Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon b-tagged Events

Measurement of the Top Quark Mass Using the Invariant Mass of Lepton Pairs in Soft Muon -tagged Events

T. Aaltonen Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    J. Adelman Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    T. Akimoto University of Tsukuba, Tsukuba, Ibaraki 305, Japan    B. Álvarez González Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    S. Amerio Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    D. Amidei University of Michigan, Ann Arbor, Michigan 48109    A. Anastassov Northwestern University, Evanston, Illinois 60208    A. Annovi Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    J. Antos Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia    G. Apollinari Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Apresyan Purdue University, West Lafayette, Indiana 47907    T. Arisawa Waseda University, Tokyo 169, Japan    A. Artikov Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    W. Ashmanskas Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Attal Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    A. Aurisano Texas A&M University, College Station, Texas 77843    F. Azfar University of Oxford, Oxford OX1 3RH, United Kingdom    W. Badgett Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Barbaro-Galtieri Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    V.E. Barnes Purdue University, West Lafayette, Indiana 47907    B.A. Barnett The Johns Hopkins University, Baltimore, Maryland 21218    P. Barria Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    P. Bartos Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia    V. Bartsch University College London, London WC1E 6BT, United Kingdom    G. Bauer Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    P.-H. Beauchemin Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    F. Bedeschi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    D. Beecher University College London, London WC1E 6BT, United Kingdom    S. Behari The Johns Hopkins University, Baltimore, Maryland 21218    G. Bellettini Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    J. Bellinger University of Wisconsin, Madison, Wisconsin 53706    D. Benjamin Duke University, Durham, North Carolina 27708    A. Beretvas Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Beringer Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    A. Bhatti The Rockefeller University, New York, New York 10021    M. Binkley Fermi National Accelerator Laboratory, Batavia, Illinois 60510    D. Bisello Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    I. Bizjak University College London, London WC1E 6BT, United Kingdom    R.E. Blair Argonne National Laboratory, Argonne, Illinois 60439    C. Blocker Brandeis University, Waltham, Massachusetts 02254    B. Blumenfeld The Johns Hopkins University, Baltimore, Maryland 21218    A. Bocci Duke University, Durham, North Carolina 27708    A. Bodek University of Rochester, Rochester, New York 14627    V. Boisvert University of Rochester, Rochester, New York 14627    G. Bolla Purdue University, West Lafayette, Indiana 47907    D. Bortoletto Purdue University, West Lafayette, Indiana 47907    J. Boudreau University of Pittsburgh, Pittsburgh, Pennsylvania 15260    A. Boveia University of California, Santa Barbara, Santa Barbara, California 93106    B. Brau University of California, Santa Barbara, Santa Barbara, California 93106    A. Bridgeman University of Illinois, Urbana, Illinois 61801    L. Brigliadori Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    C. Bromberg Michigan State University, East Lansing, Michigan 48824    E. Brubaker Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    J. Budagov Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    H.S. Budd University of Rochester, Rochester, New York 14627    S. Budd University of Illinois, Urbana, Illinois 61801    S. Burke Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Burkett Fermi National Accelerator Laboratory, Batavia, Illinois 60510    G. Busetto Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    P. Bussey Glasgow University, Glasgow G12 8QQ, United Kingdom    A. Buzatu Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    K. L. Byrum Argonne National Laboratory, Argonne, Illinois 60439    S. Cabrera Duke University, Durham, North Carolina 27708    C. Calancha Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    M. Campanelli Michigan State University, East Lansing, Michigan 48824    M. Campbell University of Michigan, Ann Arbor, Michigan 48109    F. Canelli Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Canepa University of Pennsylvania, Philadelphia, Pennsylvania 19104    B. Carls University of Illinois, Urbana, Illinois 61801    D. Carlsmith University of Wisconsin, Madison, Wisconsin 53706    R. Carosi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    S. Carrillo University of Florida, Gainesville, Florida 32611    S. Carron Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    B. Casal Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    M. Casarsa Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Castro Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    P. Catastini Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    D. Cauz Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    V. Cavaliere Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    M. Cavalli-Sforza Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    A. Cerri Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    L. Cerrito University College London, London WC1E 6BT, United Kingdom    S.H. Chang Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    Y.C. Chen Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    M. Chertok University of California, Davis, Davis, California 95616    G. Chiarelli Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    G. Chlachidze Fermi National Accelerator Laboratory, Batavia, Illinois 60510    F. Chlebana Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Cho Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    D. Chokheli Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    J.P. Chou Harvard University, Cambridge, Massachusetts 02138    G. Choudalakis Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    S.H. Chuang Rutgers University, Piscataway, New Jersey 08855    K. Chung Fermi National Accelerator Laboratory, Batavia, Illinois 60510    W.H. Chung University of Wisconsin, Madison, Wisconsin 53706    Y.S. Chung University of Rochester, Rochester, New York 14627    T. Chwalek Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    C.I. Ciobanu LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France    M.A. Ciocci Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    A. Clark University of Geneva, CH-1211 Geneva 4, Switzerland    D. Clark Brandeis University, Waltham, Massachusetts 02254    G. Compostella Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    M.E. Convery Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Conway University of California, Davis, Davis, California 95616    M. Cordelli Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    G. Cortiana Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    C.A. Cox University of California, Davis, Davis, California 95616    D.J. Cox University of California, Davis, Davis, California 95616    F. Crescioli Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    C. Cuenca Almenar University of California, Davis, Davis, California 95616    J. Cuevas Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    R. Culbertson Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J.C. Cully University of Michigan, Ann Arbor, Michigan 48109    D. Dagenhart Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Datta Fermi National Accelerator Laboratory, Batavia, Illinois 60510    T. Davies Glasgow University, Glasgow G12 8QQ, United Kingdom    P. de Barbaro University of Rochester, Rochester, New York 14627    S. De Cecco Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    A. Deisher Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    G. De Lorenzo Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    M. Dell’Orso Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    C. Deluca Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    L. Demortier The Rockefeller University, New York, New York 10021    J. Deng Duke University, Durham, North Carolina 27708    M. Deninno Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    P.F. Derwent Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Di Canto Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    G.P. di Giovanni LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France    C. Dionisi Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    B. Di Ruzza Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    J.R. Dittmann Baylor University, Waco, Texas 76798    M. D’Onofrio Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    S. Donati Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    P. Dong University of California, Los Angeles, Los Angeles, California 90024    J. Donini Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    T. Dorigo Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    S. Dube Rutgers University, Piscataway, New Jersey 08855    J. Efron The Ohio State University, Columbus, Ohio 43210    A. Elagin Texas A&M University, College Station, Texas 77843    R. Erbacher University of California, Davis, Davis, California 95616    D. Errede University of Illinois, Urbana, Illinois 61801    S. Errede University of Illinois, Urbana, Illinois 61801    R. Eusebi Fermi National Accelerator Laboratory, Batavia, Illinois 60510    H.C. Fang Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    S. Farrington University of Oxford, Oxford OX1 3RH, United Kingdom    W.T. Fedorko Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    R.G. Feild Yale University, New Haven, Connecticut 06520    M. Feindt Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    J.P. Fernandez Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    C. Ferrazza Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    R. Field University