Measurement of branching ratio and B_{s}^{0} lifetime in the decay B_{s}^{0}\rightarrow J\!/\!\psi f_{0}(980) at CDF
Measurement of branching ratio and B0s lifetime in the decay B0s→J/ψf0(980)
at CDF
T. Aaltonen
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
B. Álvarez GonzálezwInstituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
S. Amerio
Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
D. Amidei
University of Michigan, Ann Arbor, Michigan 48109, USA
A. Anastassov
Northwestern University, Evanston, Illinois 60208, USA
A. Annovi
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
J. Antos
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
G. Apollinari
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J.A. Appel
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Apresyan
Purdue University, West Lafayette, Indiana 47907, USA
T. Arisawa
Waseda University, Tokyo 169, Japan
A. Artikov
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
J. Asaadi
Texas A&M University, College Station, Texas 77843, USA
W. Ashmanskas
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
B. Auerbach
Yale University, New Haven, Connecticut 06520, USA
A. Aurisano
Texas A&M University, College Station, Texas 77843, USA
F. Azfar
University of Oxford, Oxford OX1 3RH, United Kingdom
W. Badgett
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Barbaro-Galtieri
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
V.E. Barnes
Purdue University, West Lafayette, Indiana 47907, USA
B.A. Barnett
The Johns Hopkins University, Baltimore, Maryland 21218, USA
P. BarriaddIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of
Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
P. Bartos
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
M. BaucebbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
G. Bauer
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
F. Bedeschi
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
D. Beecher
University College London, London WC1E 6BT, United Kingdom
S. Behari
The Johns Hopkins University, Baltimore, Maryland 21218, USA
G. BellettiniccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
J. Bellinger
University of Wisconsin, Madison, Wisconsin 53706, USA
D. Benjamin
Duke University, Durham, North Carolina 27708, USA
A. Beretvas
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Bhatti
The Rockefeller University, New York, New York 10065, USA
M. Binkley111DeceasedFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. BisellobbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
I. BizjakhhUniversity College London, London WC1E 6BT, United Kingdom
K.R. Bland
Baylor University, Waco, Texas 76798, USA
B. Blumenfeld
The Johns Hopkins University, Baltimore, Maryland 21218, USA
A. Bocci
Duke University, Durham, North Carolina 27708, USA
A. Bodek
University of Rochester, Rochester, New York 14627, USA
D. Bortoletto
Purdue University, West Lafayette, Indiana 47907, USA
J. Boudreau
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
A. Boveia
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
B. BrauaFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
L. BrigliadoriaaIstituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
A. Brisuda
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
C. Bromberg
Michigan State University, East Lansing, Michigan 48824, USA
E. Brucken
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
M. BucciantonioccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
J. Budagov
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
H.S. Budd
University of Rochester, Rochester, New York 14627, USA
S. Budd
University of Illinois, Urbana, Illinois 61801, USA
K. Burkett
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
G. BusettobbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
P. Bussey
Glasgow University, Glasgow G12 8QQ, United Kingdom
A. Buzatu
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser
University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
C. Calancha
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
S. Camarda
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
M. Campanelli
Michigan State University, East Lansing, Michigan 48824, USA
M. Campbell
University of Michigan, Ann Arbor, Michigan 48109, USA
F. Canelli11Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
B. Carls
University of Illinois, Urbana, Illinois 61801, USA
D. Carlsmith
University of Wisconsin, Madison, Wisconsin 53706, USA
R. Carosi
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
S. CarrillokUniversity of Florida, Gainesville, Florida 32611, USA
S. Carron
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
B. Casal
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
M. Casarsa
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. CastroaaIstituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
P. Catastini
Harvard University, Cambridge, Massachusetts 02138, USA
D. Cauz
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
V. Cavaliere
University of Illinois, Urbana, Illinois 61801, USA
M. Cavalli-Sforza
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
A. CerrifErnest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
L. CerritoqUniversity College London, London WC1E 6BT, United Kingdom
Y.C. Chen
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
M. Chertok
University of California, Davis, Davis, California 95616, USA
G. Chiarelli
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
G. Chlachidze
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
F. Chlebana
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
K. Cho
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
D. Chokheli
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
J.P. Chou
Harvard University, Cambridge, Massachusetts 02138, USA
W.H. Chung
University of Wisconsin, Madison, Wisconsin 53706, USA
Y.S. Chung
University of Rochester, Rochester, New York 14627, USA
C.I. Ciobanu
LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
M.A. CiocciddIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
A. Clark
University of Geneva, CH-1211 Geneva 4, Switzerland
C. Clarke
Wayne State University, Detroit, Michigan 48201, USA
G. CompostellabbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
M.E. Convery
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J. Conway
University of California, Davis, Davis, California 95616, USA
M.Corbo
LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
M. Cordelli
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
C.A. Cox
University of California, Davis, Davis, California 95616, USA
D.J. Cox
University of California, Davis, Davis, California 95616, USA
F. CrescioliccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
C. Cuenca Almenar
Yale University, New Haven, Connecticut 06520, USA
J. CuevaswInstituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
R. Culbertson
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. Dagenhart
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
N. d’AscenzouLPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
M. Datta
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
P. de Barbaro
University of Rochester, Rochester, New York 14627, USA
S. De Cecco
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ffSapienza Università di Roma, I-00185 Roma, Italy
G. De Lorenzo
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
M. Dell’OrsoccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
C. Deluca
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
L. Demortier
The Rockefeller University, New York, New York 10065, USA
J. DengcDuke University, Durham, North Carolina 27708, USA
M. Deninno
Istituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
F. Devoto
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
M. d’ErricobbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
A. Di CantoccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
B. Di Ruzza
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
J.R. Dittmann
Baylor University, Waco, Texas 76798, USA
M. D’Onofrio
University of Liverpool, Liverpool L69 7ZE, United Kingdom
S. DonaticcIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
P. Dong
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Dorigo
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
T. Dorigo
Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
K. Ebina
Waseda University, Tokyo 169, Japan
A. Elagin
Texas A&M University, College Station, Texas 77843, USA
A. Eppig
University of Michigan, Ann Arbor, Michigan 48109, USA
R. Erbacher
University of California, Davis, Davis, California 95616, USA
D. Errede
University of Illinois, Urbana, Illinois 61801, USA
S. Errede
University of Illinois, Urbana, Illinois 61801, USA
N. ErshaidatzLPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
R. Eusebi
Texas A&M University, College Station, Texas 77843, USA
H.C. Fang
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
S. Farrington
University of Oxford, Oxford OX1 3RH, United Kingdom
M. Feindt
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
J.P. Fernandez
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
C. FerrazzaeeIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
R. Field
University of Florida, Gainesville, Florida 32611, USA
G. FlanagansPurdue University, West Lafayette, Indiana 47907, USA
R. Forrest
University of California, Davis, Davis, California 95616, USA
M.J. Frank
