Measurement of prompt \mathrm{D^{0}} meson azimuthal anisotropy in PbPb collisions at \sqrtsNNdef=5.02\,\text{TeV}
Abstract

The prompt meson azimuthal anisotropy coefficients, and , are measured at midrapidity () in PbPb collisions at a center-of-mass energy per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum () range of 1 to 40, for central and midcentral collisions. The coefficient is found to be positive throughout the range studied. The first measurement of the prompt meson coefficient is performed, and values up to 0.07 are observed for around 4. Compared to measurements of charged particles, a similar dependence, but smaller magnitude for , is found for prompt meson and coefficients. The results are consistent with the presence of collective motion of charm quarks at low and a path length dependence of charm quark energy loss at high , thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)


CERN-EP-2017-174 2019/\two@digits7/\two@digits25

CMS-HIN-16-007                                         


Measurement of prompt meson azimuthal anisotropy in PbPb collisions at


The CMS Collaboration111See Appendix A for the list of collaboration members



Abstract

Please replace the default abstract using the abstract command.


Published in Physical Review Letters as doi:10.1103/PhysRevLett.120.202301.

© 2019 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

The formation of a strongly-coupled quark-gluon plasma (QGP), a state of matter comprising deconfined quarks and gluons and exhibiting near-perfect liquid behavior, was established first in experiments performed at the Relativistic Heavy Ion Collider (RHIC) [1, 2, 3, 4] and then later confirmed at the CERN Large Hadron Collider (LHC) [5, 6]. The azimuthal anisotropy of produced light flavor particles, one of the key signatures for the QGP formation, can be characterized by the Fourier coefficients in the azimuthal angle () distribution of the hadron yield, , where is the azimuthal angle of the direction of the maximum particle density of the th harmonic in the transverse plane [7]. Heavy quarks (charm and bottom) are primarily produced via initial hard scatterings because of their large masses, and thus carry information about the early stages of the QGP [8, 9]. Detailed measurements of the azimuthal anisotropy of the final-state charm and bottom hadrons can supply crucial information for understanding the properties of the QGP medium and the interactions between heavy quarks and the medium [10]. At low transverse momentum (), the charm hadron coefficient can help quantify the extent to which charm quarks flow with the medium, which is a good measure of their interaction strength. The measurements can also help explore the coalescence production mechanism for charm hadrons where charm quarks recombine with light quarks from the medium, which could also lead to positive charm hadron  [11, 12]. At high , the charm hadron coefficient can constrain the path length dependence of charm quark energy loss [13, 14], complementing the measurement of the nuclear modification factor [15, 16, 17].

The charm hadron coefficient has been studied indirectly by measuring the of leptons from heavy-flavor hadron decays [18, 19, 20, 21, 22]. The meson coefficient, which can provide cleaner information on the interactions between charm quarks and the medium, has also been measured [23, 24, 25]. The meson results from STAR suggest that the charm quarks have achieved local thermal equilibrium with the QGP medium in the hydrodynamic picture [23]. The meson values measured by ALICE are similar to those of light hadrons [24, 25]. These results indicate that low- charm quarks take part in the collective motion of the system. The meson coefficient, which is predicted to be more sensitive to the interaction strength between charm quarks and the medium [26], has not been measured previously. In general, a precise measurement of the meson coefficient over a wide momentum range is expected to provide valuable insight into the QGP properties and can further constrain theoretical models.

In this Letter, we report the measurements of the azimuthal anisotropy coefficients, and , of prompt mesons in lead-lead (PbPb) collisions at a center-of-mass energy per nucleon pair with the CMS experiment at the LHC. The coefficients are determined at midrapidity () over a wide range in (1 to 40) using the scalar product (SP) method [27, 28]. Results are presented for the centrality (i.e. the degree of overlap of the two colliding nuclei) classes 0–10%, 10–30%, and 30–50%, where the centrality class of 0–10% corresponds to the 10% of collisions with the largest overlap of the two nuclei.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the pseudorapidity range on either side of the interaction region. The granularity of the HF towers is radians, allowing an accurate reconstruction of the heavy ion collision event planes. The silicon tracker measures charged particles within the pseudorapidity range . Reconstructed tracks with typically have resolutions of 1.5–3.0% in and 25–90 (45–150) in the transverse (longitudinal) impact parameter [29]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [30].

