Measurement of the semileptonic charge asymmetry using \bm{B^{0}_{s}\rightarrow D_{s}\mu X} decays

Measurement of the semileptonic charge asymmetry using decays

V.M. Abazov Joint Institute for Nuclear Research, Dubna, Russia    B. Abbott University of Oklahoma, Norman, Oklahoma 73019, USA    B.S. Acharya Tata Institute of Fundamental Research, Mumbai, India    M. Adams University of Illinois at Chicago, Chicago, Illinois 60607, USA    T. Adams Florida State University, Tallahassee, Florida 32306, USA    G.D. Alexeev Joint Institute for Nuclear Research, Dubna, Russia    G. Alkhazov Petersburg Nuclear Physics Institute, St. Petersburg, Russia    A. Alton University of Michigan, Ann Arbor, Michigan 48109, USA    G. Alverson Northeastern University, Boston, Massachusetts 02115, USA    A. Askew Florida State University, Tallahassee, Florida 32306, USA    S. Atkins Louisiana Tech University, Ruston, Louisiana 71272, USA    K. Augsten Czech Technical University in Prague, Prague, Czech Republic    C. Avila Universidad de los Andes, Bogotá, Colombia    F. Badaud LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France    L. Bagby Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    B. Baldin Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    D.V. Bandurin Florida State University, Tallahassee, Florida 32306, USA    S. Banerjee Tata Institute of Fundamental Research, Mumbai, India    E. Barberis Northeastern University, Boston, Massachusetts 02115, USA    P. Baringer University of Kansas, Lawrence, Kansas 66045, USA    J.F. Bartlett Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    U. Bassler CEA, Irfu, SPP, Saclay, France    V. Bazterra University of Illinois at Chicago, Chicago, Illinois 60607, USA    A. Bean University of Kansas, Lawrence, Kansas 66045, USA    M. Begalli Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil    L. Bellantoni Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    S.B. Beri Panjab University, Chandigarh, India    G. Bernardi LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France    R. Bernhard Physikalisches Institut, Universität Freiburg, Freiburg, Germany    I. Bertram Lancaster University, Lancaster LA1 4YB, United Kingdom    M. Besançon CEA, Irfu, SPP, Saclay, France    R. Beuselinck Imperial College London, London SW7 2AZ, United Kingdom    P.C. Bhat Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    S. Bhatia University of Mississippi, University, Mississippi 38677, USA    V. Bhatnagar Panjab University, Chandigarh, India    G. Blazey Northern Illinois University, DeKalb, Illinois 60115, USA    S. Blessing Florida State University, Tallahassee, Florida 32306, USA    K. Bloom University of Nebraska, Lincoln, Nebraska 68588, USA    A. Boehnlein Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    D. Boline State University of New York, Stony Brook, New York 11794, USA    E.E. Boos Moscow State University, Moscow, Russia    G. Borissov Lancaster University, Lancaster LA1 4YB, United Kingdom    T. Bose Boston University, Boston, Massachusetts 02215, USA    A. Brandt University of Texas, Arlington, Texas 76019, USA    O. Brandt II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany    R. Brock Michigan State University, East Lansing, Michigan 48824, USA    A. Bross Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    D. Brown LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France    J. Brown LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France    X.B. Bu Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Buehler Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    V. Buescher Institut für Physik, Universität Mainz, Mainz, Germany    V. Bunichev Moscow State University, Moscow, Russia    S. Burdin Lancaster University, Lancaster LA1 4YB, United Kingdom    C.P. Buszello Uppsala University, Uppsala, Sweden    E. Camacho-Pérez CINVESTAV, Mexico City, Mexico    B.C.K. Casey Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    H. Castilla-Valdez CINVESTAV, Mexico City, Mexico    S. Caughron Michigan State University, East Lansing, Michigan 48824, USA    S. Chakrabarti State University of New York, Stony Brook, New York 11794, USA    D. Chakraborty Northern Illinois University, DeKalb, Illinois 60115, USA    K.M. Chan University of Notre Dame, Notre Dame, Indiana 46556, USA    A. Chandra Rice University, Houston, Texas 77005, USA    E. Chapon CEA, Irfu, SPP, Saclay, France    G. Chen University of Kansas, Lawrence, Kansas 66045, USA    S. Chevalier-Théry CEA, Irfu, SPP, Saclay, France    D.K. Cho Brown University, Providence, Rhode Island 02912, USA    S.W. Cho Korea Detector Laboratory, Korea University, Seoul, Korea    S. Choi Korea Detector Laboratory, Korea University, Seoul, Korea    B. Choudhary Delhi University, Delhi, India    S. Cihangir Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    D. Claes University of Nebraska, Lincoln, Nebraska 68588, USA    J. Clutter University of Kansas, Lawrence, Kansas 66045, USA    M. Cooke Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    W.E. Cooper Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Corcoran Rice University, Houston, Texas 77005, USA    F. Couderc CEA, Irfu, SPP, Saclay, France    M.