Baylor University, Waco, Texas 76798, USA
M. Franklin
Harvard University, Cambridge, Massachusetts 02138, USA
J.C. Freeman
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
Y. Funakoshi
Waseda University, Tokyo 169, Japan
I. Furic
University of Florida, Gainesville, Florida 32611, USA
M. Gallinaro
The Rockefeller University, New York, New York 10065, USA
J. Galyardt
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
J.E. Garcia
University of Geneva, CH-1211 Geneva 4, Switzerland
A.F. Garfinkel
Purdue University, West Lafayette, Indiana 47907, USA
P. GarosiddIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
H. Gerberich
University of Illinois, Urbana, Illinois 61801, USA
E. Gerchtein
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. GiaguffIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ffSapienza Università di Roma, I-00185 Roma, Italy
V. Giakoumopoulou
University of Athens, 157 71 Athens, Greece
P. Giannetti
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
K. Gibson
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
C.M. Ginsburg
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
N. Giokaris
University of Athens, 157 71 Athens, Greece
P. Giromini
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
M. Giunta
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
G. Giurgiu
The Johns Hopkins University, Baltimore, Maryland 21218, USA
V. Glagolev
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
D. Glenzinski
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Gold
University of New Mexico, Albuquerque, New Mexico 87131, USA
D. Goldin
Texas A&M University, College Station, Texas 77843, USA
N. Goldschmidt
University of Florida, Gainesville, Florida 32611, USA
A. Golossanov
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
G. Gomez
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
G. Gomez-Ceballos
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
M. Goncharov
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
O. González
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
I. Gorelov
University of New Mexico, Albuquerque, New Mexico 87131, USA
A.T. Goshaw
Duke University, Durham, North Carolina 27708, USA
K. Goulianos
The Rockefeller University, New York, New York 10065, USA
S. Grinstein
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
C. Grosso-Pilcher
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
R.C. Group55Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J. Guimaraes da Costa
Harvard University, Cambridge, Massachusetts 02138, USA
Z. Gunay-Unalan
Michigan State University, East Lansing, Michigan 48824, USA
C. Haber
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
S.R. Hahn
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
E. Halkiadakis
Rutgers University, Piscataway, New Jersey 08855, USA
A. Hamaguchi
Osaka City University, Osaka 588, Japan
J.Y. Han
University of Rochester, Rochester, New York 14627, USA
F. Happacher
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
K. Hara
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
D. Hare
Rutgers University, Piscataway, New Jersey 08855, USA
M. Hare
Tufts University, Medford, Massachusetts 02155, USA
R.F. Harr
Wayne State University, Detroit, Michigan 48201, USA
K. Hatakeyama
Baylor University, Waco, Texas 76798, USA
C. Hays
University of Oxford, Oxford OX1 3RH, United Kingdom
M. Heck
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
J. Heinrich
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
M. Herndon
University of Wisconsin, Madison, Wisconsin 53706, USA
S. Hewamanage
Baylor University, Waco, Texas 76798, USA
D. Hidas
Rutgers University, Piscataway, New Jersey 08855, USA
A. Hocker
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
W. HopkinsgFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. Horn
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
S. Hou
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
R.E. Hughes
The Ohio State University, Columbus, Ohio 43210, USA
M. Hurwitz
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
M. Huschle
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
U. Husemann
Yale University, New Haven, Connecticut 06520, USA
N. Hussain
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
M. Hussein
Michigan State University, East Lansing, Michigan 48824, USA
J. Huston
Michigan State University, East Lansing, Michigan 48824, USA
G. Introzzi
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
M. IoriffIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ffSapienza Università di Roma, I-00185 Roma, Italy
A. IvanovoUniversity of California, Davis, Davis, California 95616, USA
E. James
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. Jang
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
B. Jayatilaka
Duke University, Durham, North Carolina 27708, USA
E.J. Jeon
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
M.K. Jha
Istituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
S. Jindariani
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
W. Johnson
University of California, Davis, Davis, California 95616, USA
M. Jones
Purdue University, West Lafayette, Indiana 47907, USA
K.K. Joo
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
S.Y. Jun
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
T.R. Junk
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
T. Kamon
Texas A&M University, College Station, Texas 77843, USA
P.E. Karchin
Wayne State University, Detroit, Michigan 48201, USA
A. Kasmi
Baylor University, Waco, Texas 76798, USA
Y. KatonOsaka City University, Osaka 588, Japan
W. Ketchum
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
J. Keung
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
V. Khotilovich
Texas A&M University, College Station, Texas 77843, USA
B. Kilminster
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D.H. Kim
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
H.S. Kim
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
H.W. Kim
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
J.E. Kim
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
M.J. Kim
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
S.B. Kim
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
S.H. Kim
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Y.K. Kim
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
N. Kimura
Waseda University, Tokyo 169, Japan
M. Kirby
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Klimenko
University of Florida, Gainesville, Florida 32611, USA
K. Kondo
Waseda University, Tokyo 169, Japan
D.J. Kong
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
J. Konigsberg
University of Florida, Gainesville, Florida 32611, USA
A.V. Kotwal
Duke University, Durham, North Carolina 27708, USA
M. KrepsiiInstitut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
J. Kroll
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
D. Krop
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
N. KrumnacklBaylor University, Waco, Texas 76798, USA
M. Kruse
Duke University, Durham, North Carolina 27708, USA
V. KrutelyovdTexas A&M University, College Station, Texas 77843, USA
T. Kuhr
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
M. Kurata
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
S. Kwang
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
A.T. Laasanen
Purdue University, West Lafayette, Indiana 47907, USA
S. Lami
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
S. Lammel
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Lancaster
University College London, London WC1E 6BT, United Kingdom
R.L. Lander
University of California, Davis, Davis, California 95616, USA
K. LannonvThe Ohio State University, Columbus, Ohio 43210, USA
A. Lath
Rutgers University, Piscataway, New Jersey 08855, USA
G. LatinoccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
T. LeCompte
Argonne National Laboratory, Argonne, Illinois 60439, USA
E. Lee
Texas A&M University, College Station, Texas 77843, USA
H.S. Lee
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
J.S. Lee
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
S.W. LeexTexas A&M University, College Station, Texas 77843, USA
S. LeoccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
S. Leone
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
J.D. Lewis
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. LimosanirDuke University, Durham, North Carolina 27708, USA
C.-J. Lin
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
J. Linacre
University of Oxford, Oxford OX1 3RH, United Kingdom
M. Lindgren
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
E. Lipeles
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
A. Lister
University of Geneva, CH-1211 Geneva 4, Switzerland
D.O. Litvintsev
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
C. Liu
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Q. Liu
Purdue University, West Lafayette, Indiana 47907, USA
T. Liu
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Lockwitz
Yale University, New Haven, Connecticut 06520, USA
A. Loginov
Yale University, New Haven, Connecticut 06520, USA
D. LucchesibbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
J. Lueck
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
P. Lujan
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
P. Lukens
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
G. Lungu
The Rockefeller University, New York, New York 10065, USA