of Florida, Gainesville, Florida 32611    G. Flanagan Purdue University, West Lafayette, Indiana 47907    R. Forrest University of California, Davis, Davis, California 95616    M.J. Frank Baylor University, Waco, Texas 76798    M. Franklin Harvard University, Cambridge, Massachusetts 02138    J.C. Freeman Fermi National Accelerator Laboratory, Batavia, Illinois 60510    I. Furic University of Florida, Gainesville, Florida 32611    M. Gallinaro Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    J. Galyardt Carnegie Mellon University, Pittsburgh, PA 15213    J.E. Garcia University of Geneva, CH-1211 Geneva 4, Switzerland    A.F. Garfinkel Purdue University, West Lafayette, Indiana 47907    P. Garosi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    K. Genser Fermi National Accelerator Laboratory, Batavia, Illinois 60510    H. Gerberich University of Illinois, Urbana, Illinois 61801    D. Gerdes University of Michigan, Ann Arbor, Michigan 48109    A. Gessler Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    S. Giagu Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    V. Giakoumopoulou University of Athens, 157 71 Athens, Greece    P. Giannetti Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    K. Gibson University of Pittsburgh, Pittsburgh, Pennsylvania 15260    J.L. Gimmell University of Rochester, Rochester, New York 14627    C.M. Ginsburg Fermi National Accelerator Laboratory, Batavia, Illinois 60510    N. Giokaris University of Athens, 157 71 Athens, Greece    M. Giordani Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    P. Giromini Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    M. Giunta Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    G. Giurgiu The Johns Hopkins University, Baltimore, Maryland 21218    V. Glagolev Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    D. Glenzinski Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Gold University of New Mexico, Albuquerque, New Mexico 87131    N. Goldschmidt University of Florida, Gainesville, Florida 32611    A. Golossanov Fermi National Accelerator Laboratory, Batavia, Illinois 60510    G. Gomez Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    G. Gomez-Ceballos Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    M. Goncharov Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    O. González Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    I. Gorelov University of New Mexico, Albuquerque, New Mexico 87131    A.T. Goshaw Duke University, Durham, North Carolina 27708    K. Goulianos The Rockefeller University, New York, New York 10021    A. Gresele Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    S. Grinstein Harvard University, Cambridge, Massachusetts 02138    C. Grosso-Pilcher Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    R.C. Group Fermi National Accelerator Laboratory, Batavia, Illinois 60510    U. Grundler University of Illinois, Urbana, Illinois 61801    J. Guimaraes da Costa Harvard University, Cambridge, Massachusetts 02138    Z. Gunay-Unalan Michigan State University, East Lansing, Michigan 48824    C. Haber Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    K. Hahn Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    S.R. Hahn Fermi National Accelerator Laboratory, Batavia, Illinois 60510    E. Halkiadakis Rutgers University, Piscataway, New Jersey 08855    B.-Y. Han University of Rochester, Rochester, New York 14627    J.Y. Han University of Rochester, Rochester, New York 14627    F. Happacher Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    K. Hara University of Tsukuba, Tsukuba, Ibaraki 305, Japan    D. Hare Rutgers University, Piscataway, New Jersey 08855    M. Hare Tufts University, Medford, Massachusetts 02155    S. Harper University of Oxford, Oxford OX1 3RH, United Kingdom    R.F. Harr Wayne State University, Detroit, Michigan 48201    R.M. Harris Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Hartz University of Pittsburgh, Pittsburgh, Pennsylvania 15260    K. Hatakeyama The Rockefeller University, New York, New York 10021    C. Hays University of Oxford, Oxford OX1 3RH, United Kingdom    M. Heck Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    A. Heijboer University of Pennsylvania, Philadelphia, Pennsylvania 19104    J. Heinrich University of Pennsylvania, Philadelphia, Pennsylvania 19104    C. Henderson Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    M. Herndon University of Wisconsin, Madison, Wisconsin 53706    J. Heuser Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    S. Hewamanage Baylor University, Waco, Texas 76798    D. Hidas Duke University, Durham, North Carolina 27708    C.S. Hill University of California, Santa Barbara, Santa Barbara, California 93106    D. Hirschbuehl Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    A. Hocker Fermi National Accelerator Laboratory, Batavia, Illinois 60510    S. Hou Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    M. Houlden University of Liverpool, Liverpool L69 7ZE, United Kingdom    S.-C. Hsu Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    B.T. Huffman University of Oxford, Oxford OX1 3RH, United Kingdom    R.E. Hughes The Ohio State University, Columbus, Ohio 43210    U. Husemann Yale University, New Haven, Connecticut 06520    M. Hussein Michigan State University, East Lansing, Michigan 48824    J. Huston Michigan State University, East Lansing, Michigan 48824    J. Incandela University of California, Santa Barbara, Santa Barbara, California 93106    G. Introzzi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    M. Iori Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    A. Ivanov University of California, Davis, Davis, California 95616    E. James Fermi National Accelerator Laboratory, Batavia, Illinois 60510    D. Jang Carnegie Mellon University, Pittsburgh, PA 15213    B. Jayatilaka Duke University, Durham, North Carolina 27708    E.J. Jeon Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    M.K. Jha Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    S. Jindariani Fermi National Accelerator Laboratory, Batavia, Illinois 60510    W. Johnson University of California, Davis, Davis, California 95616    M. Jones Purdue University, West Lafayette, Indiana 47907    K.K. Joo Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    S.Y. Jun Carnegie Mellon University, Pittsburgh, PA 15213    J.E. Jung Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    T.R. Junk Fermi National Accelerator Laboratory, Batavia, Illinois 60510    T. Kamon Texas A&M University, College Station, Texas 77843    D. Kar University of Florida, Gainesville, Florida 32611    P.E. Karchin Wayne State University, Detroit, Michigan 48201    Y. Kato Osaka City University, Osaka 588, Japan    R. Kephart Fermi National Accelerator Laboratory, Batavia, Illinois 60510    W. Ketchum Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    J. Keung University of Pennsylvania, Philadelphia, Pennsylvania 19104    V. Khotilovich Texas A&M University, College Station, Texas 77843    B. Kilminster Fermi National Accelerator Laboratory, Batavia, Illinois 60510    D.H. Kim Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    H.S. Kim Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    H.W. Kim Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    J.E. Kim Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    M.J. Kim Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    S.B. Kim Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    S.H. Kim University of Tsukuba, Tsukuba, Ibaraki 305, Japan    Y.K. Kim Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    N. Kimura University of Tsukuba, Tsukuba, Ibaraki 305, Japan    L. Kirsch Brandeis University, Waltham, Massachusetts 02254    S. Klimenko University of Florida, Gainesville, Florida 32611    B. Knuteson Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    B.R. Ko Duke University, Durham, North Carolina 27708    K. Kondo Waseda University, Tokyo 169, Japan    D.J. Kong Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    J. Konigsberg University of Florida, Gainesville, Florida 32611    A. Korytov University of Florida, Gainesville, Florida 32611    A.V. Kotwal Duke University, Durham, North Carolina 27708    M. Kreps Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    J. Kroll University of Pennsylvania, Philadelphia, Pennsylvania 19104    D. Krop Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    N. Krumnack Baylor University, Waco, Texas 76798    M. Kruse Duke University, Durham, North Carolina 27708    V. Krutelyov University of California, Santa Barbara, Santa Barbara, California 93106    T. Kubo University of Tsukuba, Tsukuba, Ibaraki 305, Japan    T. Kuhr Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    N.P. Kulkarni Wayne State University, Detroit, Michigan 48201    M. Kurata University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Kwang Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    A.T. Laasanen Purdue University, West Lafayette, Indiana 47907    S. Lami Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    S. Lammel Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Lancaster University College London, London WC1E 6BT, United Kingdom    R.L. Lander University of California, Davis, Davis, California 95616    K. Lannon The Ohio State University, Columbus, Ohio 43210    A. Lath Rutgers University, Piscataway, New Jersey 08855    G. Latino Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    I. Lazzizzera Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    T. LeCompte Argonne National Laboratory, Argonne, Illinois 60439    E. Lee Texas A&M University, College Station, Texas 77843    H.S. Lee Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    S.W. Lee Texas A&M University, College Station, Texas 77843    S. Leone Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    J.D. Lewis Fermi National Accelerator Laboratory, Batavia, Illinois 60510    C.