-C. Cousinou CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    A. Croc CEA, Irfu, SPP, Saclay, France    D. Cutts Brown University, Providence, Rhode Island 02912, USA    A. Das University of Arizona, Tucson, Arizona 85721, USA    G. Davies Imperial College London, London SW7 2AZ, United Kingdom    S.J. de Jong Nikhef, Science Park, Amsterdam, the Netherlands Radboud University Nijmegen, Nijmegen, the Netherlands    E. De La Cruz-Burelo CINVESTAV, Mexico City, Mexico    F. Déliot CEA, Irfu, SPP, Saclay, France    R. Demina University of Rochester, Rochester, New York 14627, USA    D. Denisov Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    S.P. Denisov Institute for High Energy Physics, Protvino, Russia    S. Desai Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    C. Deterre CEA, Irfu, SPP, Saclay, France    K. DeVaughan University of Nebraska, Lincoln, Nebraska 68588, USA    H.T. Diehl Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Diesburg Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    P.F. Ding The University of Manchester, Manchester M13 9PL, United Kingdom    A. Dominguez University of Nebraska, Lincoln, Nebraska 68588, USA    A. Dubey Delhi University, Delhi, India    L.V. Dudko Moscow State University, Moscow, Russia    D. Duggan Rutgers University, Piscataway, New Jersey 08855, USA    A. Duperrin CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    S. Dutt Panjab University, Chandigarh, India    A. Dyshkant Northern Illinois University, DeKalb, Illinois 60115, USA    M. Eads University of Nebraska, Lincoln, Nebraska 68588, USA    D. Edmunds Michigan State University, East Lansing, Michigan 48824, USA    J. Ellison University of California Riverside, Riverside, California 92521, USA    V.D. Elvira Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    Y. Enari LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France    H. Evans Indiana University, Bloomington, Indiana 47405, USA    A. Evdokimov Brookhaven National Laboratory, Upton, New York 11973, USA    V.N. Evdokimov Institute for High Energy Physics, Protvino, Russia    G. Facini Northeastern University, Boston, Massachusetts 02115, USA    L. Feng Northern Illinois University, DeKalb, Illinois 60115, USA    T. Ferbel University of Rochester, Rochester, New York 14627, USA    F. Fiedler Institut für Physik, Universität Mainz, Mainz, Germany    F. Filthaut Nikhef, Science Park, Amsterdam, the Netherlands Radboud University Nijmegen, Nijmegen, the Netherlands    W. Fisher Michigan State University, East Lansing, Michigan 48824, USA    H.E. Fisk Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Fortner Northern Illinois University, DeKalb, Illinois 60115, USA    H. Fox Lancaster University, Lancaster LA1 4YB, United Kingdom    S. Fuess Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A. Garcia-Bellido University of Rochester, Rochester, New York 14627, USA    J.A. García-González CINVESTAV, Mexico City, Mexico    G.A. García-Guerra CINVESTAV, Mexico City, Mexico    V. Gavrilov Institute for Theoretical and Experimental Physics, Moscow, Russia    P. Gay LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France    W. Geng CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France Michigan State University, East Lansing, Michigan 48824, USA    D. Gerbaudo Princeton University, Princeton, New Jersey 08544, USA    C.E. Gerber University of Illinois at Chicago, Chicago, Illinois 60607, USA    Y. Gershtein Rutgers University, Piscataway, New Jersey 08855, USA    G. Ginther Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA University of Rochester, Rochester, New York 14627, USA    G. Golovanov Joint Institute for Nuclear Research, Dubna, Russia    A. Goussiou University of Washington, Seattle, Washington 98195, USA    P.D. Grannis State University of New York, Stony Brook, New York 11794, USA    S. Greder IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France    H. Greenlee Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    G. Grenier IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France    Ph. Gris LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France    J.-F. Grivaz LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France    A. Grohsjean CEA, Irfu, SPP, Saclay, France    S. Grünendahl Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M.W. Grünewald University College Dublin, Dublin, Ireland    T. Guillemin LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France    G. Gutierrez Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    P. Gutierrez University of Oklahoma, Norman, Oklahoma 73019, USA    S. Hagopian Florida State University, Tallahassee, Florida 32306, USA    J. Haley Northeastern University, Boston, Massachusetts 02115, USA    L. Han University of Science and Technology of China, Hefei, People’s Republic of China    K. Harder The University of Manchester, Manchester M13 9PL, United Kingdom    A. Harel University of Rochester, Rochester, New York 14627, USA    J.M. Hauptman Iowa State University, Ames, Iowa 50011, USA    J. Hays Imperial College London, London SW7 2AZ, United Kingdom    T. Head The University of Manchester, Manchester M13 9PL, United Kingdom    T. Hebbeker III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany    D. Hedin Northern Illinois University, DeKalb, Illinois 60115, USA    H. Hegab Oklahoma State University, Stillwater, Oklahoma 74078, USA    A.P. Heinson University of California Riverside, Riverside, California 92521, USA    U. Heintz Brown University, Providence, Rhode Island 02912, USA    C. Hensel