Interaction of Ultra Relativistic e^{-}e^{+} Fireball Beam with Plasma

Interaction of Ultra Relativistic Fireball Beam with Plasma

P. Muggli muggli@mpp.mpg.de    S. F. Martins    J. Vieira    L. O. Silva luis.silva@ist.utl.pt Max Planck Institute for Physics, Munich, Germany GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
July 13, 2019
Abstract

Ab initio simulations of the propagation in a plasma of a soon to be available relativistic electron-positron beam or fireball beam provide an effective mean for the study of microphysics relevant to astrophysical scenarios. We show that the current filamentation instability associated with some of these scenarios reaches saturation after only 10 cm of propagation in a typical laboratory plasma with a density  cm. The different regimes of the instability, from the purely transverse to the mixed mode filamentation, can be accessed by varying the background plasma density. The instability generates large local plasma gradients, intense transverse magnetic fields, and enhanced emission of radiation. We suggest that these effects may be observed experimentally for the first time.

pacs:
52.27.Ny, 52.35.Qz, 98.70.Sa, 52.59.-f, 52.65.Rr
preprint: xxxx

Several astrophysical scenarios lead to extreme physical regimes, typically observed on Earth in the form of radiation and cosmic rays. These regimes encompass a set of phenomena such as magnetic field generation, shock formation, energy transfer processes, and non-thermal particle acceleration (for a review, see jones91 ()). In the particular case of the fireball model of gamma ray bursts (GRBs) piran04mesz93 (), the kinetic energy of an ultra-relativistic plasma shell, with an arbitrary mixture of electrons-positrons-ions (), is converted into radiation as moving shells collide, but the specific conversion mechanism is still an open question. Relativistic flows are also frequent in shock waves and pulsar wind nebulae, where relativistic shells interact with a background plasma kazimura98 (). It is very difficult to reproduce these astrophysical conditions in the laboratory, and the studies of the nonlinear physical phenomena are essentially simplified analytical models and numerical simulations (see ellison04keshet06 (); spitk08 (); martins09 () and references therein). Identifying the laboratory conditions that can validate the conclusions reached in previous studies is thus of paramount importance. Progress in laser technology, for instance, already suggests the possibility of exploring experimentally scaled-down astrophysical phenomena in laser-plasma interactions woolsey01bulanov08chen09 (). The occurrence of the current filamentation instability has recently been observed in experiments with a low energy electron beam and a capillary discharge plasma allen12 ().

In this Letter we focus on a scenario similar to that widely believed to be present in, and at the origin of GRBs, by examining the collision of a relativistic beam or neutral plasma (that we call a fireball beam) mimicking a realistic plasma shell, with a static plasma consisting of and . The interaction leads to current filamentation instability (CFI), or Weibel instability weibel59 (); medvedev99 (), which generates very large magnetic fields as the beam plasma interaction evolves. The self-consistent evolution of electric (E) and magnetic (B) fields, and the resulting radiation generation as particles propagate in CFI driven turbulence are observed. Here, we consider conditions that will soon become available in the laboratory, and focus on the direct observation of the CFI of an neutral beam. We also examine the possible experimental detection of the nonlinear stage of this instability as a function of its key parameters, through imaging of the associated plasma gradients, detection of the beam radiation, and the B-field of the beam filaments. Our results show that the role and the dynamics of the plasma microinstabilities associated with the collision of a relativistic fireball with a plasma may be probed in the laboratory.

Recent theoretical medvedev99 (); gruzinov99 () and numerical results silva03 (); frederiksen04nishikawa05 () have shown the relevance of the CFI for GRBs scenarios and for the onset of relativistic shocks in unmagnetized plasmas spitk08 (); martins09 (). Moreover, the consequences of the excitation of the mixed mode, or tilted filamentation bretsilva (), in the long time evolution of the generated E/B-fields remains to be addressed; it was suggested that this preferential mode excitation will lead to significant beam spraying silva03 (), but the impact on the saturated level of the fields was not discussed. Experimental evidence for the radiation signatures from Weibel turbulence medvedev05 (), the energy transfer rate from the fireball to the B-field, and the long time evolution of the self-generated E and B-fields are critical inputs to the existing models, to perform direct comparisons with astronomical observations, and to assess the relevance of the CFI to relativistic astrophysics.