-S. Lin Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    J. Linacre University of Oxford, Oxford OX1 3RH, United Kingdom    M. Lindgren Fermi National Accelerator Laboratory, Batavia, Illinois 60510    E. Lipeles University of Pennsylvania, Philadelphia, Pennsylvania 19104    T.M. Liss University of Illinois, Urbana, Illinois 61801    A. Lister University of California, Davis, Davis, California 95616    D.O. Litvintsev Fermi National Accelerator Laboratory, Batavia, Illinois 60510    C. Liu University of Pittsburgh, Pittsburgh, Pennsylvania 15260    T. Liu Fermi National Accelerator Laboratory, Batavia, Illinois 60510    N.S. Lockyer University of Pennsylvania, Philadelphia, Pennsylvania 19104    A. Loginov Yale University, New Haven, Connecticut 06520    M. Loreti Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    L. Lovas Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia    D. Lucchesi Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    C. Luci Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    J. Lueck Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    P. Lujan Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    P. Lukens Fermi National Accelerator Laboratory, Batavia, Illinois 60510    G. Lungu The Rockefeller University, New York, New York 10021    L. Lyons University of Oxford, Oxford OX1 3RH, United Kingdom    J. Lys Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    R. Lysak Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia    D. MacQueen Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    R. Madrak Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Maeshima Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Makhoul Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    T. Maki Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    P. Maksimovic The Johns Hopkins University, Baltimore, Maryland 21218    S. Malde University of Oxford, Oxford OX1 3RH, United Kingdom    S. Malik University College London, London WC1E 6BT, United Kingdom    G. Manca University of Liverpool, Liverpool L69 7ZE, United Kingdom    A. Manousakis-Katsikakis University of Athens, 157 71 Athens, Greece    F. Margaroli Purdue University, West Lafayette, Indiana 47907    C. Marino Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    C.P. Marino University of Illinois, Urbana, Illinois 61801    A. Martin Yale University, New Haven, Connecticut 06520    V. Martin Glasgow University, Glasgow G12 8QQ, United Kingdom    M. Martínez Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    R. Martínez-Ballarín Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    T. Maruyama University of Tsukuba, Tsukuba, Ibaraki 305, Japan    P. Mastrandrea Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    T. Masubuchi University of Tsukuba, Tsukuba, Ibaraki 305, Japan    M. Mathis The Johns Hopkins University, Baltimore, Maryland 21218    M.E. Mattson Wayne State University, Detroit, Michigan 48201    P. Mazzanti Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    K.S. McFarland University of Rochester, Rochester, New York 14627    P. McIntyre Texas A&M University, College Station, Texas 77843    R. McNulty University of Liverpool, Liverpool L69 7ZE, United Kingdom    A. Mehta University of Liverpool, Liverpool L69 7ZE, United Kingdom    P. Mehtala Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    A. Menzione Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    P. Merkel Purdue University, West Lafayette, Indiana 47907    C. Mesropian The Rockefeller University, New York, New York 10021    T. Miao Fermi National Accelerator Laboratory, Batavia, Illinois 60510    N. Miladinovic Brandeis University, Waltham, Massachusetts 02254    R. Miller Michigan State University, East Lansing, Michigan 48824    C. Mills Harvard University, Cambridge, Massachusetts 02138    M. Milnik Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    A. Mitra Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    G. Mitselmakher University of Florida, Gainesville, Florida 32611    H. Miyake University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Moed Harvard University, Cambridge, Massachusetts 02138    N. Moggi Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    M.N. Mondragon Fermi National Accelerator Laboratory, Batavia, Illinois 60510    C.S. Moon Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    R. Moore Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M.J. Morello Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    J. Morlock Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    P. Movilla Fernandez Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Mülmenstädt Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    A. Mukherjee Fermi National Accelerator Laboratory, Batavia, Illinois 60510    Th. Muller Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    R. Mumford The Johns Hopkins University, Baltimore, Maryland 21218    P. Murat Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Mussini Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    J. Nachtman Fermi National Accelerator Laboratory, Batavia, Illinois 60510    Y. Nagai University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Nagano University of Tsukuba, Tsukuba, Ibaraki 305, Japan    J. Naganoma University of Tsukuba, Tsukuba, Ibaraki 305, Japan    K. Nakamura University of Tsukuba, Tsukuba, Ibaraki 305, Japan    I. Nakano Okayama University, Okayama 700-8530, Japan    A. Napier Tufts University, Medford, Massachusetts 02155    V. Necula Duke University, Durham, North Carolina 27708    J. Nett University of Wisconsin, Madison, Wisconsin 53706    C. Neu University of Pennsylvania, Philadelphia, Pennsylvania 19104    M.S. Neubauer University of Illinois, Urbana, Illinois 61801    S. Neubauer Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    J. Nielsen Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    L. Nodulman Argonne National Laboratory, Argonne, Illinois 60439    M. Norman University of California, San Diego, La Jolla, California 92093    O. Norniella University of Illinois, Urbana, Illinois 61801    E. Nurse University College London, London WC1E 6BT, United Kingdom    L. Oakes University of Oxford, Oxford OX1 3RH, United Kingdom    S.H. Oh Duke University, Durham, North Carolina 27708    Y.D. Oh Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    I. Oksuzian University of Florida, Gainesville, Florida 32611    T. Okusawa Osaka City University, Osaka 588, Japan    R. Orava Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    K. Osterberg Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    S. Pagan Griso Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, University of Padova, I-35131 Padova, Italy    C. Pagliarone Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    E. Palencia Fermi National Accelerator Laboratory, Batavia, Illinois 60510    V. Papadimitriou Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Papaikonomou Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    A.A. Paramonov Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    B. Parks The Ohio State University, Columbus, Ohio 43210    S. Pashapour Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    J. Patrick Fermi National Accelerator Laboratory, Batavia, Illinois 60510    G. Pauletta Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    M. Paulini Carnegie Mellon University, Pittsburgh, PA 15213    C. Paus Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    T. Peiffer Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    D.E. Pellett University of California, Davis, Davis, California 95616    A. Penzo Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    T.J. Phillips Duke University, Durham, North Carolina 27708    G. Piacentino Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    E. Pianori University of Pennsylvania, Philadelphia, Pennsylvania 19104    L. Pinera University of Florida, Gainesville, Florida 32611    K. Pitts University of Illinois, Urbana, Illinois 61801    C. Plager University of California, Los Angeles, Los Angeles, California 90024    L. Pondrom University of Wisconsin, Madison, Wisconsin 53706    O. Poukhov111Deceased Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    N. Pounder University of Oxford, Oxford OX1 3RH, United Kingdom    F. Prakoshyn Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    A. Pronko Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Proudfoot Argonne National Laboratory, Argonne, Illinois 60439    F. Ptohos Fermi National Accelerator Laboratory, Batavia, Illinois 60510    E. Pueschel Carnegie Mellon University, Pittsburgh, PA 15213    G. Punzi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    J. Pursley University of Wisconsin, Madison, Wisconsin 53706    J. Rademacker University of Oxford, Oxford OX1 3RH, United Kingdom    A. Rahaman University of Pittsburgh, Pittsburgh, Pennsylvania 15260    V. Ramakrishnan University of Wisconsin, Madison, Wisconsin 53706    N. Ranjan Purdue University, West Lafayette, Indiana 47907    I. Redondo Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    P. Renton University of Oxford, Oxford OX1 3RH, United Kingdom    M. Renz Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    M. Rescigno Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    S. Richter Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    F. Rimondi Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy    L. Ristori Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    A. Robson Glasgow University, Glasgow G12 8QQ, United Kingdom    T. Rodrigo Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    T. Rodriguez University of Pennsylvania, Philadelphia, Pennsylvania 19104    E. Rogers University of Illinois, Urbana, Illinois 61801    S. Rolli Tufts University, Medford, Massachusetts 02155    R. Roser Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M. Rossi Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    R. Rossin University of California, Santa Barbara, Santa Barbara, California 93106    P. Roy Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    A. Ruiz Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    J. Russ Carnegie Mellon University, Pittsburgh, PA 15213    V. Rusu Fermi National Accelerator Laboratory, Batavia, Illinois 60510    B. Rutherford Fermi National Accelerator Laboratory, Batavia, Illinois 60510    H. Saarikko Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    A. Safonov Texas A&M