The PbPb data used in this analysis are selected by a minimum bias trigger and a 30–100% centrality trigger. The collision centrality is determined from the transverse energy () deposited in both HF calorimeters. The minimum bias trigger requires energy deposits in both HF calorimeters above a predefined threshold of approximately 1. Furthermore, to increase the data sample in the 30–50% centrality range, a dedicated trigger is used to select events in the 30–100% centrality range. In the offline analysis, an additional selection of hadronic collisions is applied by requiring at least three towers in each of the HF detectors with energy deposits of greater than 3 per tower. Events are required to have at least one reconstructed primary vertex, formed by two or more associated tracks and required to have a distance from the nominal interaction region of less than 15 cm along the beam axis. The numbers of events used in the 0–10%, 10–30%, and 30–50% centrality ranges are , and , respectively.

The mesons (including both the and states) are reconstructed through the hadronic decay channel , which has a branching fraction of ()% [31]. The candidates are formed by combining pairs of oppositely-charged tracks and requiring an invariant mass within a window of the nominal mass of 1864.83 [31]. Tracks are required to pass kinematic selections of and 1.5, and must satisfy high-purity track quality criteria [29] to reduce the fraction of misreconstructed tracks. For each pair of selected tracks, two candidates are considered by assuming one of the tracks has the pion mass while the other track has the kaon mass, and vice versa. Kinematic vertex fits [32] are performed to reconstruct the secondary vertices of candidates. Several selections related to the topology of the decay are applied in order to reduce the combinatorial background. In particular, the selections are applied to the three-dimensional (3D) decay length significance (), defined as the 3D distance between the secondary and primary vertices divided by its uncertainty; the pointing angle (), defined as the angle between the total momentum vector of the two tracks and the vector connecting the primary and secondary vertices; the probability of the secondary vertex fit; and the distance of the closest approach () of the total momentum vector to the primary vertex. The signal-to-background ratios are dependent, thus -dependent selection criteria are applied to and the vertex probability, ranging from 6.0 to 3.0 and 0.25 to 0.05 for low to high , respectively. In the selection, radians and  cm is required. The selection on not only increases the signal significance, but also suppresses the fraction of nonprompt ( mesons from decays of hadrons) significantly, which reduces the systematic uncertainties from the nonprompt meson contribution, as discussed later.

The event plane angles corresponding to the th harmonic can be expressed in term of Q-vectors, , where represents the subevent multiplicity, is the azimuthal angle of the th particle, and is a weighting factor. In this analysis, event planes determined from the two HF calorimeters covering the range , and from the tracker using tracks within are used. For the HF (tracker) event planes, is the number of towers (tracks), and is the deposited in each HF tower ( of each track). The Q-vector of each candidate is defined as , where is the azimuthal angle of the candidate. In the SP method, coefficient can be expressed in terms of the Q-vectors as: {linenomath}

(1)

where the subscripts and refer to the HF event planes, the subscript refers to the tracker event plane, and the in denominator (numerator) indicates an average over all events (all candidates). The denominator of Eq. (1) corrects for the finite resolution of the event plane . To avoid few-particle correlations, such as those induced by high- dijets and particle decays, the gap between candidates and the correlated event plane is required to be at least three units. Thus, if the candidate comes from the positive- side, () is calculated using the negative- (positive-) side of HF, and vice versa. The real part is taken for all averages of -vector products. To account for asymmetries that arise from acceptance and other detector-related effects, the Q-vectors of event planes are recentered [7, 33]. These corrections and their effects on the results are found to be negligible.