Relativistic beams are available in many laboratories around the world, while beams are not. Recent numerical studies of a plasma-based, accelerator concept based on the plasma wakefield accelerator (PWFA) chen85 () have revealed that it may be advantageous to accelerate a bunch on the wake driven by an bunch Lotov07 (). Ultra-relativistic and bunches suitable to test this acceleration scheme are available at the SLAC National Accelerator Laboratory. For this test, the distance between the and the bunch must be adjustable and on the order of the plasma wavelength or about m. A double or sailboat magnetic chicane has been developed decker (), that allows for the adjustment of the spacing between the two bunches, and may be used to overlap the two bunches with equal charge, both in space and time to effectively create a relativistic fireball beam. This will make possible the first ever collision between relativistic neutral plasmas in the laboratory: a relativistic plasma onto an plasma at rest, separating the effects of the space charge fields associated with a charged beam.

We investigate the propagation of the SLAC fireball beam in a pre-formed plasma with numerical simulations performed with the fully relativistic, fully electromagnetic, and massivelly parallel particle-in-cell (PIC) code OSIRIS fonseca08 (). This simulation framework has been extensively used for studies of laser/beam plasma interaction (e.g., dodd02 ()), and astrophysical regimes (e.g., silva03 (); silva06fonseca03 ()), among others. The system is studied numerically with a m window moving at the speed of light along the z-direction, and discretized in cells with absorbing boundary conditions for the fields and for the particles in the transverse x, y directions. The fireball beam is defined with Gaussian profiles in all directions with rms sizes: m, where is the pulsation of the rest plasma with density  cm. The standard beam used in the simulations has , and the same number of , all with an incoming energy of  GeV and a normalized emittance of  m-rad, corresponding to a peak beam density , and a transverse thermal spread . A total of simulation particles (plasma and beam) is pushed for  cm of pre-formed plasma (20 cm were also simulated to confirm the saturated state parameters). The time step is . The neutrality of the beam guaranties its propagation at constant radius. A background of fixed is assumed for the pre-formed plasma: quantitative variations below 1% were obtained for the standard case when using mobile . Note also that, as in astrophysics, these parameters correspond to a collisionless fireball-plasma interaction: , where is the beam , -background collision frequency.

Fig. 1a-c show the structure of the fireball beam after 10 cm propagation in the laboratory plasma, or, equivalently, to the propagation of a fireball with a density 1 cm in km in the background density of 1 cm. The CFI generates well-defined current (and density) filaments, which size increases as the beam propagates in the plasma, and may grow to a thickness above m . These conditions correspond to a beam with , which explains the few filaments obtained at saturation, reached when the filaments coalescence ceases and the B-field energy remains constant. The large currents associated with the beam filaments generate local B-fields up to 2 MGauss (Fig. 1d). The space charge separation, also associated with the filaments, leads to radial E-fields as high as . The presence of oblique modes/tilted filamentation bretsilva () is clear on Fig. 1c showing that, as expected, the beam can excite a combination of transverse (filamentation) and longitudinal (two-stream-like) instabilities. Finally, a system of filaments is present in the background plasma, behind the beam, evidencing a 3D structure. As the filaments merge, the space-charge separation leads to the plasma blowout and to the generation of strong E-fields.

This scenario is in stark contrast with that of a pure beam interacting with the same plasma, as in the recent PWFA experiments blumenfeld07 (). Simulations and experiments for an beam with the same transverse size show that, for these parameters, the beam drives strong plasma wakefields that focus the beam to a narrow radius after one quarter betatron wavelength  mm, and the beam envelope experiences oscillations along the plasma with period . No CFI is observed under these circumstances.

