Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at \sqrt{s}=2.76\,\text{TeV}
Abstract

A measurement of the underlying event (UE) activity in proton-proton collisions is performed using events with charged-particle jets produced in the central pseudorapidity region () and with transverse momentum . The analysis uses a data sample collected at a centre-of-mass energy of 2.76 with the CMS experiment at the LHC. The UE activity is measured as a function of in terms of the average multiplicity and scalar sum of transverse momenta () of charged particles, with and , in the azimuthal region transverse to the highest jet direction. By further dividing the transverse region into two regions of smaller and larger activity, various components of the UE activity are separated. The measurements are compared to previous results at 0.9 and 7, and to predictions of several Monte Carlo event generators, providing constraints on the modelling of the UE dynamics.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)


CERN-PH-EP/2013-037 2019/\two@digits7/\two@digits13

CMS-FSQ-12-025                                         


Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at


The CMS Collaboration111See Appendix A for the list of collaboration members



Abstract

Please replace the default abstract using the abstract command.


Published in the Journal of High Energy Physics as doi:10.1007/JHEP09(2015)137.

© 2019 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

1 Introduction

Hadron production in high-energy proton-proton (pp) collisions originates from multiple scatterings of the partonic constituents of the protons at central rapidities, and from “spectator” (noncolliding) partons emitted in the very forward direction. The produced partons reduce their virtuality through gluon radiation and quark-antiquark splittings, and finally fragment into hadrons at scales approaching 0.2 (). Usually, one separates the produced hadrons into two classes: those coming directly from the fragmentation of partons resulting from the scattering with the largest momentum transfer (hard scattering) in the event, and the rest (underlying event, or UE). The UE thus consists of hadrons coming from (i) initial- and final-state radiation (ISR, FSR) from the hard scattering, (ii) softer partonic scatters in the same collision (multiple parton interactions, or MPI) possibly with their own initial- and final-state radiation, and (iii) proton remnants concentrated along the beam direction.

An accurate understanding of the UE is required for precise measurements of standard model processes at high energies and searches for new physics. Indeed, the UE affects measurements of isolated high transverse momentum leptons or photons, and it dominates most of the hadronic activity from the overlapping collisions taking place in a given bunch crossing (pileup) at the high luminosities achieved by the CERN LHC. The semi-hard and low-momentum partonic processes, which dominate the UE, cannot be adequately calculated with perturbative Quantum Chromodynamics (pQCD) methods alone, and require a phenomenological description containing parameters that must be tuned to data.

The topological structure of interactions with a hard scattering can be used to define experimental observables sensitive to the UE. One example is the study of particle properties in regions away from the direction of the products of the hard scattering. At the Tevatron, the CDF experiment measured UE observables using inclusive jet and Drell–Yan (DY) events in collisions at centre-of-mass energies , 1.8, and 1.96 [1, 2, 3]. In collisions at the LHC, the ALICE, ATLAS, and CMS experiments have carried out UE measurements at and 7 using events containing a leading (highest ) charged-particle jet [4, 5, 6] or a leading charged particle [7, 8], or a DY lepton pair [9]. In this paper, we study the UE activity in collisions at by measuring the average multiplicity and scalar transverse momentum sum () densities of charged particles in the azimuthal region orthogonal to the direction of the leading charged-particle jet, referred to as the transverse region.

At a given centre-of-mass energy, the UE activity is expected to increase with the momentum transfer between the interacting partons (hard scale). On average, increasingly hard parton interactions result from collisions with decreasing impact parameters between the two protons, which in turn enhance the overall hadronic activity originating from MPI until a saturation is reached for central collisions with maximum overlap [10, 11]. At the same time, the activity related to the ISR and FSR components also increases with the hard scale. For events with the same hard scale, probed by the of jets or DY pairs, the MPI activity rises with , as more partons are expected in the protons at increasingly smaller parton fractional momenta [10, 11]. Hence, studying the UE as a function of the hard scale at several centre-of-mass energies provides an insight into the UE dynamics and its evolution with the collision energy, further constraining the model parameters.

The paper is organised as follows. Section 2 presents the main features of the Monte Carlo (MC) event generators used in this study to provide a description of the UE properties. Section 3 briefly describes the experimental methods, observables, event and track selection, as well as the corrections and systematic uncertainties of the measurements. The results are presented in Section 4, and summarised in Section 5.

