Morita homotopy theory of \mathrm{C}^{*}\!-categories

Morita homotopy theory of -categories

Ivo Dell’Ambrogio Ivo Dell’Ambrogio, Universität Bielefeld, Fakultät für Mathematik, BIREP Gruppe, Postfach 10 01 31, 33501 Bielefeld, Germany ambrogio@math.uni-bielefeld.de www.math.uni-bielefeld.de/ ambrogio/  and  Gonçalo Tabuada Gonçalo Tabuada, Department of Mathematics, MIT, Cambridge, MA 02139, USA tabuada@math.mit.edu math.mit.edu/ tabuada
July 29, 2019
Abstract.

In this article we establish the foundations of the Morita homotopy theory of -categories. Concretely, we construct a cofibrantly generated simplicial symmetric monoidal Quillen model structure (denoted by ) on the category of small unital -categories. The weak equivalences are the Morita equivalences and the cofibrations are the -functors which are injective on objects. As an application, we obtain an elegant description of Brown-Green-Rieffel’s Picard group in the associated homotopy category . We then prove that is semi-additive. By group completing the induced abelian monoid structure at each Hom-set we obtain an additive category and a composite functor which is characterized by two simple properties: inversion of Morita equivalences and preservation of all finite products. Finally, we prove that the classical Grothendieck group functor becomes co-represented in by the tensor unit object.

Key words and phrases:
-categories, Model categories, Morita equivalence, Grothendieck group, Picard group.
2010 Mathematics Subject Classification:
46L05, 46M99, 55U35, 16D90.

1. Introduction

The theory of -categories, first developed by Ghez, Lima and Roberts [glr] in the mid-eighties, has found several useful applications during the last decades. Most notably, it has been used by Doplicher and Roberts [doplicher-roberts:new_duality, doplicher-roberts:endo] in the development of a duality theory for compact groups with important applications in algebraic quantum field theory and by Davis and Lück [davis-lueck] in order to include the Baum-Connes conjecture into their influential unified treatment of the -theoretic isomorphism conjectures. Several authors – see [mitchener:symm, mitchener:Cstar_cats, mitchner:KKth, mitchener:gpd] [joachim:KC*] [kandelaki:KK_K, kandelaki:multiplier, kandelaki:karoubi_villamayor, kandelaki:fredholm] [vasselli:bundles, vasselli:bundlesII] [zito:2C*]…– have subsequently picked up these strands of ideas and employed -categories in various operator-theoretic contexts, often in relation to Kasparov’s -theory. In most of the above situations -categories are only to be considered up to Morita equivalence, the natural extension of the classical notion of Morita(-Rieffel) equivalence between -algebras. Hence it is of key importance to development the foundations of a Morita theory of -categories.

A -functor between -categories is called a Morita equivalence if it induces an equivalence on the completions of and under finite direct sums and retracts. This operation , named saturation, can easily be performed without leaving the world of -categories; see §LABEL:subsec:saturated.

The first named author has initiated in [ivo:unitary] the study of -categories via homotopy-theoretic methods, in particular by constructing the unitary model structure, where the weak equivalences are the unitary equivalences of -categories. In the present article we take a leap forward in the same direction by establishing the foundations of the Morita homotopy theory of -categories. Our first main result, which summarizes Theorem LABEL:thm:morita_model, Propositions LABEL:prop:monoidal, LABEL:prop:simplicial and LABEL:prop:bousfield, and Corollary LABEL:cor:fibrant_replacement, is the following:

Theorem 1.1.

The category of (small unital) -categories and (identity preserving) -functors admits a Quillen model structure whose weak equivalences are the Morita equivalences and whose cofibrations are the -functors which are injective on objects. Moreover, this model structure is cofibrantly generated, symmetric monoidal, simplicial, and is endowed with a functorial fibrant replacement given by the saturation functor. Furthermore, it is a left Bousfield localization of the unitary model structure.

We have named this Quillen model the Morita model category of -categories (and denoted it by ) since two unital -algebras become isomorphic in the associated homotopy category if and only if they are Morita equivalent ( Morita-Rieffel equivalent) in the usual sense; see Proposition LABEL:prop:Morita_agreement. The Morita homotopy category becomes then the natural setting where to formalize and study all “up to Morita equivalence” phenomena. As an example we obtain an elegant conceptual description of the Picard group (see §LABEL:sec:Pic).

Proposition 1.2.

For every unital -algebra  there is a canonical isomorphism

(1.3)

between its automorphism group in the Morita homotopy category and its Picard group , as originally defined by Brown-Green-Rieffel in [brown-green-rieffel] using imprimitivity bimodules.