Figure 1: Beam density and B-field after 10 cm propagation in a plasma with  cm. (a) Isosurfaces of (blue) and (red) density; projections correspond to the integration along the corresponding direction. (b-c) 2D central beam density slices ( blue, red). (d) 2D central slice of radial B-field, , responsible for particle transverse motion and radiation (vectors represent B-field lines). (e) Integral of along (), measurable experimentally by Faraday rotation.

In Fig. 2, we present the evolution with propagation distance in the plasma of the total normalized energy in the B-field, for different beam/plasma parameters, illustrating the exponential growth and saturation within the 10 cm range. The growth rates (, , ) are within the range predicted for this configuration for the purely transverse CFI (, with the particle thermal rms spread of velocity silva03 ()). A more detailed analysis reveals, however, that for higher plasma densities (keeping the beam density fixed) the growth rate is higher, but the saturated level of the B-field is lower. The former is an indication of the spatial-temporal character of the instability in this configuration, while the latter is an evidence for the different saturation mechanisms involved when the mixed mode/tilted filamention is dominant bretsilva ().

The finite transverse dimension of the beam (not its length) determines: (i) the longest wavenumber that can be excited, (ii) the typical noise source for the instability. Since the beam is quite cold, for wavenumbers such that the growth rate is already close to its maximum value. The finite length of the beam impacts the two-stream mode (or in the more general form of the filamentation instability) the oblique mode. However, there is no theory for the excitation of these modes for finite-length finite-width modes, and thus this work motivates further theoretical developments of a spatio-temporal theory for the fireball beam since it does not exist silva2009 (). The spatial-temporal theory for the two-stream instability jonesevans () predicts that an E-field perturbation excited at the vacuum/plasma interface ( and ) will grow with where is the distance to the head of the beam. In the beam region, for the same distance in the laboratory and assuming the same initial perturbation in the longitudinal E-field, the amplified field in the standard case is approximately twice the amplified field in the high plasma density case. This is consistent with what we observe in the simulations, namely the fact that the mixed mode has clearly developed more strongly in the high density scenario. The coupling of the excited longitudinal field with the transverse field leads to the excitation of the mixed mode bretsilva (), as clearly seen in the high density case (Fig. 2): the filaments are tilted, which indicates that the particles can detrap more easily, leading to a lower current and thus to a lower saturated B-field.

Figure 2: Evolution of the equipartition parameter , i.e., the total B-field energy () normalized to the kinetic energy of the particles , ( the volume of the beam) for different beam and plasma parameters. Values are normalized to , where is the field when the growth becomes exponential (after  mm, or ). Standard case (solid line): fireball beam with  m-rad emittance, in a plasma with  cm (which also defines the baseline density for the normalization). The dotted line illustrates the linear growth rate. Slices of the density in the middle of the beam after of plasma (plotted in blue) illustrate the difference in the instability structure. The inset includes the trajectories of two fireball electrons for the standard case.

The interaction of the relativistic and with the B-fields confining the current filaments leads to the emission of synchrotron radiation. The oscillatory motion of the charges in the transverse directions due to the radial E-fields associated with the filaments of opposite charges leads to the emission of betatron radiation. In both cases, the radiation is incoherent with the wiggler strength parameter , for the betatron wavenumber and the orbit amplitude. The spectra have a photon critical energy for the synchrotron radiation, and for the betatron radiation, where describes the typical radius of the filaments (in units of ). Simulation results indicate that these two radiation processes might not be distinguishable jlmartins09 (), at least for the initial stage, since and grow together. After a significant field growth in the CFI driven turbulence, however, the field structure may lead to different spectral signatures, as previously hinted in frederiksen (); hededalthesis ().