2 Monte Carlo event generators

In this analysis, the pythia6 [12], pythia8 [13], and herwig++ [14] MC event generators are used with various tunes that are described below. In pythia, the 22 parton scatterings, including MPI, are described by leading-order pQCD, with the cross section divergence regularised by introducing a low- infrared cutoff (), such that the diverging term is replaced by . There are various tunable parameters that control the behaviour of this regularisation, the matter distribution of partons in the transverse plane within the hadrons, and the final-state colour reconnection effects among the produced partons. When QCD radiation is modelled via a -ordered evolution, the MPI and parton showers are interleaved in one common sequence of decreasing values [15]. For the latest version of pythia6 only ISR showers and MPI are interleaved, while in pythia8 FSR showers are also included. The final nonperturbative transition of partons to hadrons is described by the Lund string fragmentation model [16].

Another general-purpose generator, herwig++, is similar to pythia, but uses angular-ordered parton showers and the cluster model [14] for hadronisation. It has an MPI model similar to the one used by pythia, with tunable parameters for regularising the partonic cross sections at low momentum transfer, but does not include the interleaved evolution with ISR and FSR.

Both MC models incorporate multiple parton collisions “perturbatively”—i.e. based on a “regularisation” of the underlying pQCD subprocesses’ cross sections — but require a nonperturbative ansatz for the impact parameter profile of the colliding protons. The frequency of MPI is then generated by assuming a Poissonian distribution of the number of elementary partonic interactions over the overlapping volume, with the average number depending on the impact parameter of the hadronic collision [10, 11]. The MPI cross section is dominated by scatterings with semi-hard momentum transfers, O(1–2), involving low- partons, and thus shows a stronger dependence on the evolution of the low- infrared cutoff, and on the incoming parton densities than the single hard-scattering interactions [10, 11]. In pythia6, pythia8 and herwig++, the energy dependence of MPI is mostly controlled by the energy evolution of the low- infrared cutoff parameter ,which follows a (tunable) power law dependence on the centre-of-mass energy [12, 13, 14]. The UE activity accompanying various types of hard scattering processes is well described by MC event generators, [5, 4, 8, 7, 9], illustrating the universality of MPI in different event topologies and hard-scattering production processes. Such a universality is confirmed by the similarity between the UE activity measured in DY [9] and jet-dominated events [5, 4, 8, 7], despite their different underlying parton radiation patterns.

In this analysis, several event generator tunes are used. These are the pythia6 (version 6.426 [12]) tunes Z2, Z2*, and CUETP6S1 [17], pythia8 (version 8.175  [13]) tunes 4C [18] and CUETP8S1 [17], and herwig++ 2.7 with tune UE-EE-5C [14, 19]. All of these tunes use the CTEQ6L1 [20] parton density function. The energy dependence of  in these tunes is parameterised as , where , , and are tune parameters summarised in table 2. These parameters were obtained by tuning to different data sets. The 4C tune was derived from early LHC data on charged particle multiplicities [18]. Z2, Z2*, CUETP6S1 and CUETP8S1 were tuned to the previous UE results from CMS at 0.9 and 7  [5]. In addition, CUETP6S1 tune also included CDF data [21] at 0.3, 0.9, and 1.96, while CUETP8S1 tune used 0.9 and 1.96 data for tuning. The UE-EE-5C was tuned with the ATLAS UE data at 0.9 and 7 [7] and CDF UE data at 0.3, 0.9, and 1.96 [21]. None of the tunes make use of data at 2.76, making this a good test of interpolation between other centre-of-mass energies. The detector response was simulated in detail by using the geant4 package [22], and simulated events were processed and reconstructed in the same manner as collision data.

Tune  (GeV)  (GeV)
Z2 1.832 1800 0.275
Z2* 1.921 1800 0.227
CUETP6S1 1.9096 1800 0.2479
4C 2.085 1800 0.19
CUETP8S1 2.1006 1800 0.2106
UE-EE-5C 3.91 7000 0.33
Table 2: Summary of the parameters of the Monte Carlo generator tunes.

3 Experimental methods

3.1 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume there are several complementary detectors: a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The silicon tracker measures charged particles within the pseudorapidity range . For non-isolated particles of and , the track resolutions are typically 1.5% in , and 25–90 (45–150) in the transverse (longitudinal) impact parameter [23]. Two of the CMS subdetectors acting as LHC beam monitors, the Beam Scintillation Counters (BSC) and the Beam Pick-up Timing for the eXperiments (BPTX) devices, are used to trigger the detector readout. The BSC are located along the beam line on each side of the Interaction Point (IP) at a distance of 10.86 m and cover the range . The two BPTX devices, located inside the beam pipe at distances of 175 m from the IP, are designed to provide precise information on the bunch structure and timing of the incoming beams, with a time resolution better than 0.2 ns. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [24].