University, College Station, Texas 77843    W.K. Sakumoto University of Rochester, Rochester, New York 14627    O. Saltó Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain    L. Santi Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    S. Sarkar Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    L. Sartori Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    K. Sato Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Savoy-Navarro LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France    P. Schlabach Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A. Schmidt Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    E.E. Schmidt Fermi National Accelerator Laboratory, Batavia, Illinois 60510    M.A. Schmidt Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    M.P. Schmidtfootnotemark: Yale University, New Haven, Connecticut 06520    M. Schmitt Northwestern University, Evanston, Illinois 60208    T. Schwarz University of California, Davis, Davis, California 95616    L. Scodellaro Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    A. Scribano Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    F. Scuri Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    A. Sedov Purdue University, West Lafayette, Indiana 47907    S. Seidel University of New Mexico, Albuquerque, New Mexico 87131    Y. Seiya Osaka City University, Osaka 588, Japan    A. Semenov Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    L. Sexton-Kennedy Fermi National Accelerator Laboratory, Batavia, Illinois 60510    F. Sforza Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    A. Sfyrla University of Illinois, Urbana, Illinois 61801    S.Z. Shalhout Wayne State University, Detroit, Michigan 48201    T. Shears University of Liverpool, Liverpool L69 7ZE, United Kingdom    P.F. Shepard University of Pittsburgh, Pittsburgh, Pennsylvania 15260    M. Shimojima University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Shiraishi Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    M. Shochet Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    Y. Shon University of Wisconsin, Madison, Wisconsin 53706    I. Shreyber Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia    A. Simonenko Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    P. Sinervo Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    A. Sisakyan Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    A.J. Slaughter Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Slaunwhite The Ohio State University, Columbus, Ohio 43210    K. Sliwa Tufts University, Medford, Massachusetts 02155    J.R. Smith University of California, Davis, Davis, California 95616    F.D. Snider Fermi National Accelerator Laboratory, Batavia, Illinois 60510    R. Snihur Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    A. Soha University of California, Davis, Davis, California 95616    S. Somalwar Rutgers University, Piscataway, New Jersey 08855    V. Sorin Michigan State University, East Lansing, Michigan 48824    T. Spreitzer Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    P. Squillacioti Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    M. Stanitzki Yale University, New Haven, Connecticut 06520    R. St. Denis Glasgow University, Glasgow G12 8QQ, United Kingdom    B. Stelzer Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    O. Stelzer-Chilton Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    D. Stentz Northwestern University, Evanston, Illinois 60208    J. Strologas University of New Mexico, Albuquerque, New Mexico 87131    G.L. Strycker University of Michigan, Ann Arbor, Michigan 48109    J.S. Suh Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    A. Sukhanov University of Florida, Gainesville, Florida 32611    I. Suslov Joint Institute for Nuclear Research, RU-141980 Dubna, Russia    T. Suzuki University of Tsukuba, Tsukuba, Ibaraki 305, Japan    A. Taffard University of Illinois, Urbana, Illinois 61801    R. Takashima Okayama University, Okayama 700-8530, Japan    Y. Takeuchi University of Tsukuba, Tsukuba, Ibaraki 305, Japan    R. Tanaka Okayama University, Okayama 700-8530, Japan    M. Tecchio University of Michigan, Ann Arbor, Michigan 48109    P.K. Teng Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    K. Terashi The Rockefeller University, New York, New York 10021    J. Thom Fermi National Accelerator Laboratory, Batavia, Illinois 60510    A.S. Thompson Glasgow University, Glasgow G12 8QQ, United Kingdom    G.A. Thompson University of Illinois, Urbana, Illinois 61801    E. Thomson University of Pennsylvania, Philadelphia, Pennsylvania 19104    P. Tipton Yale University, New Haven, Connecticut 06520    P. Ttito-Guzmán Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    S. Tkaczyk Fermi National Accelerator Laboratory, Batavia, Illinois 60510    D. Toback Texas A&M University, College Station, Texas 77843    S. Tokar Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia    K. Tollefson Michigan State University, East Lansing, Michigan 48824    T. Tomura University of Tsukuba, Tsukuba, Ibaraki 305, Japan    D. Tonelli Fermi National Accelerator Laboratory, Batavia, Illinois 60510    S. Torre Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy    D. Torretta Fermi National Accelerator Laboratory, Batavia, Illinois 60510    P. Totaro Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    S. Tourneur LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France    M. Trovato Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    S.-Y. Tsai Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    Y. Tu University of Pennsylvania, Philadelphia, Pennsylvania 19104    N. Turini Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    F. Ukegawa University of Tsukuba, Tsukuba, Ibaraki 305, Japan    S. Vallecorsa University of Geneva, CH-1211 Geneva 4, Switzerland    N. van Remortel Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland    A. Varganov University of Michigan, Ann Arbor, Michigan 48109    E. Vataga Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    F. Vázquez University of Florida, Gainesville, Florida 32611    G. Velev Fermi National Accelerator Laboratory, Batavia, Illinois 60510    C. Vellidis University of Athens, 157 71 Athens, Greece    M. Vidal Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain    R. Vidal Fermi National Accelerator Laboratory, Batavia, Illinois 60510    I. Vila Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    R. Vilar Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain    T. Vine University College London, London WC1E 6BT, United Kingdom    M. Vogel University of New Mexico, Albuquerque, New Mexico 87131    I. Volobouev Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    G. Volpi Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy    P. Wagner University of Pennsylvania, Philadelphia, Pennsylvania 19104    R.G. Wagner Argonne National Laboratory, Argonne, Illinois 60439    R.L. Wagner Fermi National Accelerator Laboratory, Batavia, Illinois 60510    W. Wagner Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    J. Wagner-Kuhr Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    T. Wakisaka Osaka City University, Osaka 588, Japan    R. Wallny University of California, Los Angeles, Los Angeles, California 90024    S.M. Wang Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China    A. Warburton Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    D. Waters University College London, London WC1E 6BT, United Kingdom    M. Weinberger Texas A&M University, College Station, Texas 77843    J. Weinelt Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany    W.C. Wester III Fermi National Accelerator Laboratory, Batavia, Illinois 60510    B. Whitehouse Tufts University, Medford, Massachusetts 02155    D. Whiteson University of Pennsylvania, Philadelphia, Pennsylvania 19104    A.B. Wicklund Argonne National Laboratory, Argonne, Illinois 60439    E. Wicklund Fermi National Accelerator Laboratory, Batavia, Illinois 60510    S. Wilbur Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    G. Williams Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3    H.H. Williams University of Pennsylvania, Philadelphia, Pennsylvania 19104    P. Wilson Fermi National Accelerator Laboratory, Batavia, Illinois 60510    B.L. Winer The Ohio State University, Columbus, Ohio 43210    P. Wittich Fermi National Accelerator Laboratory, Batavia, Illinois 60510    S. Wolbers Fermi National Accelerator Laboratory, Batavia, Illinois 60510    C. Wolfe Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    T. Wright University of Michigan, Ann Arbor, Michigan 48109    X. Wu University of Geneva, CH-1211 Geneva 4, Switzerland    F. Würthwein University of California, San Diego, La Jolla, California 92093    S. Xie Massachusetts Institute of Technology, Cambridge, Massachusetts 02139    A. Yagil University of California, San Diego, La Jolla, California 92093    K. Yamamoto Osaka City University, Osaka 588, Japan    J. Yamaoka Duke University, Durham, North Carolina 27708    U.K. Yang Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637    Y.C. Yang Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    W.M. Yao Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720    G.P. Yeh Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Yi Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J. Yoh Fermi National Accelerator Laboratory, Batavia, Illinois 60510    K. Yorita Waseda University, Tokyo 169, Japan    T. Yoshida Osaka City University, Osaka 588, Japan    G.B. Yu University of Rochester, Rochester, New York 14627    I. Yu Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea    S.S. Yu Fermi National Accelerator Laboratory, Batavia, Illinois 60510    J.C. Yun Fermi National Accelerator Laboratory, Batavia, Illinois 60510    L. Zanello Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy    A. Zanetti Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, University of Trieste/Udine, I-33100 Udine, Italy    X. Zhang University of Illinois, Urbana, Illinois 61801    Y. Zheng University of California, Los Angeles, Los Angeles, California 90024    S. Zucchelli, Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy
July 12, 2019
Abstract