II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany    I. Heredia-De La Cruz CINVESTAV, Mexico City, Mexico    K. Herner University of Michigan, Ann Arbor, Michigan 48109, USA    G. Hesketh The University of Manchester, Manchester M13 9PL, United Kingdom    M.D. Hildreth University of Notre Dame, Notre Dame, Indiana 46556, USA    R. Hirosky University of Virginia, Charlottesville, Virginia 22901, USA    T. Hoang Florida State University, Tallahassee, Florida 32306, USA    J.D. Hobbs State University of New York, Stony Brook, New York 11794, USA    B. Hoeneisen Universidad San Francisco de Quito, Quito, Ecuador    J. Hogan Rice University, Houston, Texas 77005, USA    M. Hohlfeld Institut für Physik, Universität Mainz, Mainz, Germany    I. Howley University of Texas, Arlington, Texas 76019, USA    Z. Hubacek Czech Technical University in Prague, Prague, Czech Republic CEA, Irfu, SPP, Saclay, France    V. Hynek Czech Technical University in Prague, Prague, Czech Republic    I. Iashvili State University of New York, Buffalo, New York 14260, USA    Y. Ilchenko Southern Methodist University, Dallas, Texas 75275, USA    R. Illingworth Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A.S. Ito Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    S. Jabeen Brown University, Providence, Rhode Island 02912, USA    M. Jaffré LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France    A. Jayasinghe University of Oklahoma, Norman, Oklahoma 73019, USA    M.S. Jeong Korea Detector Laboratory, Korea University, Seoul, Korea    R. Jesik Imperial College London, London SW7 2AZ, United Kingdom    K. Johns University of Arizona, Tucson, Arizona 85721, USA    E. Johnson Michigan State University, East Lansing, Michigan 48824, USA    M. Johnson Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A. Jonckheere Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    P. Jonsson Imperial College London, London SW7 2AZ, United Kingdom    J. Joshi University of California Riverside, Riverside, California 92521, USA    A.W. Jung Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A. Juste Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain    K. Kaadze Kansas State University, Manhattan, Kansas 66506, USA    E. Kajfasz CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    D. Karmanov Moscow State University, Moscow, Russia    P.A. Kasper Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    I. Katsanos University of Nebraska, Lincoln, Nebraska 68588, USA    R. Kehoe Southern Methodist University, Dallas, Texas 75275, USA    S. Kermiche CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    N. Khalatyan Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A. Khanov Oklahoma State University, Stillwater, Oklahoma 74078, USA    A. Kharchilava State University of New York, Buffalo, New York 14260, USA    Y.N. Kharzheev Joint Institute for Nuclear Research, Dubna, Russia    I. Kiselevich Institute for Theoretical and Experimental Physics, Moscow, Russia    J.M. Kohli Panjab University, Chandigarh, India    A.V. Kozelov Institute for High Energy Physics, Protvino, Russia    J. Kraus University of Mississippi, University, Mississippi 38677, USA    S. Kulikov Institute for High Energy Physics, Protvino, Russia    A. Kumar State University of New York, Buffalo, New York 14260, USA    A. Kupco Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic    T. Kurča IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France    V.A. Kuzmin Moscow State University, Moscow, Russia    S. Lammers Indiana University, Bloomington, Indiana 47405, USA    G. Landsberg Brown University, Providence, Rhode Island 02912, USA    P. Lebrun IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France    H.S. Lee Korea Detector Laboratory, Korea University, Seoul, Korea    S.W. Lee Iowa State University, Ames, Iowa 50011, USA    W.M. Lee Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    X. Lei University of Arizona, Tucson, Arizona 85721, USA    J. Lellouch LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France    H. Li LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France    L. Li University of California Riverside, Riverside, California 92521, USA    Q.Z. Li Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    J.K. Lim Korea Detector Laboratory, Korea University, Seoul, Korea    D. Lincoln Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    J. Linnemann Michigan State University, East Lansing, Michigan 48824, USA    V.V. Lipaev Institute for High Energy Physics, Protvino, Russia    R. Lipton Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    H. Liu Southern Methodist University, Dallas, Texas 75275, USA    Y. Liu University of Science and Technology of China, Hefei, People’s Republic of China    A. Lobodenko Petersburg Nuclear Physics Institute, St. Petersburg, Russia    M. Lokajicek Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic    R. Lopes de Sa State University of New York, Stony Brook, New York 11794, USA    H.J. Lubatti University of Washington, Seattle, Washington 98195, USA    R. Luna-Garcia CINVESTAV, Mexico City, Mexico    A.L. Lyon Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A.K.A. Maciel LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil    R. Madar CEA, Irfu, SPP, Saclay, France    R. Magaña-Villalba CINVESTAV, Mexico City, Mexico    S. Malik University of Nebraska, Lincoln, Nebraska 68588, USA    