysRevC.82.034913, arXiv:1007.5469.
- [16] B. Schenke, S. Jeon, and C. Gale, “Elliptic and triangular flow in event-by-event D=3+1 viscous hydrodynamics”, Phys. Rev. Lett. 106 (2011) 042301, doi:10.1103/PhysRevLett.106.042301, arXiv:1009.3244.
- [17] Z. Qiu, C. Shen, and U. Heinz, “Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at = 2.76”, Phys. Lett. B 707 (2012) 151, doi:10.1016/j.physletb.2011.12.041, arXiv:1110.3033.
- [18] CMS Collaboration, “Observation of long-range near-side angular correlations in proton-proton collisions at the LHC”, JHEP 09 (2010) 091, doi:10.1007/JHEP09(2010)091, arXiv:1009.4122.
- [19] ATLAS Collaboration, “Observation of long-range elliptic azimuthal anisotropies in 13 and 2.76 TeV collisions with the ATLAS detector”, Phys. Rev. Lett. 116 (2016) 172301, doi:10.1103/PhysRevLett.116.172301, arXiv:1509.04776.
- [20] CMS Collaboration, “Measurement of long-range near-side two-particle angular correlations in pp collisions at 13 TeV”, Phys. Rev. Lett. 116 (2016) 172302, doi:10.1103/PhysRevLett.116.172302, arXiv:1510.03068.
- [21] CMS Collaboration, “Evidence for collectivity in pp collisions at the LHC”, Phys. Lett. B 765 (2017) 193, doi:10.1016/j.physletb.2016.12.009, arXiv:1606.06198.
- [22] CMS Collaboration, “Observation of long-range near-side angular correlations in proton-lead collisions at the LHC”, Phys. Lett. B 718 (2013) 795, doi:10.1016/j.physletb.2012.11.025, arXiv:1210.5482.
- [23] ALICE Collaboration, “Long-range angular correlations on the near and away side in collisions at = 5.02”, Phys. Lett. B 719 (2013) 29, doi:10.1016/j.physletb.2013.01.012, arXiv:1212.2001.
- [24] ATLAS Collaboration, “Observation of associated near-side and away-side long-range correlations in = 5.02 proton-lead collisions with the ATLAS detector”, Phys. Rev. Lett. 110 (2013) 182302, doi:10.1103/PhysRevLett.110.182302, arXiv:1212.5198.
- [25] LHCb Collaboration, “Measurements of long-range near-side angular correlations in = 5 proton-lead collisions in the forward region”, Phys. Lett. B 762 (2016) 473, doi:10.1016/j.physletb.2016.09.064, arXiv:1512.00439.
- [26] ALICE Collaboration, “Long-range angular correlations of , K and p in p–Pb collisions at = 5.02”, Phys. Lett. B 726 (2013) 164, doi:10.1016/j.physletb.2013.08.024, arXiv:1307.3237.
- [27] CMS Collaboration, “Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies”, Phys. Lett. B 742 (2015) 200, doi:10.1016/j.physletb.2015.01.034, arXiv:1409.3392.
- [28] CMS Collaboration, “Evidence for collective multi-particle correlations in pPb collisions”, Phys. Rev. Lett. 115 (2015) 012301, doi:10.1103/PhysRevLett.115.012301, arXiv:1502.05382.
- [29] ATLAS Collaboration, “Measurement of multi-particle azimuthal correlations in , Pb and low-multiplicity PbPb collisions with the ATLAS detector”, Eur. Phys. J. C 77 (2017) 428, doi:10.1140/epjc/s10052-017-4988-1, arXiv:1705.04176.
- [30] ATLAS Collaboration, “Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in and + collisions with the ATLAS detector at the CERN Large Hadron Collider”, Phys. Rev. C 97 (2018) 024904, doi:10.1103/PhysRevC.97.024904, arXiv:1708.03559.
- [31] STAR Collaboration, “Long-range pseudorapidity dihadron correlations in +Au collisions at = 200”, Phys. Lett. B 747 (2015) 265, doi:10.1016/j.physletb.2015.05.075, arXiv:1502.07652.
- [32] PHENIX Collaboration, “Measurements of elliptic and triangular flow in high-multiplicity HeAu collisions at = 200 GeV”, Phys. Rev. Lett. 115 (2015) 142301, doi:10.1103/PhysRevLett.115.142301, arXiv:1507.06273.