We present the first measurement of the mass of the top quark in a sample of events (where , ) selected by identifying jets containing a muon candidate from the semileptonic decay of heavy-flavor hadrons (soft muon -tagging). The collision data used corresponds to an integrated luminosity of 2 fb and was collected by the CDF II detector at the Fermilab Tevatron. The measurement is based on a novel technique exploiting the invariant mass of a subset of the decay particles, specifically the lepton from the boson of the decay, and the muon from a semileptonic decay. We fit template histograms, derived from simulation of events and a modeling of the background, to the mass distribution observed in the data and measure a top quark mass of , consistent with the current world average.

pacs:
14.65.Ha, 12.15.Ff

CDF Collaboration222With visitors from University of Massachusetts Amherst, Amherst, Massachusetts 01003, Universiteit Antwerpen, B-2610 Antwerp, Belgium, University of Bristol, Bristol BS8 1TL, United Kingdom, Chinese Academy of Sciences, Beijing 100864, China, Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, University of California Irvine, Irvine, CA 92697, University of California Santa Cruz, Santa Cruz, CA 95064, Cornell University, Ithaca, NY 14853, University of Cyprus, Nicosia CY-1678, Cyprus, University College Dublin, Dublin 4, Ireland, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom, University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017 Kinki University, Higashi-Osaka City, Japan 577-8502 Universidad Iberoamericana, Mexico D.F., Mexico, University of Iowa, Iowa City, IA 52242, Queen Mary, University of London, London, E1 4NS, England, University of Manchester, Manchester M13 9PL, England, Nagasaki Institute of Applied Science, Nagasaki, Japan, University of Notre Dame, Notre Dame, IN 46556, University de Oviedo, E-33007 Oviedo, Spain, Texas Tech University, Lubbock, TX 79609, IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain, University of Virginia, Charlottesville, VA 22904, Bergische Universität Wuppertal, 42097 Wuppertal, Germany, On leave from J. Stefan Institute, Ljubljana, Slovenia,