V.L. Malyshev Joint Institute for Nuclear Research, Dubna, Russia    Y. Maravin Kansas State University, Manhattan, Kansas 66506, USA    J. Martínez-Ortega CINVESTAV, Mexico City, Mexico    R. McCarthy State University of New York, Stony Brook, New York 11794, USA    C.L. McGivern The University of Manchester, Manchester M13 9PL, United Kingdom    M.M. Meijer Nikhef, Science Park, Amsterdam, the Netherlands Radboud University Nijmegen, Nijmegen, the Netherlands    A. Melnitchouk University of Mississippi, University, Mississippi 38677, USA    D. Menezes Northern Illinois University, DeKalb, Illinois 60115, USA    P.G. Mercadante Universidade Federal do ABC, Santo André, Brazil    M. Merkin Moscow State University, Moscow, Russia    A. Meyer III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany    J. Meyer II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany    F. Miconi IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France    N.K. Mondal Tata Institute of Fundamental Research, Mumbai, India    M. Mulhearn University of Virginia, Charlottesville, Virginia 22901, USA    E. Nagy CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    M. Naimuddin Delhi University, Delhi, India    M. Narain Brown University, Providence, Rhode Island 02912, USA    R. Nayyar University of Arizona, Tucson, Arizona 85721, USA    H.A. Neal University of Michigan, Ann Arbor, Michigan 48109, USA    J.P. Negret Universidad de los Andes, Bogotá, Colombia    P. Neustroev Petersburg Nuclear Physics Institute, St. Petersburg, Russia    T. Nunnemann Ludwig-Maximilians-Universität München, München, Germany    J. Orduna Rice University, Houston, Texas 77005, USA    N. Osman CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France    J. Osta University of Notre Dame, Notre Dame, Indiana 46556, USA    M. Padilla University of California Riverside, Riverside, California 92521, USA    A. Pal University of Texas, Arlington, Texas 76019, USA    N. Parashar Purdue University Calumet, Hammond, Indiana 46323, USA    V. Parihar Brown University, Providence, Rhode Island 02912, USA    S.K. Park Korea Detector Laboratory, Korea University, Seoul, Korea    R. Partridge Brown University, Providence, Rhode Island 02912, USA    N. Parua Indiana University, Bloomington, Indiana 47405, USA    A. Patwa Brookhaven National Laboratory, Upton, New York 11973, USA    B. Penning Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Perfilov Moscow State University, Moscow, Russia    Y. Peters The University of Manchester, Manchester M13 9PL, United Kingdom    K. Petridis The University of Manchester, Manchester M13 9PL, United Kingdom    G. Petrillo University of Rochester, Rochester, New York 14627, USA    P. Pétroff LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France    M.-A. Pleier Brookhaven National Laboratory, Upton, New York 11973, USA    P.L.M. Podesta-Lerma CINVESTAV, Mexico City, Mexico    V.M. Podstavkov Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A.V. Popov Institute for High Energy Physics, Protvino, Russia    M. Prewitt Rice University, Houston, Texas 77005, USA    D. Price Indiana University, Bloomington, Indiana 47405, USA    N. Prokopenko Institute for High Energy Physics, Protvino, Russia    J. Qian University of Michigan, Ann Arbor, Michigan 48109, USA    A. Quadt II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany    B. Quinn University of Mississippi, University, Mississippi 38677, USA    M.S. Rangel LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil    K. Ranjan Delhi University, Delhi, India    P.N. Ratoff Lancaster University, Lancaster LA1 4YB, United Kingdom    I. Razumov Institute for High Energy Physics, Protvino, Russia    P. Renkel Southern Methodist University, Dallas, Texas 75275, USA    I. Ripp-Baudot IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France    F. Rizatdinova Oklahoma State University, Stillwater, Oklahoma 74078, USA    M. Rominsky Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    A. Ross Lancaster University, Lancaster LA1 4YB, United Kingdom    C. Royon CEA, Irfu, SPP, Saclay, France    P. Rubinov Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    R. Ruchti University of Notre Dame, Notre Dame, Indiana 46556, USA    G. Sajot LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France    P. Salcido Northern Illinois University, DeKalb, Illinois 60115, USA    A. Sánchez-Hernández CINVESTAV, Mexico City, Mexico    M.P. Sanders Ludwig-Maximilians-Universität München, München, Germany    A.S. Santos LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil    G. Savage Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    L. Sawyer Louisiana Tech University, Ruston, Louisiana 71272, USA    T. Scanlon Imperial College London, London SW7 2AZ, United Kingdom    R.D. Schamberger State University of New York, Stony Brook, New York 11794, USA    Y. Scheglov Petersburg Nuclear Physics Institute, St. Petersburg, Russia    H. Schellman Northwestern University, Evanston, Illinois 60208, USA    S. Schlobohm University of Washington, Seattle, Washington 98195, USA    C. Schwanenberger The University of Manchester, Manchester M13 9PL, United Kingdom    R. Schwienhorst Michigan State University, East Lansing, Michigan 48824, USA    J. Sekaric University of Kansas, Lawrence, Kansas 66045, USA    H. Severini University of Oklahoma, Norman, Oklahoma 73019, USA    E. Shabalina