Figure 1: Example of simultaneous fit to the invariant mass spectrum and in the interval 4–5 for the centrality class 10–30%.

To extract () values of the signal (), a simultaneous fit to the invariant mass spectrum of candidates and their distribution as a function of the invariant mass () is performed in each interval. The mass spectrum fit function is composed of three components: two Gaussian functions with the same mean but different widths for the signal (), an additional Gaussian function to describe the invariant mass shape of candidates with an incorrect mass assignment from the exchange of the pion and kaon designations (), and a third-order polynomial to model the combinatorial background (). The width of is fixed according to pythia+hydjet simulations, in which the signal events from pythia 8.209 [34, 35] are embedded into the minimum bias PbPb events from hydjet 1.9 [36]. Furthermore, the ratio of the yields of and is fixed to the value extracted from simulations. The distribution is fit with: {linenomath}

where {linenomath}

Here is the value of background candidates and is modeled as a linear function of the invariant mass, and is the signal fraction as a function of the invariant mass. The - swapped component is included in the signal fraction because these candidates are from genuine mesons and should have the same value as that of the true signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and in the interval 4–5 for the centrality class 10–30%.

The signal in data is a mixture of prompt and nonprompt components, thus the is a combination of the coefficients of prompt () and nonprompt () components, {linenomath}

where is the fraction of prompt mesons. Besides the measurement of of mesons with all analysis selections applied (), the of mesons obtained by removing the requirement () and the corresponding prompt fraction () are also measured. The prompt fractions are evaluated from data by fitting the distribution using the probability distribution functions for prompt and nonprompt derived from the pythia+hydjet simulations. The distributions of the signal in data are obtained with fits to mass spectra in bins of . The discrimination between prompt and nonprompt mesons lies mainly in the large region, thus the fit is performed on the entire range. The and are then evaluated from the fit. It is found that the requirement can suppress the fraction of nonprompt mesons by approximately 50%. The ranges between 75 and 95%, depending on and centrality. The can then be expressed as: {linenomath}

(2)

The second term,

is a correction factor to account for the remaining nonprompt mesons after all analysis selections. Taking the uncertainties in and into account, the second term on the right of Eq. (2) is found to lie approximately between and . In this analysis, the values are kept as the central values of the measured prompt meson , while the second term of Eq. (2) is taken as a source of systematic uncertainty.

Figure 2: Prompt meson (upper) and (lower) coefficients at midrapidity () for the centrality classes 0–10% (left), 10–30% (middle), and 30–50% (right). The vertical bars represent statistical uncertainties, grey bands represent systematic uncertainties from nonprompt mesons and open boxes represent other systematic uncertainties. The measured coefficient of charged particles at midpseudorapidity ([37] and theoretical calculations for prompt D meson coefficient [38, 26, 39, 40, 41] are also plotted for comparison.

Apart from the systematic uncertainties from the remaining nonprompt mesons discussed above, other sources of systematic uncertainty in this analysis include the background mass probability distribution function (PDF), the meson yield correction (acceptance and efficiency), the track selections, and the background PDF. In this Letter, the quoted uncertainties in are absolute values. The systematic uncertainties from the background mass PDF (0.001 for both and ) are evaluated by the variations of while changing the background mass PDF to a second-order polynomial or an exponential function. Both the meson yield correction, and the values of are functions of the meson , so there will be systematic uncertainties arising from the correction. To evaluate these uncertainties (0.002 to 0.003 for and 0.004 to 0.005 for ), the yield correction is applied, and then values are extracted from the corrected distributions and compared with the default values. The track selections are also varied and systematic uncertainties from track selections (0.005 to 0.02 for and 0.01 to 0.02 for ) are assigned based on the variations of . The systematic uncertainties from the background PDF (mostly 0.001 to 0.01 for and 0.005 to 0.015 for ) are evaluated by changing to a second-order polynomial function of the invariant mass. The effects from few-particle correlations are also studied by varying the gap and are found to be negligible.