J. Lys
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
R. Lysak
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
R. Madrak
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
K. Maeshima
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
K. Makhoul
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
S. Malik
The Rockefeller University, New York, New York 10065, USA
G. MancabUniversity of Liverpool, Liverpool L69 7ZE, United Kingdom
A. Manousakis-Katsikakis
University of Athens, 157 71 Athens, Greece
F. Margaroli
Purdue University, West Lafayette, Indiana 47907, USA
C. Marino
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
M. Martínez
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
R. Martínez-Ballarín
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
P. Mastrandrea
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ffSapienza Università di Roma, I-00185 Roma, Italy
M.E. Mattson
Wayne State University, Detroit, Michigan 48201, USA
P. Mazzanti
Istituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
K.S. McFarland
University of Rochester, Rochester, New York 14627, USA
P. McIntyre
Texas A&M University, College Station, Texas 77843, USA
R. McNultyiUniversity of Liverpool, Liverpool L69 7ZE, United Kingdom
A. Mehta
University of Liverpool, Liverpool L69 7ZE, United Kingdom
P. Mehtala
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
A. Menzione
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
C. Mesropian
The Rockefeller University, New York, New York 10065, USA
T. Miao
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. Mietlicki
University of Michigan, Ann Arbor, Michigan 48109, USA
A. Mitra
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
H. Miyake
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
S. Moed
Harvard University, Cambridge, Massachusetts 02138, USA
N. Moggi
Istituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
M.N. MondragonkFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
C.S. Moon
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
R. Moore
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M.J. Morello
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J. Morlock
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
P. Movilla Fernandez
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Mukherjee
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
Th. Muller
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
P. Murat
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. MussiniaaIstituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
J. NachtmanmFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
Y. Nagai
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
J. Naganoma
Waseda University, Tokyo 169, Japan
I. Nakano
Okayama University, Okayama 700-8530, Japan
A. Napier
Tufts University, Medford, Massachusetts 02155, USA
J. Nett
Texas A&M University, College Station, Texas 77843, USA
C. Neu
University of Virginia, Charlottesville, VA 22906, USA
M.S. Neubauer
University of Illinois, Urbana, Illinois 61801, USA
J. NielseneErnest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
L. Nodulman
Argonne National Laboratory, Argonne, Illinois 60439, USA
O. Norniella
University of Illinois, Urbana, Illinois 61801, USA
E. Nurse
University College London, London WC1E 6BT, United Kingdom
L. Oakes
University of Oxford, Oxford OX1 3RH, United Kingdom
S.H. Oh
Duke University, Durham, North Carolina 27708, USA
Y.D. Oh
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
I. Oksuzian
University of Virginia, Charlottesville, VA 22906, USA
T. Okusawa
Osaka City University, Osaka 588, Japan
R. Orava
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
L. Ortolan
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
S. Pagan GrisobbIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
C. Pagliarone
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
E. PalenciafInstituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
V. Papadimitriou
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A.A. Paramonov
Argonne National Laboratory, Argonne, Illinois 60439, USA
J. Patrick
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
G. PaulettaggIstituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
M. Paulini
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
C. Paus
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
D.E. Pellett
University of California, Davis, Davis, California 95616, USA
A. Penzo
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
T.J. Phillips
Duke University, Durham, North Carolina 27708, USA
G. Piacentino
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
E. Pianori
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
J. Pilot
The Ohio State University, Columbus, Ohio 43210, USA
K. Pitts
University of Illinois, Urbana, Illinois 61801, USA
C. Plager
University of California, Los Angeles, Los Angeles, California 90024, USA
L. Pondrom
University of Wisconsin, Madison, Wisconsin 53706, USA
K. Potamianos
Purdue University, West Lafayette, Indiana 47907, USA
O. Poukhov††footnotemark: Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
F. ProkoshinyJoint Institute for Nuclear Research, RU-141980 Dubna, Russia
A. Pronko
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
F. PtohoshLaboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
E. Pueschel
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
G. PunziccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
J. Pursley
University of Wisconsin, Madison, Wisconsin 53706, USA
A. Rahaman
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
V. Ramakrishnan
University of Wisconsin, Madison, Wisconsin 53706, USA
N. Ranjan
Purdue University, West Lafayette, Indiana 47907, USA
I. Redondo
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
P. Renton
University of Oxford, Oxford OX1 3RH, United Kingdom
M. Rescigno
Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, ffSapienza Università di Roma, I-00185 Roma, Italy
T. Riddick
University College London, London WC1E 6BT, United Kingdom
F. RimondiaaIstituto Nazionale di Fisica Nucleare Bologna, aaUniversity of Bologna, I-40127 Bologna, Italy
L. Ristori44Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Robson
Glasgow University, Glasgow G12 8QQ, United Kingdom
T. Rodrigo
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
T. Rodriguez
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
E. Rogers
University of Illinois, Urbana, Illinois 61801, USA
S. Rolli
Tufts University, Medford, Massachusetts 02155, USA
R. Roser
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Rossi
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
F. Rubbo
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
F. RuffiniddIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
A. Ruiz
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
J. Russ
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
V. Rusu
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Safonov
Texas A&M University, College Station, Texas 77843, USA
W.K. Sakumoto
University of Rochester, Rochester, New York 14627, USA
Y. Sakurai
Waseda University, Tokyo 169, Japan
L. SantiggIstituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
L. Sartori
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
K. Sato
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
V. SavelievuLPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
A. Savoy-Navarro
LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
P. Schlabach
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Schmidt
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
E.E. Schmidt
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M.P. Schmidt††footnotemark: Yale University, New Haven, Connecticut 06520, USA
M. Schmitt
Northwestern University, Evanston, Illinois 60208, USA
T. Schwarz
University of California, Davis, Davis, California 95616, USA
L. Scodellaro
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
A. ScribanoddIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
F. Scuri
Istituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
A. Sedov
Purdue University, West Lafayette, Indiana 47907, USA
S. Seidel
University of New Mexico, Albuquerque, New Mexico 87131, USA
Y. Seiya
Osaka City University, Osaka 588, Japan
A. Semenov
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
F. SforzaccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
A. Sfyrla
University of Illinois, Urbana, Illinois 61801, USA
S.Z. Shalhout
University of California, Davis, Davis, California 95616, USA
T. Shears
University of Liverpool, Liverpool L69 7ZE, United Kingdom
P.F. Shepard
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
M. ShimojimatUniversity of Tsukuba, Tsukuba, Ibaraki 305, Japan
S. Shiraishi
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
M. Shochet
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
I. Shreyber
Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
A. Simonenko
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
P. Sinervo
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
A. Sissakian††footnotemark: Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
K. Sliwa
Tufts University, Medford, Massachusetts 02155, USA
J.R. Smith
University of California, Davis, Davis, California 95616, USA
F.D. Snider
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Soha
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Somalwar
Rutgers University, Piscataway, New Jersey 08855, USA
V. Sorin
Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
P. Squillacioti
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Stancari
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
M. Stanitzki
Yale University, New Haven, Connecticut 06520, USA
R. St. Denis
Glasgow University, Glasgow G12 8QQ, United Kingdom
B. Stelzer
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
O. Stelzer-Chilton
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon
Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7;
and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
D. Stentz
Northwestern University, Evanston, Illinois 60208, USA
J. Strologas
University of New Mexico, Albuquerque, New Mexico 87131, USA
G.L. Strycker
University of Michigan, Ann Arbor, Michigan 48109, USA
Y. Sudo
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
A. Sukhanov
University of Florida, Gainesville, Florida 32611, USA
I. Suslov
Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
K. Takemasa
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Y. Takeuchi
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
J. Tang
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
M. Tecchio
University of Michigan, Ann Arbor, Michigan 48109, USA
P.K. Teng
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
J. ThomgFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J. Thome
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
G.A. Thompson
University of Illinois, Urbana, Illinois 61801, USA
E. Thomson
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
P. Ttito-Guzmán
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
S. Tkaczyk
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
D. Toback
Texas A&M University, College Station, Texas 77843, USA
S. Tokar
Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
K. Tollefson
Michigan State University, East Lansing, Michigan 48824, USA
T. Tomura
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
D. Tonelli
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Torre
Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
D. Torretta
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
P. Totaro
Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, bbUniversity of Padova, I-35131 Padova, Italy
M. TrovatoeeIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
Y. Tu
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
F. Ukegawa
University of Tsukuba, Tsukuba, Ibaraki 305, Japan
S. Uozumi
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
A. Varganov
University of Michigan, Ann Arbor, Michigan 48109, USA
F. VázquezkUniversity of Florida, Gainesville, Florida 32611, USA
G. Velev
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
C. Vellidis
University of Athens, 157 71 Athens, Greece
M. Vidal
Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
I. Vila
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
R. Vilar
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
J. Vizán
Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
M. Vogel
University of New Mexico, Albuquerque, New Mexico 87131, USA
G. VolpiccIstituto Nazionale di Fisica Nucleare Pisa, ccUniversity of Pisa, ddUniversity of Siena and eeScuola Normale Superiore, I-56127 Pisa, Italy
P. Wagner
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
R.L. Wagner
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
T. Wakisaka
Osaka City University, Osaka 588, Japan
R. Wallny
University of California, Los Angeles, Los Angeles, California 90024, USA
S.M. Wang
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
A. Warburton
Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon
Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
D. Waters
University College London, London WC1E 6BT, United Kingdom
M. Weinberger
Texas A&M University, College Station, Texas 77843, USA
W.C. Wester III
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
B. Whitehouse
Tufts University, Medford, Massachusetts 02155, USA
D. WhitesoncUniversity of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
A.B. Wicklund
Argonne National Laboratory, Argonne, Illinois 60439, USA
E. Wicklund
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Wilbur
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
F. Wick
Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
H.H. Williams
University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
J.S. Wilson
The Ohio State University, Columbus, Ohio 43210, USA
P. Wilson
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
B.L. Winer
The Ohio State University, Columbus, Ohio 43210, USA
P. WittichgFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
S. Wolbers
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
H. Wolfe
The Ohio State University, Columbus, Ohio 43210, USA
T. Wright
University of Michigan, Ann Arbor, Michigan 48109, USA
X. Wu
University of Geneva, CH-1211 Geneva 4, Switzerland
Z. Wu
Baylor University, Waco, Texas 76798, USA
K. Yamamoto
Osaka City University, Osaka 588, Japan
J. Yamaoka
Duke University, Durham, North Carolina 27708, USA
T. Yang
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
U.K. YangpEnrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
Y.C. Yang
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk
National University, Jeonju 561-756, Korea
W.-M. Yao
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
G.P. Yeh
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
K. YimFermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J. Yoh
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
K. Yorita
Waseda University, Tokyo 169, Japan
T. YoshidajOsaka City University, Osaka 588, Japan
G.B. Yu
Duke University, Durham, North Carolina 27708, USA
I. Yu
Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National
University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and
Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National
University, Jeonju 561-756, Korea
S.S. Yu
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
J.C. Yun
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
A. Zanetti
Istituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, ggUniversity of Udine, I-33100 Udine, Italy
Y. Zeng
Duke University, Durham, North Carolina 27708, USA
S. ZucchelliaaIstituto Nazionale di Fisica Nucleare Bologna, aa University of Bologna, I-40127 Bologna, Italy
July 13, 2019
Abstract
We present a study of B0s decays to the CP-odd final state J/ψf0(980)
with J/ψ→μ+μ− and f0(980)→π+π−.
Using p¯p collision data with an integrated luminosity
of 3.8fb−1 collected by the CDF II detector at the Tevatron we
measure a B0s lifetime of
τ(B0s→J/ψf0(980))=1.70+0.12−0.11(stat)±0.03(syst)ps.
This is the first measurement of the B0s lifetime in a decay to a CP eigenstate and corresponds
in the standard model
to the lifetime of the heavy B0s eigenstate.
We also measure the product of branching fractions of B0s→J/ψf0(980) and
f0(980)→π+π− relative to the product of
branching fractions of B0s→J/ψϕ and ϕ→K+K− to be
Rf0/ϕ=0.257±0.020(stat)±0.014(syst),
which is the most precise determination of this quantity to date.
pacs:
13.25.Hw, 14.40.Nd, 12.15.Nf
CDF Collaboration222With visitors from aUniversity of MA Amherst,
Amherst, MA 01003, USA,
bIstituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy,
cUniversity of CA Irvine, Irvine, CA 92697, USA,
dUniversity of CA Santa Barbara, Santa Barbara, CA 93106, USA,
eUniversity of CA Santa Cruz, Santa Cruz, CA 95064, USA,
fCERN,CH-1211 Geneva, Switzerland,
gCornell University, Ithaca, NY 14853, USA,
hUniversity of Cyprus, Nicosia CY-1678, Cyprus,
iUniversity College Dublin, Dublin 4, Ireland,
jUniversity of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017,
kUniversidad Iberoamericana, Mexico D.F., Mexico,
lIowa State University, Ames, IA 50011, USA,
mUniversity of Iowa, Iowa City, IA 52242, USA,
nKinki University, Higashi-Osaka City, Japan 577-8502,
oKansas State University, Manhattan, KS 66506, USA,
pUniversity of Manchester, Manchester M13 9PL, United Kingdom,
qQueen Mary, University of London, London, E1 4NS, United Kingdom,
rUniversity of Melbourne, Victoria 3010, Australia,
sMuons, Inc., Batavia, IL 60510, USA,
tNagasaki Institute of Applied Science, Nagasaki, Japan,
uNational Research Nuclear University, Moscow, Russia,
vUniversity of Notre Dame, Notre Dame, IN 46556, USA,
wUniversidad de Oviedo, E-33007 Oviedo, Spain,
xTexas Tech University, Lubbock, TX 79609, USA,
yUniversidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile,
zYarmouk University, Irbid 211-63, Jordan,
hhOn leave from J. Stefan Institute, Ljubljana, Slovenia,
iiUniversity of Warwick, Coventry CV4 7AL, United Kingdom,
I Introduction
In the standard model, the mass and flavor eigenstates
of the B0s meson are not identical. This gives rise to
particle – anti-particle oscillations Gay:2001ra (), which proceed in
the standard model through second order weak interaction processes, and whose
phenomenology depends on the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix. The time (t) evolution of B0s mesons
is approximately governed by the Schrödinger equation
where ^Ms and ^Γs are mass and decay
rate symmetric 2×2 matrices. Diagonalization of
^Ms−i2^Γs
leads to mass eigenstates
|B0sL⟩
=
p|B0s⟩+q|¯B0s⟩,
(2)
|B0sH⟩
=
p|B0s⟩−q|¯B0s⟩,
(3)
with distinct masses (MLs,MHs) and distinct decay rates (ΓLs,ΓHs),
where p and q are complex numbers satisfying |p|2+|q|2=1.
An important feature of the B0s system is the non-zero matrix element
Γs12 representing the partial width of B0s and ¯B0s decays to
common final states which translates into a non-zero decay width
difference ΔΓs of the two mass
eigenstates through the relation
ΔΓs
=
ΓLs−ΓHs=2|Γs12|cosϕs,
(4)
where ϕs=arg(−Ms12/Γs12). The
phase ϕs describes CP violation in B0s mixing. In
the standard model ϕs is predicted to be
0.22∘±0.06∘Lenz:2006hd (); Nierste:2011ti ().
The small value of the phase ϕs causes the mass and
CP eigenstates to coincide to a good approximation.
Thus the measurement of the lifetime
in a CP eigenstate provides directly the lifetime of the
corresponding mass eigenstate. If new physics is present, it
could enhance ϕs to large values, a scenario which is not
excluded by current experimental constraints. In such a case
the correspondence between mass and CP eigenstates does not
hold anymore and the measured lifetime will correspond to the
weighted average of the lifetimes of the two mass eigenstates
with weights dependent on the size of the CP violating phase
ϕsDunietz:2000cr (). Thus a measurement of the B0s lifetime in a final state
which is a CP eigenstate provides, in combination with other measurements,
valuable information on
the decay width difference ΔΓs and the CP violation in B0s mixing.
One of the most powerful measurements to constrain a new physics contribution to the
phase ϕs is the measurement of CP violation in the decay B0s→J/ψϕ with ϕ→K+K−. The decay B0s→J/ψϕ has a mixture of the CP-even and -odd components in the
final state and an angular analysis is needed to separate them Dighe:1995pd (). In the standard model,
CP violation in the decay B0s→J/ψϕ is given by
βs=arg[(−VtsV∗tb)/(VcsV∗cb)].
New physics effects in B0s mixing would shift ϕs and −2βs from the standard model value
by the same amount.
A sufficiently copious B0s→J/ψf0 signal
with f0→π+π−, where f0 stands for f0(980), and
B0s flavor identified at production can be used to measure βs
without the need of an angular analysis Stone:2009hd () as J/ψf0 is a pure
CP-odd final state.
Since the B0s is a spin 0 particle and the decay products J/ψ and f0 have
quantum numbers JPC=1−− and 0++, respectively, the final state has
an orbital angular momentum of L=1 leading to a CP eigenvalue of (−1)L=−1.
Further interest in the decay B0s→J/ψf0
arises from its possible contribution to an S-wave
component in the B0s→J/ψK+K− decay if the f0 decays to K+K−.
This contribution could help to resolve an ambiguity in the
ΔΓs and βs values determined in the B0s→J/ψϕ analyses.
Because it was neglected in the first tagged B0s→J/ψϕ results Aaltonen:2007he (); Abazov:2008fj (),
each of which showed an approximately 1.5 σ deviation from the standard model,
it was argued that the omission may significantly bias
the results Stone:2008ak (); Stone:2010dp ().
However, using the formalism in Ref. Azfar:2010nz (), the latest preliminary CDF
measurement beta_s () has shown that the
S-wave interference effect is negligible at the current level of precision.
In Refs. Lenz:2006hd (); Nierste:2011ti () the decay width
difference in the standard model is predicted to be
ΔΓSMs=(0.087±0.021) ps−1
and the ratio of the average B0s lifetime,
τs=2/(ΓLs+ΓHs), to the B0 lifetime,
τd, to be 0.996<τs/τd<1.
Using these predictions in the relations
ΓHs
=
1τHs=Γs−12ΔΓs,
(5)
ΓsL
=
1τLs=Γs+12ΔΓs,
(6)
where Γs=1/τs,
together with the world average B0 lifetime,
τd=(1.525±0.009) ps Nakamura:2010zzi (), we find
the theoretically-derived values τHs=(1.630±0.030) ps
and τLs=(1.427±0.023) ps.
While no direct measurements of B0s lifetimes in decays to pure CP
eigenstates are available, various experimental results
allow for the determination of the lifetimes of the two mass eigenstates.
Measurements sensitive to these lifetimes are the angular analysis of
B0s→J/ψϕ decays and the branching fraction of B0s→D(∗)+sD(∗)−s, which can be complemented by
measurements of the B0s lifetime in flavor specific final
states. The combination of available measurements yields
τHs=(1.544±0.041) ps and
τLs=(1.407+0.028−0.026) ps Asner:2010qj ().
From CDF
measurements we can infer the two lifetimes from the result of
the angular analysis of B0s→J/ψϕ decays. The latest preliminary result beta_s (),
that is not yet included in the above average, yields τHs=(1.622±0.068) ps and
τLs=(1.446±0.035) ps assuming standard model CP violation.
Compared to measurements using B0s→J/ψϕ decays, lifetime and future CP violation
measurements in the B0s→J/ψf0 decay suffer from a lower branching fraction.
Based on a comparison to D+s meson decays
Ref. Stone:2008ak () makes a prediction for the branching
fraction of B0s→J/ψf0 decay relative to the B0s→J/ψϕ decay,
Rf0/ϕ=B(B0s→J/ψf0)B(B0s→J/ψϕ)B(f0→π+π−)B(ϕ→K+K−),
(7)
to be approximately 0.2.
The CLEO experiment estimates Rf0/ϕ=0.42±0.11
from a measurement of semileptonic D+s decays Ecklund:2009fia ().
A theoretical prediction based on QCD factorization yields a
range of Rf0/ϕ between 0.2 and 0.5Leitner:2010fq ().
With the world average branching
fraction for the B0s→J/ψϕ decay of (1.3±0.4)×10−3
and the branching fraction of f0→π+π− in
the region between 0.5–0.8, predictions of
B(B0s→J/ψf0)Colangelo:2010bg (); Colangelo:2010wg ()
translate into a wide range of Rf0/ϕ values of approximately 0.1–0.5.
The first experimental search was performed by the Belle
experiment
Louvot:2010es ().
Their preliminary result did not yield a signal and they
extract an upper limit on the branching fraction of
B(B0s→J/ψf0)B(f0→π+π−)<1.63×10−4at90%C.L.
Recently the LHCb experiment reported the first observation
of the decay
B0s→J/ψf0Aaij:2011fx () with a relative branching fraction of
Rf0/ϕ=0.252+0.046−0.032(stat)+0.027−0.033(syst).
Shortly after the LHCb result was presented, the Belle collaboration announced
their result of an updated analysis using 121.4 fb−1 of
Υ(5S) data Li:2011pg (). They observe
a significant B0s→J/ψf0 signal and
measure
B(B0s→J/ψf0)B(f0→π+π−)=(1.16+0.31−0.19+0.15−0.17+0.26−0.18)×10−4,
where the first uncertainty is statistical, the second
systematic, and the third one is an uncertainty on the
number of produced B(∗)0s¯B(∗)0s pairs. Using their preliminary measurement of the
B0s→J/ψϕ branching fraction Louvot:2009xg (), and assuming that the uncertainty on the number of produced
B(∗)0s¯B(∗)0s pairs is fully correlated for the two measurements, this translates into
Rf0/ϕ=0.206+0.055−0.034(stat)±0.052(syst).
A preliminary measurement of the D0 experiment yields
Rf0/ϕ=0.210±0.032(stat)±0.036(syst)D0:6152 ().
In this paper we present a measurement of the ratio Rf0/ϕ of the branching
fraction of the B0s→J/ψf0 decay relative to the B0s→J/ψϕ decay
and the first measurement of the B0s lifetime in a decay to
a pure CP eigenstate. We
use data collected by the CDF II detector from February 2002
until October 2008. The data
correspond to an integrated luminosity of 3.8fb−1.
This paper is organized as follows: In Sec. II we describe the CDF II detector together with
the online data selection, followed by the candidate selection in
Sec. III. Section IV describes
details of the measurement of the ratio Rf0/ϕ of
branching fractions of the B0s→J/ψf0 decay relative to
the B0s→J/ψϕ decay while Sec. V discusses
the lifetime measurement. We finish with a short discussion of
the results and conclusions in Sec. VI.
Ii CDF II detector and trigger
Among the components of the CDF II
detector Acosta:2004yw () the tracking and muon
detection systems are most relevant for this analysis.
The tracking system lies within a uniform, axial magnetic field of 1.4 T
strength. The inner tracking volume hosts 7 layers of double-sided silicon
micro-strip detectors up to a radius of
28 cm Hill:2004qb (). An additional layer
of single-sided silicon is mounted directly on the beam-pipe
at a radius of 1.5 cm, providing an excellent resolution
of the impact parameter d0, defined as the distance of
closest approach of the track to the interaction point in
the transverse plane. The silicon tracker provides a pseudorapidity coverage up to
|η|≤2.0.
The remainder of the tracking volume up to a radius of
137 cm is occupied by an open-cell drift chamber
Affolder:2003ep (). The drift chamber provides up to 96
measurements along the track with half of them being axial and
other half stereo. Tracks with |η|≤1.0 pass the full radial extent of
the drift chamber.
The integrated tracking system achieves a transverse momentum resolution of
σ(pT)/p2T≈0.07% (GeV/c)−1 and an impact parameter resolution
of σ(d0)≈35μm for tracks with
a transverse momentum greater than 2 GeV/c.
The tracking system is surrounded by electromagnetic and hadronic calorimeters, which
cover the full pseudorapidity range of the tracking system
Balka:1987ty (); Bertolucci:1987zn (); Albrow:2001jw (); Apollinari:1998bg ().
We detect muons in three sets of multi-wire drift chambers. The central muon detector
has a pseudorapidity coverage of |η|<0.6Ascoli:1987av () and
the calorimeters in front of it provide about 5.5 interaction lengths of material.
The minimum transverse momentum to reach this set of muon chambers is about 1.4 GeV/c.
The second set of chambers covers the same range in η, but is located behind an additional
60 cm of steel absorber, which corresponds to about 3 interaction lengths. It has a higher
transverse momentum threshold of 2 GeV/c, but provides a cleaner muon
identification. The third set of muon detectors extends
the coverage to a region of 0.6<|η|<1.0 and
is shielded by about 6 interaction lengths of material.
A three-level trigger system is used for the online event
selection. The trigger component most important for this
analysis
is the extremely fast tracker (XFT) Thomson:2002xp (),
which at the first level groups hits from the drift chamber
into tracks in the plane transverse to the beamline.
Candidate events containing J/ψ→μ+μ− decays
are selected by a dimuon trigger Acosta:2004yw ()
which requires two tracks of opposite charge found by the XFT
that match to track segments in the muon
chambers and have a dimuon invariant mass in the range 2.7 to 4.0
GeV/c2.
Iii Reconstruction and candidate selection
iii.1 Reconstruction
In the offline reconstruction we first combine two muon
candidates of opposite charge to form a J/ψ candidate.
We consider all tracks that can be matched to a track segment
in the muon detectors as muon candidates.
The J/ψ candidate is subject to
a kinematic fit with a vertex constraint. We then
combine the J/ψ candidate with two other oppositely charged tracks that are
assumed to be pions and have an invariant mass between 0.85 and 1.2
GeV/c2 to form a B0s→J/ψf0 candidate. In the final step
a kinematic fit of the B0s→J/ψf0 candidate is performed. In
this fit we constrain all four tracks to originate from a common vertex,
and the two muons forming the J/ψ are constrained to have
an invariant mass equal to the world average J/ψ mass Nakamura:2010zzi (). In
a similar way we also reconstruct B0s→J/ψϕ candidates
using pairs of tracks of opposite charge assumed to be kaons and
having an invariant mass between 1.009 and 1.029 GeV/c2.
During the reconstruction we place minimal requirements on
the track quality, the quality of the kinematic fit, and the
transverse momentum of the B0s candidate to ensure high
quality measurements of properties for each candidate.
For the branching fraction measurement we add a requirement
which aims at removing a large fraction of short-lived background.
We require the decay time of the B0s candidate in its own rest frame, the proper decay time,
to be larger than three times its uncertainty.
This criterion is not imposed in the lifetime analysis since
it would bias the lifetime distribution.
The proper decay time is determined by the expression
t=Lxy⋅m(B0s)c⋅pT
(8)
where Lxy is the flight distance projected onto the B0s momentum in the plane transverse to the
beamline, pT is the transverse momentum of the given candidate, and
m(B0s) is the reconstructed mass of the B0s candidate.
The uncertainty on the proper decay time t is estimated for
each candidate by propagating track parameter and primary
vertex uncertainties into an uncertainty on Lxy.
The proper decay time resolution is typically of the order of 0.1 ps.
iii.2 Selection
The selection is performed using a neural network based
on the neurobayes package
Feindt:2006pm (); Feindt:2004aa ().
The neural network combines
several input variables to form a single output variable on
which the selection is performed.
The transformation from the multidimensional space of input variables to
the single output variable is chosen during a training
phase such that it maximizes the separation between signal and
background distributions. For each of the two measurements presented in
this paper we use a specialized neural network.
For the training we need two sets of events with a
known classification of signal or background. For the signal sample
we use simulated events. We generate the kinematic
distributions of B0s mesons according to the measured b-hadron
momentum distribution.
The decay of the generated B0s particles into the J/ψf0 final state
is simulated using the evtgen package Lange:2001uf ().
Each event is passed through the standard CDF II
detector simulation, based on the geant3 package
Brun:1978fy (); Gerchtein:2003ba ().
The simulated events are reconstructed with the same
reconstruction software as real data events.
The background sample is taken from data using candidates with the
J/ψπ+π− invariant mass above the B0s signal peak,
where only combinatorial background events contribute.
Because the requirement on the proper decay time significance
efficiently suppresses background events in the branching
ratio measurement, we use an enlarged sideband region
of 5.45 to 5.55 GeV/c2 in this analysis, compared to an
invariant mass range from 5.45 to 5.475 GeV/c2 for
the lifetime measurement.
For the branching fraction measurement, the inputs to the
neural network, ordered by the importance of their
contribution to the discrimination power, are the transverse momentum of the f0, the
χ2 of the kinematic fit of the B0s candidate using information in
the plane transverse to the beamline, the proper decay time
of the B0s candidate, the quality of the kinematic fit of the B0s
candidate, the helicity angle of the positive pion, the
transverse momentum of the B0s candidate, the quality of the kinematic
fit of the two pions with a common vertex constraint, the helicity
angle of the positive muon, and the quality of
the kinematic fit of the two muons with common vertex
constraint.
The helicity angle of the muon (pion) is defined as the angle
between the three momenta of the muon (pion) and B0s candidate measured in the rest frame of the J/ψ (f0).
For the selection of B0s→J/ψϕ decays we use
the same neural network without retraining and simply replace
f0 variables by ϕ variables and pions by kaons.
For the lifetime measurement we modify the list of inputs
by removing the proper decay time. We also do not use the helicity angles
as they provide almost no additional separation power on the selected sample.
Since we are not concerned about a precise
efficiency determination for the lifetime measurement, we add the following inputs: the
invariant mass of the two pions, the likelihood based
identification information for muons Thesis:Giurgiu (), and the invariant mass
of the muon pair.
The muon identification is based on the matching of tracks from the tracking system to track segments in
the muon system, energy deposition in the electromagnetic and hadronic calorimeters, and isolation of the
track. The isolation is defined as the transverse momentum carried by the muon candidate over the scalar sum of
transverse momenta of all tracks in a cone of ΔR=√(Δϕ)2+(Δη)2<0.4,
where Δϕ (Δη) is the difference in azimuthal angle (pseudorapidity) of the muon candidate and the track.
There is no significant change in the importance
ordering of the inputs. The invariant mass of the pion pair
becomes the second most important input,
the likelihood based identification of the two muon candidates
is ranked fourth and sixth in the importance list,
and the muon pair invariant mass is the least important input.
For the branching fraction measurement we select the threshold
on the neural network output by
maximizing ϵ/(2.5+√Nb)Punzi:2003bu (), where
ϵ is the reconstruction efficiency for
B0s→J/ψf0 decays and Nb is the number of background
events estimated from the J/ψπ+π− mass sideband. The
invariant mass distributions of selected B0s→J/ψf0 and B0s→J/ψϕ candidates are shown in Figs. 1 and
2.
A clear signal at around 5.36 GeV/c2 is visible in both mass
distributions.
Figure 1: The invariant mass distribution of
B0s→J/ψf0 candidates selected for the
branching fraction measurement.Figure 2: The invariant mass distribution of B0s→J/ψϕ candidates selected for the branching fraction measurement.
For the lifetime measurement we use simulated experiments
to determine the optimal neural network output requirement.
We select a value that minimizes the statistical uncertainty of the measured
lifetime. We scan a wide range of neural network output
values and for each requirement we simulate an ensemble of
experiments with a B0s lifetime of 1.63 ps, where the number of signal and background events as well
as the background distributions are simulated according to data.
For a broad range of selection requirements we observe
the same uncertainty within a few percent. Our final requirement on the network output is
chosen from the central region of this broad range of equivalent options.
iii.3 Physics backgrounds
We study possible physics backgrounds using simulated events
with all b-hadrons produced and
decayed inclusively to final states containing a J/ψ. For
this study we use the selection from the branching fraction
measurement. While
several physics backgrounds appear in the J/ψπ+π−
mass spectrum, none contributes significantly under
the B0s peak. The most prominent physics backgrounds are
B0→J/ψK∗0 with
K∗0→K+π−, where K∗0 stands for K∗(892)0, and B0→J/ψπ+π−. In the first case the kaon is
mis-reconstructed as a pion and gives rise to a large
fraction of the structure seen below 5.22 GeV/c2, while the second one is
correctly reconstructed and produces the narrow peak at approximately 5.28 GeV/c2.
Another possible physics type of background would consist of properly reconstructed B+
combined with a random track.
This type of background would contribute only to higher masses with a threshold above the B0s signal.
As we do not find evidence of such background in Ref. Aaltonen:2011sy () which is more sensitive
we conclude that this kind of background is also negligible here.
The stacked histogram of physics backgrounds derived from
simulation is shown in Fig. 3. From this study
we conclude that the main physics background that has to be included as
a separate component in a fit to the mass spectrum above 5.26 GeV/c2 stems from decays of
B0→J/ψπ+π−. It is
properly reconstructed and therefore simple to parametrize.
All other physics backgrounds are negligible.
Figure 3: (color online) Stacked histogram of physics backgrounds to B0s→J/ψf0 derived from simulation using the selection for the branching
fraction measurement.
The vertical line indicates the location of the world average B0s mass.
Iv Branching fraction measurement
In this Section we describe details of the branching
fraction measurement. These involve the maximum likelihood
fit to extract the number of signal events, the efficiency
estimation, and the systematic uncertainties. We conclude this Section
with the result for the ratio Rf0/ϕ of branching fractions
between B0s→J/ψf0 and B0s→J/ψϕ decays.
iv.1 Fit description
We use an unbinned extended maximum
likelihood fit of the invariant mass to extract the number
of B0s decays in our samples.
In order to avoid the need for modeling most of the physics background,
we restrict the fit to the mass range from 5.26 GeV/c2 to 5.5
GeV/c2. The likelihood is
L=N∏i=1
[Ns⋅Ps(mi)+Ncb⋅Pcb(mi)+
(9)
fpb⋅Ns⋅Ppb(mi)+NB0⋅PB0(mi)]⋅
e−(Ns+Ncb+Ns⋅fpb+NB0),
where mi is the invariant mass of the i-th candidate and
N is the total number of candidates in the sample.
The fit components are denoted by the subscripts s for signal,
cb for combinatorial background, pb for physics
background, and B0 for B0→J/ψπ+π− background.
The yields of the components are given by Ns, Ncb, Ns⋅fpb, and NB0,
and their probability density functions (PDFs) by Ps,cb,pb,B0(mi), respectively.
The physics background yield is parametrized relative to the signal yield
via the ratio fpb to allow constraining it by other measurements in the
B0s→J/ψϕ fit.
The signal PDF Ps(mi) is
parametrized by a sum of two Gaussian functions with
a common mean. The relative size
of the two Gaussians and their widths
are determined from simulated events. Approximately 82% of the
B0s→J/ψf0 decays are contained in a narrower Gaussian with
width of
9.4 MeV/c2. The broader Gaussian has width of
18.4
MeV/c2. In the case of B0s→J/ψϕ, the narrow Gaussian with a width
of
7.2 MeV/c2 accounts for 79% of the signal, with the
rest of the events having a width of 13.3 MeV/c2. To take into
account possible differences between simulation and data, we
multiply all widths by a scaling parameter Sm.
Because of kinematic differences between f0→π+π− and
ϕ→K+K− we use independent scale factors for both modes.
In the fits all parameters of the PDF are fixed except for
the scaling parameter Sm. In addition the mean of the Gaussians
is allowed to float in the J/ψK+K− fit. Doing so we obtain a value that
is consistent with the world average B0s mass
Nakamura:2010zzi ().
For the J/ψπ+π− fit we fix
the position of the signal to the value determined in the
fit to the J/ψK+K− candidates.
The combinatorial background PDF Pcb(mi) is parametrized
using a linear function. In both fits we leave
its slope floating. In each of the two fits there is one
physics background. In the case of the
J/ψπ+π− spectrum, the physics background describes properly
reconstructed B0→J/ψπ+π− decays using
a shape identical to the B0s signal and position fixed to
the world
average B0 mass Nakamura:2010zzi (). The number of
B0 events
NB0 is left free in the fit.
For the J/ψK+K− fit, we have a contribution from
B0→J/ψK∗0 decays where the pion from the K∗0 decay
is mis-reconstructed as a kaon. This contribution peaks at a mass
of approximately 5.36 GeV/c2 with an asymmetric tail
towards larger masses. The shape itself is parametrized by
a
sum of a Gaussian function and an exponential function convolved
with a Gaussian. The parameters are derived from simulated
B0→J/ψK∗0 events. The normalization of this
component relative to the signal is fixed to fpb=(3.04±0.99)×10−2, which is
derived from the CDF Run I measurement of the ratio of cross
section times branching fraction for B0s→J/ψϕ and
B0→J/ψK∗0 decays Abe:1996kc (), the world average
branching
fractions for ϕ and K∗0Nakamura:2010zzi (), and the ratio of
reconstruction efficiencies obtained from simulation.
The fit determines a yield of 502±37B0s→J/ψf0 events
and 2302±49B0s→J/ψϕ events, where the uncertainties are
statistical only.
The number of B0 background events
in the J/ψπ+π− fit is
160±30.
iv.2 Efficiency
To extract the ratio of branching fractions we need
to
estimate the relative efficiency for reconstruction of
B0s→J/ψf0 with f0→π+π− and
B0s→J/ψϕ with ϕ→K+K− decays,
ϵrel=ϵ(B0s→J/ψϕ)/ϵ(B0s→J/ψf0).
We estimate the efficiency using simulated events in which we generate
a single B0s meson per event. The B0s meson then decays with
equal
probabilities to B0s→J/ψf0 or B0s→J/ψϕ final states with
exclusive J/ψ→μ+μ−, ϕ→K+K−, and f0→π+π−. Generated
events are then processed through a detailed detector
simulation and the offline reconstruction
software used to reconstruct data.
In both cases angular and decay time distributions are generated
assuming no CP violation and parameters taken
from the preliminary result of the
angular distributions analysis beta_s ():
τ=1.529±0.028ps,
ΔΓ=0.075±0.036ps−1,
|A0|2=0.524±0.020,
and |A|||2=0.231±0.021.
As a strong phase between A0 and A|| is not measured
we
use the world average value from B0→J/ψK∗0 decays of
ϕ||=−2.86±0.11Nakamura:2010zzi () as a reasonable
approximation Gronau:2008hb (). An additional
peculiarity of the B0s→J/ψf0 decay is the unusual mass
shape of
the f0 meson. It is modeled using a Flatté
distribution
Flatte:1976xu () with input parameters measured by the
BES experiment Ablikim:2004wn () to be
m0=965±8±6MeV/c2,
gπ=165±10±15MeV/c2,
and gK/gπ=4.21±0.25±0.21,
where the errors are statistical and systematic, respectively.
The ϕ meson mass distribution is modeled using a relativistic Breit-Wigner distribution with
world average values for its parameters Nakamura:2010zzi ().
With these inputs to the simulation we find
ϵrel=1.178, which accounts for the ϕ and f0 mass window
selection requirements.
iv.3 Systematic uncertainties
We investigate several sources of systematic uncertainties.
They can be broadly
separated into two classes: one
dealing with assumptions made in the fits that may affect
yields, and the other
related to assumptions in the efficiency estimation. In the
first class we estimate
uncertainties by refitting data with a modified assumption
and taking the difference with respect to
the original value as an uncertainty. For the second class
we recalculate the efficiency with
a modified assumption and take the difference with respect
to the default
efficiency as an uncertainty
unless specified otherwise. The summary of assigned
uncertainties is given in Table 1.
For the yield of B0s→J/ψϕ we investigate the effect of the
assumption on the combinatorial background
shape, the limited knowledge of mis-reconstructed
B0→J/ψK∗0 decays and the shape of the
signal PDF. The uncertainty due to the shape of
combinatorial background is estimated by
changing from the first order polynomial to a constant or a
second order polynomial. For
the physics background we vary the normalization of the
component in the fit and use
an alternative shape determined by varying the momentum
distribution and the decay
amplitudes of B0→J/ψK∗0 in simulation. Finally, to
estimate the effect of the signal
PDF parametrization we use an alternative model with a single
Gaussian rather than
two Gaussian functions and an alternative shape from simulation,
where we vary the momentum distribution
of the produced B0s mesons and the decay amplitudes of
the B0s→J/ψϕ decay.
To estimate the uncertainty on the B0s→J/ψf0 yield we
follow a procedure similar to that for B0s→J/ψϕ and conservatively treat the systematic effects as independent
between the two modes in the calculation of Rf0/ϕ.
For the sensitivity to the parametrization of
the combinatorial background
we switch to a second order polynomial or a constant as
alternative parametrization.
For the shape of the signal PDF we use
two alternatives, one with a single Gaussian function
instead of two and another one
with two Gaussians, but varying the momentum distribution in
simulation.
We also vary the position of the B0s signal
within the uncertainty determined in the J/ψK+K− fit.
The systematic uncertainty on the relative efficiency stems
from the statistics of
simulation, an imperfect knowledge of the momentum distribution,
physics parameters of
decays like lifetimes or decay amplitudes, and differences in
the efficiencies of the online selection of
events. To estimate the effect of the imperfect knowledge of
the momentum
distribution we vary the momentum distribution of B0s mesons in the simulation.
The physics parameters entering the simulation are grouped into three
categories, those defining
the f0 mass shape, the ones determining decay
amplitudes in B0s→J/ψϕ decays,
and those affecting the lifetimes of the two B0s mass
eigenstates. In the first two
cases we vary each parameter independently and add all changes
in the efficiency in quadrature.
For the last case we vary the mean lifetime τ and the
decay width difference
ΔΓ simultaneously and take the largest variation
as the uncertainty.
We add the uncertainty from the third class in quadrature
with all others to obtain the uncertainty due to the parameters
describing the particle decays. The last
effect deals with how events are selected during data
taking. The CDF
trigger has several different sets of requirements for
the selection of events. The ones used in this
analysis can be broadly sorted
into three classes depending on momentum thresholds and
which subdetectors
detected muons.
The fraction of events for each different class varies
depending on the instantaneous luminosity, which is not simulated.
To estimate the size of a possible effect we calculate
the efficiency for each class
separately and take half of the largest difference as
the uncertainty.
To obtain the total uncertainty we add all partial
uncertainties in quadrature. In
total we assigned 49 events (2.1%) as the systematic uncertainty
on the B0s→J/ψϕ yield, 18 events (3.6%) on the B0s→J/ψf0 yield, and 0.040 (3.4%) on
the relative efficiency ϵrel.
A summary of the systematic uncertainties in the branching
ratio is provided in Table 1.