Virial Stars from Sub-Virial Cores

IN-SYNC II: Virial Stars from Sub-Virial Cores – The Velocity Dispersion of Embedded Pre-Main-Sequence Stars in NGC 1333

Jonathan B. Foster11affiliation: Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06520, USA; , Michiel Cottaar22affiliation: Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland , Kevin R. Covey33affiliation: Lowell Observatory, Flagstaff, AZ 86001, USA 44affiliation: Current Address: Dept. of Physics & Astronomy, Western Washington Univ., 516 High Street, Bellingham WA 98225, USA , Héctor G. Arce55affiliation: Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520, USA , Michael R. Meyer22affiliation: Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland , David L. Nidever66affiliation: Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA , Keivan G. Stassun77affiliation: Department of Physics & Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN, USA 88affiliation: Physics Department, Fisk University, Nashville, TN 37208, USA , Jonathan C. Tan99affiliation: Department of Astronomy, University of Florida, Gainesville, FL 32611, USA , S. Drew Chojnowski1010affiliation: Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA , Nicola da Rio99affiliation: Department of Astronomy, University of Florida, Gainesville, FL 32611, USA , Kevin M. Flaherty1111affiliation: Astronomy Department, Wesleyan University, Middletown, CT, 06459, USA , Luisa Rebull1212affiliation: Spitzer Science Center/Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA , Peter M. Frinchaboy1313affiliation: Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76129, USA , Steven R. Majewski1010affiliation: Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA , Michael Skrutskie1010affiliation: Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA , John C. Wilson1010affiliation: Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA , Gail Zasowski1414affiliation: Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA , jonathan.b.foster@yale.edu
Abstract

The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.920.12 km s after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a sub-virial velocity dispersion of 0.5 km. Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly-formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70G magnetic field acting on the dense cores, or be the signature of a cluster with initial sub-structure undergoing global collapse.

Subject headings:
slugcomment: Submitted to ApJ

1. Introduction

The initial velocity of a newborn star is one of a few fundamental stellar properties set by the star-formation process; as such, it can provide powerful constraints on theories and simulations of star-formation. The 3D velocities of young stars can be assessed by measurements of radial velocities or proper motions, either of which allows an estimate of the stellar velocity dispersion as well as, in principle, global motions such as expansion/contraction and rotation. The radial velocities of young stars are particularly useful as these velocities can be directly compared to the (radial) velocity of the molecular gas in which they are embedded.

Previous work has shown that dense gas cores (both starless and hosting protostars) have a lower velocity dispersion than the diffuse gas in which they are embedded, and out of which these dense cores presumably formed (Walsh et al., 2004; André et al., 2007; Kirk et al., 2007; Rosolowsky et al., 2008; Kirk et al., 2010). In regions which form predominantly low-mass stars, the dense cores have a typical one-dimensional velocity dispersion of 0.4 to 0.5 km s.

Studies of the radial velocity of stars in optically-revealed star-forming regions also find that the velocity dispersion of the stars is lower than the diffuse gas in the same region. For instance, in the Orion Nebula Cluster (ONC) and NGC 2264, the one-dimensional velocity dispersion of stars is 3-4 km s (Fűrész et al., 2006, 2008; Tobin et al., 2009).

There are important distinctions between the young stellar velocities measured in the ONC and NGC 2264 and the dense gas core velocities in nearby low-mass regions. First, the ONC and NGC 2264 are significantly more massive and have a larger virial velocity dispersion. Second, the dynamical time in these regions is short, so although the stars are only 1-3 Myr old, their velocities may have evolved over 4-12 dynamical times (Tan et al., 2006). Finally, the fact that one is able to observe these stars in the optical suggests that they have significantly dispersed their natal gas, which can profoundly affect the stellar dynamics (e.g. Moeckel & Bate, 2010). For these reasons the measurements in optically-revealed clusters do not directly reveal the initial velocity dispersion of new stars.

Covey et al. (2006) used near-infrared spectra of Class I and flat-spectrum objects within a number of nearby star-forming regions to show that these young stars have velocity dispersions similar to, or slightly larger than, the gas in which they are embedded. The velocity dispersions measured by Covey et al. (2006) were comparable to the 1.5 km s radial velocity precision of their observations, however, and thus provide only an upper limit on the true velocity dispersion of these protostars.

In a companion paper to this one, Cottaar et al. (2014a) show that the 2-6 Myr old, optically-revealed cluster IC 348 has a velocity dispersion of 0.6 - 0.7 km s, which is slightly super-virial.

Simulations of the dynamical evolution of young clusters (e.g. Proszkow et al., 2009; Moeckel et al., 2012; Parker & Meyer, 2012; Girichidis et al., 2012; Kruijssen et al., 2012) show that the cluster’s initial conditions can be quickly erased by dynamical evolution. In Proszkow et al. (2009), for example, two simulations are compared, starting the stars with either a sub-virial or a virial velocity distribution. The sub-virial distribution collapses in size and increases its velocity dispersion within 1.5 Myr. Stars this young are normally still embedded, so near-infrared spectroscopy is necessary to measure their stellar properties and velocities.

Obtaining these high resolution near-infrared spectra is the goal of the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project (Cottaar et al., 2014b), which is measuring stellar velocities with a precision of 0.3 km s for IC 348 (Cottaar et al., 2014a) and NGC 1333 in Perseus, as well as the more massive regions NGC 2264 and Orion A (Da Rio, in prep.). IN-SYNC is an ancillary science program of the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Zasowski et al., 2013; Majewski, in prep.), part of the third Sloan Digital Sky Survey (SDSS-III; Gunn et al., 2006; Eisenstein et al., 2011).

The cluster NGC 1333 in Perseus presents us with an excellent location to compare the velocity dispersion of dense cores and young stars within a single region. NGC 1333 is young enough to contain both dense cores and young stars ( 1 Myr; Arnold et al., 2012, and references therein), near enough to resolve the dense gas cores ( 250 pc; Hirota et al., 2008; Bell et al., 2013; Plunkett et al., 2013), yet not so massive that the embedded pre-main sequence population is rendered inaccessible by dust extinction even in the near-infrared. NGC 1333 therefore affords us the opportunity to build a full picture of the velocities of the diffuse gas, the dense cores, and the young embedded stars within a single cluster.

2. Observations

2.1. Stellar Data

Figure 1.— Column density map of NGC 1333 derived from Herschel data (grayscale). Red circles show the full IN-SYNC catalog. Fiducial radii are shown corresponding to the boundary of the dense gas (solid blue line) and the majority of stellar population (dashed blue line).
Figure 2.— Radial velocity versus rotational velocity for the stars in NGC 1333 following the SNR and reduced cuts described in subsection 2.4. The abrupt increase in radial velocity dispersion above 75 km s corresponds to early-type stars with broad intrinsic line widths; the single star with sin 5 km s is likely a field star. We keep only the intermediate stars (shown in red) for further analysis.
Figure 3.— Sample of pre-main-sequence stars in NGC 1333 considered in this study. (a) The spatial distribution of stars, both included (color-coded by radial velocity) and not included (gray) in the sample based on the quality criteria given in the text. (b and c) Stars included and not included, with pre-main-sequence isochrones in color at 1 (red), 2 (orange), 6 (green) and 10 (blue) Myr and a 1 Gyr main-sequence isochrone (black); all isochrones from Dotter et al. (2008). The diagram of absolute magnitude versus effective temperature shows a relatively tight clustering around 1-2 Myr, and is used to exclude non-cluster main-sequence stars (denoted with a star symbol) lying below the 10 Myr isochrone.

Spectra were obtained using the APOGEE multi-object spectrograph (Wilson et al., 2012). The details of the data reduction and spectral fitting are presented in Cottaar et al. (2014b). In brief, a grid of BT-Settl (Allard et al., 2012) model spectra are convolved to the resolution of the reduced IN-SYNC spectra. The main parameters that are allowed to vary in fitting to the models to the observed spectra are the effective temperature (), the veiling (), the rotational velocity (), the surface gravity () and the radial velocity () of the star. Initial parameter uncertainties are estimated from the Markov Chain Monte Carlo (MCMC) fitting process, although these uncertainties are then inflated to match the actual epoch-to-epoch variability seen in the parameters.

IN-SYNC targets in NGC 1333 were chosen from the Cores to Disks (c2d) Spitzer survey of Perseus (Jørgensen et al., 2006; Rebull et al., 2007), supplemented with focused surveys of NGC 1333 (Getman et al., 2002; Gutermuth et al., 2008; Winston et al., 2009, 2010) and candidate members selected based on their mid-IR variability from a preliminary analysis of the light curves obtained in NGC 1333 by the Spitzer YSOVAR program (Rebull et al., 2014).

Stars from all input surveys were given equal weight when assigning targets, and the primary selection criteria was magnitude. Since the APOGEE spectrograph has a fiber collision limit of 71″, we used three distinct plates in order to achieve nearly complete coverage of bright stars in the center of the cluster. We prioritized assigning fibers to stars with 7.5 mag 13.5 mag; this was limited at the faint end by signal-to-noise considerations and at the bright end by the potential for flux bleeding. Sources with 12.5 magnitudes were considered highest priority targets, and then fainter sources were used to fill up a plate. A faint source that was selected for one plate was prioritized on subsequent plates so as to build up the signal-to-noise of faint stars.

This fiber assignment scheme ensured that only five 5 NGC 1333 candidate members with 13.5 mag were not assigned a fiber on any of the NGC 1333 fiber plug plates. Otherwise, 141 likely NGC 1333 members with 13.5 mag were assigned fibers on at least one NGC 1333 plate; of these, 107 were assigned fibers on two or more plates, with 79, 61, and 58 members assigned at least three, four or five fibers across both observing seasons. The observations are therefore close to complete for the bright stars in NGC 1333, but are significantly incomplete at fainter magnitudes, and biased against faint stars in the densest portions of the cluster.

These magnitude limits do not correspond to simple limits on stellar mass, as the intrinsic -band luminosity of a star in NGC 1333 may significantly effected by extinction, either local (the envelope around a very young star) or global (from substructure within the dust and gas in the cluster as a whole). The former constraint limits the IN-SYNC sample to relatively older stars. Thus, the vast majority of IN-SYNC stars with a Gutermuth et al. (2008) classification from Spitzer are Class II, rather than Class I stars, simply because local extinction around Class I stars renders them very faint in . For the typical 1 Myr old star in the sample, the -band magnitude limit of 13.5 corresponds to roughly 0.1 (see subsection 2.4).

IN-SYNC observations of NGC 1333 include observations of stars in the “West-End” of Perseus well outside of NGC 1333. We use a minimal-spanning tree (MST; Gutermuth et al., 2009) on the positions of candidate protostars in the region to define a boundary for the cluster. This method shows a break in the cumulative distribution of span-length at 0.15 degrees, or 0.65 pc. Cutting the MST at this span length produces a cluster boundary that corresponds well to what a by-eye identification of the cluster would provide, and corresponds to all stars within the boundary of the box 51.8 R.A. 52.5 and 31.15 Dec. 31.6. Table 1 presents the full list of candidate members in NGC 1333 used in this survey, not all of which were observed.

2.2. Gas Data

To compare with our stellar velocities, we measure the velocity and velocity dispersion of the local gas with a combination of different tracers. These include the CO (1-0) and CO (1-0) transitions, which trace relatively low volume-density gas; we use the data from the COMPLETE Survey (Ridge et al., 2006). In addition, we use maps from higher critical density transitions in the central region of the cluster. These maps were obtained from the JCMT archive and include CO, CO, and CO (3-2) from Curtis & Richer (2011). The velocities of dense cores within NGC 1333 are drawn from the NH(1-0) observations of continuum sources from Kirk et al. (2007).

2.3. Dust Column Density Map

We have used the publicly available (André et al., 2010) Herschel data for NGC 1333 to construct a map of the dust column density over NGC 1333. This map was created from fitting the Herschel 160 - 500µm data with a single temperature modified black-body where the dust opacities at each wavelength are given by the opacities in Ossenkopf & Henning (1994) for dust grains with thin ice mantles, rather than assuming a simple power-law modification of the blackbody spectrum (i.e., taking a single value of ). Choosing instead to use =2, normalized at 230 GHz (a typical assumption, see Schnee et al., 2010) produces a dust mass that is 10% greater. For the Ossenkopf & Henning (1994) model the opacity at 500 µm  is 0.05 cm g; we assume a gas-to-dust ratio 100:1.

To account for large-scale gradients present in the Herschel data, the zero-point of this map was set by matching the column densities obtained around the edges of NGC 1333 with the COMPLETE (Ridge et al., 2006) extinction map based on 2MASS photometry. The COMPLETE extinction map is lower resolution than our new Herschel column density map (2.5′ versus 36″), missing structure evident in the Herschel column density map. Additionally, the extinction map is also significantly biased at the position of the cluster by the presence of many embedded red stars. The Herschel dust column density map, anchored by the reliable (i.e., non-cluster) portions of the extinction map, therefore provides the best available tracer of the dust (and therefore gas) mass in NGC 1333. For comparison, the total mass of the cluster gas is 20% lower when estimated from the COMPLETE extinction map rather than the Herschel-derived column density map.

The column density map derived from Herschel is shown in Figure 1 along with all the stars in the IN-SYNC target catalog; the stars observed by IN-SYNC are a subset of these objects.

2.4. Selecting a Sample of Stars for Analysis

Table 2 shows the best-fit stellar parameters for all APOGEE spectra obtained in NGC 1333. For this analysis we have applied quality criteria to these fits. Specifically, we exclude all spectra with a S/N 20, and stars for which the reduced of the best model fit was 10, as these spectra lead to unreliable parameter determinations.

We then trim stars with very low or high rotational velocity ( sin 5 km s or sin 75 km s). The former cut removes only one star, 2M03291184+3121557, which is near the edge of the cluster and has a velocity far from the cluster mean; this is likely a contaminating field star. The latter cut may remove genuine cluster members, typically very early type stars dominated by hydrogen lines. The large sin for these stars means that they have broad absorption lines; these broad lines mean that the precision of the radial velocity fit is low, and therefore the stars exhibit a much broader spread in radial velocity than stars with more secure fits (see the abrupt increase in velocity spread in Figure 2).

These cuts on sin are similar to the cuts applied in Cottaar et al. (2014a) except that we adopt an upper limit of sin 75 km s rather than 150 km s, as this corresponds to the observed sin threshold for dramatically increased radial velocity scatter in NGC 1333. The poor radial velocity fits for these hot early-type stars means that we are unable to make any conclusive statements about the velocity dispersion at the high mass/effective temperature end of the distribution. Using the Dotter et al. (2008) pre-main-sequence isochrones and an age of 1 Myr (see Figure 3), this cut effectively corresponds to removing all stars with M 3.5 .