Figure 2 shows the prompt meson (upper) and (lower) coefficients at midrapidity () for the centrality classes 0–10% (left), 10–30% (middle), and 30–50% (right), and compares them to those of charged particles (dominated by light flavor hadrons) at midpseudorapidity ([37]. The meson and coefficients increase with to significant positive values in the low- region, and then decrease for higher . Compared to those of charged particles, the meson and coefficients exhibit a similar dependence. As has been observed for charged particles, the meson coefficient increases with decreasing centrality in the 0–50% centrality range, while the coefficient shows little centrality dependence. This is consistent with an increasing elliptical eccentricity with decreasing centrality [42], and an approximately constant triangularity stemming from geometry fluctuations [43].

For , the magnitudes of meson and coefficients are smaller than those for charged particles in the centrality classes 10–30% and 30–50%. Further study may determine whether it is a pure mass ordering or whether other effects, such as the degree of charm quark thermalization, coalescence, and the path length dependence of energy loss, are at play. The comparison between the meson results and theoretical calculations in this low- region (see discussion below) suggests a collective motion of charm quarks. For , the meson values remain positive, suggesting a path length dependence of the charm quark energy loss; the meson precision is limited by the available data. The meson values are consistent with those of charged particles, suggesting that the path length dependence of charm quark energy loss is similar to that of light quarks.

Figure 2 also compares calculations from theoretical models [38, 26, 39, 40, 41] to the prompt meson and experimental results. The calculations from lbt [38], cujet 3.0 [41], and subatech [26] include collisional and radiative energy losses, while those from tamu [40] and phsd [39] include only collisional energy loss. Initial-state fluctuations [44] are included in the calculations from lbt, subatech, and phsd; thus calculations for the coefficient are only available from these three models. For , lbt, subatech, tamu, and phsd can qualitatively describe the shapes of the measured , while the tamu model underestimates the values. This may suggest that the heavy quark potential in the tamu model needs to be tuned [45] or that the addition of radiative energy loss is needed. The calculations from lbt and subatech are in reasonable agreement with the results, while the phsd calculations are systematically below the measured for centrality class 10–30%. In the calculations from lbt, subatech, tamu, and phsd, the charm quarks have acquired significant elliptic and triangular flow through the interactions with the medium constituents, and the coalescence mechanism is incorporated. Without including the interactions between charm quarks and the medium, these models will significantly underestimate the data [38, 26, 39, 40]. Thus, the fact that the calculated values are close to or even lower than the measured results suggests that the charm quarks take part in the collective motion of the system. Whether and how well the anisotropy can be described by hydrodynamics and thermalization requires further investigation. For , phsd and cujet can generally describe the results. lbt and subatech predict lower and higher values than in data, respectively, indicating that improvements of the energy loss mechanisms in the two models are necessary.

In summary, measurements of prompt meson azimuthal anisotropy coefficients, and , using the scalar product method in PbPb collisions at have been presented. The values are found to be positive in the range of 1 to 40. The coefficient is measured for the first time, and values up to 0.07 are observed for around 4. The coefficient is observed to be centrality dependent, while the coefficient shows little centrality dependence. Compared with those of charged particles, the measured meson and coefficients are found to be smaller for but to have similar dependence. Through the comparison with theoretical calculations, the and results at low suggest that the charm quarks take part in the collective motion of the system. The values for , which are consistent with those of charged particles, suggest that the path length dependence of charm quark energy loss is similar to that of light quarks. The results provide new constraints on models of the interactions between charm quarks and the quark-gluon plasma, and the charm quark energy loss mechanisms.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We thank E. Bratkovskaya, S. Cao, M. He, J. Liao, M. Nahrgang, R. Rapp, T. Song, and J. Xu for the inputs in comparing our measurements with their calculations. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