II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany    V. Shary CEA, Irfu, SPP, Saclay, France    S. Shaw Michigan State University, East Lansing, Michigan 48824, USA    A.A. Shchukin Institute for High Energy Physics, Protvino, Russia    R.K. Shivpuri Delhi University, Delhi, India    V. Simak Czech Technical University in Prague, Prague, Czech Republic    P. Skubic University of Oklahoma, Norman, Oklahoma 73019, USA    P. Slattery University of Rochester, Rochester, New York 14627, USA    D. Smirnov University of Notre Dame, Notre Dame, Indiana 46556, USA    K.J. Smith State University of New York, Buffalo, New York 14260, USA    G.R. Snow University of Nebraska, Lincoln, Nebraska 68588, USA    J. Snow Langston University, Langston, Oklahoma 73050, USA    S. Snyder Brookhaven National Laboratory, Upton, New York 11973, USA    S. Söldner-Rembold The University of Manchester, Manchester M13 9PL, United Kingdom    L. Sonnenschein III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany    K. Soustruznik Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic    J. Stark LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France    D.A. Stoyanova Institute for High Energy Physics, Protvino, Russia    M. Strauss University of Oklahoma, Norman, Oklahoma 73019, USA    L. Suter The University of Manchester, Manchester M13 9PL, United Kingdom    P. Svoisky University of Oklahoma, Norman, Oklahoma 73019, USA    M. Takahashi The University of Manchester, Manchester M13 9PL, United Kingdom    M. Titov CEA, Irfu, SPP, Saclay, France    V.V. Tokmenin Joint Institute for Nuclear Research, Dubna, Russia    Y.-T. Tsai University of Rochester, Rochester, New York 14627, USA    K. Tschann-Grimm State University of New York, Stony Brook, New York 11794, USA    D. Tsybychev State University of New York, Stony Brook, New York 11794, USA    B. Tuchming CEA, Irfu, SPP, Saclay, France    C. Tully Princeton University, Princeton, New Jersey 08544, USA    L. Uvarov Petersburg Nuclear Physics Institute, St. Petersburg, Russia    S. Uvarov Petersburg Nuclear Physics Institute, St. Petersburg, Russia    S. Uzunyan Northern Illinois University, DeKalb, Illinois 60115, USA    R. Van Kooten Indiana University, Bloomington, Indiana 47405, USA    W.M. van Leeuwen Nikhef, Science Park, Amsterdam, the Netherlands    N. Varelas University of Illinois at Chicago, Chicago, Illinois 60607, USA    E.W. Varnes University of Arizona, Tucson, Arizona 85721, USA    I.A. Vasilyev Institute for High Energy Physics, Protvino, Russia    P. Verdier IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France    A.Y. Verkheev Joint Institute for Nuclear Research, Dubna, Russia    L.S. Vertogradov Joint Institute for Nuclear Research, Dubna, Russia    M. Verzocchi Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    M. Vesterinen The University of Manchester, Manchester M13 9PL, United Kingdom    D. Vilanova CEA, Irfu, SPP, Saclay, France    P. Vokac Czech Technical University in Prague, Prague, Czech Republic    H.D. Wahl Florida State University, Tallahassee, Florida 32306, USA    M.H.L.S. Wang Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    J. Warchol University of Notre Dame, Notre Dame, Indiana 46556, USA    G. Watts University of Washington, Seattle, Washington 98195, USA    M. Wayne University of Notre Dame, Notre Dame, Indiana 46556, USA    J. Weichert Institut für Physik, Universität Mainz, Mainz, Germany    L. Welty-Rieger Northwestern University, Evanston, Illinois 60208, USA    A. White University of Texas, Arlington, Texas 76019, USA    D. Wicke Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany    M.R.J. Williams Lancaster University, Lancaster LA1 4YB, United Kingdom    G.W. Wilson University of Kansas, Lawrence, Kansas 66045, USA    M. Wobisch Louisiana Tech University, Ruston, Louisiana 71272, USA    D.R. Wood Northeastern University, Boston, Massachusetts 02115, USA    T.R. Wyatt The University of Manchester, Manchester M13 9PL, United Kingdom    Y. Xie Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    R. Yamada Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    S. Yang University of Science and Technology of China, Hefei, People’s Republic of China    W.-C. Yang The University of Manchester, Manchester M13 9PL, United Kingdom    T. Yasuda Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    Y.A. Yatsunenko Joint Institute for Nuclear Research, Dubna, Russia    W. Ye State University of New York, Stony Brook, New York 11794, USA    Z. Ye Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    H. Yin Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    K. Yip Brookhaven National Laboratory, Upton, New York 11973, USA    S.W. Youn Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA    J.M. Yu University of Michigan, Ann Arbor, Michigan 48109, USA    J. Zennamo State University of New York, Buffalo, New York 14260, USA    T. Zhao University of Washington, Seattle, Washington 98195, USA    T.G. Zhao The University of Manchester, Manchester M13 9PL, United Kingdom    B. Zhou University of Michigan, Ann Arbor, Michigan 48109, USA    J. Zhu University of Michigan, Ann Arbor, Michigan 48109, USA    M. Zielinski University of Rochester, Rochester, New York 14627, USA    D. Zieminska Indiana University, Bloomington, Indiana 47405, USA    L. Zivkovic Brown University, Providence, Rhode Island 02912, USA
July 6, 2012
Abstract