We remove all stars from the sample with a radial velocity uncertainty greater than 1.1 km s, as these stars contribute little information about the velocity dispersion. We also remove stars with strong radial velocity variability. We estimate this in the same manner as Cottaar et al. (2014a), by calculating the statistic for the model of constant radial velocity as

(1)

where and are the best-fit radial velocity and associated uncertainty in each epoch, and is the uncertainty-weighted mean radial velocity. If the probability of obtaining at least this large a is less than 10, we flag the star as a radial velocity variable and exclude it from the following velocity analysis. 6% of stars are flagged as having variable radial velocities in this fashion.

Finally, after applying these cuts, there are three stars that lie closer to the main-sequence isochrone than the 1-2 Myr isochrone where most of the target clusters (see Figure 3b, where these three stars are shown with star symbols). These three stars (2M03290289+3116010, 2M03293476+3129081, and 2M03295048+3118305) are all candidate members, rather than confirmed young stars, are radial velocity outliers, and two of them lie on the outskirts of the cluster (Figure 3a); we therefore conclude that these three stars are most likely contaminating field stars, rather than genuine members of the cluster, and we exclude them from further analysis. This leaves 70 stars for the analysis of the cluster’s velocity dispersion.

Table 3 shows the uncertainty-weighted mean parameters for all stars observed by IN-SYNC, along with how many spectra were used in the determination and a flag to indicate stars that were identified as having a variable radial velocity.

For comparison with the gas velocities, we have converted all stellar heliocentric radial velocities into the velocity frame of the gas data. This is the kinematical Local Standard-of-Rest (LSRK), defined as a solar motion of 20 km/s in the direction of (J2000),(J2000) = (18:03:50.29, +30:00:16.8). No other velocity correction, such as correction for the gravitational redshift (Pasquini et al., 2011) or convective blueshift (Shporer & Brown, 2011) has been applied. These corrections, which account for the difference between the velocity of the photosphere and the velocity of the center of mass of the star, are typically on the order of a few hundred m s (although the convective blueshift is poorly constrained for young stars). From a comparison with literature results, Cottaar et al. (2014b) estimates that the systematic uncertainty in the absolute zero point of the IN-SYNC radial velocity system is on the order of 0.5 km s.

From the Dotter et al. (2008) isochrones, and the age of the cluster (1-2 Myr) from Figure 3b, we can assign a mass to each star based on the effective temperature. The lowest mass calculated for the Dotter et al. (2008) isochrones is 0.1 (corresponding to = 3000 K), and we do not see many stars with temperatures far below this. The mass function (number of stars per unit mass) increases down to the 0.1 limit, suggesting that we are reasonably sampling the masses down to 0.1 . We are therefore sampling masses between 3.5 and down to close to the hydrogen burning limit. We are not sensitive to the velocity distribution of brown dwarfs or early-type stars.

3. Results

3.1. Stellar Velocity Dispersion

Figure 4.— The inferred posterior probability distribution from velbin for NGC 1333, marginalized over the fraction of binaries (top) and marginalized over the fraction of binaries and the central velocity (bottom). Contours in the top panel show the 68%, 95%, and 99% credible intervals.

The determination of the intrinsic velocity dispersion of the young stellar population in NGC 1333 requires two main corrections. First, the radial velocities of the young stars have significant and non-uniform uncertainties. Second, the velocity distribution will be inflated by the presence of binaries, particularly close binaries. Multiple epochs of radial velocity data allow for the identification of some binaries, but not all, particularly since 40% of the stars in our NGC 1333 sample only have one observation meeting our SNR and goodness-of-fit criteria.

We take three distinct approaches to infer the intrinsic velocity dispersion: (1) use the velbin package (Cottaar & Hénault-Brunet, 2014) to model the velocities at all epochs and the influence of binaries simultaneously, (2) use an outlier-resistant analytic estimate for the velocity dispersion in the case of non-uniform uncertainties, and (3) trim all stars with radial velocity uncertainty greater than 0.5 km s and use outlier-resistant estimates of the width of the distribution. Each of these approaches makes different assumptions, so it is important to check that they produce consistent estimates for the intrinsic velocity dispersion. For comparison, using just the sample standard deviation to estimate the width of the velocity distribution (i.e., ignoring errors and binary contamination) provides an estimate of 1.10.1 km s.

We first infer the intrinsic velocity dispersion of NGC 1333 using the velbin package introduced in Cottaar & Hénault-Brunet (2014). This package generates a large sample of binary stars, with the mass ratio and orbital properties drawn from literature values. Specifically, we use the log-normal period distribution from Raghavan et al. (2010), the nearly-flat mass ratio distribution from Reggiani & Meyer (2013), and the flat eccentricity distribution from Duchêne & Kraus (2013). This distribution is then sampled and compared against the observed velocities and velocity errors from the real data set to infer the fraction of sources that are binaries and thus deduce the intrinsic velocity width of NGC 1333’s stars after accounting for the influence of binaries. The underlying velocity distribution is assumed to be Gaussian, and so the posterior probability distribution function is inferred for the center of the velocity distribution, the intrinsic velocity dispersion, and the binary fraction.

Figure 4 shows the posterior probability distribution functions inferred for NGC 1333’s velocity distribution, marginalized over the fraction of binaries (which is poorly constrained with a fairly flat posterior distribution between 20 and 70%) and over both the binary fraction and the central velocity. The latter posterior probability distribution for the intrinsic velocity dispersion, , is only slightly asymmetric, with a most likely value of 0.920.12 km s and a 95% credible interval of [0.72, 1.13] km s. The central velocity, , is 8.02 0.31 km s. For comparison, the centroid velocity of the CO (1-0) gas in this region ranges from 7 to 9 km s (Quillen et al., 2005).

The correction for binarity is relatively small because we have data over a three-year baseline and have already removed 6% of the stars as radial-velocity variable (and thus likely binaries, see subsection 2.4). The remaining stars are known not to have a large radial velocity signature over the three years they were observed, and are therefore likely to either (1) not be in short-period binaries, or (2) not have an edge-on inclination that produces a large radial-velocity signature. Since we marginalize over all binary fractions in Figure 4, this estimate provides a conservative estimate for the intrinsic velocity dispersion, . If we fix the binary fraction at extreme values we get the following: for a binary fraction of 80%, =0.890.09 km s; for a binary fraction of 20%, =0.980.10 km s.

We also consider the effect of a period cut-off on the log-normal period distribution from Raghavan et al. (2010). This has a small influence since the inferred binary fraction increases/decreases in order to match the observational constraints. If the binary fraction is held fixed at 50%, then there is some sensitivity to adopting period cut-offs. We consider impose a cut-off on the maximum period. A semi-major cut-off of 1 AU provides an estimate of = 0.980.09 km s, a semi-major cut-off of 10 AU gives = 0.890.10 km s, and a semi-major cut-off of 100 AU (or more) gives = 0.920.10 km s. This behavior is because the binaries that can most increase our observed velocity dispersion are binaries with intermediate periods – short-period binaries produce a large radial velocity signature which is easily ruled out by our multi-epoch observations while long-period binaries produce small radial velocity variations. All these variations are well within our uncertainty given for . Our estimate of is therefore relatively robust against changes in the assumed binary population.

The second estimate for the velocity dispersion considers binaries as velocity outliers and infers the parameters of the velocity distribution using robust estimators. For this purpose we use the median and the inter-quartile range to infer the center and width of the distribution. A single velocity for each star is calculated as the weighted mean over all observed epochs, and a single velocity uncertainty is calculated as the median error across the epochs. This approach therefore uses less information than the velbin method.

To account for the non-uniform errors in the epoch-averaged radial velocity measurements, we adopt the outlier-resistant estimator given by Ivezić et al. (2014):

(2)

where is the unbiased estimator of for a Gaussian based on the interquartile range:

(3)

and

(4)
(5)

and

(6)

where the errors on individual stellar radial velocities are denoted as . Uncertainties on this estimator are calculated from bootstrapping (Efron, 1979). For the defined sample of stars in NGC 1333, this estimate of is 1.04 0.18 km s. This broader confidence interval is indicative of the relative instability of this estimator for small samples (Ivezić et al., 2014).

Finally, based on the previous estimates of the intrinsic velocity dispersion, we trim all stars with radial velocity uncertainty 0.5 km s. This allows us to approximate the errors as roughly uniform (and small, compared to the intrinsic velocity dispersion) and simply calculate

(7)

where is some robust estimator of the dispersion. Using either the Median Absolute Deviation (MAD Muller, 2000) or for produces comparable results with =1.12 0.18 km s. This estimate for the dispersion is actually slightly greater than the estimate just from the sample standard deviation of the untrimmed data, as many of the stars with radial velocity uncertainty between 0.5 and 1.1 km s lie near average velocity. The uncertainty on this estimate is again fairly large, because we have significantly reduced the amount of data used in this estimate. Note that Cottaar et al. (2014a) also trim all stars with radial velocity uncertainty 0.5 km s in their analysis of IC 348.

The estimates of the intrinsic velocity dispersion of the stars in NGC 1333 from velbin, the outlier-resistant analytic estimate, and the velocity dispersion of the error-trimmed subset are therefore all consistent with one another, within their relatively large uncertainties. We proceed with the velbin estimate of = 0.920.12 km s, as this estimate uses the most information.

3.2. Comparison with Low-Density Gas

Figure 5.— Positions and radial velocities of IN-SYNC stars (red) and NH cores (blue; from Kirk et al., 2007) in NGC 1333. Shown in the green colorscale is the intensity of CO (1-0) gas integrated over velocity (top-left), Right Ascension (top-right) and Declination (bottom-left). Error bars on the IN-SYNC stars show the 1 uncertainty on radial velocity for these stars; the velocity uncertainty on the NH cores is much smaller (typically 0.05 km s) and these errors are suppressed for clarity. The stellar population is contained within a radius of 800″(0.97 pc), which is shown in the dotted circle (top-left).

Figure 5 shows the positions and velocities of the dense cores and IN-SYNC stars compared with the low-density gas tracer, CO (1-0), which shows the general cloud gas. The cores and stars have similar, although not identical, spatial distributions. The cores have a small velocity dispersion (the one-dimensional velocity dispersion is 0.51  0.05 km s) and are strongly correlated with the highest intensity regions of the diffuse gas; this confirms what other studies have found – dense cores are not moving ballistically with respect to their surrounding diffuse gas (Walsh et al., 2004; Kirk et al., 2007, 2010).

The radial velocity errors on the stars would tend to diminish the appearance of any real correlation between the stellar velocities and that of the diffuse gas. Nonetheless, the structure of stars with low radial velocity errors reveals some cases where the stars are not well correlated with the diffuse gas. Comparing the radial velocity of the IN-SYNC stars with the first moment (i.e., the intensity-weighted mean) of the emission profile from the cloud gas (both CO (1-0) and CO (3-2)) along the line of sight toward each of the stars shows no correlation between the diffuse gas velocity and the stellar velocity. This lack of a correlation arises because the first moment of the cloud gas is essentially the same at all locations in the cluster, while the stars have a broad spread in radial velocities.

Figure 6.— The velocity difference between each star’s radial velocity and the centroid velocity of CO (1-0) (green) and CO (3-2) (orange) at that position. Five stars fall outside the region covered by the CO (3-2) map and are not shown.

Figure 6 displays the difference between stellar radial velocity and the centroid (1st moment) velocity of the CO (1-0) and CO (3-2) gas. In both cases, the mean offset is close to zero, and the standard deviation of the offsets are roughly 1 km s, which turns out to be comparable with the line-width of the CO (1-0) gas.

3.3. Comparison of Stellar and Dense Core Velocity Dispersions

Figure 7.— Comparison between the radial velocity distributions for NH cores in NGC 1333 (bottom; from Kirk et al., 2007) and IN-SYNC stars (top). The stellar histogram is broadened by the errors on the radial velocity determination (which are negligible for the NH cores). Lines show the inferred width without account for errors (dotted), velbin (solid) and the analytical correction for non-uniform errors given in the text (dashed). For comparison with the core velocity dispersion, the average spectrum of CO (1-0) (green; low-density tracer) and CO (orange; high-density tracer) are over-plotted on the NH core velocity distribution, scaled to the amplitude of the core velocity dispersion distribution. The dotted (green) line shows the line width of CO (1-0) with = 1.1 km s as estimated in subsection 3.4.

This measurement of the velocity dispersion in NGC 1333 represents the earliest measurement of this quantity111Arguably the stars in the ONC studied by Tobin et al. (2009) are of comparable age, but due to its higher mass, the dynamical age (i.e., age/dynamical time) of the ONC is significantly greater than the dynamical age of NGC 1333.. NGC 1333 is still actively forming stars, with dense gas cores that are either starless or host to early (Class 0/I) protostars. These cores lie in roughly the same spatial area as the young stars measured by IN-SYNC but have a much tighter velocity dispersion. Taking only the cores from Kirk et al. (2007) that lie within our defined spatial boundary, the one-dimensional velocity dispersion is 0.51  0.05 km s.

Note that the determination of the dense core velocity dispersion is not corrected for the effects of binarity. One might imagine, for instance, that a binary system with separate accretion envelopes could produce a skewed line profile in NH. In the case of two envelopes with high relative velocities, the NH line profile could separate into two velocity components, although this situation is indistinguishable from multiple widely-separated cores within the beam along the line of sight.

We can directly compare the velocity dispersion of the population of dense NH cores and the population of stars observed with IN-SYNC. Because the two populations lie in similar positions within the cluster, this comparison is relating the velocity dispersion of stars just before they form (presumably stars inherit the systemic velocity of the dense cores out of which they form) and about 1-2 Myr after their birth.

Figure 7 shows the histograms of velocities for dense cores and stars. The distributions have consistent central velocities within their uncertainties ( = 7.590.09 km s, = 8.020.31 km s). Because the stellar distribution appears broader due to the significant and non-uniform uncertainties on the radial velocity determinations, we plot the Gaussian distributions inferred in subsection 3.1 as well as the simple fit to the velocity distribution. The dense core velocity dispersion is significantly less broad than the stellar velocity dispersion inferred with velbin. The dense cores have a similar velocity dispersion to the line-width seen in the dense gas tracer (CO (3-2)), but significantly smaller dispersion than the diffuse gas (CO (1-0)).

3.4. Virial State of Stars and Cores

The full virial equation for a molecular cloud is

(8)

where denotes the acceleration of the expansion/contraction of the cloud, is the kinetic energy of particles and gas within the cloud, is the surface term (surface pressure), is the energy in the magnetic field and is the gravitational potential energy. A simple virial analysis normally assumes that one can neglect the surface term and the magnetic field, and that a cloud’s expansion or contraction is not accelerating () so that

(9)

Solving this equation for a spherical distribution with a power-law density distribution, , gives (see Bertoldi & McKee, 1992) a virial velocity dispersion, , via

(10)

where is the radius, the mass of the region under consideration, and is a geometric factor of order unity:

(11)

Evaluating the virial state NGC 1333 therefore requires knowledge of the mass of the cluster at a given radius. This mass includes both the gas mass and the stellar mass. The projected gas distribution (Figure 1) shows significant sub-structure and non-azimuthal symmetry, and so estimates of the virial velocity assuming a smooth distribution will necessarily be only a rough approximation.