Appendix A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth\@textsuperscript1, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler\@textsuperscript1, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck\@textsuperscript1, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz\@textsuperscript1, M. Zarucki Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang\@textsuperscript2 Ghent University, Ghent, Belgium
A. Cimmino, T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz Université de Mons, Mons, Belgium
N. Beliy Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato\@textsuperscript3, A. Custódio, E.M. Da Costa, G.G. Da Silveira\@textsuperscript4, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\@textsuperscript3, F. Torres Da Silva De Araujo, A. Vilela Pereira Universidade Estadual Paulista ,  Universidade Federal do ABC ,  São Paulo, Brazil
S. Ahuja, C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula, D. Romero Abad, J.C. Ruiz Vargas Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov Beihang University, Beijing, China
W. Fang\@textsuperscript5, X. Gao\@textsuperscript5 Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, J. Zhao State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov\@textsuperscript6, T. Susa University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski Charles University, Prague, Czech Republic
M. Finger\@textsuperscript7, M. Finger Jr.\@textsuperscript7 Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
E. El-khateeb\@textsuperscript8, S. Elgammal\@textsuperscript9, A. Ellithi Kamel\@textsuperscript10 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, E. Tuominen, J. Tuominiemi, E. Tuovinen Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram\@textsuperscript11, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte\@textsuperscript11, X. Coubez, J.-C. Fontaine\@textsuperscript11, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat Université de Lyon, Université Claude Bernard Lyon 1,  CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov\@textsuperscript12, V. Sordini, M. Vander Donckt, S. Viret Georgian Technical University, Tbilisi, Georgia
A. Khvedelidze\@textsuperscript7 Tbilisi State University, Tbilisi, Georgia
I. Bagaturia\@textsuperscript13 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage RWTH Aachen University, III. Physikalisches Institut A,  Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer RWTH Aachen University, III. Physikalisches Institut B,  Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl\@textsuperscript14 Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras\@textsuperscript15, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren, E. Gallo\@textsuperscript16, J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, A. Harb, J. Hauk, M. Hempel\@textsuperscript17, H. Jung, A. Kalogeropoulos, M. Kasemann, J. Keaveney, C. Kleinwort, I. Korol, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann\@textsuperscript17, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko, S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev University of Hamburg, Hamburg, Germany
S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo\@textsuperscript14, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer, B. Vormwald Institut für Experimentelle Kernphysik, Karlsruhe, Germany
M. Akbiyik, C. Barth, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, B. Freund, R. Friese, M. Giffels, A. Gilbert, D. Haitz, F. Hartmann\@textsuperscript14, S.M. Heindl, U. Husemann, F. Kassel\@textsuperscript14, S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf Institute of Nuclear and Particle Physics (INPP),  NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis National and Kapodistrian University of Athens, Athens, Greece
G. Karathanasis, S. Kesisoglou, A. Panagiotou, N. Saoulidou University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Csanad, N. Filipovic, G. Pasztor Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath\@textsuperscript18, Á. Hunyadi, F. Sikler, V. Veszpremi, G. Vesztergombi\@textsuperscript19, A.J. Zsigmond Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi\@textsuperscript20, A. Makovec, J. Molnar, Z. Szillasi Institute of Physics, University of Debrecen, Debrecen, Hungary
M. Bartók\@textsuperscript19, P. Raics, Z.L. Trocsanyi, B. Ujvari Indian Institute of Science (IISc),  Bangalore, India
S. Choudhury, J.R. Komaragiri National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati\@textsuperscript21, S. Bhowmik, P. Mal, K. Mandal, A. Nayak\@textsuperscript22, D.K. Sahoo\@textsuperscript21, N. Sahoo, S.K. Swain Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma, V. Sharma Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur Indian Institute of Technology Madras, Madras, India