3.2 Event and track selection

The present analysis is performed with a data sample of proton-proton collisions collected with the CMS detector at during a dedicated run in March 2011, corresponding to an integrated luminosity of 0.3. In 6.2% of the events there is an extra (pileup) collision, corresponding to an average of 0.12 overlapping collisions. Minimum bias events were recorded by requiring activity in both BSC counters in coincidence with signals from both BPTX devices (in contrast to Ref. [5], where only one of the BPTX devices is required). To reduce the statistical uncertainty for the highly prescaled minimum bias trigger at large , single-jet triggers based on information from the calorimeters, with thresholds at 20 and 40, were also used to collect data (differently from Ref. [5], where thresholds of 30 and 50 are used). Events identified as originating from beam-halo background were removed from the sample [25]. The event selection requires exactly one primary vertex with more than four degrees of freedom (approximately 4 particles) and located no more than 10 from the centre of the luminous region (beamspot) in the -direction.

For each selected event, the reconstructed track collection needs to be freed from undesired tracks, namely secondaries and background from track combinatorics and beam halo tracks. Tracks not corresponding to actual charged particles (misreconstructed tracks) are suppressed by imposing the high-purity selection criteria [23]. Secondary decays are suppressed by requiring that the impact parameter significance (measure of the distance between the track and the primary vertex in the -plane) and the significance in the -direction to be each less than 3. In order to remove tracks with poor momentum measurement, we require the relative uncertainty in the momentum measurement to be less than 5%. The average reconstruction efficiency for the selected tracks is about 85% and drops to 75% for tracks with and , while the track misreconstruction rate is about 2%, increasing to about 8% for tracks with and . Track efficiencies are determined by matching the generated level and reconstructed level tracks.

The event hard scale and reference direction, for the identification of the UE sensitive region, are defined using leading “track jets” [26] or charged-particle jets. The use of track jets makes the transition of leading tracks to leading jets more continuous and extends the coverage to larger values. These jets are reconstructed from tracks with and using the Seedless Infrared-Safe Cone (SISCone) [27] algorithm with distance parameter of 0.5. Although anti- [28] is now the preferred algorithm at the LHC, the SISCone algorithm is chosen in this analysis for compatibility with previous results [5]. Furthermore, a comparison of the UE activity obtained at generator level using SISCone and anti- algorithms has been performed, finding differences of only a few percent for . From all reconstructed track jets with and , the one with the largest is selected. Only events containing at least one track jet fulfilling these criteria are considered for this analysis. Jets are reconstructed with a matching efficiency of 80% at and up to 95% for . Trigger conditions are chosen to keep the trigger efficiency as uniform as possible and close to 100%. For the ranges in [1, 25), [25, 50), and [50, 100), we use the minimum-bias and the two single-jet samples, respectively, corresponding to about 11M, 50k, and 23k selected events.

3.3 Observables

In this analysis we follow the same methodology as in the previous studies of the UE activity in events with a leading charged-particle jet, carried out at and  [5]. Charged-particle jets and charged particles produced at central pseudorapidity () with and 0.5, respectively, are used to study the UE properties. The direction of the leading charged-particle jet in the event is used to select charged particles in the transverse region defined by , where is the relative azimuthal distance between a charged particle and the leading jet. The UE is measured in terms of particle and densities, as a function of the leading , which is used as an estimate for the hard scale of the interaction. The particle density () and density () are computed, respectively, as the average number of primary charged particles, and the average of their scalar sum, each per unit of and of .

As suggested in Ref. [29], the transverse region can be studied in detail by separating — independently for the particle multiplicity and for the sum — the and the ranges, and identifying the regions with higher and lower activities, referred to as transMAX and transMIN, respectively. The two regions should have roughly equal activities for most events since the dominant production channel, two-jet production, is topologically symmetrical. In a three-jet topology, the transMAX side will capture the activity from the third jet. The difference between the measured densities in the transMAX and transMIN regions is called the transDIF density. The resulting particle and densities are expected to be sensitive to different components of the UE activity.

Since the transMAX region contains the third jet, while both transMAX and transMIN regions receive contributions from MPI and beam remnants, the transMIN activity is sensitive to MPI and beam remnants, and the transDIF activity is sensitive to harder initial- and final-state radiation. The present approach extends the methodology employed in Ref. [5]

3.4 Corrections and systematic uncertainties

The UE observables ( and ) described in Section 3.3 are reconstructed from selected tracks, with and , in the region transverse to the leading track-jet. These measured observables are corrected for detector effects and selection efficiencies to reflect the primary charged-particle activity using a 2-dimensional, iterative unfolding technique [30] based on response matrices that correlate the generated and reconstructed level observables. These matrices are constructed from the generator level and reconstructed level UE and observables for pythia6 Z2 events; this procedure accounts for detector effects and inefficiencies. The unfolding matrices are applied to a pythia8 4C sample to estimate the systematic uncertainties related to the correction procedure. These vary between 0.2% and 4%, depending on the observable, region and .