We compare two estimates of the gas mass within NGC 1333. The first is the mass estimate derived from the Herschel column density map calculated in subsection 2.3. The second is using the COMPLETE CO and CO maps to derive the excitation temperature of the CO and then use the X-factors calculated for this region by Pineda et al. (2008) to convert the CO intensity to a total mass. The comparison between these two methods is shown in Figure 8. The conversion between CO and total mass depends on relations which were not calibrated in the central region of NGC 1333, since the extinction map used in the conversion was unreliable there (Pineda et al., 2008). For this reason, we use the mass estimated from the Herschel dust column density map, although the difference between the two profiles is not large.

Figure 8 also shows the enclosed mass for and profiles. The observed mass profile is intermediate between these two simple profiles, matching the profile at radii 0.6 pc, and close to the profile at radii 0.6 pc. This change in profile occurs at the edge of the region of high column density (i.e. 15 mags of A) seen in the Herschel column density map (see Figure 1). The majority of the stellar population is contained with 800″(0.97 pc at a distance of 250 pc), and we use this as the fiducial cluster radius.

Figure 8.— Mass enclosed within a given radius of the center of NGC 1333. Two different estimates are compared, that from CO (green) and that from the Herschel dust map (black). The enclosed mass profiles assuming a density power law (constant column density) or (normalized to the dust map at 1.65 pc and 0.6 pc, respectively) are shown in gray; the observed surface density profile is intermediate between these values. Also shown is the contribution from stars assuming that every star in the input IN-SYNC catalog has a mass of 0.5 M (red line). Vertical lines denote radii of interest.

IN-SYNC does not provide a complete census of all the stars in NGC 1333, so an estimate of the total stellar mass from these data requires significant extrapolation. Our input catalog contains 205 objects in the region considered. Low-mass regions such as this one have a typical mean stellar mass of 0.5 . In order to show how this mass is distributed in Figure 8, we simply assign 0.5  to every star in the IN-SYNC catalog, giving a total mass of 102 . For comparison, Lada et al. (1996) estimate a total stellar cluster mass of 45  over a similar region to that which is considered here. This is obviously a fairly rough approximation, but the stellar mass is much smaller than the gas mass, and therefore has relatively little influence on the virial velocity of the cluster.

The virial velocity given by Equation 10 can be evaluated as a function of radius. Since the projected mass profile implies that the true density profile is between and , we use a single value of to provide a continuous value for the virial velocity. This leads to a value of = 1.25. We show the result of this calculation in gray in Figure 9, along with an estimate of the uncertainty, which is dominated by the systematic uncertainty on the mass estimate, which is a combination of an uncertain zero-point in our column density map, the uncertain dust emissivity, and our assumption of a single temperature component along the line of sight. We adopt a factor of two uncertainty on the mass to account for these sources of uncertainty. The virial velocity takes on a roughly constant value beyond 0.6 pc (as would be expected for the profile which is observed at large radii) of  km s.

Another estimate of the virial velocity comes from assuming that the diffuse gas is roughly in virial equilibrium, and therefore that the virial velocity dispersion of NGC 1333 can be estimated from the line width of the diffuse gas. As shown in Figure 7, the line profile for CO (1-0) integrated over the cluster region is non-Gaussian. We adopt the common approach of measuring the FWHM of the emission and then converting to an (effective) for a Gaussian distribution. The result of measurement as a function of radius is shown in green in Figure 9. There are several important caveats with this measurement: the presence of significant outflow energy and momentum in NGC 1333 (e.g. Lefloch et al., 1998; Knee & Sandell, 2000; Plunkett et al., 2013) means that the CO in NGC 1333 may be super-virial; on the other hand, CO (1-0) may not be optically thin, so optical depth effects may increase the observed line width.

Finally, we can estimate the intrinsic velocity dispersion for both stars and dense cores, binned within a given radius. For this purpose we use velbin for the stars and the sample standard deviation for the cores (as we did in subsection 3.1 and subsection 3.1 for the full cluster). These measurements are displayed in Figure 9.

Figure 9 shows that the various estimates of the velocity dispersion approach constant values beyond about 0.4 pc. Inside this radius there is a suggestive dip in all measurements of the velocity dispersion, although for any individual tracer this is not a statistically significant decrease. At small radii, neglecting the surface term, , in Equation 8 is obviously incorrect since the surrounding mass at of the cluster gas makes a significant contribution. Furthermore, it is difficult to interpret the measured radial velocity of stars at radii smaller than the orbital radii. Therefore we take the velocity dispersions measured at large radii as indicative of the true state of the cluster.

Figure 9.— Velocity dispersion of the stars (red circles), dense cores (blue squares), diffuse gas (CO (1-0); green), and the expected velocity dispersion (black) if the cluster were in virial equilibrium (ignoring magnetic fields and external pressure). The velocity dispersions are shown as a function of , and are calculated by considering all objects/positions interior to . Vertical lines denote radii of interest. Shaded regions and error bars show estimates of the 1 uncertainty of these values.

The stellar velocity dispersion of 0.92 0.12 km s is therefore consistent with our estimate of the cluster’s virial velocity (0.79 0.20 km s) and the line width of the surrounding diffuse gas (1.1 0.1 km s); the dense cores have a velocity dispersion of 0.51 0.05 km s, less than the velocity dispersion of the diffuse gas, and consistent with sub-virial.

4. Discussion

4.1. Sub-clusters in NGC 1333

Lada et al. (1996) first noted the bimodal spatial distribution of young stars in NGC 1333, which exhibits distinct northern and southern cluster in the stars observable in the near-infrared. The relatively unbiased survey of Gutermuth et al. (2008) confirmed the existence of these two sub-clusters, which can also be seen in Figure 3a as the clusters of stars around Declination 31.37 and 31.27, respectively. This clustering is less prominent in Figure 5 since the northern cluster contains fainter stars on average; fainter stars tend to have larger radial velocity uncertainties and are therefore suppressed in this figure.

Given the presence of sub-clusters, does it make sense to consider the velocity dispersion and virial velocity of the cluster as a whole? Using the Gutermuth et al. (2008) division of NGC 1333 into two clusters separated by a Declination of 31.3, we use velbin to calculate the and for the northern and the southern clusters. For the northern cluster, = 7.9 0.42 km s and = 0.92 0.18 km s. For the southern cluster, = 8.1 0.40 km s and = 0.94 0.15 km s. There is thus no detectable kinematic difference between the two sub-clusters, and considering them separately produces roughly the same result for the stellar velocity dispersion. We therefore proceed with considering the velocity dispersion of the full cluster.

4.2. Velocity Gradients in NGC 1333

Quillen et al. (2005) report a velocity gradient in CO (1-0) of 1 km s in the north-south direction across NGC 1333. However, this gradient is fit in a larger region than we consider here, extending 15′ further south, and the magnitude of the gradient is strongly influenced by the substantial blue-shift in emission in the southern portion of their field. The diffuse gas shown in Figure 5 certainly displays some large-scale structure, but does not appear to exhibit a single consistent gradient. This is confirmed with higher-excitation CO lines; Bieging et al. (2014) present CO (2-1) and CO (2-1) maps of NGC 1333 and speculate that the patchy variations in centroid velocity seen in these tracers could be ascribed to a cloud-cloud collision.

We find no statistically significant velocity gradient in the stellar velocities across NGC 1333. For instance, considering just a north-south gradient, the best-fit velocity gradient across the region is -2.9 2.2 km s degree (12.6 9.6 km s pc) . Since the area under consideration is 1/3 of a degree, the uncertainty on the magnitude of this gradient is on order of 0.7 km s, leaving open the possibility of a gradient which is large enough to contribute to the observed spread in radial velocities seen in the region. Ultimately, we rely on the fact that we cover the same spatial region with our three tracers (diffuse gas, stars, and dense cores) and assume that any large-scale gradients or patchy structure effect the three tracers to a similar degree.

4.3. Comparison with Simulations

Proszkow et al. (2009) show that clusters which start with a sub-virial velocity distribution become slightly super-virial as the cluster collapses, while an initially virial velocity distribution remains roughly constant. Non-spherical elongation of the cluster, particularly along the line of sight, makes it difficult to distinguish between the case of sub-virial velocity dispersion and projection effects. Nonetheless, our results are broadly consistent with these simulations which start sub-virial, and then quickly become virial.

Offner et al. (2009) examined the velocity dispersion of young stars in a simulation of turbulent star formation. They find that star clusters forming in turbulent virialized clouds naturally begin with sub-virial velocity dispersions, however these sub-virial velocity dispersions persist for one free-fall time. The dynamical time, = R/, of NGC 1333 is 1.1 Myr, so our result is in conflict with this prediction. Furthermore, the stars in the Offner et al. (2009) simulation retain a strong correlation with the centroid velocity of the gas in which they are embedded; our stars show no such correlation. This simulation seems to predict the behavior of the starless and protostellar cores traced by NH, but not the behavior of the 1-2 Myr old stars that are observable in the near-infrared.

Both Kruijssen et al. (2012) and Girichidis et al. (2012) have recently studied the dynamical state of young stars in simulations. Kruijssen et al. (2012), in simulations with rather more mass than NGC 1333 (10  versus the 10  in NGC 1333), find that after one free-fall time most of the stars are in sub-clusters with relatively little gas left, and the stars are in viral equilibrium. Our study suggests that gas expulsion does not play a critical role in the virialization of young stars; the mass of NGC 1333 is still dominated by gas, and yet its young stars are virialized. Girichidis et al. (2012) study a slightly earlier stage, when only 20% of the mass is in protostars. In this study, only the central portions of the cluster are virialized, the external stars contribute to a sub-viral velocity distribution for the cluster as a whole. We see no evidence of this trend; the central regions and the outskirts of the cluster appear to have a similar viral state.

4.4. Explaining the Velocity Dispersion Difference

The difference between the 0.92 km s stellar velocity dispersion and the 0.5 km s dense core velocity dispersion can be explained in a number of ways. First, consider the additional terms in the virial equation that influence the gas and stars differently. After their formation, stars will cease to feel both the external pressure and the magnetic field. Since the dynamical time of NGC 1333 is 1.1 Myr, it is possible for the velocity dispersion of 1-2 Myr old stars to evolve subsequent to their formation.

We first consider the influence external pressure on the region. We can calculate the external pressure using the formula from Lada et al. (2008):

(12)

where is a geometric factor of order 1 and is the average column density in the region outside the cloud, which we can estimate as 2 mags of for NGC 1333 from the COMPLETE extinction map. The energy due to surface pressure is simply

(13)

Our estimate for is therefore erg, which is less than 10% of the potential energy in the cluster ( erg). The external pressure does not seem to be significant.

We cannot estimate the strength of the magnetic field in NGC 1333 directly, but if we assume that the difference between the dense core kinetic energy and the energy of the potential well in which they are embedded comes purely from the magnetic field, then we can calculate the strength of that field as

(14)

which gives B = 66G. This is a reasonable strength for the magnetic field in a region as dense as NGC 1333. Crutcher (2012) define an empirical relation between the strength of the magnetic field and the density of a region. For regions denser than the threshold particle density of = 300 cm,

(15)

where = 10G. Assuming spherical symmetry, the particle density, , of NGC 1333 is roughly cm, and thus = 70G.

Whether a magnetic field of this strength would actually provide support will depend at least partly on the field’s morphology. In general, an ordered magnetic field will not provide support against collapse along magnetic field lines, but any realistic magnetic field configuration will involve turbulence translating support against collapse into all directions (see McKee & Ostriker, 2007, and references therein). The exact details depend on how tangled the magnetic field is, and how much energy density is in large-scale field components; further investigation with simulations is required.

The diffuse gas has a broader velocity dispersion, and it might be expected to be more strongly influenced by the magnetic field. However, the diffuse gas could well be out of virial equilibrium due to the injection of energy from outflows from the existing young stars in NGC 1333.

It is therefore quite possible that NGC 1333 has a magnetic field strong enough to explain the dense cores’ sub-virial motion. In this picture, the dense cores’ velocities are constrained by the magnetic field; upon their formation the stars are freed from the magnetic field and evolve to the velocity dispersion dictated by gravity.

The most difficult problem with this explanation is that the young stellar population in NGC 1333 does not seem to be in the relaxed, centrally-condensed configuration expected for a virialized stellar population. As discussed in subsection 4.1, the stellar population exhibits significant structure in the form of two sub-clusters. Furthermore, an analysis of the radial density profile of the young stars in NGC 1333 by Gutermuth et al. (2008) finds a flat central surface density profile, which is interpreted as evidence of very little dynamical evolution.

We consider a second explanation: that the cluster NGC 1333 might be in a state of global collapse. The IN-SYNC stars, which are older than the current dense cores, therefore formed when the cluster was more extended than it is today, presumably with an initially sub-virial dispersion (like that possessed by the current dense cores). As the cluster globally collapsed, the potential energy of the stellar configuration was transformed into additional kinetic energy, rendering the stars dynamically hotter than the current population of dense cores. Cottaar et al. (2014a) have recently proposed that IC 348 is in a state of global collapse based on an independent line of reasoning. This explanation would therefore lend support to the idea that young clusters are generally in a state of global collapse.

In this picture the sub-virial velocity dispersion of dense cores can be explained if dense cores form at the convergent point of large-sale turbulent flows (Elmegreen, 2007; Gong & Ostriker, 2011) or if the cores form from a small number of velocity-coherent structures (perhaps filaments; Hacar & Tafalla, 2011). The dense cores in NGC 1333 do exhibit coherence in position-velocity space (see top-right panel of Figure 5), so this is a reasonable explanation. If the IN-SYNC stars come from similarly sub-structured initial conditions, where those structures are now undergoing global collapse, then perhaps the stellar velocity dispersion could be inflated within the sub-structures before the sub-structure is erased. In this model it is unclear why the stellar sub-clusters in NGC 1333 have consistent central velocities; the naïve expectation in the case of global collapse is that they would have different bulk motions. Additional modeling of this point is required.

5. Conclusions

With the aid of the first high-resolution multi-object near-infrared spectrograph, APOGEE, we have measured, for the first time, the velocity dispersion of stars in an embedded young low-mass cluster where the stellar velocity dispersion can be directly compared with that of the dense star-forming cores and the diffuse gas in which both are embedded. Our results for NGC 1333 show that the 1-2 Myr old (Class II, where classification is possible) stars have an intrinsic velocity dispersion of 0.92 0.12 km s after correcting for measurement uncertainties and the influence of binaries. The velocity dispersion of these young stars is significantly greater than the velocity dispersion of the dense cores (0.51 0.05 km s) in the same region.