P.K. Behera Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty\@textsuperscript14, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity\@textsuperscript23, G. Majumder, K. Mazumdar, T. Sarkar\@textsuperscript23, N. Wickramage\@textsuperscript24 Indian Institute of Science Education and Research (IISER),  Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma Institute for Research in Fundamental Sciences (IPM),  Tehran, Iran
S. Chenarani\@textsuperscript25, E. Eskandari Tadavani, S.M. Etesami\@textsuperscript25, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi\@textsuperscript26, F. Rezaei Hosseinabadi, B. Safarzadeh\@textsuperscript27, M. Zeinali University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald INFN Sezione di Bari , Università di Bari , Politecnico di Bari ,  Bari, Italy
M. Abbrescia, C. Calabria, C. Caputo, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris\@textsuperscript14, R. Venditti, P. Verwilligen INFN Sezione di Bologna , Università di Bologna ,  Bologna, Italy
G. Abbiendi, C. Battilana, D. Bonacorsi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi INFN Sezione di Catania , Università di Catania ,  Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve INFN Sezione di Firenze , Università di Firenze ,  Firenze, Italy
G. Barbagli, K. Chatterjee, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, P. Lenzi, M. Meschini, S. Paoletti, L. Russo\@textsuperscript28, G. Sguazzoni, D. Strom, L. Viliani\@textsuperscript14 INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera\@textsuperscript14 INFN Sezione di Genova , Università di Genova ,  Genova, Italy
V. Calvelli, F. Ferro, E. Robutti, S. Tosi INFN Sezione di Milano-Bicocca , Università di Milano-Bicocca ,  Milano, Italy
L. Brianza, F. Brivio, V. Ciriolo, M.E. Dinardo, S. Fiorendi, S. Gennai, A. Ghezzi, P. Govoni, M. Malberti, S. Malvezzi, R.A. Manzoni, D. Menasce, L. Moroni, M. Paganoni, K. Pauwels, D. Pedrini, S. Pigazzini\@textsuperscript29, S. Ragazzi, T. Tabarelli de Fatis INFN Sezione di Napoli , Università di Napoli ’Federico II’ , Napoli, Italy, Università della Basilicata , Potenza, Italy, Università G. Marconi , Roma, Italy
S. Buontempo, N. Cavallo, S. Di Guida\@textsuperscript14, F. Fabozzi, F. Fienga, A.O.M. Iorio, W.A. Khan, L. Lista, S. Meola\@textsuperscript14, P. Paolucci\@textsuperscript14, C. Sciacca, F. Thyssen INFN Sezione di Padova , Università di Padova , Padova, Italy, Università di Trento , Trento, Italy
P. Azzi\@textsuperscript14, N. Bacchetta, L. Benato, D. Bisello, A. Boletti, R. Carlin, A. Carvalho Antunes De Oliveira, P. Checchia, P. De Castro Manzano, T. Dorigo, U. Dosselli, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, M. Margoni, A.T. Meneguzzo, N. Pozzobon, P. Ronchese, R. Rossin, F. Simonetto, E. Torassa, M. Zanetti, P. Zotto, G. Zumerle INFN Sezione di Pavia , Università di Pavia ,  Pavia, Italy
A. Braghieri, F. Fallavollita, A. Magnani, P. Montagna, S.P. Ratti, V. Re, M. Ressegotti, C. Riccardi, P. Salvini, I. Vai, P. Vitulo INFN Sezione di Perugia , Università di Perugia ,  Perugia, Italy
L. Alunni Solestizi, M. Biasini, G.M. Bilei, C. Cecchi, D. Ciangottini, L. Fanò, P. Lariccia, R. Leonardi, E. Manoni, G. Mantovani, V. Mariani, M. Menichelli, A. Rossi, A. Santocchia, D. Spiga INFN Sezione di Pisa , Università di Pisa , Scuola Normale Superiore di Pisa ,  Pisa, Italy
K. Androsov, P. Azzurri\@textsuperscript14, G. Bagliesi, J. Bernardini, T. Boccali, L. Borrello, R. Castaldi, M.A. Ciocci, R. Dell’Orso, G. Fedi, L. Giannini, A. Giassi, M.T. Grippo\@textsuperscript28, F. Ligabue, T. Lomtadze, E. Manca, G. Mandorli, L. Martini, A. Messineo, F. Palla, A. Rizzi, A. Savoy-Navarro\@textsuperscript30, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini INFN Sezione di Roma , Sapienza Università di Roma ,  Rome, Italy
L. Barone, F. Cavallari, M. Cipriani, N. Daci, D. Del Re\@textsuperscript14, M. Diemoz, S. Gelli, E. Longo, F. Margaroli, B. Marzocchi, P. Meridiani, G. Organtini, R. Paramatti, F. Preiato, S. Rahatlou, C. Rovelli, F. Santanastasio INFN Sezione di Torino , Università di Torino , Torino, Italy, Università del Piemonte Orientale , Novara, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, N. Bartosik, R. Bellan, C. Biino, N. Cartiglia, F. Cenna, M. Costa, R. Covarelli, A. Degano, N. Demaria, B. Kiani, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, E. Monteil, M. Monteno, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, F. Ravera, A. Romero, M. Ruspa, R. Sacchi, K. Shchelina, V. Sola, A. Solano, A. Staiano, P. Traczyk INFN Sezione di Trieste , Università di Trieste ,  Trieste, Italy
S. Belforte, M. Casarsa, F. Cossutti, G. Della Ricca, A. Zanetti Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang Chonbuk National University, Jeonju, Korea