We present a measurement of the time-integrated flavor-specific semileptonic charge asymmetry in the decays of  mesons that have undergone flavor mixing, , using decays, with and , using 10.4 fb of proton-antiproton collisions collected by the D0 detector during Run II at the Fermilab Tevatron Collider. A fit to the difference between the time-integrated and mass distributions of the  and candidates yields the flavor-specific asymmetry , which is the most precise measurement and in agreement with the standard model prediction.

pacs:
11.30.Er, 13.20.He, 14.40.Nd

FERMILAB-PUB-12-338-E

The D0 Collaboration111with visitors from Augustana College, Sioux Falls, SD, USA, The University of Liverpool, Liverpool, UK, UPIITA-IPN, Mexico City, Mexico, DESY, Hamburg, Germany, SLAC, Menlo Park, CA, USA, University College London, London, UK, Centro de Investigacion en Computacion - IPN, Mexico City, Mexico, ECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico and Universidade Estadual Paulista, São Paulo, Brazil.

CP violation has been observed in the decay and mixing of neutral mesons containing strange, charm and bottom quarks. Currently all measurements of CP violation, either in decay, mixing or in the interference between the two, have been consistent with the presence of a single phase in the CKM matrix. An observation of anomalously large CP violation in  oscillations can indicate the existence of physics beyond the standard model (SM) smprediction (). Measurements of the like-sign dimuon asymmetry by the D0 Collaboration dimuon1 (); dimuon2 () show evidence of anomalously large CP-violating effects using data corresponding to 9 fb of integrated luminosity. Assuming that this asymmetry originates from mixed neutral mesons, the measured value is , where is the time-integrated flavor-specific semileptonic charge asymmetry in () decays that have undergone flavor mixing and is the fraction of () events. The value of  is extracted from this measurement and found to be  dimuon2 (). This Letter presents an independent measurement of  using the decay , where and (charge conjugate states are assumed in this Letter).

The asymmetry  is defined as

(1)

where in this analysis and . This includes all decay processes of  mesons that result in a meson and an oppositely charged muon in the final state. To study CP violation, we identify events with the decay . The flavor of the  meson at the time of decay is identified using the charge of the associated muon, and this analysis does not make use of initial-state tagging. The fraction of mixed events integrated over time is extracted using Monte Carlo (MC) simulations. We assume there is no production asymmetry between  and  mesons, that there is no direct CP violation in the decay of mesons to the indicated states or in the semileptonic decay of mesons, and that any CP violation in  mesons only occurs in mixing. We also assume that any direct CP violation in the decay of baryons and charged mesons is negligible. This analysis does not make use of the decay as used in Ref. d0asls () as the expected statistical uncertainty in this channel is 2.5 times worse than the decay .

The value of the SM prediction for  smprediction () is negligible compared with current experimental precision. The best direct measurement of  was performed by the D0 Collaboration using data corresponding to 5 fb of integrated luminosity, giving  d0asls (). This Letter presents a new and improved measurement of  using the full Tevatron data sample with an integrated luminosity of 10.4 fb.

The measurement is performed using the raw asymmetry

(2)

where () is the number of reconstructed () decays. The time-integrated flavor-specific semileptonic charge asymmetry in  decays which have undergone flavor mixing, , is then given by

(3)

where is the reconstruction asymmetry between positive and negatively charged muons in the detector d0det (), is the asymmetry between positive and negative tracks, is the residual kaon asymmetry from the decay of the meson, and is the fraction of decays that originate from the decay of a  meson after a oscillation. The factor corrects the measured asymmetry for the fraction of events in which the  meson is mixed under the assumptions outlined earlier that no other physics asymmetries are present in the other -hadron backgrounds. While the data selection, fitting models, , , and were studied, the value of the raw asymmetry was offset by an unknown arbitrary value and any distribution that gave an indication of the value of the asymmetry was not examined.

The D0 detector has a central tracking system, consisting of a silicon microstrip tracker (SMT) and a central fiber tracker (CFT), both located within a 2 T superconducting solenoidal magnet d0det (); layer0 (). An outer muon system, at  eta (), consists of a layer of tracking detectors and scintillation trigger counters in front of 1.8 T toroidal magnets, followed by two similar layers after the toroids run2muon ().

The data are collected with a suite of single and dimuon triggers. The selection and reconstruction of decays requires tracks with at least two hits in both the CFT and SMT. Muons are required to have hits in at least two layers of the muon system, with segments reconstructed both inside and outside the toroid. The muon track segment has to be matched to a particle found in the central tracking system which has momentum  GeV/ and transverse momentum  GeV/.

The ; decay is reconstructed as follows. The two particles from the decay are assumed to be kaons and are required to have  GeV/, opposite charge and a mass  GeV/. The charge of the third particle, assumed to be the charged pion, has to be opposite to that of the muon with  GeV/. The three tracks are combined to create a common decay vertex using the algorithm described in Ref. vertex (). To reduce combinatorial background, the vertex is required to have a displacement from the interaction vertex (PV) in the transverse plane with a significance of at least four standard deviations. The cosine of the angle between the momentum and the vector from the PV to the decay vertex is required to be greater than 0.9. The trajectories of the muon and candidates are required to be consistent with originating from a common vertex (assumed to be the decay vertex) and to have an effective mass of  GeV, consistent with coming from a semileptonic decay. The cosine of the angle between the combined direction, an approximation of the direction in the direction from the PV to the decay vertex has to be greater than 0.95. The  decay vertex has to be displaced from the PV in the transverse plane with a significance of at least four standard deviations. These angular criteria ensure that the and momenta are correlated with that of their parent and that the is not mistakenly associated with a random muon. If more than one  candidate passes the selection criteria in an event, then all candidates are included in the final sample.

To improve the significance of the selection we use a likelihood ratio taken from Refs. d0bsmix (); like_ratio (). It combines several discriminating variables: the helicity angle between the and momenta in the center-of-mass frame of the meson; the isolation of the system, defined as , where is the sum of the momenta of the three tracks that make up the meson and is the sum of momenta for all tracks not associated with the in a cone of around the direction eta (); the of the vertex fit; the invariant masses , ; and .