Unlike for the dense cores, the stars studied here are moving ballistically with respect to the low density gas; there is no correlation between the two on a point-to-point comparison, although the mean velocity of the population is the same as the mean velocity of the diffuse gas and the width of the velocity distributions are similar. The stellar velocity dispersion is roughly virial, considering just the gravitational potential produced by the stars and gas in NGC 1333; in comparison the dense core velocity dispersion is sub-virial. Two possible (though not mutually exclusive or exhaustive) explanations for these results are (1) the presence of a magnetic field with strength of order 70G having a strong influence on the velocity dispersion of the dense cores, or (2) a globally collapsing cluster with initial sub-structure. In both these scenarios, the velocity dispersion of the stars must increase quickly. Star-formation theories and simulations should strive to reproduce similar velocity dispersions for young stars roughly 1-2 Myr ( 1-2 ) after their birth.

6. Acknowledgements

JBF performed the analysis contained herein and wrote the manuscript. MC developed and ran the spectral analysis routines producing the stellar parameters used in this paper. KRC, JCT and MRM conceived the programÕs scientific motivation and scope, led the initial ancillary science proposal, oversaw the projectÕs progress and contributed to the analysis of the stellar parameters; KRC also led the target selection and sample design process, and provided assistance with the analysis and interpretation of the APOGEE spectra. HAG provided access to the dense gas data and help with interpreting the comparison between stellar and gas velocities. DLN assisted in the interpretation of the APOGEE data products and reduction algorithms, particularly those related to radial velocity measurements. NDR provided comparison with the gas and stellar velocities in Orion. KMF assisted with target selection. KGS contributed to the discussion of velocity spreads. SDC and GZ oversaw the design of the APOGEE plates utilized for IN-SYNC observations. SRM, MFS, and PMF contributed to defining the scope and implementation plan for this project, and with JCW developed and provided high level leadership for the broader APOGEE infrastructure and survey that enabled this science. LR contributed to the development of the input catalog for NGC 1333.

This research made use of Astropy, a community-developed core Python package for astronomy (Astropy Collaboration et al., 2013). This research has made use of NASA’s Astrophysics Data System. We thank Stella Offner, Alyssa Goodman, Alvaro Hacar, Ralf Klessen and Mark Heyer for insightful discussions. We thank our referees for insightful reports which improved this paper.

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

References

  • Allard et al. (2012) Allard, F., Homeier, D., & Freytag, B. 2012, Royal Society of London Philosophical Transactions Series A, 370, 2765
  • André et al. (2007) André, P., Belloche, A., Motte, F., & Peretto, N. 2007, A&A, 472, 519
  • André et al. (2010) André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102
  • Arnold et al. (2012) Arnold, L. A., Watson, D. M., Kim, K. H., et al. 2012, ApJS, 201, 12
  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
  • Bell et al. (2013) Bell, C. P. M., Naylor, T., Mayne, N. J., Jeffries, R. D., & Littlefair, S. P. 2013, MNRAS, 434, 806
  • Bertoldi & McKee (1992) Bertoldi, F., & McKee, C. F. 1992, ApJ, 395, 140
  • Bieging et al. (2014) Bieging, J. H., Revelle, M., & Peters, W. L. 2014, ApJS, 214, 7
  • Cottaar et al. (2014a) Cottaar, M., Covey, K., Foster, J., & et al. 2014a, Submitted
  • Cottaar & Hénault-Brunet (2014) Cottaar, M., & Hénault-Brunet, V. 2014, A&A, 562, A20
  • Cottaar et al. (2014b) Cottaar, M., Covey, K. R., Meyer, M. R., et al. 2014b, ApJ, 794, 125
  • Covey et al. (2006) Covey, K. R., Greene, T. P., Doppmann, G. W., & Lada, C. J. 2006, AJ, 131, 512
  • Crutcher (2012) Crutcher, R. M. 2012, ARA&A, 50, 29
  • Curtis & Richer (2011) Curtis, E. I., & Richer, J. S. 2011, MNRAS, 410, 75
  • Da Rio (in prep.) Da Rio, N. in prep., in prep.
  • Dotter et al. (2008) Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89
  • Duchêne & Kraus (2013) Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269
  • Efron (1979) Efron, B. 1979, The Annals of Statistics, 7, 1
  • Eisenstein et al. (2011) Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011, AJ, 142, 72
  • Elmegreen (2007) Elmegreen, B. G. 2007, ApJ, 668, 1064
  • Fűrész et al. (2008) Fűrész, G., Hartmann, L. W., Megeath, S. T., Szentgyorgyi, A. H., & Hamden, E. T. 2008, ApJ, 676, 1109
  • Fűrész et al. (2006) Fűrész, G., Hartmann, L. W., Szentgyorgyi, A. H., et al. 2006, ApJ, 648, 1090
  • Getman et al. (2002) Getman, K. V., Feigelson, E. D., Townsley, L., et al. 2002, ApJ, 575, 354
  • Girichidis et al. (2012) Girichidis, P., Federrath, C., Allison, R., Banerjee, R., & Klessen, R. S. 2012, MNRAS, 420, 3264
  • Gong & Ostriker (2011) Gong, H., & Ostriker, E. C. 2011, ApJ, 729, 120
  • Gunn et al. (2006) Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, AJ, 131, 2332
  • Gutermuth et al. (2009) Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18
  • Gutermuth et al. (2008) Gutermuth, R. A., Myers, P. C., Megeath, S. T., et al. 2008, ApJ, 674, 336
  • Hacar & Tafalla (2011) Hacar, A., & Tafalla, M. 2011, A&A, 533, A34
  • Hirota et al. (2008) Hirota, T., Bushimata, T., Choi, Y. K., et al. 2008, PASJ, 60, 37
  • Ivezić et al. (2014) Ivezić, Ž., Connolly, A., Vanderplas, J., & Gray, A. 2014, Statistics, Data Mining and Machine Learning in Astronomy (Princeton University Press)
  • Jørgensen et al. (2006) Jørgensen, J. K., Harvey, P. M., Evans, II, N. J., et al. 2006, ApJ, 645, 1246
  • Kirk et al. (2007) Kirk, H., Johnstone, D., & Tafalla, M. 2007, ApJ, 668, 1042
  • Kirk et al. (2010) Kirk, H., Pineda, J. E., Johnstone, D., & Goodman, A. 2010, ApJ, 723, 457
  • Knee & Sandell (2000) Knee, L. B. G., & Sandell, G. 2000, A&A, 361, 671
  • Kruijssen et al. (2012) Kruijssen, J. M. D., Maschberger, T., Moeckel, N., et al. 2012, MNRAS, 419, 841
  • Lada et al. (1996) Lada, C. J., Alves, J., & Lada, E. A. 1996, AJ, 111, 1964
  • Lada et al. (2008) Lada, C. J., Muench, A. A., Rathborne, J., Alves, J. F., & Lombardi, M. 2008, ApJ, 672, 410
  • Lefloch et al. (1998) Lefloch, B., Castets, A., Cernicharo, J., Langer, W. D., & Zylka, R. 1998, A&A, 334, 269
  • Majewski (in prep.) Majewski, S. R. in prep., in prep.
  • McKee & Ostriker (2007) McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565
  • Moeckel & Bate (2010) Moeckel, N., & Bate, M. R. 2010, MNRAS, 404, 721
  • Moeckel et al. (2012) Moeckel, N., Holland, C., Clarke, C. J., & Bonnell, I. A. 2012, MNRAS, 425, 450
  • Muller (2000) Muller, J. 2000, Journal of Research of the National Institute of Standards and Technology, 105, 551
  • Offner et al. (2009) Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131
  • Ossenkopf & Henning (1994) Ossenkopf, V., & Henning, T. 1994, A&A, 291, 943
  • Parker & Meyer (2012) Parker, R. J., & Meyer, M. R. 2012, MNRAS, 427, 637
  • Pasquini et al. (2011) Pasquini, L., Melo, C., Chavero, C., et al. 2011, A&A, 526, A127
  • Pineda et al. (2008) Pineda, J. E., Caselli, P., & Goodman, A. A. 2008, ApJ, 679, 481
  • Plunkett et al. (2013) Plunkett, A. L., Arce, H. G., Corder, S. A., et al. 2013, ApJ, 774, 22
  • Proszkow et al. (2009) Proszkow, E.-M., Adams, F. C., Hartmann, L. W., & Tobin, J. J. 2009, ApJ, 697, 1020
  • Quillen et al. (2005) Quillen, A. C., Thorndike, S. L., Cunningham, A., et al. 2005, ApJ, 632, 941
  • Raghavan et al. (2010) Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1
  • Rebull et al. (2007) Rebull, L. M., Stapelfeldt, K. R., Evans, II, N. J., et al. 2007, ApJS, 171, 447
  • Rebull et al. (2014) Rebull, L. M., Cody, A. M., Covey, K. R., et al. 2014, ArXiv e-prints, arXiv:1408.6756
  • Reggiani & Meyer (2013) Reggiani, M., & Meyer, M. R. 2013, A&A, 553, A124
  • Ridge et al. (2006) Ridge, N. A., Di Francesco, J., Kirk, H., et al. 2006, AJ, 131, 2921
  • Rosolowsky et al. (2008) Rosolowsky, E. W., Pineda, J. E., Foster, J. B., et al. 2008, ApJS, 175, 509
  • Schnee et al. (2010) Schnee, S., Enoch, M., Noriega-Crespo, A., et al. 2010, ApJ, 708, 127
  • Shporer & Brown (2011) Shporer, A., & Brown, T. 2011, ApJ, 733, 30
  • Tan et al. (2006) Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJ, 641, L121
  • Tobin et al. (2009) Tobin, J. J., Hartmann, L., Furesz, G., Mateo, M., & Megeath, S. T. 2009, ApJ, 697, 1103
  • Walsh et al. (2004) Walsh, A. J., Myers, P. C., & Burton, M. G. 2004, ApJ, 614, 194
  • Wilson et al. (2012) Wilson, J. C., Hearty, F., Skrutskie, M. F., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  • Winston et al. (2009) Winston, E., Megeath, S. T., Wolk, S. J., et al. 2009, AJ, 137, 4777
  • Winston et al. (2010) —. 2010, AJ, 140, 266
  • Zasowski et al. (2013) Zasowski, G., Johnson, J. A., Frinchaboy, P. M., et al. 2013, AJ, 146, 81
\capstartfalse
ObjID 2MASSID RA Dec J H K
[deg.] [deg.] [mag] [mag] [mag]
1 2M03274053+3115392 51.9189 31.2609 8.88 8.68 8.60
2 2M03281101+3117292 52.0459 31.2915 12.44 11.46 11.03
3 2M03281518+3117238 52.0633 31.2900 16.56 15.71 15.19
4 2M03282206+3110429 52.0919 31.1786 13.87 12.61 11.86
5 2M03282839+3116273 52.1183 31.2743 14.62 13.93 13.62
6 2M03283107+3117040 52.1295 31.2845 16.82 15.35 14.08
7 2M03283258+3111040 52.1357 31.1848 17.41 15.43 14.49
8 2M03283641+3128569 52.1517 31.4825 15.24 13.83 13.18
9 2M03283643+3124002 52.1518 31.4001 15.81 14.96 14.12
10 2M03283651+3119289 52.1522 31.3247 12.85 12.13 11.86
11 2M03283692+3117353 52.1538 31.2932 11.96 10.65 10.12
12 2M03283695+3123121 52.1540 31.3867 11.78 10.82 10.50
13 2M03283706+3113310 52.1545 31.2252 16.09 14.84 12.05
14 2M03283875+3118068 52.1616 31.3018 18.27 16.17 14.01
15 2M03283968+3117321 52.1654 31.2922 18.29 16.39 13.66
16 2M03283968+3117321 52.1654 31.2922 18.29 16.39 13.66
17 2M03284283+3117447 52.1785 31.2958 14.87 14.04 14.70
18 2M03284323+3110425 52.1802 31.1785 15.37 13.21 12.03
19 2M03284325+3117330 52.1803 31.2925 12.59 10.86 9.75
20 2M03284355+3117364 52.1815 31.2935 12.22 10.96 10.14
21 2M03284402+3129225 52.1835 31.4896 16.37 15.17 14.68