Several other sources of systematic uncertainties may affect the results. These include the implementation of the simulation of the track and vertex selection criteria, tracker alignment and material content, background contamination, trigger conditions, and pileup contributions. The uncertainty in the simulation of the track selection is evaluated by applying various sets of selection criteria and comparing their effects on the data and on the simulated events. The impact parameter significance ranges are varied by one unit around the nominal window resulting in an effect on the densities of 0.6–4%. Replacing the high-purity selection by the simpler requirement and for the silicon strip and pixel detector layers, respectively, has an effect of up to 0.8%. Varying the fraction of misreconstructed tracks by 50% affects the densities by 0.4–0.6%. The description of inactive tracker material in the simulation is adequate within 5% [4], and increasing the material densities by 5% in the simulation induces a change in the observables of 1%. The effects of tracker misalignment, precision in the IP position, and dead channels, evaluated by varying the detector conditions in the MC simulation, are each found to change the results by 0.1–0.3%. The effect of varying the trigger and vertex efficiencies within their uncertainties, as well as the effect of pileup contributions, all lead to a negligible effect.

Systematic uncertainties are largely independent of one another, but they are correlated among data points in each experimental distribution. They are added in quadrature to the statistical uncertainties and are shown in all figures. Systematic uncertainties mostly dominate the statistical ones, which are often smaller than the data points. Table 4 shows a summary of the systematic uncertainties as a range from the minimum to maximum values as they vary across region, observable and . The transMAX and transMIN regions tend to have a larger total systematic uncertainty than the other regions and the  observable tends to have a slightly larger total systematic uncertainty by about 0.2% compared to the observable. The total systematic uncertainty is large at low and decreases to a minimum at and then rises again up to a plateau for .

Source Systematic (%)
Unfolding procedure 0.2–4
Impact parameter significance 0.6–4
Fraction of misreconstructed tracks 0.4–0.6
Track selection 0.1–0.8
Material density 1
Dead channels 0.1
Tracker alignment 0.2–0.3
Interaction point position 0.2
Total 1.9–5.8
Table 4: Summary of the systematic uncertainties (in percentage) due to various sources. The values range from the minimum to maximum from all regions, observables, and across different values.

4 Results

In Fig. 1, the (a) particle and (b) densities, after unfolding, are shown in the transverse region, relative to the leading charged-particle jet, as a function of . A steep rise of the underlying event activity in the transverse region is seen up to , followed by a “saturation” (plateau-like) region, with nearly constant multiplicity and small density increase. In Fig. 2, the (left panes) particle and (right panes) densities after unfolding are shown as a function of in the transverse region with maximum and minimum activities (transMAX and transMIN), respectively. In the transMIN region, the amount of UE activity is roughly half that in the transMAX region. The dependences observed in the two regions are also quite different. At high , the distributions show a slow rise in the transMAX region, while for transMIN the flattening of the UE activity as a function of is more pronounced. The corresponding distributions in the difference between the transMAX and transMIN regions (transDIF) are presented in Fig. 3. The particle and densities both show a rise with , and the plateau-like region above —seen for distributions in the individual transMAX and transMIN regions—is replaced by an increase as a function of .

Figure 1: Measured (left) particle density, and (right) density, in the transverse region relative to the leading charged-particle jet in the event (, ), as a function . The data (symbols) are compared to various MC simulations (curves). The ratios of MC simulations to the measurements are shown in the bottom panels. The inner error bars correspond to the statistical uncertainties, and the outer error bars represent the statistical and systematic uncertainties added in quadrature.
Figure 2: Measured (left panes) particle density, and (right panes) density, in the transMAX and transMIN regions (, relative to the leading charged-particle jet in the event, with maximum/minimum UE activity), as a function of . The definitions of the symbols and error bars are the same as for Fig. 1.
Figure 3: Measured transDIF activity (see text for its definition) for (left) particle density, and (right) density, as a function of . The definitions of the symbols and error bars are the same as for Fig. 1.

The rapid increase of the UE activity with in the region below 8 is mainly attributed to the increase of MPI activity as the hard scale of the interaction increases [11]. This fast rise is followed by a saturation region (for the transverse and especially transMIN distributions), with nearly constant multiplicity and small density increase. This behaviour is expected as a consequence of a nearly full overlap of the colliding protons in interactions yielding the hardest parton-parton scatterings. When collisions occur for very small impact parameter, the amount of MPI activity saturates [10, 11]. Such a distinct -dependent pattern in the amount of UE activity (sharp rise followed by a plateau above the transition) is clearly seen for all the observables presented, especially in the transMIN region. In contrast, the transMAX and transDIF distributions show a continuous rise with also in the high- regime. This is expected to be caused by contributions from initial- and final-state radiation in the transverse region [29]. Following such an interpretation, the present results provide constraints on the modelling of the different UE components.