A massive top quark plays an important role in the standard model (SM). The mass of the top quark () enters electroweak (EW) precision observables as an input parameter via quantum effects, i.e. loop corrections, and its large numerical value gives rise to sizable corrections that behave as powers of veltman (). For example, in the theoretical prediction of the boson mass () within the SM, when these corrections are combined with the logarithmic dependence on the mass of the postulated Higgs boson (), a relationship emerges that provides a constraint on from experimental determinations of and pdg (). Indeed, the strong dependence of the SM radiative corrections on made it possible to predict the value of predict () prior to its experimental determination predictions1 (); predictions2 (). Thus, a precision value of is crucial for constraining SM parameters, for high-sensitivity searches for effects of new physics and for stringent consistency tests of models beyond the SM (e.g. supersymmetry). Furthermore, independent measurements of in all final states of decay provide an important consistency check of the top quark sector of the SM, and might reveal new physics with top-like signatures.

Significant progress has been made recently in reducing the uncertainty in measurements of and in devising alternative and independent techniques. The current best single measurement is determined by reconstructing the full decay chain and computing the invariant mass of the decay products in events, and yields  GeV/ bestmt (); bestmt2 (). However, this and all the most precise of the current techniques are limited by the common systematic uncertainty in the calorimeter jet energy calibration (jet energy scale, JES). To provide independent measurements, several techniques with minimal dependence on the JES have been proposed. For example, the flight distance of the -hadron from the top decay can be used to infer the mass of the top quark lxy (), but this method also requires precision track reconstruction to determine the decay length. A proposal has been made cms () for exploiting the correlation between and the invariant mass of the system composed of a (from the decay of a hadron) and the lepton from the decay. The advantage is a stronger correlation of this system-mass with than that of individual decay products of the top quark, and thus a better sensitivity to the top quark mass, but the overall branching ratio for this final state is only .

We present the first measurement of the mass of the top quark in a sample of events (where , ) selected by identifying -jets with a candidate muon from semileptonic decay of heavy-flavor hadrons. We have developed a novel technique that exploits the invariant mass of the lepton from the boson of the decay, and the muon from a semileptonic decay. The selection method is complementary to that taking advantage of the long lifetime of -hadrons through the presence of a decay vertex displaced from the primary interaction. Since only of the sample of candidates with a semileptonic decay overlaps the top samples selected by the identification of a displaced vertex, and a still smaller fraction is in common with traditional samples that require all four jets for the mass reconstruction, our technique provides an essentially independent measurement of from these data. Moreover, our observable is largely independent of the JES, because the calorimeter information is used solely for the selection of event candidates, and therefore the result can add a significant amount of information when averaged with those from other measurements. Including sequential decays of charm, the branching fraction for % pdg () is sizable and since this technique does not require precision secondary vertex reconstruction to suppress backgrounds, it could be an attractive option for the early phase of experiments at the Large Hadron Collider (LHC). Finally, the observable has a higher correlation to the top quark mass than the momentum of the lepton from the decay alone. A partial reduction in sensitivity will arise from - mis-pairing, when the lepton from the decay and the muon from the semileptonic decay do not originate from the same top quark.

Top quarks are produced at the Tevatron proton-antiproton collider predominantly in pairs of and , and are identified by the SM decay , providing a final state that includes two bosons and two bottom quarks. ’s are identified through their decay to leptons or quarks. Quarks hadronize and are observed as jets of charged and neutral particles. The CDF II detector is described in detail elsewhere CDF (). The components relevant to this analysis include the central outer tracker (COT), the central electromagnetic and hadronic calorimeters, the central muon detectors and the luminosity counters. The data sample, produced in collisions at during RunII of the Fermilab Tevatron, was collected between March 2002 and May 2007 and corresponds to an integrated luminosity of . We select events where one of the bosons decays to an isolated electron (muon) carrying large transverse energy () (momentum ()) cdfsys () with respect to the beam line, plus a neutrino. We refer to these high- electrons or muons as primary leptons (PL). The neutrino escapes the detector causing an imbalance of total transverse energy vector, referred to as missing (). The other boson in the event decays hadronically to a pair of quarks. We take advantage of the semileptonic decay of hadrons by searching for muons within final-state jets (soft-lepton tagging, or SLT), in order to identify those jets that result from hadronization of the bottom quarks.

The event selection starts with an inclusive lepton trigger requiring an electron (muon) with (). Further selection requires that candidate electron (muon) PLs are isolated and have  GeV ( GeV/) and . We define an isolation parameter, , as the calorimeter transverse energy in a cone of opening around the lepton (not including the lepton energy itself) divided by the electron or muon . We select isolated electrons (muons) by requiring . The event must have  GeV, consistent with the presence of a neutrino from the boson decay. Jets are identified using a fixed-cone algorithm with a cone opening of and are constrained to originate from the collision vertex. Muons inside jets are identified by matching the tracks of the jet, as measured in the COT, with track segments in the muon detectors. Such a muon with  GeV/ and within of a jet axis is called an SLT sltprd (). The probability of misidentifying a hadron as an SLT, denoted as the SLT mistag probability, is measured using a data sample of pions, kaons and protons from and decays. A Monte Carlo (MC) simulation of +light flavor events is used to model the , and admixture in light-quark jets. The SLT mistag probability is parametrized as a function of the track and , and is seen to describe within 5% the number of false SLT tags in light flavor jets of QCD multijet and events.