22 2M03284407+3120528 52.1837 31.3480 14.24 13.24 12.63
23 2M03284618+3116385 52.1925 31.2773 10.88 10.00 9.69
24 2M03284622+3112034 52.1926 31.2010 16.93 14.85 13.53
25 2M03284624+3130120 52.1927 31.5034 15.09 14.62 14.07
26 2M03284687+3120277 52.1953 31.3411 14.81 14.25 13.80
27 2M03284734+3111298 52.1973 31.1916 15.48 13.71 12.70
28 2M03284764+3124061 52.1985 31.4017 14.20 12.60 11.66
29 2M03284782+3116552 52.1993 31.2820 12.94 11.76 10.91
30 2M03284816+3119235 52.2007 31.3232 15.53 14.67 14.49
31 2M03284844+3120284 52.2019 31.3412 16.84 15.23 14.28
32 2M03284872+3116086 52.2032 31.2691 18.32 17.30 14.68
33 2M03285097+3123479 52.2124 31.3966 14.66 12.38 11.24
34 2M03285101+3118184 52.2126 31.3051 11.36 10.07 9.18
35 2M03285105+3116324 52.2128 31.2757 13.29 12.52 12.12
36 2M03285110+3112564 52.2130 31.2157 17.39 15.89 14.57
37 2M03285119+3119548 52.2133 31.3319 11.72 10.49 9.90
38 2M03285129+3117397 52.2136 31.2943 16.35 15.18 14.45
39 2M03285213+3115471 52.2173 31.2631 13.16 12.47 12.03
40 2M03285216+3122453 52.2174 31.3792 11.98 11.01 10.56
41 2M03285290+3116264 52.2205 31.2740 13.62 12.89 12.48
42 2M03285392+3118092 52.2248 31.3026 14.82 12.27 10.88
43 2M03285407+3116543 52.2254 31.2817 13.03 12.04 11.60
44 2M03285461+3116512 52.2276 31.2809 12.86 11.19 10.23
45 2M03285492+3115290 52.2289 31.2581 15.99 14.93 14.22
46 2M03285496+3118153 52.2290 31.3043 16.88 14.89 13.16
47 2M03285505+3116287 52.2295 31.2746 13.58 11.70 10.68
48 2M03285514+3116247 52.2298 31.2735 13.01 11.66 10.93
49 2M03285524+3117354 52.2302 31.2932 15.09 14.07 13.43
50 2M03285622+3117457 52.2343 31.2960 13.48 12.65 12.17
51 2M03285630+3122279 52.2347 31.3744 15.84 13.16 11.84
52 2M03285663+3118356 52.2360 31.3099 12.30 10.69 9.70
53 2M03285686+3119454 52.2369 31.3293 16.22 15.24 14.43
54 2M03285694+3120487 52.2373 31.3469 15.36 14.45 13.82
55 2M03285694+3115503 52.2373 31.2640 15.06 14.04 13.46
56 2M03285694+3116222 52.2374 31.2728 13.76 11.92 11.08
57 2M03285706+3115028 52.2378 31.2508 18.31 15.78 14.06
58 2M03285715+3115345 52.2382 31.2596 15.40 13.98 13.19
59 2M03285720+3114189 52.2384 31.2386 8.19 7.77 7.66
60 2M03285741+3119505 52.2392 31.3307 12.13 11.06 10.66
61 2M03285769+3119481 52.2404 31.3300 13.04 11.98 11.38
62 2M03285809+3118038 52.2421 31.3010 12.81 11.71 11.34
63 2M03285819+3110594 52.2425 31.1832 14.32 11.90 10.70
64 2M03285824+3122093 52.2427 31.3692 16.00 14.44 13.37
65 2M03285824+3122021 52.2428 31.3672 14.91 13.49 12.41
66 2M03285842+3122175 52.2434 31.3715 18.42 14.80 11.85
67 2M03285842+3122175 52.2434 31.3715 18.42 14.80 11.85
68 2M03285842+3122567 52.2434 31.3824 15.40 14.15 13.68
69 2M03285884+3108002 52.2457 31.1335 16.84 16.08 15.18
70 2M03285920+3120327 52.2468 31.3424 16.58 15.96 15.03
71 2M03285930+3115485 52.2472 31.2635 16.49 12.53 10.44
72 2M03285933+3120082 52.2472 31.3356 17.69 17.34 15.11
73 2M03285934+3116315 52.2473 31.2754 17.04 15.60 14.55
74 2M03285954+3121467 52.2482 31.3630 12.61 11.26 10.30
75 2M03290015+3121092 52.2506 31.3526 16.47 14.59 13.35
76 2M03290031+3113385 52.2513 31.2274 13.16 11.95 11.34
77 2M03290037+3120456 52.2516 31.3460 13.56 12.37 11.80
78 2M03290069+3122008 52.2529 31.3669 16.24 13.29 11.76
79 2M03290116+3120244 52.2549 31.3401 15.81 13.43 11.61
80 2M03290116+3120244 52.2549 31.3397 15.81 13.43 11.61
81 2M03290149+3120208 52.2562 31.3391 15.75 13.88 10.88
82 2M03290188+3116533 52.2578 31.2814 16.69 15.49 14.87
83 2M03290216+3116114 52.2590 31.2698 14.53 13.86 13.57
84 2M03290268+3119056 52.2612 31.3182 17.54 15.17 13.59
85 2M03290279+3122172 52.2617 31.3714 16.93 14.80 13.32
86 2M03290289+3116010 52.2620 31.2670 12.84 12.18 11.94
87 2M03290313+3122381 52.2631 31.3772 13.72 12.37 11.32
88 2M03290320+3125451 52.2634 31.4292 15.80 14.62 13.83
89 2M03290332+3123148 52.2639 31.3874 17.25 15.84 14.07
90 2M03290332+3123148 52.2639 31.3874 17.25 15.84 14.07
91 2M03290339+3118399 52.2642 31.3111 15.83 14.55 14.00
92 2M03290342+3125143 52.2643 31.4207 16.64 14.91 13.86
93 2M03290375+3116039 52.2657 31.2678 11.67 9.65 8.17
94 2M03290386+3121487 52.2661 31.3635 11.54 10.14 9.22
95 2M03290394+3123307 52.2665 31.3919 17.14 15.98 14.93
96 2M03290406+3117075 52.2669 31.2854 13.31 12.68 12.31
97 2M03290416+3125151 52.2674 31.4209 13.65 11.81 10.88
98 2M03290421+3116080 52.2675 31.2689 15.61 13.66 14.37
99 2M03290421+3117301 52.2676 31.2917 16.61 15.30 14.65
100 2M03290429+3119063 52.2679 31.3184 17.22 15.81 15.51
101 2M03290462+3120289 52.2693 31.3414 16.72 15.46 13.75
102 2M03290466+3116591 52.2695 31.2831 15.55 13.91 12.66
103 2M03290472+3111348 52.2697 31.1930 18.50 15.64 14.45
104 2M03290493+3120385 52.2706 31.3440 15.58 14.60 12.98
105 2M03290506+3120377 52.2716 31.3436 16.42 13.83 12.59
106 2M03290536+3115446 52.2724 31.2624 16.67 16.62 14.92
107 2M03290554+3110142 52.2731 31.1706 17.07 16.86 15.67
108 2M03290566+3120107 52.2736 31.3363 17.11 16.40 15.48
109 2M03290567+3121338 52.2736 31.3594 17.55 15.35 13.29
110 2M03290575+3116396 52.2741 31.2777 14.49 11.61 9.93
111 2M03290631+3113464 52.2764 31.2296 18.02 14.70 12.66
112 2M03290642+3115348 52.2768 31.2597 16.43 16.09 15.28
113 2M03290680+3122585 52.2784 31.3829 16.95 15.31 14.33
114 2M03290693+3129571 52.2789 31.4992 16.54 15.42 14.77
115 2M03290773+3121575 52.2822 31.3660 15.27 13.80 10.43
116 2M03290794+3122515 52.2832 31.3809 13.00 11.18 10.19
117 2M03290817+3111548 52.2840 31.1986 17.25 15.77 14.98
118 2M03290832+3120203 52.2847 31.3390 14.68 12.90 12.01
119 2M03290844+3115298 52.2852 31.2583 15.54 15.04 13.78
120 2M03290862+3122297 52.2859 31.3749 16.43 16.01 14.63
121 2M03290896+3126239 52.2874 31.4400 16.90 15.55 14.75
122 2M03290895+3122562 52.2874 31.3823 16.06 13.42 11.72
123 2M03290908+3123056 52.2879 31.3849 14.65 12.94 11.89
124 2M03290907+3121291 52.2879 31.3580 15.57 14.53 12.98
125 2M03290915+3121445 52.2881 31.3624 14.48 14.81 12.97
126 2M03290933+3121042 52.2889 31.3511 16.42 14.28 13.15
127 2M03290948+3127209 52.2895 31.4558 14.15 13.18 12.69
128 2M03290964+3122564 52.2902 31.3823 11.27 10.16 9.53
129 2M03291018+3127159 52.2924 31.4544 15.55 14.72 14.13
130 2M03291037+3121591 52.2932 31.3664 9.37 7.99 7.17
131 2M03291046+3123348 52.2936 31.3930 15.63 13.82 12.76
132 2M03291064+3123442 52.2943 31.3956 18.59 16.56 15.12
133 2M03291064+3131039 52.2944 31.5178 12.78 11.95 11.59
134 2M03291079+3122301 52.2950 31.3750 14.90 13.67 12.93
135 2M03291082+3116427 52.2952 31.2785 15.65 14.11 13.04
136 2M03291130+3117175 52.2971 31.2882 13.98 13.37 12.92
137 2M03291132+3122570 52.2972 31.3825 14.90 13.43 12.52
138 2M03291163+3120374 52.2985 31.3437 15.43 13.58 12.67
139 2M03291177+3126095 52.2991 31.4360 17.15 15.75 14.78
140 2M03291184+3121557 52.2994 31.3655 14.44 13.40 13.21
141 2M03291188+3121271 52.2995 31.3575 17.22 15.70 12.82
142 2M03291228+3123065 52.3012 31.3852 17.86 16.25 15.26
143 2M03291279+3120077 52.3033 31.3355 14.68 13.78 13.29
144 2M03291288+3118455 52.3037 31.3126 16.94 15.87 14.96
145 2M03291290+3123293 52.3038 31.3915 13.42 12.57 12.07
146 2M03291294+3117071 52.3040 31.2853 16.22 15.51 15.30
147 2M03291294+3118146 52.3040 31.3040 18.60 17.77 14.12
148 2M03291294+3118146 52.3040 31.3040 18.60 17.77 14.12
149 2M03291303+3117383 52.3043 31.2940 15.23 14.58 14.16
150 2M03291312+3122529 52.3047 31.3813 12.87 11.12 10.11
151 2M03291355+3123469 52.3065 31.3964 16.61 15.90 15.12
152 2M03291361+3117434 52.3067 31.2954 16.44 14.25 13.03
153 2M03291410+3120329 52.3088 31.3425 16.02 15.46 15.25
154 2M03291433+3114441 52.3100 31.2456 17.76 16.02 14.34
155 2M03291443+3122362 52.3101 31.3767 14.61 13.53 13.04
156 2M03291532+3129346 52.3139 31.4930 18.08 17.75 15.27
157 2M03291653+3124462 52.3189 31.4128 16.97 16.24 15.18
158 2M03291655+3121025 52.3190 31.3507 14.98 13.31 12.43
159 2M03291659+3123495 52.3192 31.3971 13.25 11.84 11.18
160 2M03291667+3116182 52.3196 31.2717 11.44 10.75 10.43
161 2M03291681+3123252 52.3201 31.3903 15.42 14.32 13.58
162 2M03291766+3122451 52.3237 31.3792 9.97 8.92 8.32
163 2M03291776+3119481 52.3241 31.3300 14.80 13.65 12.99
164 2M03291793+3114535 52.3247 31.2482 16.62 14.95 14.04
165 2M03291844+3111304 52.3269 31.1918 16.41 16.08 15.53
166 2M03291865+3120178 52.3278 31.3383 17.51 15.97 14.61
167 2M03291872+3123254 52.3281 31.3904 11.45 10.68 10.33
168 2M03291977+3124572 52.3324 31.4158 8.83 8.54 8.35
169 2M03292003+3124076 52.3336 31.4021 17.16 14.70 12.04
170 2M03292037+3112506 52.3349 31.2141 16.25 15.34 14.97
171 2M03292042+3118342 52.3352 31.3095 14.40 12.01 10.47
172 2M03292052+3126347 52.3355 31.4430 16.76 15.34 14.73
173 2M03292130+3123464 52.3388 31.3962 16.85 14.76 13.09
174 2M03292155+3121104 52.3399 31.3529 12.39 11.72 11.37
175 2M03292187+3115363 52.3411 31.2601 11.18 10.15 9.50
176 2M03292204+3124153 52.3418 31.4043 12.00 11.27 11.00
177 2M03292293+3122355 52.3456 31.3765 17.07 16.07 15.59
178 2M03292314+3120303 52.3465 31.3417 12.40 11.65 11.23
179 2M03292322+3126531 52.3469 31.4481 13.59 12.70 12.24
180 2M03292349+3123309 52.3479 31.3919 12.84 11.76 11.36
181 2M03292369+3125095 52.3487 31.4193 14.04 12.94 12.37
182 2M03292407+3119577 52.3504 31.3327 15.52 14.24 13.57
183 2M03292445+3128149 52.3519 31.4708 14.04 13.17 12.69
184 2M03292483+3124062 52.3535 31.4017 14.43 13.77 13.38
185 2M03292591+3126401 52.3580 31.4445 11.00 9.99 9.51
186 2M03292681+3126475 52.3617 31.4465 10.83 9.99 9.68
187 2M03292798+3125109 52.3666 31.4197 17.66 16.36 14.95
188 2M03292815+3116285 52.3673 31.2746 13.05 12.50 12.09
189 2M03292925+3118347 52.3720 31.3096 12.59 11.37 10.96
190 2M03292978+3121027 52.3742 31.3507 12.65 11.62 11.16
191 2M03293038+3119034 52.3767 31.3176 12.11 11.39 11.03
192 2M03293053+3127280 52.3772 31.4578 13.81 13.01 12.60
193 2M03293255+3124370 52.3857 31.4102 13.66 12.43 11.61
194 2M03293261+3109479 52.3859 31.1633 17.14 16.14 15.28
195 2M03293286+3127126 52.3870 31.4535 13.35 12.60 12.28
196 2M03293387+3120362 52.3912 31.3434 16.56 15.68 15.48
197 2M03293430+3117433 52.3930 31.2954 12.03 11.31 11.06
198 2M03293476+3129081 52.3948 31.4856 13.65 12.20 11.53
199 2M03293773+3122024 52.4072 31.3674 13.99 13.39 12.96
200 2M03294415+3119478 52.4340 31.3298 17.39 16.28 15.29
201 2M03294640+3120394 52.4433 31.3443 12.36 11.74 11.47
202 2M03295048+3118305 52.4604 31.3085 14.36 13.80 13.53
203 2M03295403+3120529 52.4752 31.3480 11.94 11.14 10.59
204 2M03295721+3126214 52.4884 31.4393 12.37 11.51 11.20
205 2M03302246+3132403 52.5935 31.5446 16.24 15.84 14.88