As a consequence, the left-hand-side of (1.3) furnishes us with a simple Morita invariant definition of the Picard group of any -category. Our second main result, which summarizes Theorems LABEL:thm:semi-additive and LABEL:thm:map_sum, Proposition LABEL:prop:morphisms_Morita, and Corollary LABEL:cor:new, is the following:

Theorem 1.4.

The homotopy category is semi-additive, i.e. it has a zero object, finite products, finite coproducts, and the canonical map from the coproduct to the product is an isomorphism. Its Hom-sets admit the following description

where denotes the -category of -functors from to the saturation of  and the equivalence relation on objects is unitary isomorphism. Moreover, the canonical abelian monoid structure thereby obtained on each Hom-set is induced by the direct sum operation on .

Intuitively speaking, Theorem 1.4 shows us that by forcing Morita invariance we obtain a local abelian monoid structure. By group completing each Hom monoid we obtain then an additive category and hence a composed functor

consult §LABEL:sec:K0 for details. Our third main result (see Theorem LABEL:thm:characterization) is the following:

Theorem 1.5.

The canonical functor takes values in an additive category, inverts Morita equivalences, preserves all finite products, and is universal among all functors having these three properties.

Our last main result, collecting Theorem LABEL:thm:co-representability and Proposition LABEL:prop:ring_comm, provides a precise link between our theory and the -theory of -algebras. Note that, since is symmetric monoidal, its tensor structure descends to and then extends easily to the group completion .

Theorem 1.6.

For every unital -algebra  there is a canonical isomorphism

(1.7)

of abelian groups, where the right-hand-side denotes the classical Grothendieck group of . When is moreover commutative, the usual ring structure on (induced by the tensor product of vector bundles) coincides with the to one obtained on the left-hand-side by considering as a ring object in the symmetric monoidal category .

As a consequence the left-hand-side of (1.7) provides us with an elegant Morita invariant definition of the Grothendieck group of any -category. Note that by Theorem 1.5 this definition is completely characterized by a simple universal property. In Remark LABEL:remark:Ktheory we compare our approach with those of other authors.

Conventions

We use the symbol  to denote the base field, which is fixed and is either or . Except when stated otherwise, all -categories are small (they have a set – as opposed to a class – of objects) and unital (they have an identity arrow for each object ). Similarly, all -functors are unital (they preserve the identity maps ). We will generally follow the notations from [ivo:unitary].

2. Direct sums and idempotents

In this section we consider, in the context of -categories, the additive hull and the idempotent completion constructions. Both will play a central role in the sequel.

2.1. -categories, -categories, Banach categories, and -categories

For the reader’s convenience, we start by recalling some standard definitions and facts; consult [ivo:unitary]*§1 for more details and examples. Recall that an -category is a category enriched over -vector spaces (see [kelly:enriched_book]); concretely, each Hom-set carries an -vector space structure for which composition is -bilinear. A -category  is an -category which comes equipped with an involution on arrows. More precisely, the involution is a conjugate-linear contravariant endofunctor on  which is the identity on objects and which is its own inverse. The arrow is called the adjoint of . A Banach category is an -category where moreover each Hom-space is a Banach space in such a way that for all composable arrows and for all identity arrows. A -category is simultaneously a Banach category and a -category, where moreover the norm is a -norm, i.e. for every arrow we require that:

  • the -equality holds;

  • the arrow is a positive element of the endomorphism -algebra , i.e. its operator-theoretic spectrum is contained in .

A -functor is a functor preserving the -linear structure and the involution. If are -categories, will automatically be norm-reducing on each Hom-space, and if is moreover faithful (i.e. injective on arrows) it will automatically be isometric, i.e. norm preserving: (the converse being obvious).

Notation 2.1.

The category of all (small) -categories and all (identity preserving) -functors will be denoted by .

Example 2.2.

Every (unital) -algebra  can be identified with the (small) -category with precisely one object and whose endomorphisms algebra is given by . Then a -functor between unital -algebras is the same as a unital -homomorphism. The collection of all Hilbert spaces and all bounded linear operators between them (together with the operator norm and the usual adjoint operators) is an example of a (large) -category .

The axioms of a -category are designed so that the following basic standard result holds: every small -category admits a concrete realization as a sub--category of . This is essentially the GNS construction; see [glr]*Prop. 1.14. The converse is also clear: every norm-closed -closed subcategory of inherits the structure of a -category.

Notation 2.3.

Given a -category (or a -category, Banach category,…), we denote by its underlying category that one obtains by simply forgetting some of its structure. This defines a faithful functor from -categories to ordinary (small) categories and ordinary functors. Similarly, we have a forgetful functor to (small) -categories and -linear functors between them.

2.2. Some -categorical notions

In the context of -categories, or more generally -categories, it is natural to require all categorical properties and constructions to be compatible with the involution. The following notions concern objects, morphisms, and more generally diagrams inside a given -category and the terminology is inspired by the example .

A unitary morphism (or -isomorphism) is an invertible morphism such that . We say that two objects are unitarily isomorphic if there exists a unitary morphism between them. An isometry (or -mono) is an arrow such that . We call  a retract of  (or -retract); whenever we say that is a retract of , we will assume that an isometry has been specified. Dually, a coisometry (or -epi) is a morphism such that ; note that is an isometry if and only if is a coisometry.

A projection (or -idempotent) is a self-adjoint idempotent morphism . If is an isometry, then is a projection on . In this case we say that has range object , or that is the range projection of . If and are two retracts of the same object , it follows that and  are range objects for the same projection (i.e. ) if and only if there exists a unitary isomorphism such that . Therefore, if the range object of a projection exists then it is uniquely determined up to a unique unitary isomorphism.

Remark 2.4.

Note that identity maps are both projections and unitary isomorphisms. Moreover, in a -category all unitaries, isometries and projections automatically have norm one or zero; indeed, this is well-known for bounded operators between Hilbert spaces, and as we have recalled every -category is isomorphic to a -category of such operators. (Generally speaking, this reasoning is a quick way to gain some intuition on -categories for those familiar with Hilbert spaces.)

A direct sum (or -biproduct) of finitely many objects is an object together with isometries such that the following equations hold:

where is the evident Kronecker delta: if or otherwise.

Remark 2.5.

By definition, the direct sum is also a biproduct in the underlying -category, and thus both a product and a coproduct in the underlying category . Moreover, in analogy with retracts, a direct sum is uniquely determined up to a unique unitary isomorphism.

Remark 2.6.

A -functor between -categories preserves each one of the above notions.

Definition 2.7.

Let and be two -categories. A unitary equivalence (or -equivalence) between and  is a -functor for which there exist a -functor and natural unitary isomorphisms and . Equivalently, is fully faithful and unitarily essentially surjective, i.e. for every there exists an and a unitary isomorphism in .

It can be shown that any two objects in a -category are isomorphic if and only if they are unitarily isomorphic; see [ivo:unitary]*Prop. 1.6. In particular, a -functor between -categories is unitarily essentially surjective if and only if it is essentially surjective in the usual sense. Therefore, it is a unitary equivalence if and only if it is an equivalence of the underlying categories (that is, if and only if is an equivalence of categories).

2.3. Adding direct sums

Let be a -category. We say that is additive if its underlying -category is additive. This amounts to requiring that admits biproducts, or equivalently that admits a zero object, all finite products and coproducts, and that the canonical maps comparing coproducts with products are isomorphisms (cf. §LABEL:sec:semi_add). As it will become apparent in what follows, this is the same as requiring that admits all finite (-compatible) direct sums.

Definition 2.8 (Additive hull ; see [mitchener:symm]*Def. 2.12).

The additive hull of is the -category defined as follows: the objects are the formal words on the set and the Hom-spaces are the spaces of matrices, written as follows:

Composition is the usual matrix multiplication, , and adjoints are given by the conjugate-transpose . There exists a unique -norm on making the canonical fully faithful -functor

isometric. Moreover, is complete for this norm, i.e. it is a Banach category and so in fact a -category. (For a quick proof of these facts choose a faithful, and hence isometric, representation . Since the -functor  has an evident extension to , one can now argue with bounded operators). Given a -functor , we define a -functor by setting

for all objects and arrows . We obtain in this way a well-defined additive hull functor .

Remark 2.9.

Note that the object , together with the evident matrices

is a canonical choice for the direct sum in of the objects . In particular, the empty word provides a zero object . Hence admits all finite direct sums and thus it is additive (cf. Remark 2.5). Note also that admits all finite direct sums if and only if is a unitary equivalence. For this use the fact that is fully faithful and that direct sums are unique up to a unitary isomorphism.

Notation 2.10.

In the following, whenever we write in some additive hull , we mean the canonical direct sum with the above matrix isometries. Similarly, by  we will always mean the empty word.

Remark 2.11.

If we ignore norms and adjoints, the same precise construction as in Definition 2.8 provides an additive hull for any -linear category . Hence  is additive (i.e. admits finite biproducts) if and only if is an equivalence. Note that in the case of a -category  we have the equality .

The additive hull can be characterized by the following 2-universal property.

Lemma 2.12.

Let be an additive -category. Then the induced -functor

is a unitary equivalence.

Here, denotes the internal Hom functor, which for two -categories yields the -category of -functors and bounded natural transformations first introduced in [glr]*Prop. 1.11; see also [ivo:unitary].

Proof.

Every -functor extends along by the formula , which requires the choice of direct sums in . Nonetheless, the extension is unique up to unitary isomorphism of -functors. Every bounded natural transformation extends diagonally to a bounded natural transformation and the extension is unique since every (bounded) natural transformation must be diagonal: if and then

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
352811
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description