We briefly describe some of the particular aspects of the fireball beam diagnostic implementation. For PWFA applications the separation between the and the bunches must be of the order of a plasma wavelength (m). Such a small spacing between the bunches can be achieved with two interleaved magnetic chicanes with a coarse path length difference of the order of the bunch separation in the accelerator ( cm), and with fine magnetic adjustments decker (). These adjustments may also be used to overlap the two bunches in time and create the relativistic, neutral fireball beam. The optimal temporal overlap is achieved by minimizing the coherent transition radiation the bunches emit when traversing a thin metallic foil located after the double chicane. The transverse overlap is obtained by imaging the incoherent optical transition radiation the bunches emit when traversing two thin foils located before and after the plasma. For PWFA experiments the beam ionizes a lithium vapor and creates the plasma by field-ionization blumenfeld07 (), while the neutral fireball beam requires a pre-ionized plasma. Pre-ionization can be achieved by photo-ionization of a lithium vapor with an ultra-violet laser pulse muggli99 ().

The filamentation of the beam is the most obvious indication of the CFI occurrence. The filaments, however, have a relatively small transverse size of m and, because of their emittance, diverge and overlap rapidly when exiting the plasma. To detect them inside the plasma, the strong plasma density gradients associated with the beam filamentation can be visualized with Schlieren shadowgraphy rienitz02 () using a laser pulse propagating perpendicularly to the fireball beam path. The laser light is weakly deflected by the index of refraction variations corresponding to the density modulation.

The filamentation of the beam results in the generation of large B-fields in the plane perpendicular to the filaments themselves (see Fig.Ê1d), which can be visualized by analyzing the polarization of a linearly polarized probe laser pulse traveling perpendicularly to the fireball beam, the same that is used for the Schlieren shadowgraphy. The laser light experiences Faraday rotation caused by the component of the filaments B-fields parallel to the laser propagation direction (see Fig.Ê1e). Even though the B-field pattern is related to the structure of the random filaments, the effect computed from the simulation results for produces an image similar to Fig. 1e and is clearly visible. Faraday rotation has been used to sample the B-fields generated in a laser wakefield experiment with similar parameters najmudin01 (). The plasma density and B-field structure may be sampled along the beam path by moving the intersection point between the probe laser pulse and the plasma with a time resolution equal to the laser pulse length (fs) and a longitudinal resolution of the order of the probe beam size (mm), thereby giving access to the growth of the instability. The excess radiation associated with the oscillation of the and in the B-field and in the filaments can be directly observed using standard x-ray detection methods, similar to those that were used to detect synchrotron or betatron radiation in PWFA experiments Wang02 (). Finally, the B-field growth occurs at the expense of beam energy. In our simulations the beam looses 6-11% energy, i.e., 2-3 GeV, in the standard and high temperature cases, respectively. These beam energy changes can be measured using an imaging magnetic spectrometer, as in previous PWFA experiments Hogan05 ().

In conclusion, we have shown that the or fireball beam and plasma system that will be developed for PWFA experiments may also be used to produce in the laboratory a scenario relevant to test the very important microphysics issues of relativistic astrophysical phenomena. As a result of the CFI, the incoming fireball beam filamentation occurs over a plasma length of only a few cm. The current filaments generate large B-fields that lead to the enhanced emission of synchrotron and betatron radiation. Initial considerations indicate that the beam filamentation, the B-field generation, and the associated beam energy loss, as well as the excess radiation can in principle be observed in a single experiment.

We thank Prof. W. Mori and Dr. R. A. Fonseca for useful discussions. Work supported by the European Research Council (ERC-2010-AdG Grant No. 267841) by the U.S. DoE Grant DE-FG02-92ER40745, by Fundação Calouste Gulbenkian, and by Fundação para a Ciência e Tecnologia grants SFRH/BD/35749/2007 and PTDC/FIS/66823/2006 (Portugal). SFM and LOS thank KITP (UCSB) where part of this work was done, partially supported by NSF Grant PHY05-51164. Simulations performed on Dawson (UCLA) and IST (Portugal) clusters.