Note. – Table 1 will be published electronically.

Table 1Candidate young stars in NGC 1333
\capstarttrue
\capstartfalse
ObjID MJD sin log red- S/N
[days] [km s] [km s] [K] [log cm s]
1 56671.05549 -29.24 0.95 90.48 1.38 6110.00 40.00 3.66 0.05 0.24 0.02 5.4 190
1 56674.05859 -25.11 0.87 99.16 1.50 5850.00 70.00 3.68 0.08 0.06 0.01 9.5 220
1 56563.49856 -29.28 1.20 90.96 1.78 6120.00 50.00 3.74 0.05 0.17 0.02 3.7 160
1 56607.32096 177.85 0.02 0.01 0.58 3890.00 30.00 4.15 0.09 0.00 0.00 551.5 180
1 56561.31439 -28.21 0.67 91.93 1.07 6120.00 30.00 3.70 0.03 0.21 0.01 9.3 280
1 56236.22732 -32.07 0.71 88.04 0.98 5980.00 20.00 3.60 0.02 0.22 0.01 28.4 270
1 56315.22693 -33.26 0.65 91.20 0.88 6150.00 40.00 3.85 0.05 0.18 0.01 35.5 320
2 56671.05549 9.91 0.22 3.01 2.26 3540.00 20.00 3.93 0.08 0.13 0.04 5.3 50
2 56674.05859 9.66 0.19 2.26 3.07 3630.00 30.00 4.21 0.08 0.08 0.03 3.8 50
2 56563.49856 10.02 0.35 6.45 1.79 3520.00 20.00 3.94 0.08 0.11 0.04 2.5 40
2 56607.32096 9.22 0.28 6.72 1.21 3520.00 20.00 3.91 0.08 0.17 0.04 2.8 40
2 56561.31439 10.27 0.24 7.27 1.02 3530.00 20.00 3.96 0.06 0.08 0.03 5.7 70
2 56236.22732 9.36 0.25 5.55 1.40 3540.00 20.00 3.97 0.07 0.10 0.03 5.6 70
2 56315.22693 9.62 0.29 5.60 1.59 3600.00 50.00 4.18 0.14 0.07 0.04 11.1 70
4 56671.05549 -2.33 15.95 72.26 27.27 6760.00 120.00 3.20 0.20 0.57 0.22 3.0 20
4 56674.05859 -6.83 9.75 89.94 16.80 6610.00 240.00 3.44 0.23 0.17 0.12 2.4 30
4 56563.49856 -1.19 16.71 88.50 26.94 6780.00 160.00 3.26 0.29 0.37 0.22 1.5 20
4 56607.32096 -8.29 9.72 91.31 13.73 6660.00 290.00 3.38 0.22 0.30 0.25 1.5 20
4 56561.31439 -7.71 5.33 79.91 7.94 6710.00 120.00 3.37 0.16 0.39 0.08 1.8 30
4 56236.22732 -9.27 5.92 75.00 8.51 6980.00 70.00 3.56 0.19 0.35 0.14 1.4 30
4 56315.22693 -14.07 4.99 84.65 7.28 6410.00 40.00 3.38 0.11 0.23 0.15 1.6 40
5 56561.31439 5.56 2.71 26.25 3.89 2780.00 80.00 2.99 0.28 0.01 0.05 4.1 10
5 56236.22732 5.86 2.88 34.78 5.25 2800.00 80.00 3.23 0.33 0.03 0.15 1.7 10
5 56315.22693 1.28 6.18 28.98 9.09 2800.00 160.00 4.22 0.83 0.01 0.06 7.9 10
8 56561.31439 34.78 1.88 8.80 8.41 5550.00 450.00 5.49 0.09 0.20 0.25 5.1 10
8 56236.22732 34.59 1.25 9.32 4.43 5890.00 220.00 5.49 0.04 0.01 0.05 3.4 20
8 56315.22693 35.44 1.21 6.32 6.91 5750.00 310.00 5.49 0.07 0.07 0.16 3.0 10
10 56671.05549 9.57 0.88 28.70 1.42 3320.00 20.00 3.90 0.12 0.15 0.05 3.1 40
10 56674.05859 9.19 0.76 28.61 1.29 3320.00 20.00 3.97 0.11 0.16 0.05 2.1 40
10 56563.49856 9.64 1.00 26.57 1.79 3320.00 20.00 3.80 0.15 0.19 0.07 1.6 30
10 56607.32096 8.71 0.76 27.26 1.25 3330.00 20.00 3.83 0.10 0.20 0.05 1.9 40
10 56561.31439 10.28 0.81 27.09 1.44 3310.00 20.00 3.83 0.12 0.21 0.06 2.8 40
10 56236.22732 9.28 0.56 27.63 0.95 3330.00 10.00 3.95 0.07 0.17 0.03 2.5 50
10 56315.22693 9.36 0.54 28.10 0.89 3320.00 10.00 3.91 0.08 0.17 0.03 2.8 50
11 56671.05549 8.21 0.64 54.26 0.93 3730.00 20.00 3.50 0.04 0.11 0.02 4.6 80
11 56674.05859 8.08 0.51 55.13 0.85 3850.00 20.00 3.79 0.05 0.09 0.01 4.0 80
11 56563.49856 7.90 0.69 52.78 0.96 3840.00 40.00 3.77 0.09 0.17 0.03 2.5 60
11 56607.32096 8.00 0.69 53.00 1.11 3730.00 20.00 3.67 0.04 0.14 0.02 4.5 80
11 56561.31439 7.89 0.86 51.61 1.38 3720.00 20.00 3.69 0.05 0.13 0.03 9.3 100
11 56236.22732 60.27 10.48 312.73 9.23 3400.00 40.00 2.54 0.16 0.00 0.00 82.7 100
11 56315.22693 9.60 0.54 53.65 0.87 3750.00 20.00 3.64 0.03 0.14 0.02 6.7 110
12 56671.05549 9.19 0.22 11.02 0.68 3850.00 20.00 4.18 0.05 0.14 0.02 6.9 80
12 56674.05859 9.45 0.16 11.12 0.50 3890.00 10.00 4.16 0.03 0.11 0.02 6.7 90
12 56563.49856 8.53 0.31 12.83 0.93 3990.00 20.00 4.41 0.07 0.19 0.03 3.6 60
12 56607.32096 9.29 0.28 12.26 0.80 3860.00 20.00 4.19 0.04 0.16 0.03 5.3 80
12 56561.31439 9.58 0.29 13.37 0.81 3870.00 20.00 4.22 0.05 0.13 0.02 8.4 90
12 56236.22732 9.22 0.23 12.75 0.68 3990.00 20.00 4.35 0.05 0.13 0.02 8.9 110
12 56315.22693 9.33 0.23 11.85 0.67 3910.00 20.00 4.18 0.04 0.09 0.02 9.0 90
13 56561.31439 148.19 0.05 0.02 0.08 450.00 0.00 3.00 0.01 2.58 0.09 13.4 0
13 56236.22732 11.15 37.12 71.47 57.06 3960.00 660.00 1.16 2.53 1.16 2.80 1.6 0
13 56315.22693 -1455.82 316.97 712.29 299.44 430.00 30.00 4.82 0.43 7.84 4.36 1.4 0
17 56236.22732 97.97 38.13 147.92 66.20 4780.00 580.00 4.89 0.96 0.03 0.24 1.8 10
17 56315.22693 -85.17 17.96 138.79 28.89 460.00 20.00 4.40 0.17 1.67 0.48 2.4 0
18 56671.05549 7.26 2.29 27.69 3.51 3250.00 180.00 3.55 0.62 0.22 0.21 3.0 20
18 56674.05859 8.68 1.55 21.90 2.98 3240.00 70.00 4.01 0.21 0.16 0.11 2.2 20
18 56563.49856 8.18 2.15 24.60 3.81 3250.00 70.00 3.99 0.29 0.21 0.15 1.3 10
18 56607.32096 9.25 1.62 23.34 2.69 3230.00 60.00 3.93 0.17 0.20 0.11 1.7 20
18 56561.31439 10.14 1.45 25.37 2.51 3290.00 40.00 3.82 0.19 0.18 0.10 2.6 20
18 56236.22732 9.53 1.25 21.02 2.31 3260.00 50.00 3.73 0.19 0.27 0.11 1.9 20
18 56315.22693 7.19 2.05 25.30 3.92 3050.00 90.00 2.67 0.22 1.15 0.31 2.9 20
19 56674.05859 10.28 1.03 60.34 1.73 4270.00 30.00 3.77 0.07 0.40 0.04 2.7 60
19 56563.49856 9.84 3.27 63.94 5.34 4240.00 100.00 3.59 0.20 1.24 0.19 1.5 30
19 56607.32096 9.12 0.99 56.24 1.45 4250.00 30.00 3.61 0.07 0.50 0.04 2.3 70
19 56561.31439 11.85 2.80 59.70 4.67 4090.00 70.00 3.52 0.16 1.23 0.15 5.5 60
20 56671.05549 6.82 0.46 24.65 0.65 3030.00 20.00 2.81 0.05 0.29 0.05 5.0 70
22 56671.05549 7.81 1.31 17.61 2.66 2790.00 140.00 3.39 1.11 0.12 0.27 3.4 20
22 56674.05859 7.50 0.93 17.19 2.01 2750.00 80.00 3.72 0.51 0.05 0.07 1.8 20
22 56563.49856 7.98 1.24 17.70 2.35 2700.00 80.00 3.29 0.50 0.12 0.12 1.5 10
22 56607.32096 6.17 1.82 20.07 4.32 2710.00 90.00 4.50 0.43 0.15 0.17 2.7 20
22 56561.31439 7.98 1.20 18.21 2.36 2760.00 80.00 3.22 0.34 0.12 0.14 3.6 20
22 56236.22732 8.42 0.92 17.12 1.80 2710.00 60.00 4.06 0.34 0.24 0.10 2.0 20
22 56315.22693 7.31 0.91 18.20 1.79 2700.00 40.00 3.51 0.26 0.04 0.06 2.3 20
23 56236.22732 7.77 0.34 26.70 0.52 3440.00 20.00 3.27 0.05 0.19 0.02 12.7 130
24 56561.31439 -31.40 2.28 5.75 10.77 6230.00 600.00 5.09 0.96 0.13 0.32 1.8 10
24 56236.22732 -13.50 179.49 622.12 242.44 3630.00 450.00 2.57 0.65 0.03 0.33 1.6 10
24 56315.22693 11.74 69.29 125.35 187.59 5660.00 1150.00 5.42 0.42 0.01 0.09 2.2 0
25 56561.31439 -20.95 6.07 17.73 12.49 2980.00 380.00 3.69 1.88 0.90 1.23 4.6 10
25 56236.22732 -20.91 3.21 16.07 8.70 3040.00 120.00 4.65 0.85 0.41 0.32 2.8 10
25 56315.22693 154.79 145.68 131.68 216.63 5130.00 1640.00 5.10 2.09 1.01 1.33 2.1 10
28 56671.05549 6.77 1.32 23.28 2.54 3320.00 40.00 3.63 0.22 0.23 0.11 4.2 30
28 56563.49856 7.11 1.06 22.41 1.88 3310.00 30.00 3.67 0.16 0.27 0.10 1.4 20
28 56607.32096 6.71 0.91 21.00 1.66 3360.00 30.00 3.69 0.15 0.38 0.09 1.7 30
28 56561.31439 6.07 1.09 21.32 1.97 3360.00 40.00 3.70 0.17 0.39 0.11 3.4 30
28 56236.22732 5.06 0.95 18.58 2.14 3350.00 30.00 3.73 0.17 0.91 0.15 1.8 30
29 56315.22693 8.30 0.36 17.62 0.70 2880.00 20.00 3.77 0.14 0.02 0.03 4.1 60
33 56674.05859 8.98 0.92 34.07 1.65 3680.00 30.00 3.98 0.11 0.11 0.04 2.1 30
33 56315.22693 13.31 0.96 34.78 1.65 3650.00 40.00 3.75 0.09 0.20 0.04 2.8 40
34 56674.05859 17.89 1.02 41.28 1.95 3190.00 20.00 3.07 0.07 2.92 0.17 3.0 130
34 56236.22732 6.89 0.22 15.70 0.41 3160.00 10.00 3.13 0.03 0.63 0.04 9.8 130
34 56315.22693 5.91 0.11 18.64 0.17 3180.00 0.00 3.14 0.02 0.62 0.02 12.0 170
35 56671.05549 7.80 1.14 24.99 2.08 3090.00 40.00 3.68 0.22 0.15 0.09 2.9 30
37 56671.05549 8.80 0.29 15.31 0.86 4290.00 20.00 4.26 0.06 0.29 0.02 9.5 100
37 56674.05859 8.35 0.21 15.58 0.53 4240.00 10.00 4.28 0.04 0.34 0.02 6.9 100
37 56563.49856 7.97 0.31 16.30 0.76 4420.00 30.00 4.47 0.07 0.30 0.02 4.2 70
37 56607.32096 8.66 0.26 15.86 0.72 4370.00 20.00 4.38 0.06 0.35 0.02 5.4 90
37 56561.31439 8.24 0.27 16.61 0.58 4350.00 20.00 4.35 0.06 0.28 0.02 6.6 90
37 56236.22732 8.15 0.23 15.73 0.60 4400.00 30.00 4.39 0.06 0.28 0.02 8.5 110
37 56315.22693 8.42 0.21 15.74 0.48 4260.00 10.00 4.23 0.04 0.26 0.01 10.5 130
39 56561.31439 7.80 1.06 26.03 1.69 2600.00 40.00 3.05 0.22 0.00 0.02 5.5 40
40 56671.05549 8.13 0.30 12.53 0.80 3670.00 20.00 4.07 0.08 0.24 0.03 5.4 70
40 56563.49856 8.20 0.42 13.80 1.16 3700.00 20.00 4.02 0.08 0.22 0.04 3.2 50
40 56607.32096 6.72 0.36 14.10 0.89 3530.00 20.00 3.76 0.05 0.25 0.04 3.5 60
40 56561.31439 8.23 0.29 12.79 0.73 3690.00 20.00 4.02 0.07 0.21 0.03 5.7 80
40 56236.22732 6.96 0.26 12.86 0.71 3540.00 20.00 3.75 0.05 0.24 0.03 5.8 80
41 56563.49856 8.21 1.59 23.04 2.76 2990.00 50.00 3.76 0.35 0.11 0.10 1.6 20
41 56607.32096 6.72 1.37 25.02 2.59 2940.00 40.00 3.92 0.25 0.08 0.08 1.9 20
42 56671.05549 10.09 0.64 15.63 1.63 3730.00 40.00 3.81 0.12 0.24 0.06 2.9 30
42 56563.49856 9.12 0.94 16.00 2.32 3900.00 80.00 4.15 0.16 0.34 0.08 1.4 20
42 56607.32096 9.24 2.09 15.24 5.53 4030.00 190.00 4.31 0.45 0.72 0.25 1.2 10
42 56561.31439 9.56 0.70 15.62 1.59 3760.00 70.00 3.84 0.13 0.36 0.06 2.6 30
43 56236.22732 7.50 0.58 15.52 1.03 3050.00 20.00 3.75 0.19 0.07 0.05 2.9 40
44 56315.22693 8.92 0.23 10.74 0.68 3750.00 20.00 3.83 0.05 0.62 0.04 5.9 80
48 56674.05859 8.13 0.38 14.09 0.91 3690.00 20.00 3.82 0.08 0.23 0.04 2.8 40
50 56674.05859 8.43 0.71 18.12 1.45 2780.00 80.00 3.43 0.56 0.01 0.07 2.3 30
51 56674.05859 8.16 0.59 9.79 1.84 3500.00 40.00 3.83 0.14 0.20 0.08 1.8 20