The results are compared to recent tunes of the pythia and herwig++ event generators. All pythia6 and pythia8 tunes predict the distinctive change in the amount of activity as a function of the leading jet within 5–10%. The herwig++ UE-EE-5C tune also provides a fair description of the data. In general, the data-model agreement improves for the transDIF densities. The continuous increase observed at high- in the transDIF distributions is well reproduced by all MC tunes, corroborating the hypothesis of increased contributions of QCD radiation from the hardest scattered partons. The same trend is observed in collisions at 1.96 [3]. The latest pythia6 (pythia8) tune CUETP6S1 (CUETP8S1) improves the description of the data in comparison to the results obtained with the parameters of the previous Z2* (4C) tune.

The centre-of-mass energy dependence of the UE activity in the transverse region is presented in Fig. 4 as a function of for , 2.76, and 7 [5, 4]. A fast rise with increasing centre-of-mass energy of the activity in the transverse region is observed for the same value of the leading charged-particle . This is expected from the higher parton densities probed at low- in the protons, and the larger phase space available for parton radiation. All tunes predict a centre-of-mass energy dependence of the UE activity which is consistent with that of the data.

Figure 4: Comparison of UE activity at , 2.76, and 7 for (left) particle density, and (right) density, as a function of  [5, 4]. The data (symbols) are compared to various MC simulations (curves). The definition of the error bars is the same as for Fig. 1.

The measurements presented here provide constraints for the development and tuning of the underlying event description implemented in MC models. In particular, they may allow improving the modelling of key ingredients—such as multiparton interactions, QCD radiation, energy evolution of the transverse proton profile, etc.—, which will play an increasing role at higher proton-proton collision energies.

5 Summary

The measurement of the underlying event (UE) activity in proton-proton collisions at has been presented using events with a charged-particle jet produced at central pseudorapidity () with transverse momenta . This analysis complements the results of previous similar measurements at and .

The UE activity is measured in the transverse region and further studied in terms of the transMAX, transMIN and transDIF activities. A steep rise of the underlying activity in the transverse region is seen with increasing leading jet . This fast rise is followed by a leveling above , with nearly constant particle density and small density increase. Such a distinct pattern (fast rise followed by a leveling of the UE hadronic activity) is clearly seen for all the observables in the various regions, and is compatible with the impact parameter picture of collisions featuring an increasing number of MPI for increasing overlap followed by a saturation of hadron production once the hardest most-central collisions are reached. The transDIF density distributions show an increase of the activity as a function of , corroborating the hypothesis of more intense ISR and FSR from the increasingly harder parton-parton scatter.

The results are compared to recent tunes of pythia and herwig++ Monte Carlo event generators. The pythia6, pythia8, and herwig++ tunes describe the data within 5 to 10%. All MC tunes predict a collision energy dependence of the hadronic activity similar to that observed in the data. The ability of the latest Monte Carlo generator tunes to describe the data confirms the validity of the tunes and lends confidence to the predictions of UE activity for higher collision energies.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation.