To reduce background from dimuon resonances and double-semileptonic hadron decays, we remove events in which the PL muon and SLT are oppositely charged and have an invariant mass consistent with a , or, irrespectively of the PL flavor, less than 5 . We further reject events as candidate radiative Drell-Yan and bosons if the tagged jet has an electromagnetic energy fraction above 0.8 and only one track with  GeV/ within a cone of about the jet axis The jet energies are corrected to account for variations of the detector response in and time, calorimeter gain drifts, non linearity of calorimeter energy response, multiple interactions in an event and for energy loss in un-instrumented regions jetcorr (). Finally, the sample is partitioned according to the number of jets with  GeV and in the event, and at least one jet is required to contain an SLT (defining the -tagged + jets sample). The subset of plus at least 3 jets is the candidate sample, and to reduce background from QCD production of with multiple jets, we additionally require the total transverse scalar energy in the event ( ht ()) to be greater than 200 GeV.

Standard model processes that result in the same signature as the signal are backgrounds to this measurement. There are three dominant backgrounds: the largest one is mistags of +light flavor events, and a smaller contribution is due to boson in association with heavy flavor jets (, , ). Events without bosons that pass the event selection are typically QCD multijet events where one jet has been reconstructed as a high- lepton, mismeasured jet energies produce apparent and an additional jet contains an SLT. A fraction of these events is from and , where the candidate PL may result from a semileptonic decay of one of the fragmenting heavy quark and the SLT from a semileptonic decay of the other. Other minor backgrounds that can mimic a boson and an SLT signature include diboson (, , ), Drell-Yan, single top quark, and residual Drell-Yan events not removed by the dimuon resonance removal. The composition of the data sample used in this analysis has been studied extensively in sltprd (), where we have measured the production cross section for , and is summarized in Table 1. The +jets, QCD multijet and Drell-Yan background are determined using the data, while the remaining backgrounds are estimated from MC simulations. The +1,2 jets samples contain little events and have a composition similar to the background of the candidate sample. The simulation of events is performed using pythia pythia () and herwig herwig (). The generators are used with the CTEQ5L cteq5 () parton distribution functions (PDF). Modeling of and hadron decay is provided by evtgen evtgen (). Modeling of production is performed using alpgen alpgen (), coupled with pythia for the shower evolution and evtgen for the heavy flavor hadron decays. Diboson production (, , ) and Drell-Yan are determined using pythia. Drell-Yan events are modeled using alpgen while single top production is modeled with madevent madevent (), both with pythia showering. The CDF II detector simulation models the response of the detector to particles produced in collisions. The detector geometry used in the simulation is the same as that used for reconstruction of the collision data. Details of the CDF II simulation, based on the geant3 package, can be found in cdfIIsim ().

Source +1 jet +2 jet jets
+light flavor 62231 22612 52.32.6
+heavy flavor 14555 66.625.2 14.35.4
QCD multijet 91.916.5 44.910.4 6.91.5
3.80.4 7.00.7 1.90.3
Drell-Yan 2.60.6 1.50.4 0.60.3
Drell-Yan 6.01.2 4.10.9 0.80.5
Single top 4.40.4 9.00.7 2.70.2
Total background 87654 35924 79.55.3
() 3.50.2 31.81.0 168.55.3
Data 892 384 248
Table 1: Composition of the SLT-tagged  jets candidate sample sltprd (). The  GeV requirement is released for events with fewer than 3 jets.

We compute the invariant mass () between the PL and the SLT in the candidates sample. In rare cases where there is more than one SLT tag in the same jet, or more than one SLT tagged jet in the same event, we use the SLT candidate that has the best match between the COT track and the track segment in the muon detectors. No attempt is made to choose the correct pairing from the decay chain of the two top-quarks. The electric charge of the SLT for instance is not an effective flavor selector due to abundant sequential decays. When the wrong pairing is chosen, there is still sensitivity to the top quark mass due to the boost of the SLT and the PL. The distribution of is given by the contribution of and background events. For the background, the distribution of QCD multijet events is derived from the data themselves in the kinematic-region of ,  GeV, topologically close to the signal region, while for other background sources we use MC simulation. We check the background model in +1,2 jet SLT-tagged data events, a sample with a similar composition as the background to candidates. We find the predicted and observed distributions of (Figure 1) to be in agreement with a -value of 55%, as given by the Kolmogorov-Smirnov test.

Figure 1: The predicted and observed distributions in the sample of +1,2 jet SLT-tagged events. The predicted distributions are stacked.
Figure 2: The correlation between the mean value of the histograms from simulated and background samples, and the input . The continuous line shows a linear fit to the points.

We construct a set of template histograms of the distribution using the background model and a simulation of events. The samples are generated with different top quark mass values in the range 150–195 GeV/, incrementing by steps of up to 0.5 GeV/, and the full spectra are determined by adding the signal and expected background histograms in the ratio shown in Table 1. Figure 2 shows the mean value of the distributions versus the input top quark mass, indicating a linear relationship between the two quantities. Also shown is  GeV/, measured in the data. We perform a binned-likelihood fit to the histogram of the data, in 20 bins between 4–100 GeV/, with the binning and range chosen a priori appropriately to the size of the data sample. The likelihood is defined as:

(1)

where and are the number of entries in each -bin of the data and template histograms respectively, the total number of entries is , and is the probability of the -th bin, normalized such that . The background normalization is fixed and its value is varied in the evaluation of the systematic uncertainty. A parabolic function is fit to the values of derived from each mass template, and the measured top quark mass is determined from the minimum of the likelihood function, while the statistical uncertainty is given by the range corresponding to an increase in the of 0.5 units above the minimum. For each mass point within the full mass range, we generate 5000 pseudoexperiments with the same sample size as that of the data and verify that the fitting procedure is unbiased and that the statistical uncertainty returned by the fits represents the 68% confidence level. From 248 candidate events, we measure:

(2)

Figure 3 shows the distribution of the data, the background, and the templates corresponding to the best fit and the statistical uncertainty.

Figure 3: The distribution of invariant mass of the lepton from the decay and the SLT, from a sample of 248 candidate events with 79.5 background.

The sources of systematic uncertainty that affect the measured value of the top quark mass are summarized in Table 2. The limited size of the samples simulated with different values of , input to the fitting procedure, yields an uncertainty of 0.3 GeV/. Several components enter the uncertainty on the modeling of the background. The uncertainty on the heavy and light flavor normalizations yields an uncertainty of 0.5 GeV/. The uncertainty on the shape of the +jets histogram is evaluated by varying the distribution, to within the statistical accuracy associated with the comparison in the +1,2 jets sample between the data and the background model, and yields an uncertainty of 1.4 GeV/. The normalization of the QCD multijet background contributes 0.8 GeV/. The shape of the QCD multijet distribution accounts for 0.6 GeV/, as determined by replacing the nominal sample with dijet enriched data selected by and  GeV, and by varying the distribution according to its statistical uncertainty. The shift on the measured top quark mass due to the uncertainties on the remaining backgrounds is negligible. The total uncertainty from background modeling is 1.9 GeV/.