52 56236.22732 8.36 0.32 17.62 0.79 4130.00 30.00 4.27 0.06 0.89 0.03 3.8 80
56 56671.05549 9.08 0.30 7.94 1.26 3900.00 30.00 4.05 0.08 0.35 0.04 3.2 40
58 56315.22693 -309.02 41.27 463.52 77.24 3010.00 400.00 -0.27 0.75 0.33 0.37 1.4 0
59 56671.05549 8.69 0.39 33.21 0.56 5610.00 30.00 4.38 0.05 0.15 0.02 58.3 340
59 56563.49856 8.21 0.16 33.07 0.23 5660.00 10.00 4.33 0.02 0.08 0.01 13.6 250
59 56607.32096 8.39 0.13 33.47 0.21 5680.00 10.00 4.35 0.02 0.08 0.01 19.3 310
59 56561.31439 8.71 0.09 33.31 0.14 5680.00 10.00 4.28 0.01 0.06 0.00 39.7 420
59 56236.22732 7.44 0.10 32.42 0.17 5660.00 10.00 4.39 0.02 0.05 0.01 37.0 370
60 56671.05549 7.40 0.30 17.89 0.70 3460.00 20.00 3.86 0.06 0.10 0.03 4.9 70
61 56236.22732 7.38 0.40 10.11 1.11 3310.00 10.00 3.96 0.09 0.32 0.05 3.5 60
62 56315.22693 6.13 0.86 22.20 1.23 3920.00 30.00 3.96 0.07 0.00 0.00 14.2 70
63 56671.05549 10.50 0.53 16.14 1.33 4120.00 30.00 4.19 0.11 0.15 0.04 3.0 30
63 56674.05859 9.30 0.53 16.18 1.21 4140.00 40.00 4.24 0.10 0.08 0.04 3.2 30
63 56563.49856 9.52 0.56 17.98 1.42 4210.00 50.00 4.32 0.11 0.14 0.04 1.8 30
63 56607.32096 9.29 0.55 17.50 1.31 4200.00 50.00 4.29 0.11 0.12 0.03 3.5 40
63 56561.31439 9.73 0.47 16.02 1.09 4240.00 40.00 4.33 0.09 0.12 0.03 3.9 40
63 56236.22732 10.08 0.35 16.08 0.93 4260.00 30.00 4.24 0.07 0.11 0.02 3.4 50
63 56315.22693 9.98 0.46 16.01 1.13 4100.00 30.00 4.21 0.09 0.23 0.04 4.7 50
65 56563.49856 8.89 1.84 20.47 3.22 2760.00 130.00 2.94 0.33 0.01 0.06 3.6 10
65 56607.32096 9.73 1.09 21.09 1.86 2650.00 40.00 3.71 0.44 0.00 0.02 1.5 20
66 56315.22693 98.00 28.27 78.82 32.89 3660.00 460.00 3.58 0.95 2.20 1.65 2.2 10
71 56236.22732 8.69 0.70 20.01 1.61 4540.00 100.00 4.32 0.15 0.26 0.06 2.0 30
74 56561.31439 4.98 3.28 23.09 9.04 3820.00 110.00 5.35 0.33 3.07 0.50 7.8 80
76 56674.05859 8.24 0.54 22.11 1.22 4010.00 20.00 4.30 0.08 0.09 0.03 2.6 40
76 56315.22693 8.92 0.36 21.14 0.80 4020.00 20.00 4.25 0.06 0.14 0.02 3.1 50
77 56315.22693 7.34 1.01 42.77 1.57 3120.00 10.00 3.49 0.09 0.11 0.05 2.3 40
78 56671.05549 10.91 1.53 16.31 3.37 3560.00 110.00 3.52 0.26 0.19 0.13 5.3 10
79 56674.05859 -57.12 14.87 77.95 21.92 400.00 0.00 4.43 0.05 1.79 0.37 5.4 0
79 56563.49856 -192.92 37.34 16.41 32.20 1260.00 2060.00 3.21 1.44 0.92 21.75 1.5 0
79 56607.32096 -706.59 249.18 210.86 627.91 1450.00 5130.00 4.47 4.29 0.29 3.11 2.0 0
81 56561.31439 -226.61 1542.90 587.08 1292.89 2660.00 950.00 2.01 4.50 0.17 12.00 2.5 10
86 56563.49856 -1.02 0.58 10.75 1.92 3760.00 40.00 4.59 0.13 0.12 0.05 1.5 30
86 56607.32096 -1.23 0.58 12.49 1.68 3910.00 100.00 4.83 0.22 0.22 0.06 2.0 40
86 56315.22693 -1.16 0.51 7.94 2.01 3760.00 40.00 4.83 0.19 0.13 0.06 5.9 50
87 56674.05859 7.93 1.06 16.81 2.63 3710.00 50.00 4.13 0.19 1.23 0.18 1.8 30
87 56236.22732 8.36 1.11 20.17 2.76 3490.00 40.00 3.75 0.14 1.36 0.18 1.8 40
91 56561.31439 12.29 3.55 18.03 6.84 2680.00 230.00 4.64 1.69 0.58 0.61 1.9 10
91 56236.22732 26.09 282.26 611.58 281.62 4680.00 310.00 2.02 0.17 0.01 0.05 2.6 10
91 56315.22693 -226.39 74.70 466.39 95.84 2550.00 190.00 1.24 0.86 0.96 1.38 2.4 10
93 56674.05859 297.16 79.37 560.41 89.59 3940.00 260.00 3.76 0.45 0.13 0.31 1.9 10
93 56561.31439 -165.19 27.44 239.24 32.61 5730.00 350.00 5.49 0.08 0.11 0.26 3.1 20
94 56563.49856 8.15 0.90 32.51 1.64 4610.00 80.00 4.30 0.12 0.56 0.06 8.2 90
94 56607.32096 9.24 0.71 33.49 1.41 4770.00 120.00 4.58 0.15 0.58 0.05 9.7 110
94 56315.22693 11.75 1.59 34.31 3.62 4510.00 110.00 4.37 0.21 0.76 0.12 49.9 150
96 56671.05549 8.75 2.45 41.99 3.91 2960.00 40.00 3.69 0.26 0.01 0.05 2.9 20
97 56671.05549 10.72 0.83 33.99 1.44 3700.00 30.00 3.67 0.08 0.25 0.04 3.4 50
97 56674.05859 9.65 0.59 33.27 1.01 3710.00 20.00 3.72 0.05 0.29 0.03 2.0 50
97 56563.49856 9.79 0.95 34.37 1.75 3730.00 80.00 3.72 0.13 0.33 0.05 1.6 30
97 56607.32096 9.93 0.80 35.54 1.41 3730.00 40.00 3.70 0.07 0.30 0.04 1.8 40
97 56561.31439 10.62 0.71 34.01 1.51 3740.00 40.00 3.74 0.08 0.28 0.04 2.8 50
97 56236.22732 6.74 0.69 34.26 1.23 3760.00 250.00 3.76 0.36 0.31 0.10 3.0 60
97 56315.22693 7.09 0.97 34.55 1.65 3710.00 30.00 3.72 0.07 0.31 0.05 4.5 50
105 56236.22732 -47.24 366.32 483.26 606.64 4470.00 940.00 2.14 0.95 0.06 1.64 1.8 0
110 56236.22732 5.48 1.96 70.13 3.22 4010.00 50.00 3.33 0.09 0.45 0.07 3.6 50
111 56561.31439 3.17 3.93 1.57 11.00 4090.00 440.00 4.03 0.87 1.84 1.13 2.8 10
111 56236.22732 -33.43 17.62 138.57 29.03 400.00 10.00 4.55 0.11 6.32 2.15 9.6 10
111 56315.22693 -434.51 31.91 231.82 36.57 3360.00 290.00 -0.41 0.52 1.57 0.66 1.5 0
116 56315.22693 9.28 0.61 30.23 1.04 3930.00 20.00 4.00 0.06 0.25 0.03 5.0 70
118 56671.05549 9.60 1.29 21.21 2.46 3150.00 40.00 3.57 0.29 0.12 0.12 2.7 20
118 56674.05859 8.67 1.31 16.03 2.89 3230.00 60.00 4.20 0.29 0.32 0.13 3.0 20
118 56563.49856 9.98 1.66 21.26 3.57 3210.00 70.00 3.92 0.23 0.23 0.11 1.4 20
118 56607.32096 8.66 1.24 19.15 2.42 3210.00 70.00 3.85 0.29 0.25 0.09 1.4 20
118 56561.31439 9.66 1.08 22.00 2.17 3170.00 40.00 3.89 0.21 0.20 0.07 2.3 30
118 56315.22693 9.61 1.14 19.66 2.02 3120.00 30.00 3.61 0.24 0.18 0.11 2.1 20
122 56671.05549 10.34 6.34 37.45 8.95 3430.00 170.00 3.46 0.56 0.93 0.51 3.3 10
125 56236.22732 -244.15 95.44 249.68 101.23 4500.00 370.00 2.03 0.40 0.02 0.22 3.9 10
127 56671.05549 -189.27 0.33 0.02 0.23 4310.00 10.00 4.32 0.09 0.00 0.00 76.6 0
127 56674.05859 -6.54 33.34 36.62 64.40 1790.00 620.00 4.76 1.06 0.04 0.29 1.8 0
127 56563.49856 104.92 1.13 74.95 0.75 780.00 30.00 3.00 0.20 0.00 0.11 13520.0 0
127 56607.32096 -168.35 0.09 0.01 0.19 790.00 0.00 3.00 0.02 0.00 0.01 175.9 0
127 56561.31439 -164.15 0.07 0.02 0.22 430.00 0.00 3.84 0.02 0.77 0.07 70.6 0
127 56236.22732 31.25 0.79 16.53 0.74 6600.00 50.00 2.67 0.20 0.05 0.05 0.1 0
127 56315.22693 -166.08 2930.73 4188.49 3029.96 430.00 40.00 3.83 0.53 0.56 1.22 1.4 0
128 56236.22732 9.57 6.44 529.40 15.76 7000.00 0.00 3.85 0.04 0.18 0.03 3.2 150
130 56563.49856 7.24 0.57 69.18 0.76 5660.00 30.00 3.77 0.05 0.28 0.02 5.1 230
130 56607.32096 9.64 0.50 69.67 0.91 5670.00 20.00 3.84 0.03 0.30 0.02 13.3 280
130 56561.31439 5.20 0.34 69.10 0.58 5530.00 10.00 3.69 0.02 0.32 0.01 15.3 350
131 56561.31439 9.47 1.85 15.71 3.73 3120.00 50.00 3.62 0.41 0.32 0.21 2.3 10
133 56671.05549 33.04 16.32 236.84 22.17 6000.00 230.00 3.98 0.30 0.20 0.11 1.5 40
133 56674.05859 27.61 22.42 275.09 22.12 5650.00 930.00 3.83 1.15 0.39 0.24 1.8 50
133 56563.49856 16.70 32.61 183.31 53.24 6050.00 410.00 4.03 0.48 0.34 0.23 1.3 30
133 56607.32096 10.56 19.13 212.86 32.42 5250.00 240.00 3.19 0.38 0.48 0.22 1.2 30
133 56561.31439 62.92 25.38 331.32 69.38 5330.00 170.00 3.25 0.27 0.05 0.10 2.7 50
133 56236.22732 20.48 11.23 216.30 15.90 5770.00 130.00 3.81 0.18 0.16 0.08 1.6 50
133 56315.22693 51.70 14.20 311.76 19.42 6190.00 80.00 4.38 0.13 0.14 0.09 2.0 50
136 56671.05549 6.43 1.12 6.81 4.40 2630.00 100.00 4.76 0.41 0.23 0.20 7.4 20
136 56674.05859 6.24 0.77 11.34 1.86 2550.00 70.00 3.13 0.32 0.08 0.10 2.2 10
136 56563.49856 5.93 0.86 11.97 2.49 2510.00 100.00 4.43 0.46 0.27 0.24 1.9 10
136 56607.32096 7.07 0.95 8.86 3.39 2000.00 40.00 4.99 0.16 0.34 0.19 4.4 20
137 56674.05859 7.85 1.18 20.54 2.04 2620.00 50.00 3.82 0.50 0.00 0.02 2.1 20
138 56236.22732 8.33 1.48 21.13 2.53 3100.00 40.00 3.69 0.29 0.23 0.13 1.7 20
140 56315.22693 25.41 75.87 2.09 184.63 1900.00 1030.00 5.25 4.16 3.34 9.86 2.7 0
145 56563.49856 6.72 1.22 21.71 1.86 3010.00 40.00 4.03 0.25 0.04 0.07 1.9 20
145 56607.32096 6.60 1.54 23.96 2.15 2980.00 40.00 3.91 0.23 0.01 0.04 3.5 30
145 56315.22693 6.15 0.67 22.81 1.06 2950.00 20.00 3.73 0.22 0.00 0.02 2.2 40
152 56561.31439 9.36 4.46 32.09 7.02 2660.00 150.00 3.74 1.42 0.01 0.10 2.3 10
152 56236.22732 8.00 4.16 32.86 7.38 2750.00 120.00 3.27 0.74 0.22 0.27 1.8 10
152 56315.22693 9.08 2.68 19.40 4.79 2540.00 70.00 2.00 0.39 0.70 0.72 2.3 10
158 56674.05859 7.79 1.24 24.72 2.02 3380.00 120.00 3.92 0.27 0.14 0.09 1.5 20
158 56315.22693 8.07 1.16 25.45 1.79 3330.00 40.00 3.42 0.14 0.32 0.10 1.8 20
159 56671.05549 9.00 0.64 22.70 1.41 3480.00 20.00 4.03 0.11 0.19 0.05 2.8 40
159 56674.05859 8.17 0.43 19.71 0.96 3510.00 20.00 4.11 0.08 0.20 0.03 2.3 50
159 56561.31439 8.59 0.57 20.50 1.16 3470.00 20.00 4.01 0.09 0.20 0.04 2.2 40
160 56671.05549 6.59 0.24 19.90 0.56 3320.00 10.00 3.80 0.05 0.19 0.02 4.2 80
160 56674.05859 6.11 0.36 19.37 0.81 3310.00 10.00 3.80 0.07 0.16 0.03 5.7 70
160 56563.49856 7.01 0.39 23.93 0.68 3300.00 10.00 3.79 0.06 0.14 0.03 2.7 60
160 56607.32096 6.24 0.33 22.66 0.59 3310.00 10.00 3.79 0.05 0.17 0.02 3.4 70
160 56561.31439 6.99 0.31 24.00 0.54 3300.00 10.00 3.78 0.05 0.15 0.02 5.4 90
160 56236.22732 6.88 0.20 17.29 0.42 3310.00 10.00 3.73 0.04 0.19 0.02 6.6 110
160 56315.22693 7.38 0.20 18.17 0.33 3310.00 10.00 3.84 0.04 0.19 0.02 7.3 110
162 56563.49856 6.75 0.35 20.22 0.70 3900.00 20.00 3.81 0.05 0.53 0.03 16.2 150
162 56607.32096 5.91 0.29 19.65 0.50 3890.00 10.00 3.81 0.04 0.58 0.02 19.9 180
162 56236.22732 6.60 0.27 19.84 0.67 3910.00 10.00 3.81 0.04 0.55 0.02 38.4 250
163 56561.31439 27.13 37.35 62.82 45.64 4070.00 760.00 3.44 1.86 0.03 0.17 2.1 0
163 56236.22732 389.84 165.53 848.74 216.30 510.00 120.00 3.07 0.38 0.71 0.62 1.6 0