- [33] PHENIX Collaboration, “Measurements of multiparticle correlations in + collisions at 200, 62.4, 39, and 19.6 GeV and + collisions at 200 GeV and implications for collective behavior”, Phys. Rev. Lett. 120 (2018) 062302, doi:10.1103/PhysRevLett.120.062302, arXiv:1707.06108.
- [34] K. Dusling, W. Li, and B. Schenke, “Novel collective phenomena in high-energy protonâproton and protonânucleus collisions”, Int. J. Mod. Phys. E 25 (2016) 1630002, doi:10.1142/S0218301316300022, arXiv:1509.07939.
- [35] J. L. Nagle and W. A. Zajc, “Small system collectivity in relativistic hadron and nuclear collisions”, (2018). arXiv:1801.03477.
- [36] P. Braun-Munzinger, “Quarkonium production in ultra-relativistic nuclear collisions: Suppression versus enhancement”, J. Phys. G 34 (2007) S471, doi:10.1088/0954-3899/34/8/S36, arXiv:nucl-th/0701093.
- [37] STAR Collaboration, “Measurement of azimuthal anisotropy at midrapidity in Au + Au collisions at ”, Phys. Rev. Lett. 118 (2017) 212301, doi:10.1103/PhysRevLett.118.212301, arXiv:1701.06060.
- [38] ALICE Collaboration, “Azimuthal anisotropy of D meson production in Pb-Pb collisions at = 2.76”, Phys. Rev. C 90 (2014) 034904, doi:10.1103/PhysRevC.90.034904, arXiv:1405.2001.
- [39] ALICE Collaboration, “-meson azimuthal anisotropy in midcentral Pb-Pb collisions at TeV”, Phys. Rev. Lett. 120 (2018) 102301, doi:10.1103/PhysRevLett.120.102301, arXiv:1707.01005.
- [40] CMS Collaboration, “Measurement of prompt meson azimuthal anisotropy in Pb-Pb collisions at = 5.02”, Phys. Rev. Lett. 120 (2018) 202301, doi:10.1103/PhysRevLett.120.202301, arXiv:1708.03497.
- [41] ALICE Collaboration, “J/ elliptic flow in Pb-Pb collisions at = 5.02”, Phys. Rev. Lett. 119 (2017) 242301, doi:10.1103/PhysRevLett.119.242301, arXiv:1709.05260.
- [42] ALICE Collaboration, “Forward-central two-particle correlations in p-Pb collisions at = 5.02”, Phys. Lett. B 753 (2016) 126, doi:10.1016/j.physletb.2015.12.010, arXiv:1506.08032.
- [43] CMS Collaboration, “Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at 8.16 TeV”, Phys. Rev. Lett. (2018) doi:10.3204/PUBDB-2018-02206, arXiv:1804.09767.
- [44] ALICE Collaboration, “Search for collectivity with azimuthal J/-hadron correlations in high multiplicity p-Pb collisions at = 5.02 and 8.16”, Phys. Lett. B 780 (2018) 7, doi:10.1016/j.physletb.2018.02.039, arXiv:1709.06807.
- [45] X. Du and R. Rapp, “In-medium charmonium production in proton-nucleus collisions”, (2018). arXiv:1808.10014.
- [46] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- [47] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [48] CMS Collaboration, “Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider”, Phys. Rev. C 97 (2018) 044912, doi:10.1103/PhysRevC.97.044912, arXiv:1708.01602.
- [49] CMS Collaboration, “Observation of correlated azimuthal anisotropy fourier harmonics in and collisions at the LHC”, Phys. Rev. Lett. 120 (2018) 092301, doi:10.1103/PhysRevLett.120.092301, arXiv:1709.09189.
- [50] CMS Collaboration, “Event activity dependence of Y(nS) production in = 5.02 pPb and = 2.76 pp collisions”, JHEP 04 (2014) 103, doi:10.1007/JHEP04(2014)103, arXiv:1312.6300.
- [51] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- [52] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at ”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
- [53] ALEPH Collaboration, “Measurement of the B and B meson lifetimes”, Phys. Lett. B 307 (1993) 194, doi:10.1016/0370-2693(93)90211-Y. [Erratum: doi:10.1016/0370-2693(94)90054-X].