The final requirement on the likelihood ratio variable, , is chosen to maximize the predicted ratio in a data subsample corresponding to 20% of the full data sample, where is the number of signal events and is the number of background events determined from signal and sideband regions of the distributions.

The distribution is analysed in bins of 6 MeV, over a mass range of  GeV. The number of events is extracted by fitting the data to a model using a fit. The meson mass distribution is well modelled by two Gaussian functions constrained to have the same mean, but with different widths and relative normalizations. A second peak in the distribution corresponding to the Cabibbo-suppressed decay of the meson is also similarly modelled by two Gaussian functions, and the combinatoric background by a third-order polynomial function. The number of signal decays determined from the fit is , where the uncertainty is statistical.

The polarities of the toroidal and solenoidal magnetic fields are reversed on average every two weeks so that the four solenoid-toroid polarity combinations are exposed to approximately the same integrated luminosity. This allows for a cancellation of first-order effects related to instrumental asymmetries. To ensure full cancellation, the events are weighted according to the number of decays for each data sample corresponding to a different configuration of the magnets’ polarities. The data are then fitted to obtain the number of weighted events, . This is shown in Fig. 1, where the weighted invariant mass distributions in data is compared to the signal and background fit.

Figure 1: The weighted invariant mass distribution for the sample with the solid line representing the signal fit and the dashed line showing the background fit. The lower mass peak is due to the decay and the second peak is due to the meson decay. Note the zero-suppression on the vertical axis.

The raw asymmetry (Eq. 2) is extracted by fitting the distribution of the candidates using a minimization. The fit is performed simultaneously, using the same models, on the sum (Fig. 1) and the difference (Fig. 2) of the distribution associated with a positively charged muon and distribution associated with a negatively charged muon. The functions used to model the two distributions are

(4)
(5)

where and describe the , mass peaks, and the combinatorial background, respectively. The asymmetry of the mass peak is , and is the asymmetry of the combinatorial background. The result of the fit is shown in Fig. 2 with fitted asymmetry parameters , , and .

Figure 2: The fit to the difference distribution for the data (for clarity the data has been rebinned).

The of the fit model with respect to the difference histogram is degrees of freedom over the whole mass range and for 25 bins in the mass range  GeV, which corresponds to a -value of . The value of the extracted raw asymmetry, , is checked by calculating the difference between the number of and events in the mass range  GeV without using a fit. In this region we observe an asymmetry of which is consistent with the value of extracted by the fitting procedure.

To test the sensitivity of the fitting procedure, the charge of the muon is randomised to introduce an asymmetry signal. We use a range of raw signals from to in steps with 1000 trials performed for each step, and the result of these pseudo-experiments, each with the same statistics as the measurement, is found. In each case, the central value of the asymmetry distribution is consistent with the input value with a fitted width of and no observable bias. The uncertainty found in data agrees with this expected statistical sensitivity.

Systematic uncertainties in the fitting method are evaluated by making reasonable variations to the fitting procedure. The mass range of the fit is shifted from  GeV to  GeV. The functions modelling the signal, , are modified so that the and peaks are fitted by single Gaussian functions. The background function, , is varied from a second-order polynomial function to a fifth-order polynomial function, and the asymmetry is extracted. Instead of setting the background of to , the background is either set to zero, a constant, or a polynomial function of up to degree three. The width of the mass bins is varied between 2 and 12 MeV. Instead of using the fitted number of  decays per magnet polarity to weight the events, the total number of candidates in the mass range  GeV/ is used. The systematic uncertainty is assigned to be half of the maximal variation in the asymmetry for each of these sources, added in quadrature. The total effect of all of these systematic sources of uncertainty is a systematic uncertainty of on the raw asymmetry , giving

(6)

To extract  from the raw asymmetry, corrections to the charge asymmetries in the reconstruction have to be made. These corrections are described in detail in Ref. d0adsl (). The residual detector tracking asymmetry, , has been studied in Ref. dimuon1 () and by using and decays. No significant residual track reconstruction asymmetries are found and no correction for tracking asymmetries need to be applied. The tracking asymmetry of charged pions has been studied using MC simulations of the detector. The asymmetry is found to be less than , which is assigned as a systematic uncertainty. The muon and the pion have opposite charge, so any remaining track asymmetries will cancel to first order.

Any asymmetry between the reconstruction of and mesons cancels as we require that the two kaons form a meson. However, there is a small residual asymmetry in the momentum of the kaons produced by the decay of the meson due to - interference bellePhi (). The kaon asymmetry is measured using the decay  d0adsl () and is used to determine the residual asymmetry due to this interference, .

The residual reconstruction asymmetry of the muon system, , has been measured using decays as described in dimuon1 (); dimuon2 (); d0adsl (). This asymmetry is determined as a function of and of the muons, and the correction is obtained by a weighted average over the normalized yields, as determined from fits to the distribution. The resulting correction is and the combined corrections are , including the statistical uncertainties combined in quadrature.

The remaining variable required is (Eq. 3), which is the only correction extracted from a MC simulation. The  signal decays can also be produced via the decay of   mesons, mesons, and from prompt production. The  () mesons can oscillate to  () states before decaying. We split these MC samples into mixed and unmixed decays. This classification is inclusive and includes most intermediate excited states of both and meson decays.

The MC sample is created using the pythia event generator pythia () modified to use evtgen evtgen () for the decay of hadrons containing and quarks. Events recorded in random beam crossings are overlaid over the simulated events to quantify the effect of additional collisions in the same or nearby bunch crossings. The pythia inclusive jet production model is used and events are selected that contain at least one muon and a ; decay. The generated events are processed by the full simulation chain, and then by the same reconstruction and selection algorithms as used to select events from data. Each event is classified based on the decay chain that is matched to the reconstructed particles.

The mean proper decay lengths of the -hadrons are fixed in the simulation to values close to the current world-average values hfag (). To correct for these differences, a correction is applied to all non-prompt events in simulation, based on the generated lifetime of the candidate, to give the appropriate world-average meson lifetimes and measured value of the width difference  lhcbDeltaGamma ().

To estimate the effects of trigger selection and track reconstruction, we weight each event as a function of of the reconstructed muon so that it matches the distribution in the data, and as a function of the lifetime to ensure that the -meson lifetimes and match the world-average hfag ().

In the case of the  meson, the time-integrated oscillation probability is essentially 50% and is insensitive to the exact value of . Combining the fraction of  decays in the sample and the time-integrated oscillation probability, we find .

To determine the systematic uncertainty on , the branching ratios and production fractions of mesons are varied by their uncertainties. We also vary the -meson lifetimes and and use a coarser binning in the event weighting. The total resulting systematic uncertainty on is determined to be that includes the statistical uncertainty from the MC simulation. An asymmetry of decays of 1% would contribute to the total asymmetry, which is negligible compared to the statistical uncertainties and therefore neglected.

The uncertainty due to the fitting procedure () and the asymmetry corrections () are added in quadrature and scaled by the dilution factor, . The effect of the uncertainty on the dilution factor is then added in quadrature, giving a total systematic uncertainty of .

The resulting time-integrated flavor-specific semileptonic charge asymmetry is found to be

(7)

superseding the previous measurement of  by the D0 Collaboration d0asls (); comment () and in agreement with the SM prediction. This result can be combined with the two  measurements that depend on the impact parameter of the muons (IP) dimuon2 () and the average of  measurements from the factories,  hfag (), (Fig. 3). As a result of this combination we obtain and with a correlation of , which is a significant improvement on the precision of the measurement of  and  obtained in Ref. dimuon2 (). These results have a probability of agreement with the SM of , which corresponds to a 3.0 standard deviations from the SM prediction.

Figure 3: (color online) A combination of this result with two measurements of  with different muon impact parameter selections made using like-sign dimuons dimuon2 () and the average of measurements from factories hfag () . The error bands represent the standard deviation uncertainties on each individual measurement. The ellipses represent the 1, 2, 3, and 4 standard deviation two-dimensional C.L. regions, respectively, in the and plane.

In summary, we have presented the most precise measurement to date of the time-integrated flavor-specific semileptonic charge asymmetry, , which is in agreement with the standard model prediction and the D0 like-sign dimuon result dimuon2 ().

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); MON, NRC KI and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

References

  • (1) A. Lenz and U. Nierste, arXiv:1102.4274; A. Lenz and U. Nierste, J. High Energy Phys. 06, 072 (2007).
  • (2) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 032001 (2010); V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 105, 081801 (2010).
  • (3) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 052007 (2011).
  • (4) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 012003 (2010).
  • (5) V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).
  • (6) R. Angstadt et al. (D0 Collaboration), Nucl. Instrum. Meth. A 622, 278 (2010).
  • (7) is the pseudorapidity and is the polar angle between the track momentum and the proton beam direction. is the azimuthal angle of the track.
  • (8) V.M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Meth. A 552, 372 (2005).
  • (9) J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 32, 185 (2004).
  • (10) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 021802 (2006).
  • (11) G. Borisov, Nucl. Instrum. Methods Phys. Res. A 417, 384 (1998).
  • (12) V. M. Abazov et al. (D0 Collaboration), arXiv:1208.5813, submitted to Phys. Rev. D.
  • (13) M. Starič et al. (Belle Collaboration), Phys. Rev. Lett. 108, 071801 (2012).
  • (14) T. Sjöstrand, S. Mrenna and P. Z. Skands, J. High Energy Phys. 05, 026 (2006).
  • (15) D.G. Lange, Nucl. Instrum. Methods in Phys. Res. A 462, 152 (2001); for details see http://www.slac.stanford.edu/~lange/EvtGen.
  • (16) D. Asner et al., Heavy Flavor Averaging Group (HFAG), arXiv:1010.1589; making use of the 2012 update: http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2012/
  • (17) R. Aaij et al., (LHCb Collaboration), arXiv:1202.4717; R. Aaij et al., (LHCb Collaboration), Phys. Rev. Lett. 108, 101803 (2012).
  • (18) The analysis presented in this Letter has the same statistical uncertainty as the analysis presented in Ref. d0asls () when performed on the same data sample.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
184515
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description