Monte Carlo modeling of the signal distributions includes effects of PDFs, initial-state radiation (ISR), final-state radiation (FSR), and JES. The uncertainty due to the MC modeling of production and decay, including fragmentation, is determined by comparing the simulation using pythia with that using herwig and gives 2.1 GeV/. The PDF uncertainty is evaluated by adding in quadrature the contribution of four effects: variations of the PDFs according to the 20 CTEQ eigenvectors pdf (), the difference between the standard simulation using the CTEQ5L PDF and one derived using MRST98 mrst () in the default configuration or with two alternative choices for , and the variation of the contribution of gluon fusion in production between 5 and 20%. The overall estimated uncertainty from PDF is 1.0 GeV/. We vary both ISR and FSR simultaneously in the Monte Carlo simulation, within constraints set by studies of radiation in Drell-Yan events in the data, and assign a systematic uncertainty on of  GeV/.

The jet reconstruction is used in this analysis only for the selection of event candidates and therefore the uncertainty on the calibration of the jet energies enters the measurement solely through the event selection, via the jet counting and the requirement. The uncertainty due to the JES is measured by shifting the energies of the jets in MC simulation by of the JES jetcorr () and results in 0.3 GeV/. The uncertainty of 1% on the difference between data and simulation of the PL energy and momentum scales gives an uncertainty of 0.9 GeV/. The differences in the data versus simulation for the SLT spectrum depends on the -quark fragmentation modeling and the momentum calibration. In addition to the different fragmentation models in herwig versus pythia, we consider comparisons of the data with MC simulation of the muon spectra in kraus () and paolo () which indicate an uncertainty on the muon of %, corresponding to  GeV/. The uncertainty on the dependence of the SLT tagging efficiency yields a shift on the top quark mass of 0.2 GeV/. Finally, a source of systematic uncertainty is due to the modeling of pile-up events from multiple interactions and it is estimated to affect the measured mass by GeV/.

Source [GeV/]
MC samples statistics 0.3
Background 1.9
production and decay model 2.1
Parton distribution functions 1.0
Initial- and final-state radiation 1.3
Jet energy scale 0.3
PL energy/momentum scale 0.9
SLT momentum 0.9
Pileup 0.5
Total 3.6
Table 2: Summary of systematic uncertainties.

In summary, we have performed the first measurement of the top quark mass in a sample of events selected by identifying -jets with a muon candidate from the semileptonic decay of heavy-flavor hadrons. The result, , is in agreement with the current world average value of 173.11.3 GeV/ bestmt (), providing a consistency check of the top quark sector with soft muon -tagged events. Our measurement technique exploits the correlation between the parent top quark mass and the invariant mass of the system composed of the lepton from the decay and the muon from the semileptonic decay. The uncertainty at present is dominated by the statistical component. The method has a minimal dependence on the jet energy calibration, making it suitable for averaging the result with those from other techniques, and its dominant systematic uncertainties are likely reducible, e.g. by improving the calibration of the leptons’ to better than 1% with , and resonances, by using improved tuning for the MC modeling of production and decay, and with high statistics data samples for the background model.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

References

  • (1) M. Veltman, Nucl Phys. B123, 89 (1977).
  • (2) For a recent review, see C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).
  • (3) For example, see J. Ellis, G. Fogli and E. Lisi, Phys. Lett. B292, 3-4 427 (1992).
  • (4) S. Abachi et al., Phys. Rev. Lett. 79, 1197 (1997); B. Abbott et al., Phys. Rev. Lett. 80, 2063 (1998); B. Abbott et al., Phys. Rev. D 58, 052001 (1998); B. Abbott et al., Phys. Rev. D 60, 052001 (1999).
  • (5) F. Abe et al., Phys. Rev. Lett. 80, 2767 (1998); F. Abe et al., Phys. Rev. Lett. 80, 2779 (1998); F. Abe et al., Phys. Rev. Lett. 82, 271 (1999).
  • (6) The Tevatron Electroweak Working Group, arXiv:0903.2503v1 [hep-ex] (2009).
  • (7) T. Aaltonen et al. (CDF Collaboration), arXiv:0812.4469v2 [hep-ex] (2009), submitted to Phys. Rev. D.
  • (8) A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 75, 071102(R) (2007).
  • (9) CMS Letter of Intent, CERN/LHCC 92-3 (1992).
  • (10) The CDF II Detector Technical Design Report, Fermilab-Pub-96/390-E; D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
  • (11) We use a () coordinate system where the -axis is in the direction of the proton beam, and and are the azimuthal and polar angles respectively. The pseudo-rapidity is . Transverse energy and momentum are and respectively, where and are energy and momentum. The missing transverse energy is , where is the magnitude of the transverse energy contained in each calorimeter tower in the region , and is the direction unit vector of the tower in the plane transverse to the beam direction.
  • (12) T. Aaltonen et al. (CDF Collaboration), arXiv:0901.4142v1 [hep-ex] (2009), submitted to Phys. Rev. D.
  • (13) T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).
  • (14) G. Corcella et al., J. High Energy Phys. 01, 010 (2001).
  • (15) H. L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
  • (16) D. Lange, Nucl. Instrum. Methods Phys. Res. A 462, 152 (2001).
  • (17) M. L. Mangano et al., J. High Energy Phys. 07, 001 (2003).
  • (18) F. Maltoni and T. Stelzer, J. High Energy Phys. 02, 27 (2003).
  • (19) E. Gerchtein and M. Paulini, ECONF C0303241, TUMT005 (2003), arXiv:physics/0306031v1 [physics.comp-ph] (2003).
  • (20) D. Acosta et al. (CDF Collaboration), Phys. Rev. D 72, 032002 (2005).
  • (21) A. Bhatti et al., Nucl. Instrum. Methods Phys. Res. A 566, 375 (2006).
  • (22) The is defined as the scalar sum of the electron (muon) (), and jet for jets with  GeV and .
  • (23) H. L. Lai et al., Eur. Phys. J. C 12, 375 (2000).
  • (24) A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Eur. Phys.J. C. 4 463 (1998).
  • (25) T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 79, 092003 (2009); J.A. Kraus, Ph.D. thesis, University of Illinois (2006).
  • (26) T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 072004 (2008).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
152533
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description