References

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\@textsuperscript1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\@textsuperscript1, V. Knünz, A. König, M. Krammer\@textsuperscript1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady\@textsuperscript2, B. Rahbaran, H. Rohringer, J. Schieck\@textsuperscript1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\@textsuperscript1 National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. De Bruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs Université Libre de Bruxelles, Bruxelles, Belgium
P. Barria, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, D. Dobur, G. Fasanella, L. Favart, A.P.R. Gay, A. Grebenyuk, T. Lenzi, A. Léonard, T. Maerschalk, A. Mohammadi, L. Perniè, A. Randle-conde, T. Reis, T. Seva, C. Vander Velde, P. Vanlaer, J. Wang, R. Yonamine, F. Zenoni, F. Zhang\@textsuperscript3 Ghent University, Ghent, Belgium
K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\@textsuperscript4, O. Bondu, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco\@textsuperscript5, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov\@textsuperscript6, L. Quertenmont, M. Selvaggi, M. Vidal Marono Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, G.H. Hammad Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\@textsuperscript7, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\@textsuperscript7, A. Vilela Pereira Universidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, A. De Souza Santos, S. Dogra, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, C.S. Moon\@textsuperscript8, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina\@textsuperscript9, F. Romeo, S.M. Shaheen, J. Tao, C. Wang, Z. Wang, H. Zhang State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, L. Sudic University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic
M. Bodlak, M. Finger\@textsuperscript10, M. Finger Jr.\@textsuperscript10 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
R. Aly\@textsuperscript11, S. Aly\@textsuperscript11, Y. Assran\@textsuperscript12, S. Elgammal\@textsuperscript13, A. Ellithi Kamel\@textsuperscript14, A. Lotfy\@textsuperscript15, M.A. Mahmoud\@textsuperscript15, A. Radi\@textsuperscript13\@textsuperscript16, A. Sayed\@textsuperscript16\@textsuperscript13 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, M. Machet, J. Malcles, J. Rander, A. Rosowsky, M. Titov, A. Zghiche Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, E. Chapon, C. Charlot, T. Dahms, O. Davignon, N. Filipovic, A. Florent, R. Granier de Cassagnac, S. Lisniak, L. Mastrolorenzo, P. Miné, I.N. Naranjo, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, T. Strebler, Y. Yilmaz, A. Zabi Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram\@textsuperscript17, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\@textsuperscript17, X. Coubez, J.-C. Fontaine\@textsuperscript17, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, J.A. Merlin\@textsuperscript2, K. Skovpen, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, B. Courbon, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao Georgian Technical University, Tbilisi, Georgia
T. Toriashvili\@textsuperscript18 Tbilisi State University, Tbilisi, Georgia
I. Bagaturia\@textsuperscript19 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Edelhoff, L. Feld, A. Heister, M.K. Kiesel, K. Klein, M. Lipinski, A. Ostapchuk, M. Preuten, F. Raupach, J. Sammet, S. Schael, J.F. Schulte, T. Verlage, H. Weber, B. Wittmer, V. Zhukov\@textsuperscript6 RWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann\@textsuperscript2, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel\@textsuperscript20, H. Jung, A. Kalogeropoulos, O. Karacheban\@textsuperscript20, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann\@textsuperscript20, R. Mankel, I. Marfin\@textsuperscript20, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, M.Ö. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, K.D. Trippkewitz, C. Wissing University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, D. Gonzalez, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, R. Klanner, R. Kogler, T. Lapsien, T. Lenz, I. Marchesini, D. Marconi, D. Nowatschin, J. Ott, F. Pantaleo\@textsuperscript2, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, J. Schwandt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann\@textsuperscript2, U. Husemann, F. Kassel\@textsuperscript2, I. Katkov\@textsuperscript6, A. Kornmayer\@textsuperscript2, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, C. Wöhrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, A. Psallidas, I. Topsis-Giotis University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath\@textsuperscript21, F. Sikler, V. Veszpremi, G. Vesztergombi\@textsuperscript22, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\@textsuperscript23, J. Molnar, Z. Szillasi University of Debrecen, Debrecen, Hungary
M. Bartók\@textsuperscript24, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari National Institute of Science Education and Research, Bhubaneswar, India
P. Mal, K. Mandal, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U.Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, N. Nishu, J.B. Singh, G. Walia University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, Sh. Jain, R. Khurana, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\@textsuperscript2, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik\@textsuperscript25, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu\@textsuperscript26, G. Kole, S. Kumar, B. Mahakud, M. Maity\@textsuperscript25, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar\@textsuperscript25, K. Sudhakar, N. Sur, B. Sutar, N. Wickramage\@textsuperscript27 Indian Institute of Science Education and Research (IISER),  Pune, India
S. Sharma Institute for Research in Fundamental Sciences (IPM),  Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami\@textsuperscript28, A. Fahim\@textsuperscript29, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh\@textsuperscript30, M. Zeinali University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald INFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, S.S. Chhibra, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris\@textsuperscript2, R. Venditti, P. Verwilligen INFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana\@textsuperscript2, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini INFN Sezione di Catania , Università di Catania , CSFNSM ,  Catania, Italy