A. Lee Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh Hanyang University, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh Seoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu University of Seoul, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park, G. Ryu Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali\@textsuperscript31, F. Mohamad Idris\@textsuperscript32, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz\@textsuperscript33, Rabadan-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada Universidad Autónoma de San Luis Potosí,  San Luis Potosí,  Mexico
A. Morelos Pineda University of Auckland, Auckland, New Zealand
D. Krofcheck University of Canterbury, Christchurch, New Zealand
P.H. Butler National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk\@textsuperscript34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas\@textsuperscript35, A. Di Francesco, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev\@textsuperscript36\@textsuperscript37, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg),  Russia
Y. Ivanov, V. Kim\@textsuperscript38, E. Kuznetsova\@textsuperscript39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin\@textsuperscript37 National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI),  Moscow, Russia
M. Chadeeva\@textsuperscript40, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin\@textsuperscript37, I. Dremin\@textsuperscript37, M. Kirakosyan\@textsuperscript37, A. Terkulov Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy\@textsuperscript41, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan Novosibirsk State University (NSU),  Novosibirsk, Russia
V. Blinov\@textsuperscript42, Y.Skovpen\@textsuperscript42, D. Shtol\@textsuperscript42 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic\@textsuperscript43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),  Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Álvarez Fernández Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, S. Sanchez Cruz, I. Suárez Andrés, P. Vischia, J.M. Vizan Garcia Instituto de Física de Cantabria (IFCA),  CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Curras, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, E. Di Marco\@textsuperscript44, M. Dobson, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, S. Gundacker, M. Guthoff, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban\@textsuperscript17, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer\@textsuperscript14, M.J. Kortelainen, M. Krammer\@textsuperscript1, C. Lange, P. Lecoq, C. Lourenço, M.T. Lucchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic\@textsuperscript45, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi\@textsuperscript46, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas\@textsuperscript47, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns\@textsuperscript48, G.I. Veres\@textsuperscript19, M. Verweij, N. Wardle, W.D. Zeuner Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada\@textsuperscript49, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler\@textsuperscript50, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu National Taiwan University (NTU),  Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Adiguzel\@textsuperscript51, F. Boran, S. Cerci\@textsuperscript52, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos\@textsuperscript53, E.E. Kangal\@textsuperscript54, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut\@textsuperscript55, K. Ozdemir\@textsuperscript56, D. Sunar Cerci\@textsuperscript52, B. Tali\@textsuperscript52, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar\@textsuperscript57, K. Ocalan\@textsuperscript58, M. Yalvac, M. Zeyrek Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya\@textsuperscript59, O. Kaya\@textsuperscript60, S. Tekten, E.A. Yetkin\@textsuperscript61 Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold\@textsuperscript62, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev\@textsuperscript63, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko\@textsuperscript6, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta\@textsuperscript64, T. Virdee\@textsuperscript14, D. Winterbottom, J. Wright, S.C. Zenz Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu University of California, Davis, Davis, USA
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech\@textsuperscript65, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo California Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton Florida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, R. Yohay Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva University of Illinois at Chicago (UIC),  Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang The University of Iowa, Iowa City, USA