References

  • (1) F. C. Jones and D. C. Ellison, Space Sci. Rev. 58, 259 (1991).
  • (2) T. Piran, Rev. Mod. Phys, 76, 1143 (2004); P. Meszaros, M. Rees, ApJ. 405, 278 (1993).
  • (3) Y. Kazimura et al., ApJ 498, L183 (1998).
  • (4) D. C. Ellison and G. P. Double, Astropart. Phys. 22, 323 (2004); U. Keshet, Phys. Rev. Lett. 97, 221104 (2006).
  • (5) A. Spitkovsky, ApJL 682, L5 (2008).
  • (6) S. F. Martins et al., ApJ 695, L189-L193 (2009).
  • (7) N. C. Woolsey et al., Phys. Plasmas, 8, 5 (2001); S. V. Bulanov et al., arXiv:plasm-ph/0812.1421 (2008); H. Chen et al., Phys. Rev. Lett. 102, 105001 (2009).
  • (8) B. Allen et al., Phys. Rev. Lett. 109, 185007 (2012).
  • (9) E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
  • (10) M. V. Medvedev and A. Loeb, ApJ 526, 697 (1999).
  • (11) A. Gruzinov and E. Waxman. ApJ 511 852 (1999).
  • (12) L. O. Silva et al., ApJ 596, L121 (2003).
  • (13) J. T. Frederiksen et al., ApJ 608, L13 (2004); K. I. Nishikawa et al., ApJ 622, 927 (2005).
  • (14) A. Bret, L. Gremillet, D. Benisti, E. Lefebvre, Phys. Rev. Lett. 100, 205008 (2008); L. O. Silva et al., Bull. Am. Phys. Soc. 46, 205 (2001).
  • (15) M. V. Medvedev et al., ApJ 618, L75-L78 (2005).
  • (16) P. Chen, J.M. Dawson, R.W. Huff, T. Katsouleas, Phys. Rev. Lett 54, 693 (1985).
  • (17) K. V. Lotov, Phys. Plasmas 14, 023101 (2007), X. Wang et al., Phys. Rev. Lett. 101, 124801 (2008).
  • (18) F.-J. Decker, M.J. Hogan, private communication.
  • (19) R. A. Fonseca et al., Plasma Phys. Control. Fusion 50, 124034, (2008).
  • (20) E. S. Dodd et al., Phys. Rev. Lett. 88, 125001 (2002), F. S. Tsung et al., Phys. Rev. Lett. 93, 185002 (2004), S. Mangles et al., Nature 431, 535 (2004), S. Mangles et al., Phys. Rev. Lett. 96, 215001 (2006), N. Kirby et al., Phys. Rev. ST Accel. Beams 12, 051302 (2009).
  • (21) L. O. Silva, L. O., AIP Conf. Proc. 856 (New York), 109 (2006); R. A. Fonseca et al., Phys. Plasmas 10, 1979 (2003).
  • (22) I. Blumenfeld et al., Nature 445, 741-744 (2007).
  • (23) V.B. Pathak et al., in preparation (2013).
  • (24) M. E. Jones et al., Phys. Fluids 26, 2784 (1983); H. L. Rowland, Phys. Fluids B 1, 700 (1989).
  • (25) J. L. Martins, in preparation (2013).
  • (26) J. T. Frederiksen et al., ApJ 608, L13 (2004).
  • (27) C. B. Hededal, PhD Thesis, Niels Bohr Institute (2005); arXiv:astro-ph/0506559.
  • (28) P. Muggli et al., IEEE Trans. on Plasma Science 27(3), pp. 791-799 (1999).
  • (29) J. Rienitz, Nature 254, 293-295 (1975), Principles of Plasma Diagnostics, Ian Horner Hutchinson, Cambridge University Press (2002).
  • (30) Z. Najmudin et al., Phys. Rev. Lett. 87, 215004 (2001).
  • (31) S. Wang et al., Phys. Rev. Lett. 88, 135004 (2002), D. K. Johnson et al., Phys. Rev. Lett. 97, 175003 (2006).
  • (32) M. J. Hogan et al., Phys. Rev. Lett. 95, 054802 (2005).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
169756
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description