- [54] Particle Data Group, M. Tanabashi et al., “Review of particle physics”, Phys. Rev. D 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001.
- [55] T. Sjöstrand, S. Mrenna, and P. Skands, “A brief introduction to PYTHIA 8.1”, Comp. Phys. Comm. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.
- [56] CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- [57] CMS Collaboration, “Multiplicity and transverse momentum dependence of two- and four-particle correlations in and PbPb collisions”, Phys. Lett. B 724 (2013) 213, doi:10.1016/j.physletb.2013.06.028, arXiv:1305.0609.
- [58] M. J. Oreglia, “A study of the reactions ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236, see Appendix D.
- [59] CMS Collaboration, “Pseudorapidity dependence of long-range two-particle correlations in collisions at = 5.02”, Phys. Rev. C 96 (2017) 014915, doi:10.1103/PhysRevC.96.014915, arXiv:1604.05347.
- [60] CMS Collaboration, “Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions”, (2017). arXiv:1710.07864.
- [61] STAR Collaboration, “Mass, quark-number, and dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions”, Phys. Rev. C 75 (2007) 054906, doi:10.1103/PhysRevC.75.054906, arXiv:nucl-ex/0701010.
- [62] PHENIX Collaboration, “Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at = 200 GeV”, Phys. Rev. Lett. 98 (2007) 162301, doi:10.1103/PhysRevLett.98.162301, arXiv:nucl-ex/0608033.
- [63] D. Molnar and S. A. Voloshin, “Elliptic flow at large transverse momenta from quark coalescence”, Phys. Rev. Lett. 91 (2003) 092301, doi:10.1103/PhysRevLett.91.092301, arXiv:nucl-th/0302014.
- [64] V. Greco, C. M. Ko, and P. Levai, “Parton coalescence and anti-proton/pion anomaly at RHIC”, Phys. Rev. Lett. 90 (2003) 202302, doi:10.1103/PhysRevLett.90.202302, arXiv:nucl-th/0301093.
- [65] R. J. Fries, B. Muller, C. Nonaka, and S. A. Bass, “Hadronization in heavy ion collisions: recombination and fragmentation of partons”, Phys. Rev. Lett. 90 (2003) 202303, doi:10.1103/PhysRevLett.90.202303, arXiv:nucl-th/0301087.
- [66] STAR Collaboration, “Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au + Au collisions at = 200”, Phys. Rev. Lett. 92 (2004) 052302, doi:10.1103/PhysRevLett.92.052302, arXiv:nucl-ex/0306007.
Appendix A The CMS Collaboration
Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan
Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth\@textsuperscript1, V.M. Ghete, J. Hrubec, M. Jeitler\@textsuperscript1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck\@textsuperscript1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz\@textsuperscript1, M. Zarucki
Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez
Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel
Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs
Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang
Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov\@textsuperscript2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis
Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\@textsuperscript3, E. Coelho, E.M. Da Costa, G.G. Da Silveira\@textsuperscript4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote\@textsuperscript3, F. Torres Da Silva De Araujo, A. Vilela Pereira
Universidade Estadual Paulista , Universidade Federal do ABC , São Paulo, Brazil
S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, SandraS. Padula
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov
Beihang University, Beijing, China
W. Fang\@textsuperscript5, X. Gao\@textsuperscript5, L. Yuan
Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen\@textsuperscript6, A. Spiezia, J. Tao, Z. Wang, E. Yazgan, H. Zhang, S. Zhang\@textsuperscript6, J. Zhao
State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu
Tsinghua University, Beijing, China
Y. Wang
Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado
University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac
University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac
Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\@textsuperscript7, T. Susa
University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski
Charles University, Prague, Czech Republic
M. Finger\@textsuperscript8, M. Finger Jr.\@textsuperscript8
Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala
Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran\@textsuperscript9\@textsuperscript10, S. Elgammal\@textsuperscript10, S. Khalil\@textsuperscript11
National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi
Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva
IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov
Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam\@textsuperscript12, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche
Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram\@textsuperscript13, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte\@textsuperscript13, J.-C. Fontaine\@textsuperscript13, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove
Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat
Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, A. Popov\@textsuperscript14, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret
Georgian Technical University, Tbilisi, Georgia
T. Toriashvili\@textsuperscript15
Tbilisi State University, Tbilisi, Georgia
I. Bagaturia\@textsuperscript16
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl\@textsuperscript17
Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras\@textsuperscript18, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo\@textsuperscript19, A. Geiser, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann\@textsuperscript20, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev
University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, A. Vanhoefer, B. Vormwald, I. Zoi
Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann\@textsuperscript17, S.M. Heindl, U. Husemann, F. Kassel\@textsuperscript17, I. Katkov\@textsuperscript14, S. Kudella, S. Mitra, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-Giotis
National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis
National Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos, G. Tsipolitis
University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis
MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartók\@textsuperscript21, M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres
Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\@textsuperscript22, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\@textsuperscript23, A. Makovec, J. Molnar, Z. Szillasi
Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari
Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari
National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati\@textsuperscript24, C. Kar, P. Mal, K. Mandal, A. Nayak\@textsuperscript25, D.K. Sahoo\@textsuperscript24, S.K. Swain
Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia
University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj\@textsuperscript26, M. Bharti\@textsuperscript26, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep\@textsuperscript26, D. Bhowmik, S. Dey, S. Dutt\@textsuperscript26, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh\@textsuperscript26, S. Thakur\@textsuperscript26
Indian Institute of Technology Madras, Madras, India
P.K. Behera
Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla
Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma
Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity\@textsuperscript27, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar\@textsuperscript27
Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani\@textsuperscript28, E. Eskandari Tadavani, S.M. Etesami\@textsuperscript28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh\@textsuperscript29, M. Zeinali
University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald
INFN Sezione di Bari , Università di Bari , Politecnico di Bari , Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, A. Di Florio, F. Errico, L. Fiore, A. Gelmi, G. Iaselli, M. Ince, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen, G. Zito
INFN Sezione di Bologna , Università di Bologna , Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, L. Borgonovi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, C. Ciocca, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, E. Fontanesi, P. Giacomelli, C. Grandi, L. Guiducci, F. Iemmi, S. Lo Meo, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, F. Primavera\@textsuperscript17, T. Rovelli, G.P. Siroli, N. Tosi
INFN Sezione di Catania , Università di Catania , Catania, Italy
S. Albergo, A. Di Mattia, R. Potenza, A. Tricomi, C. Tuve
INFN Sezione di Firenze , Università di Firenze , Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, G. Latino, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\@textsuperscript30, G. Sguazzoni, D. Strom, L. Viliani
INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo
INFN Sezione di Genova , Università di Genova , Genova, Italy
F. Ferro, F. Ravera, E. Robutti, S. Tosi
INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca , Milano, Italy
A. Benaglia, A. Beschi, F. Brivio, V. Ciriolo\@textsuperscript17, S. Di Guida\@textsuperscript17, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, A. Massironi, D. Menasce, F. Monti, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, T. Tabarelli de Fatis, D. Zuolo
INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, A. De Iorio, A. Di Crescenzo, F. Fabozzi, F. Fienga, G. Galati, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\@textsuperscript17, P. Paolucci\@textsuperscript17, C. Sciacca, E. Voevodina
INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi, N. Bacchetta, D. Bisello, A. Boletti, A. Bragagnolo, R. Carlin, P. Checchia, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S.Y. Hoh, S. Lacaprara, P. Lujan, M. Margoni, A.T. Meneguzzo, J. Pazzini, P. Ronchese, R. Rossin, F. Simonetto, A. Tiko, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle
INFN Sezione di Pavia , Università di Pavia , Pavia, Italy
A. Braghieri, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo
INFN Sezione di Perugia , Università di Perugia , Perugia, Italy
M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga
INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa , Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, L. Bianchini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, F. Fiori, L. Giannini, A. Giassi, M.T. Grippo, F. Ligabue, E. Manca, G. Mandorli, A. Messineo, F. Palla, A. Rizzi, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini
INFN Sezione di Roma , Sapienza Università di Roma , Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, D. Del Re, E. Di Marco, M. Diemoz, S. Gelli, E. Longo, B. Marzocchi, P. Meridiani, G. Organtini, F. Pandolfi, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio
INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, S. Cometti, M. Costa, R. Covarelli, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher