# Luck Matters: Understanding Training Dynamics of Deep ReLU Networks

###### Abstract

We analyze the dynamics of training deep ReLU networks and their implications on generalization capability. Using a teacher-student setting, we discovered a novel relationship between the gradient received by hidden student nodes and the activations of teacher nodes for deep ReLU networks. With this relationship and the assumption of small overlapping teacher node activations, we prove that (1) student nodes whose weights are initialized to be close to teacher nodes converge to them at a faster rate, and (2) in over-parameterized regimes and 2-layer case, while a small set of lucky nodes do converge to the teacher nodes, the fan-out weights of other nodes converge to zero. This framework provides insight into multiple puzzling phenomena in deep learning like over-parameterization, implicit regularization, lottery tickets, etc. We verify our assumption by showing that the majority of BatchNorm biases of pre-trained VGG11/16 models are negative. Experiments on (1) random deep teacher networks with Gaussian inputs, (2) teacher network pre-trained on CIFAR-10 and (3) extensive ablation studies validate our multiple theoretical predictions.

Luck Matters: Understanding Training Dynamics of Deep ReLU Networks

Yuandong Tian Tina Jiang Qucheng Gong Ari Morcos Facebook AI Research {yuandong, tinayujiang, qucheng, arimorcos}@fb.com

noticebox[b]Preprint. Work in progress.\end@float

## 1 Introduction

Although neural networks have made strong empirical progress in a diverse set of domains (e.g., computer vision [16, 32, 10], speech recognition [11, 1], natural language processing [22, 3], and games [30, 31, 35, 23]), a number of fundamental questions still remain unsolved. How can Stochastic Gradient Descent (SGD) find good solutions to a complicated non-convex optimization problem? Why do neural networks generalize? How can networks trained with SGD fit both random noise and structured data [38, 17, 24], but prioritize structured models, even in the presence of massive noise [27]? Why are flat minima related to good generalization? Why does over-parameterization lead to better generalization [25, 39, 33, 26, 19]? Why do lottery tickets exist [6, 7]?

In this paper, we propose a theoretical framework for multilayered ReLU networks. Based on this framework, we try to explain these puzzling empirical phenomena with a unified view. We adopt a teacher-student setting where the label provided to an over-parameterized deep student ReLU network is the output of a fixed teacher ReLU network of the same depth and unknown weights (Fig. 1(a)). In this perspective, hidden student nodes are randomly initialized with different activation regions. (Fig. 2(a)). During optimization, student nodes compete with each other to explain teacher nodes. Theorem 4 shows that lucky student nodes which have greater overlap with teacher nodes converge to those teacher nodes at a fast rate, resulting in winner-take-all behavior. Furthermore, Theorem 5 shows that in 2-layer case, if a subset of student nodes are close to the teachers’, they converge to them and the fan-out weights of other irrelevant nodes of the same layer vanishes.

With this framework, we can explain various neural network behaviors as follows:

Fitting both structured and random data. Under gradient descent dynamics, some student nodes, which happen to overlap substantially with teacher nodes, will move into the teacher node and cover them. This is true for both structured data that corresponds to small teacher networks with few intermediate nodes, or noisy/random data that correspond to large teachers with many intermediate nodes. This explains why the same network can fit both structured and random data (Fig. 2(a-b)).

Over-parameterization. In over-parameterization, lots of student nodes are initialized randomly at each layer. Any teacher node is more likely to have a substantial overlap with some student nodes, which leads to fast convergence (Fig. 2(a) and (c), Thm. 4), consistent with [6, 7]. This also explains that training models whose capacity just fit the data (or teacher) yields worse performance [19].

Flat minima. Deep networks often converge to “flat minima” whose Hessian has a lot of small eigenvalues [28, 29, 21, 2]. Furthermore, while controversial [4], flat minima seem to be associated with good generalization, while sharp minima often lead to poor generalization [12, 14, 36, 20]. In our theory, when fitting with structured data, only a few lucky student nodes converge to the teacher, while for other nodes, their fan-out weights shrink towards zero, making them (and their fan-in weights) irrelevant to the final outcome (Thm. 5), yielding flat minima in which movement along most dimensions (“unlucky nodes”) results in minimal change in output. On the other hand, sharp minima is related to noisy data (Fig. 2(d)), in which more student nodes match with the teacher.

Implicit regularization. On the other hand, the snapping behavior enforces winner-take-all: after optimization, a teacher node is fully covered (explained) by a few student nodes, rather than splitting amongst student nodes due to over-parameterization. This explains why the same network, once trained with structured data, can generalize to the test set.

Lottery Tickets. Lottery Tickets [6, 7] is an interesting phenomenon: if we reset “salient weights” (trained weights with large magnitude) back to the values before optimization but after initialization, prune other weights (often of total weights) and retrain the model, the test performance is the same or better; if we reinitialize salient weights, the test performance is much worse. In our theory, the salient weights are those lucky regions ( and in Fig. 3) that happen to overlap with some teacher nodes after initialization and converge to them in optimization. Therefore, if we reset their weights and prune others away, they can still converge to the same set of teacher nodes, and potentially achieve better performance due to less interference with other irrelevant nodes. However, if we reinitialize them, they are likely to fall into unfavorable regions which cannot cover teacher nodes, and therefore lead to poor performance (Fig. 3(c)), just like in the case of under-parameterization.

## 2 Mathematical Framework

Notation. Consider a student network and its associated teacher network (Fig. 1(a)). Denote the input as . For each node , denote as the activation, as the ReLU gating, and as the backpropagated gradient, all as functions of . We use the superscript to represent a teacher node (e.g., ). Therefore, never appears as teacher nodes are not updated. We use to represent weight between node and in the student network. Similarly, represents the weight between node and in the teacher network.

We focus on multi-layered ReLU networks. We use the following equality extensively: . For ReLU node , we use as the activation region of node .

Objective. We assume that both the teacher and the student output probabilities over classes. We use the output of teacher as the input of the student. At the top layer, each node in the student corresponds to each node in the teacher. Therefore, the objective is:

(1) |

By the backpropagation rule, we know that for each sample , the (negative) gradient . The gradient gets backpropagated until the first layer is reached.

Note that here, the gradient sent to node is correlated with the activation of the corresponding teacher node and other student nodes at the same layer. Intuitively, this means that the gradient “pushes” the student node to align with class of the teacher. If so, then the student learns the corresponding class well. A natural question arises:

Are student nodes at intermediate layers correlated with teacher nodes at the same layers?

One might wonder this is hard since the student’s intermediate layer receives no direct supervision from the corresponding teacher layer, but relies only on backpropagated gradient. Surprisingly, the following theorem shows that it is possible for every intermediate layer:

###### Theorem 1 (Recursive Gradient Rule).

Note that Theorem 1 applies to arbitrarily deep ReLU networks and allows different number of nodes for the teacher and student. In particular, we consider the over-parameterization setting: the number of nodes on the student side is much larger (e.g., 5-10x) than the number of nodes on the teacher side. Using Theorem 1, we discover a novel and concise form of gradient update rule:

###### Assumption 1 (Separation of Expectations).

(4) | |||||

(5) |

###### Theorem 2.

Here we explain the notations. is teacher weights, , and , , and . We can define similar notations for (which has columns/filters), , , and (Fig. 4(c)). At the lowest layer , , at the highest layer where there is no ReLU, we have due to Eqn. 1. According to network structure, and only depends on weights , while and only depend on .

## 3 Analysis on the Dynamics

In the following, we will use Eqn. 6 to analyze the dynamics of the multi-layer ReLU networks. For convenience, we first define the two functions and ( is the ReLU function):

(7) |

We assume these two functions have the following property .

###### Assumption 2 (Lipschitz condition).

There exists and so that:

(8) |

Using this, we know that , , and so on. For brevity, denote (when notation is heavy) and so on. We impose the following assumption:

###### Assumption 3 (Small Overlap between teacher nodes).

There exists and so that:

(9) |

Intuitively, this means that the probability of the simultaneous activation of two teacher nodes and is small. One such case is that the teacher has negative bias, which means that they cut corners in the space spanned by the node activations of the lower layer (Fig. 4a). We have empirically verified that the majority of biases in BatchNorm layers (after the data are whitened) are negative in VGG11/16 trained on ImageNet (Sec. 4.1).

### 3.1 Effects of BatchNorm

Batch Normalization [13] has been extensively used to speed up the training, reduce the tuning efforts and improve the test performance of neural networks. Here we use an interesting property of BatchNorm: the total “energy” of the incoming weights of each node is conserved over training iterations:

###### Theorem 3 (Conserved Quantity in Batch Normalization).

For Linear ReLU BN or Linear BN ReLU configuration, of a filter before BN remains constant in training. (Fig. 13).

See Appendix for the proof. This may partially explain why BN has stabilization effect: energy will not leak from one layer to nearby ones. Due to this property, in the following, for convenience we assume , and the gradient is always orthogonal to the current weight . Note that on the teacher side we can always push the magnitude component to the upper layer; on the student side, random initialization naturally leads to constant magnitude of weights.

### 3.2 Same number of student nodes as teacher

If , (e.g., the input of layer is whitened) and (all entries are 1), then the following theorem shows that weight recovery could follow (we use as ).

###### Theorem 4.

For dynamics , where is a projection matrix into the orthogonal complement of . , are corresponding -th column in and . Denote and assume . If , then with the rate ( is learning rate). Here and .

See Appendix for the proof. Here we list a few remarks:

Faster convergence near . we can see that due to the fact that in general becomes larger when (since can be close to ), we expect a super-linear convergence near . This brings about an interesting winner-take-all mechanism: if the initial overlap between a student node and a particular teacher node is large, then the student node will snap to it (Fig. 1(c)).

Importance of projection operator . Intuitively, the projection is needed to remove any ambiguity related to weight scaling, in which the output remains constant if the top-layer weights are multiplied by a constant , while the low-layer weights are divided by . Previous works [5] also uses similar techniques while we justify it with BN. Without , convergence can be harder.

### 3.3 Over-Parameterization and Top-down Modulation in 2-layer Network

In the over-parameterization case (, e.g., 5-10x), we arrange the variables into two parts: , where contains columns (same size as ), while contains columns. We use (or -set) to specify nodes , and (or -set) for the remaining part.

In this case, if we want to show “the main component” converges to , we will meet with one core question: to where will converge, or whether will even converge at all? We need to consider not only the dynamics of the current layer, but also the dynamics of the upper layer. Using a 1-hidden layer over-parameterized ReLU network as an example, Theorem 5 shows that the upper-layer dynamics automatically apply top-down modulation to suppress the influence of , regardless of their convergence. Here , where are the weight components of -set. See Fig. 5.

###### Theorem 5 (Over-Parameterization and Top-down Modulation).

See Appendix for the proof (and definition of in Eqn. 45). The intuition is: if is close to and are far away from them due to Assumption 3, the off-diagonal elements of and are smaller than diagonal ones. This causes to move towards and to move towards zero. When becomes small, so does for or . This in turn suppresses the effect of and accelerates the convergence of . exponentially so that stays close to its initial locations, and Assumption 3 holds for all iterations. A few remarks:

Flat minima. Since , can be changed arbitrarily without affecting the outputs of the neural network. This could explain why there are many flat directions in trained networks, and why many eigenvalues of the Hessian are close to zero [28].

Understanding of pruning methods. Theorem 5 naturally relates two different unstructured network pruning approaches: pruning small weights in magnitude [8, 6] and pruning weights suggested by Hessian [18, 9]. It also suggests a principled structured pruning method: instead of pruning a filter by checking its weight norm, pruning accordingly to its top-down modulation.

Accelerated convergence and learning rate schedule. For simplicity, the theorem uses a uniform (and conservative) throughout the iterations. In practice, is initially small (due to noise introduced by -set) but will be large after a few iterations when vanishes. Given the same learning rate, this leads to accelerated convergence. At some point, the learning rate becomes too large, leading to fluctuation. In this case, needs to be reduced.

Many-to-one mapping. Theorem 5 shows that under strict conditions, there is one-to-one correspondence between teacher and student nodes. In general this is not the case. Two students nodes can be both in the vicinity of a teacher node and converge towards it, until that node is fully explained. We leave it to the future work for rigid mathematical analysis of many-to-one mappings.

Random initialization. One nice thing about Theorem 5 is that it only requires the initial to be small. In contrast, there is no requirement for small . Therefore, we could expect that with more over-parameterization and random initialization, in each layer , it is more likely to find the -set (of fixed size ), or the lucky weights, so that is quite close to . At the same time, we don’t need to worry about which grows with more over-parameterization. Moreover, random initialization often gives orthogonal weight vectors, which naturally leads to Assumption 3.

### 3.4 Extension to Multi-layer ReLU networks

Using a similar approach, we could extend this analysis to multi-layer cases. We conjecture that similar behaviors happen: for each layer, due to over-parameterization, the weights of some lucky student nodes are close to the teacher ones. While these converge to the teacher, the final values of others irrelevant weights are initialization-dependent. If the irrelevant nodes connect to lucky nodes at the upper-layer, then similar to Thm. 5, the corresponding fan-out weights converge to zero. On the other hand, if they connect to nodes that are also irrelevant, then these fan-out weights are not-determined and their final values depends on initialization. However, it doesn’t matter since these upper-layer irrelevant nodes eventually meet with zero weights if going up recursively, since the top-most output layer has no over-parameterization. We leave a formal analysis to future work.

## 4 Experiments

### 4.1 Checking Assumption 3

To make Theorem 4 and Theorem 5 work, we make Assumption 3 that the activation field of different teacher nodes should be well-separated. To justify this, we analyze the bias of BatchNorm layers after the convolutional layers in pre-trained VGG11 and VGG16. We check the BatchNorm bias as both VGG11 and VGG16 use Linear-BatchNorm-ReLU architecture. After BatchNorm first normalizes the input data into zero mean distribution, the BatchNorm bias determines how much data pass the ReLU threshold. If the bias is negative, then a small portion of data pass ReLU gating and Assumption 3 is likely to hold. From Fig. 6, it is quite clear that the majority of BatchNorm bias parameters are negative, in particular for the top layers.

### 4.2 Experiment Setup

We evaluate both the fully connected (FC) and ConvNet setting. For FC, we use a ReLU teacher network of size 50-75-100-125. For ConvNet, we use a teacher with channel size 64-64-64-64. The student networks have the same depth but with 10x more nodes/channels at each layer, such that they are substnatially over-parameterized. When BatchNorm is added, it is added after ReLU.

We use random i.i.d Gaussian inputs with mean 0 and std (abbreviated as GAUS) and CIFAR-10 as our dataset in the experiments. GAUS generates infinite number of samples while CIFAR-10 is a finite dataset. For GAUS, we use a random teacher network as the label provider (with classes). To make sure the weights of the teacher are weakly overlapped, we sample each entry of from , making sure they are non-zero and mutually different within the same layer, and sample biases from . In the FC case, the data dimension is 20 while in the ConvNet case it is . For CIFAR-10 we use a pre-trained teacher network with BatchNorm. In the FC case, it has an accuracy of ; for ConvNet, the accuracy is . We repeat 5 times for all experiments, with different random seed and report min/max values.

Two metrics are used to check our prediction that some lucky student nodes converge to the teacher:

Normalized correlation . We compute normalized correlation (or cosine similarity) between teacher and student activations^{1}^{1}1For and , , where . evaluated on a validation set. At each layer, we average the best correlation over teacher nodes: , where is computed for each teacher and student pairs . means that most teacher nodes are covered by at least one student.

Mean Rank . After training, each teacher node has the most correlated student node . We check the correlation rank of , normalized to (=rank first), back at initialization and at different epoches, and average them over teacher nodes to yield mean rank . Small means that student nodes that initially correlate well with the teacher keeps the lead toward the end of training.

### 4.3 Results

Experiments are summarized in Fig. 7 and Fig. 8. indeed grows during training, in particular for low layers that are closer to the input, where moves towards . Furthermore, the final winning student nodes also have a good rank at the early stage of training. BatchNorm helps a lot, in particular for the CNN case with GAUS dataset. For CIFAR-10, the final evaluation accuracy (see Appendix) learned by the student is often higher than the teacher. Using BatchNorm accelerates the growth of accuracy, improves , but seems not to accelerate the growth of .

The theory also predicts that the top-down modulation helps the convergence. For this, we plot at different layers during optimization on GAUS. For better visualization, we align each student node index with a teacher node according to highest . Despite the fact that correlations are computed from the low-layer weights, it matches well with the top-layer modulation (identity matrix structure in Fig. 10). Besides, we also perform ablation studies on GAUS.

Size of teacher network. As shown in Fig. 9(a), for small teacher networks (FC 10-15-20-25), the convergence is much faster and training without BatchNorm is faster than training with BatchNorm. For large teacher networks, BatchNorm definitely increases convergence speed and growth of .

Finite versus Infinite Dataset. We also repeat the experiments with a pre-generated finite dataset of GAUS in the CNN case (Fig. 9(b)), and find that the convergence of node similarity stalls after a few iterations. This is because some nodes receive very few data points in their activated regions, which is not a problem for infinite dataset. We suspect that this is probably the reason why CIFAR-10, as a finite dataset, does not show similar behavior as GAUS.

## 5 Conclusion and Future Work

In this paper we propose a new theoretical framework that uses teacher-student setting to understand the training dynamics of multi-layered ReLU network. With this framework, we are able to conceptually explain many puzzling phenomena in deep networks, such as why over-parameterization helps generalization, why the same network can fit to both random and structured data, why lottery tickets [6, 7] exist. We backup these intuitive explanations by Theorem 4 and Theorem 5, which collectively show that student nodes that are initialized to be close to the teacher nodes converge to them with a faster rate, and the fan-out weights of irrelevant nodes converge to zero. As the next steps, we aim to extend Theorem 5 to general multi-layer setting (when both and are present), relax Assumption 3 and study more BatchNorm effects than what Theorem 3 suggests.

## References

- [1] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-end speech recognition in english and mandarin. In International conference on machine learning, pages 173–182, 2016.
- [2] Marco Baity-Jesi, Levent Sagun, Mario Geiger, Stefano Spigler, G Ben Arous, Chiara Cammarota, Yann LeCun, Matthieu Wyart, and Giulio Biroli. Comparing dynamics: Deep neural networks versus glassy systems. ICML, 2018.
- [3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [4] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep nets. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1019–1028. JMLR. org, 2017.
- [5] Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gradient descent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. ICML, 2018.
- [6] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural networks. ICLR, 2019.
- [7] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. The lottery ticket hypothesis at scale. arXiv preprint arXiv:1903.01611, 2019.
- [8] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems, pages 1135–1143, 2015.
- [9] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.
- [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- [11] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29, 2012.
- [12] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.
- [13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ICML, 2015.
- [14] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR, 2017.
- [15] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas Hofmann. Towards a theoretical understanding of batch normalization. arXiv preprint arXiv:1805.10694, 2018.
- [16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.
- [17] David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan Maharaj, Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don’t learn via memorization. ICLR Workshop, 2017.
- [18] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural information processing systems, pages 598–605, 1990.
- [19] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension of objective landscapes. ICLR, 2018.
- [20] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2018.
- [21] Zachary C Lipton. Stuck in a what? adventures in weight space. arXiv preprint arXiv:1602.07320, 2016.
- [22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111–3119, 2013.
- [23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- [24] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956, 2017.
- [25] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding the role of over-parametrization in generalization of neural networks. arXiv preprint arXiv:1805.12076, 2018.
- [26] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of implicit regularization in deep learning. ICLR Workshop, 2015.
- [27] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694, 2017.
- [28] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity and beyond. ICLR, 2017.
- [29] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the hessian of over-parametrized neural networks. ICLR 2018 Workshop Contribution, arXiv preprint arXiv:1706.04454, 2018.
- [30] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.
- [31] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.
- [32] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
- [33] Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu Wyart. A jamming transition from under-to over-parametrization affects loss landscape and generalization. arXiv preprint arXiv:1810.09665, 2018.
- [34] Yuandong Tian. A theoretical framework for deep locally connected relu network. arXiv preprint arXiv:1809.10829, 2018.
- [35] Yuandong Tian and Yan Zhu. Better computer go player with neural network and long-term prediction. ICLR, 2016.
- [36] Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.
- [37] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A mean field theory of batch normalization. ICLR, 2019.
- [38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. ICLR, 2017.
- [39] Chiyuan Zhang, Samy Bengio, Moritz Hardt, and Yoram Singer. Identity crisis: Memorization and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698, 2019.

## Appendix A Appendix: Proofs

### a.1 Theorem 1

###### Proof.

The first part of gradient backpropagated to node is:

(10) | |||||

(11) | |||||

(12) |

Therefore, for the gradient to node , we have:

(13) | |||||

(14) |

And similar for . Therefore, by mathematical induction, we know that all gradient at nodes in different layer follows the same form. ∎

### a.2 Theorem 2

###### Proof.

Using Thm. 1, we can write down weight update for weight that connects node and node :

(15) | |||||

### a.3 Theorem 3

###### Proof.

Given a batch with size , denote pre-batchnorm activations as and gradients as (See Fig. 12(a)). is its whitened version, and is the final output of BN. Here and and , are learnable parameters. With vector notation, the gradient update in BN has a compact form with clear geometric meaning:

###### Lemma 1 (Backpropagation of Batch Norm [34]).

For a top-down gradient , BN layer gives the following gradient update ( is the orthogonal complementary projection of subspace ):

(16) |

### a.4 Lemmas

For simplicity, in the following, we use .

###### Lemma 2 (Bottom Bounds).

###### Proof.

###### Lemma 3 (Top Bounds).

###### Proof.

The proof is similar to Lemma 2. ∎

###### Lemma 4 (Quadratic fall-off for diagonal elements of ).

For node , we have:

(32) |

###### Proof.

The intuition here is that both the volume of the affected area and the weight difference are proportional to . is their product and thus proportional to . See Fig. 14. ∎

### a.5 Theorem 4

###### Proof.

First of all, note that . So given , we also have a bound for .

When , the matrix form can be written as the following:

(33) |

by using (and thus doesn’t matter). Since is conserved, it suffices to check whether the projected weight vector of onto the complementary space of the ground truth node , goes to zero:

(34) |

Denote and a simple calculation gives that . First we have:

(35) |

From Lemma 2, we knows that

(36) |

Note that here we have . We discuss finite step with very small learning rate :

(37) | |||||

(38) |

since . Here

(39) |

is an iteration independent constant.

We set . If , denote a constant and from Lemma 2 we know for all . Then given the inductive hypothesis that , we have:

(40) |

Therefore, , which means that . ∎

A few remarks:

The projection operator . Note that is important. Intuitively, without the projection, if the same proof logic worked, one could have concluded that converges to any , where is a constant scaling factor, which is obviously wrong.

Indeed, without