G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve INFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano, L. Viliani INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo INFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
M.E. Dinardo, S. Fiorendi, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni, S. Malvezzi, R.A. Manzoni, B. Marzocchi\@textsuperscript2, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\@textsuperscript2, M. Esposito, F. Fabozzi, A.O.M. Iorio, G. Lanza, L. Lista, S. Meola\@textsuperscript2, M. Merola, P. Paolucci\@textsuperscript2, C. Sciacca, F. Thyssen INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi\@textsuperscript2, N. Bacchetta, M. Bellato, D. Bisello, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, M. Dall’Osso\@textsuperscript2, T. Dorigo, S. Fantinel, F. Fanzago, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, M. Zanetti, P. Zotto, A. Zucchetta\@textsuperscript2, G. Zumerle INFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, M. Gabusi, A. Magnani, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, I. Vai, P. Vitulo INFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, D. Ciangottini\@textsuperscript2, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia, A. Spiezia INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov\@textsuperscript31, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccolo, R. Castaldi, M.A. Ciocci\@textsuperscript31, R. Dell’Orso, S. Donato\@textsuperscript2, G. Fedi, L. Foà, A. Giassi, M.T. Grippo\@textsuperscript31, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\@textsuperscript32, A.T. Serban, P. Spagnolo, P. Squillacioti\@textsuperscript31, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini INFN Sezione di Roma , Università di Roma ,  Roma, Italy
L. Barone, F. Cavallari, G. D’imperio\@textsuperscript2, D. Del Re, M. Diemoz, S. Gelli, C. Jorda, E. Longo, F. Margaroli, P. Meridiani, F. Micheli, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio, P. Traczyk\@textsuperscript2 INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono\@textsuperscript2, S. Argiro, M. Arneodo, R. Bellan, C. Biino, N. Cartiglia, M. Costa, R. Covarelli, A. Degano, G. Dellacasa, N. Demaria, L. Finco\@textsuperscript2, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Musich, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, F. Ravera, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staiano, U. Tamponi INFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, V. Candelise\@textsuperscript2, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son Chonbuk National University, Jeonju, Korea
J.A. Brochero Cifuentes, H. Kim, T.J. Kim, M.S. Ryu Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song Korea University, Seoul, Korea
S. Choi, Y. Go, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K. Lee, K.S. Lee, S. Lee, S.K. Park, Y. Roh Seoul National University, Seoul, Korea
H.D. Yoo University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania
A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, J.R. Komaragiri, M.A.B. Md Ali\@textsuperscript33, F. Mohamad Idris\@textsuperscript34, W.A.T. Wan Abdullah Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz\@textsuperscript35, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen Universidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda University of Auckland, Auckland, New Zealand
D. Krofcheck University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev\@textsuperscript36, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
V. Golovtsov, Y. Ivanov, V. Kim\@textsuperscript37, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
A. Bylinkin P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\@textsuperscript38, I. Dremin\@textsuperscript38, M. Kirakosyan, A. Leonidov\@textsuperscript38, G. Mesyats, S.V. Rusakov, A. Vinogradov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, L. Dudko, A. Ershov, A. Gribushin, L. Khein, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\@textsuperscript39, M. Ekmedzic, J. Milosevic, V. Rekovic National University of Singapore, Singapore, Singapore
W.Y. Wang Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan Garcia Instituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi\@textsuperscript40, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, T. du Pree, N. Dupont, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli\@textsuperscript41, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi\@textsuperscript42, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Silva, M. Simon, P. Sphicas\@textsuperscript43, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres\@textsuperscript22, N. Wardle, H.K. Wöhri, A. Zagozdzinska\@textsuperscript44, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, M. Rossini, A. Starodumov\@textsuperscript45, M. Takahashi, V.R. Tavolaro, K. Theofilatos, R. Wallny, H.A. Weber Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\@textsuperscript46, M.F. Canelli, V. Chiochia, A. De Cosa, C. Galloni, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, D. Salerno, S. Taroni, Y. Yang National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, T.H. Doan, C. Ferro, M. Konyushikhin, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu National Taiwan University (NTU),  Taipei, Taiwan
R. Bartek, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, F. Fiori, U. Grundler, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, M. Miñano Moya, E. Petrakou, J.F. Tsai, Y.M. Tzeng Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee Cukurova University, Adana, Turkey
A. Adiguzel, S. Cerci\@textsuperscript47, C. Dozen, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal\@textsuperscript48, A. Kayis Topaksu, G. Onengut\@textsuperscript49, K. Ozdemir\@textsuperscript50, S. Ozturk\@textsuperscript51, B. Tali\@textsuperscript47, H. Topakli\@textsuperscript51, M. Vergili, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, B. Isildak\@textsuperscript52, G. Karapinar\@textsuperscript53, U.E. Surat, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey
E.A. Albayrak\@textsuperscript54, E. Gülmez, M. Kaya\@textsuperscript55, O. Kaya\@textsuperscript56, T. Yetkin\@textsuperscript57 Istanbul Technical University, Istanbul, Turkey
K. Cankocak, S. Sen\@textsuperscript58, F.I. VardarlıInstitute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold\@textsuperscript59, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\@textsuperscript60, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, L. Thomas, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas\@textsuperscript59, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko\@textsuperscript45, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, P. Sharp, A. Tapper, K. Uchida, M. Vazquez Acosta\@textsuperscript61, T. Virdee, S.C. Zenz Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA
A. Borzou, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova PANEVA, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, H. Wei, S. Wimpenny University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech\@textsuperscript62, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Gran, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, I. Suarez, W. To, C. West, J. Yoo California Institute of Technology, Pasadena, USA
D. Anderson, A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, S. Xie, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, F. Jensen, A. Johnson, M. Krohn, T. Mulholland, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, W. Sun, S.M. Tan, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, P. Wittich Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, Z. Hu, S. Jindariani, M. Johnson, U. Joshi, A.W. Jung, B. Klima, B. Kreis, S. Kwan, S. Lammel, J. Linacre, D. Lincoln, R. Lipton, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, A. Whitbeck, F. Yang, H. Yin University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Carnes, M. Carver, D. Curry, S. Das, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, J.F. Low, P. Ma, K. Matchev, H. Mei, P. Milenovic\@textsuperscript63, G. Mitselmakher, L. Muniz, D. Rank, L. Shchutska, M. Snowball, D. Sperka, S. Wang, J. Yelton Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez Florida State University, Tallahassee, USA
A. Ackert, J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, A. Khatiwada, H. Prosper, V. Veeraraghavan, M. Weinberg Florida Institute of Technology, Melbourne, USA
V. Bhopatkar, M. Hohlmann, H. Kalakhety, D. Mareskas-palcek, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria The University of Iowa, Iowa City, USA
B. Bilki\@textsuperscript64, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\@textsuperscript65, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok\@textsuperscript54, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, K. Nash, M. Osherson, M. Swartz, M. Xiao, Y. Xin The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, R. Stringer, Q. Wang, J.S. Wood Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze, S. Toda Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, K. Pedro, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Mcginn, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova University of Minnesota, Minneapolis, USA
B. Dahmes, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco, S. Won University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\@textsuperscript36, T. Pearson, M. Planer, R. Ruchti, G. Smith, N. Valls, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski University of Puerto Rico, Mayaguez, USA
S. Malik Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti The Rockefeller University, New York, USA
L. Demortier Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier, A. York Texas A&M University, College Station, USA
O. Bouhali\@textsuperscript66, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon\@textsuperscript67, V. Krutelyov, R. Montalvo, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer\@textsuperscript2 Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood, F. Xia Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis, B. Gomber, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods †: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3:  Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4:  Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5:  Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6:  Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7:  Also at Universidade Estadual de Campinas, Campinas, Brazil
8:  Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
9:  Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Now at Helwan University, Cairo, Egypt
12: Also at Suez University, Suez, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Also at Cairo University, Cairo, Egypt
15: Now at Fayoum University, El-Fayoum, Egypt
16: Now at Ain Shams University, Cairo, Egypt
17: Also at Université de Haute Alsace, Mulhouse, France
18: Also at Tbilisi State University, Tbilisi, Georgia
19: Also at Ilia State University, Tbilisi, Georgia
20: Also at Brandenburg University of Technology, Cottbus, Germany
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Eötvös Loránd University, Budapest, Hungary
23: Also at University of Debrecen, Debrecen, Hungary
24: Also at Wigner Research Centre for Physics, Budapest, Hungary
25: Also at University of Visva-Bharati, Santiniketan, India
26: Now at King Abdulaziz University, Jeddah, Saudi Arabia
27: Also at University of Ruhuna, Matara, Sri Lanka
28: Also at Isfahan University of Technology, Isfahan, Iran
29: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
31: Also at Università degli Studi di Siena, Siena, Italy
32: Also at Purdue University, West Lafayette, USA
33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
39: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
40: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
41: Also at National Technical University of Athens, Athens, Greece
42: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
43: Also at University of Athens, Athens, Greece
44: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
45: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
46: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
47: Also at Adiyaman University, Adiyaman, Turkey
48: Also at Mersin University, Mersin, Turkey
49: Also at Cag University, Mersin, Turkey
50: Also at Piri Reis University, Istanbul, Turkey
51: Also at Gaziosmanpasa University, Tokat, Turkey
52: Also at Ozyegin University, Istanbul, Turkey
53: Also at Izmir Institute of Technology, Izmir, Turkey
54: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
55: Also at Marmara University, Istanbul, Turkey
56: Also at Kafkas University, Kars, Turkey
57: Also at Yildiz Technical University, Istanbul, Turkey
58: Also at Hacettepe University, Ankara, Turkey
59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
61: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
62: Also at Utah Valley University, Orem, USA
63: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
64: Also at Argonne National Laboratory, Argonne, USA
65: Also at Erzincan University, Erzincan, Turkey
66: Also at Texas A&M University at Qatar, Doha, Qatar
67: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
174738
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description