B. Bilki\@textsuperscript66, W. Clarida, K. Dilsiz\@textsuperscript67, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya\@textsuperscript68, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul\@textsuperscript69, Y. Onel, F. Ozok\@textsuperscript70, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Royon, S. Sanders, E. Schmitz, R. Stringer, J.D. Tapia Takaki, Q. Wang Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright University of Maryland, College Park, USA
C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, R. Barbieri, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, D. Hsu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, J. Turkewitz University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger State University of New York at Buffalo, Buffalo, USA
M. Alyari, J. Dolen, A. Godshalk, C. Harrington, I. Iashvili, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani Northeastern University, Boston, USA
G. Alverson, E. Barberis, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, D. Wood Northwestern University, Evanston, USA
S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, B. Pollack, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco University of Notre Dame, Notre Dame, USA
N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko\@textsuperscript36, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, M. Wayne, M. Wolf, A. Woodard The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, B. Liu, W. Luo, D. Puigh, B.L. Winer, H.W. Wulsin Princeton University, Princeton, USA
A. Benaglia, S. Cooperstein, O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S. Higginbotham, D. Lange, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, W. Xie Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa Texas A&M University, College Station, USA
O. Bouhali\@textsuperscript71, A. Castaneda Hernandez\@textsuperscript71, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon\@textsuperscript72, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, X. Sun, Y. Wang, E. Wolfe, F. Xia Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods †: Deceased
1:  Also at Vienna University of Technology, Vienna, Austria
2:  Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3:  Also at Universidade Estadual de Campinas, Campinas, Brazil
4:  Also at Universidade Federal de Pelotas, Pelotas, Brazil
5:  Also at Université Libre de Bruxelles, Bruxelles, Belgium
6:  Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7:  Also at Joint Institute for Nuclear Research, Dubna, Russia
8:  Now at Ain Shams University, Cairo, Egypt
9:  Now at British University in Egypt, Cairo, Egypt
10: Now at Cairo University, Cairo, Egypt
11: Also at Université de Haute Alsace, Mulhouse, France
12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
13: Also at Ilia State University, Tbilisi, Georgia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Czech Technical University, Praha, Czech Republic
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at P.N. Lebedev Physical Institute, Moscow, Russia
41: Also at INFN Sezione di Padova; Università di Padova; Università di Trento (Trento), Padova, Italy
42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
44: Also at INFN Sezione di Roma; Sapienza Università di Roma, Rome, Italy
45: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
46: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
47: Also at National and Kapodistrian University of Athens, Athens, Greece
48: Also at Riga Technical University, Riga, Latvia
49: Also at Universität Zürich, Zurich, Switzerland
50: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
51: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Cag University, Mersin, Turkey
56: Also at Piri Reis University, Istanbul, Turkey
57: Also at Izmir Institute of Technology, Izmir, Turkey
58: Also at Necmettin Erbakan University, Konya, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul Bilgi University, Istanbul, Turkey
62: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
63: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
64: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
65: Also at Utah Valley University, Orem, USA
66: Also at Beykent University, Istanbul, Turkey
67: Also at Bingol University, Bingol, Turkey
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Sinop University, Sinop, Turkey
70: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
71: Also at Texas A&M University at Qatar, Doha, Qatar
72: Also at Kyungpook National University, Daegu, Korea

Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
214280
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description