163 56315.22693 -83.25 1.10 0.11 2.54 430.00 0.00 4.06 0.04 1.25 0.11 6.8 0
167 56315.22693 8.07 0.17 13.49 0.42 3900.00 10.00 4.07 0.03 0.33 0.02 7.9 110
168 56674.05859 21.25 6.09 435.73 13.77 7000.00 10.00 3.91 0.03 0.83 0.05 6.1 270
168 56561.31439 1.59 5.03 495.94 12.40 7000.00 0.00 3.99 0.03 0.81 0.05 8.2 270
168 56236.22732 47.09 4.41 493.29 11.77 7000.00 0.00 4.04 0.03 0.60 0.03 7.5 320
171 56671.05549 12.45 4.45 30.02 9.50 5640.00 760.00 5.48 0.31 1.07 0.75 4.1 20
171 56674.05859 8.07 1.95 36.73 3.83 4480.00 120.00 4.02 0.26 0.57 0.13 2.1 20
171 56563.49856 7.85 2.55 36.01 4.49 4480.00 170.00 4.49 0.27 1.30 0.20 1.5 20
171 56607.32096 11.33 1.76 33.12 3.67 4700.00 250.00 4.70 0.35 0.68 0.13 1.5 20
171 56561.31439 6.51 1.33 32.07 2.58 4970.00 160.00 4.97 0.19 0.99 0.11 1.9 40
171 56236.22732 5.06 1.69 35.72 3.47 4940.00 270.00 4.58 0.29 0.97 0.17 1.6 30
171 56315.22693 10.24 1.44 31.83 3.25 4720.00 330.00 4.69 0.44 1.03 0.14 2.4 40
173 56236.22732 10.31 6.16 31.65 9.85 2960.00 150.00 4.00 1.04 0.23 0.35 1.7 10
174 56671.05549 7.19 0.36 17.65 0.75 3080.00 10.00 3.54 0.08 0.07 0.04 3.3 50
174 56563.49856 7.98 0.59 18.86 1.01 3070.00 20.00 3.59 0.11 0.01 0.04 2.1 30
174 56607.32096 7.88 0.47 17.67 0.84 3060.00 20.00 3.68 0.11 0.05 0.04 2.2 40
174 56561.31439 7.30 3.29 18.44 6.04 2880.00 130.00 2.93 0.63 0.28 0.49 2.2 10
174 56236.22732 10.26 0.71 18.84 1.21 3120.00 10.00 3.37 0.10 0.02 0.05 11.4 70
175 56671.05549 16.88 1.56 46.34 3.28 4170.00 60.00 4.35 0.13 2.12 0.14 2.5 70
175 56674.05859 7.02 0.55 49.42 1.04 4210.00 10.00 4.36 0.05 0.79 0.03 4.8 110
175 56563.49856 14.12 2.22 46.17 3.89 4220.00 90.00 4.57 0.21 2.96 0.28 2.4 60
175 56607.32096 2.59 0.90 41.60 1.76 4210.00 30.00 4.50 0.08 1.79 0.08 2.9 90
175 56561.31439 11.78 1.75 45.52 3.02 3980.00 40.00 4.26 0.13 4.13 0.27 3.8 100
175 56236.22732 8.58 0.34 43.36 0.59 4240.00 10.00 4.50 0.03 0.76 0.02 12.0 160
175 56315.22693 3.13 1.06 45.40 2.15 4230.00 30.00 4.36 0.08 2.24 0.10 2.9 100
176 56671.05549 1.22 3.27 121.79 4.23 3330.00 30.00 4.06 0.14 0.18 0.05 4.0 70
178 56674.05859 6.38 0.23 12.32 0.59 3130.00 10.00 3.56 0.07 0.31 0.04 3.0 60
178 56315.22693 6.88 0.27 12.34 0.63 3120.00 10.00 3.48 0.05 0.37 0.04 3.6 60
179 56671.05549 6.73 0.59 14.83 1.46 3110.00 20.00 3.67 0.19 0.27 0.09 1.9 30
179 56674.05859 6.80 0.45 14.59 1.01 3120.00 20.00 3.76 0.14 0.21 0.06 2.1 30
180 56674.05859 5.53 0.49 17.01 1.19 3690.00 20.00 3.88 0.08 0.00 0.00 8.0 50
180 56563.49856 8.18 0.72 14.54 1.92 3720.00 50.00 4.04 0.13 0.17 0.07 4.2 30
180 56607.32096 7.54 0.43 13.50 1.10 3700.00 20.00 4.03 0.08 0.10 0.04 3.3 40
180 56561.31439 8.51 0.36 14.25 0.85 3680.00 20.00 4.00 0.08 0.11 0.03 3.4 50
181 56563.49856 7.70 1.93 28.83 3.03 3300.00 40.00 3.77 0.23 0.09 0.11 2.1 20
181 56607.32096 8.02 1.16 27.25 1.80 3250.00 30.00 3.91 0.12 0.10 0.06 1.5 20
181 56315.22693 9.81 1.00 26.18 1.52 3220.00 40.00 3.94 0.10 0.17 0.07 2.2 30
182 56561.31439 13.99 5.42 46.63 8.05 4090.00 170.00 2.86 0.42 0.01 0.08 3.1 10
182 56236.22732 8.08 3.86 39.31 5.78 3860.00 170.00 3.16 0.29 0.56 0.20 1.7 10
183 56671.05549 -106.39 0.23 7.15 1.82 3240.00 10.00 -0.50 0.00 0.00 0.00 12.8 0
183 56674.05859 -35.15 2.52 0.17 18.57 750.00 90.00 3.00 0.05 0.14 1.15 25857.3 0
183 56563.49856 1.43 0.11 39.97 0.10 490.00 0.00 3.80 0.04 0.00 0.00 22104.9 0
183 56607.32096 -131.69 2.13 0.01 3.12 790.00 70.00 3.00 0.61 0.00 0.40 135005.8 0
183 56561.31439 -10.38 4.20 57.47 2.15 400.00 0.00 5.00 0.01 0.00 0.00 0.3 0
183 56236.22732 -137.24 0.04 0.03 0.32 4110.00 20.00 3.99 0.09 0.00 0.00 1521.5 0
183 56315.22693 -170.81 0.15 0.02 0.25 1900.00 20.00 3.43 0.07 0.00 0.00 69.5 0
185 56561.31439 8.87 0.46 31.56 1.13 5260.00 70.00 4.84 0.08 0.51 0.05 3.6 90
185 56236.22732 8.72 1.04 50.59 1.81 5240.00 90.00 4.76 0.11 0.63 0.07 2.3 80
186 56563.49856 7.23 0.35 14.55 0.86 4030.00 20.00 4.24 0.07 0.25 0.03 7.3 80
186 56607.32096 7.27 0.28 15.13 0.61 3910.00 20.00 4.08 0.04 0.21 0.02 9.7 110
186 56315.22693 8.07 0.25 14.60 0.78 3940.00 20.00 4.09 0.05 0.21 0.02 19.3 150
188 56671.05549 7.15 0.90 28.05 1.49 2660.00 30.00 2.80 0.05 0.00 0.01 2.5 30
188 56674.05859 7.27 0.76 27.89 1.20 2620.00 20.00 2.90 0.07 0.00 0.01 2.0 30
188 56563.49856 6.52 1.05 27.25 1.58 2610.00 30.00 3.93 0.20 0.00 0.01 1.5 20
188 56607.32096 7.21 0.77 27.63 1.15 2600.00 20.00 3.96 0.13 0.00 0.01 1.8 30
188 56561.31439 6.45 0.61 28.20 1.07 2640.00 20.00 2.76 0.05 0.00 0.01 2.6 40
188 56236.22732 7.28 0.62 28.04 1.00 2620.00 20.00 3.92 0.13 0.00 0.00 2.5 40
188 56315.22693 7.75 0.60 28.22 1.02 2550.00 20.00 2.44 0.15 0.00 0.01 3.2 40
189 56671.05549 6.95 0.21 8.65 0.86 4100.00 20.00 4.25 0.06 0.11 0.02 4.4 60
189 56563.49856 6.76 0.30 9.81 1.07 4210.00 30.00 4.37 0.08 0.10 0.03 2.8 40
189 56607.32096 6.65 0.25 9.01 0.95 4180.00 40.00 4.37 0.07 0.09 0.02 3.9 60
189 56561.31439 7.17 0.27 9.87 0.99 4140.00 40.00 4.29 0.08 0.09 0.03 7.4 70
189 56236.22732 6.74 0.23 10.27 0.81 4220.00 30.00 4.34 0.06 0.13 0.02 5.7 70
190 56671.05549 8.68 0.31 14.39 0.67 3320.00 10.00 3.83 0.07 0.17 0.04 3.0 50
190 56674.05859 8.40 0.25 14.15 0.60 3310.00 10.00 3.85 0.06 0.20 0.03 2.6 50
190 56563.49856 14.08 0.86 23.15 1.82 3360.00 30.00 3.39 0.10 0.13 0.08 4.1 40
190 56607.32096 8.33 0.39 14.12 0.82 3300.00 10.00 3.85 0.08 0.17 0.04 2.3 50
190 56561.31439 9.48 0.42 15.23 0.88 3300.00 10.00 3.80 0.09 0.10 0.04 5.7 60
190 56236.22732 8.40 0.31 14.76 0.71 3320.00 10.00 3.74 0.06 0.21 0.03 3.2 60
190 56315.22693 8.25 0.25 14.20 0.58 3310.00 10.00 3.81 0.06 0.21 0.03 3.4 60
191 56674.05859 7.09 0.20 9.36 0.65 3310.00 10.00 3.67 0.07 0.24 0.03 3.1 50
191 56315.22693 6.94 0.18 9.65 0.55 3310.00 10.00 3.59 0.05 0.28 0.03 5.1 80
192 56671.05549 8.54 0.81 16.03 1.79 2930.00 40.00 3.99 0.21 0.03 0.06 2.0 20
192 56674.05859 8.12 0.76 16.30 1.63 2930.00 30.00 4.11 0.19 0.03 0.06 1.9 20
193 56671.05549 4.51 0.77 20.63 1.48 3070.00 30.00 3.58 0.15 0.46 0.09 2.5 40
193 56674.05859 5.65 0.72 20.54 1.27 3090.00 20.00 3.72 0.15 0.51 0.08 2.8 40
193 56563.49856 6.52 1.26 22.63 2.18 3080.00 40.00 3.53 0.19 0.67 0.14 1.5 30
193 56607.32096 8.32 0.96 12.00 2.47 3290.00 40.00 3.65 0.17 0.57 0.14 3.0 30
193 56561.31439 5.67 0.66 20.75 1.08 3080.00 20.00 3.56 0.11 0.56 0.07 2.4 50
193 56236.22732 4.68 0.84 20.22 1.63 3100.00 20.00 3.78 0.19 0.71 0.10 1.5 40
193 56315.22693 6.11 0.47 18.87 0.81 3060.00 20.00 3.59 0.09 0.44 0.06 2.2 40
195 56563.49856 9.59 1.00 17.00 2.12 3220.00 50.00 4.00 0.21 0.20 0.08 1.6 20
195 56607.32096 8.45 0.92 15.84 1.82 3190.00 40.00 4.10 0.19 0.21 0.08 1.9 30
195 56561.31439 9.21 0.68 16.84 1.30 3200.00 30.00 3.94 0.13 0.20 0.05 2.3 30
195 56236.22732 8.33 0.77 17.05 1.58 3180.00 30.00 3.91 0.16 0.25 0.06 2.0 30
195 56315.22693 8.33 0.83 16.34 1.79 3160.00 50.00 3.91 0.22 0.29 0.08 3.1 30
197 56671.05549 7.24 0.19 9.64 0.62 3470.00 10.00 3.99 0.06 0.14 0.03 4.2 70
197 56674.05859 7.24 0.18 9.51 0.60 3460.00 20.00 4.04 0.05 0.13 0.02 4.0 70
197 56563.49856 8.07 0.40 11.92 0.98 3370.00 20.00 3.82 0.09 0.07 0.04 2.8 50
197 56607.32096 7.04 0.30 9.77 0.86 3460.00 20.00 3.99 0.07 0.12 0.03 3.7 60
197 56561.31439 7.62 0.26 10.52 0.76 3460.00 20.00 4.03 0.05 0.11 0.03 4.3 70
197 56236.22732 7.05 0.23 9.74 0.73 3480.00 10.00 3.95 0.04 0.18 0.03 5.0 80
197 56315.22693 7.21 0.16 9.39 0.54 3480.00 10.00 3.98 0.05 0.15 0.02 5.9 80
198 56671.05549 17.36 0.54 7.02 2.53 6860.00 210.00 5.29 0.20 0.09 0.08 1.7 30
198 56674.05859 17.18 0.40 7.89 1.59 6660.00 60.00 5.01 0.09 0.14 0.04 1.8 40
198 56563.49856 16.90 0.56 7.90 2.27 6630.00 130.00 4.94 0.17 0.08 0.06 1.4 30
198 56607.32096 16.90 0.54 7.91 2.30 6620.00 150.00 5.13 0.19 0.14 0.07 2.3 40
198 56561.31439 16.98 0.41 7.46 1.57 6540.00 130.00 4.87 0.17 0.12 0.06 2.3 40
198 56236.22732 17.15 0.36 8.02 1.42 6680.00 80.00 5.11 0.12 0.11 0.04 1.9 40
198 56315.22693 16.86 0.39 7.03 1.71 6870.00 70.00 5.47 0.07 0.10 0.04 1.9 40
199 56671.05549 7.69 1.31 20.75 2.14 2690.00 60.00 3.45 0.48 0.01 0.04 2.1 20
199 56674.05859 7.09 1.05 20.98 1.96 2670.00 50.00 3.94 0.40 0.09 0.09 1.7 20
199 56563.49856 7.65 1.92 21.61 3.47 2660.00 100.00 3.55 0.74 0.04 0.14 1.7 10
199 56607.32096 7.78 1.18 22.19 2.01 2590.00 70.00 3.87 0.40 0.14 0.13 1.4 20
199 56561.31439 7.75 1.02 22.61 1.68 2610.00 60.00 3.14 0.37 0.00 0.03 2.0 20
199 56236.22732 7.63 0.93 20.32 1.66 2630.00 60.00 3.82 0.31 0.29 0.12 1.7 20
199 56315.22693 7.37 1.17 22.08 2.37 2560.00 60.00 4.00 0.32 0.29 0.13 2.8 20
201 56671.05549 6.97 0.67 32.24 1.11 3140.00 20.00 3.98 0.08 0.05 0.03 2.2 50
201 56674.05859 6.68 0.63 31.51 0.98 3130.00 10.00 4.00 0.07 0.07 0.03 2.6 50
201 56563.49856 6.29 1.03 31.35 1.56 3130.00 20.00 3.90 0.15 0.12 0.05 1.7 30
201 56607.32096 6.71 0.76 31.68 1.13 3130.00 20.00 3.98 0.10 0.10 0.04 2.0 50
201 56561.31439 15.24 1.07 30.19 2.13 3300.00 20.00 3.55 0.13 0.08 0.07 12.7 60
201 56236.22732 6.61 0.55 31.21 0.91 3120.00 10.00 3.96 0.08 0.11 0.03 2.4 60
201 56315.22693 7.06 0.49 30.50 0.87 3110.00 10.00 3.92 0.07 0.17 0.03 2.6 60
202 56561.31439 3.60 1.36 10.43 4.02 3360.00 70.00 4.58 0.33 0.20 0.13 2.0 20
202 56236.22732 2.99 1.16 9.78 4.00 3390.00 60.00 4.74 0.39 0.54 0.15 1.5 20
202 56315.22693 128.75 30.46 170.86 38.90 5380.00 870.00 5.47 0.28 0.99 1.01 3.0 10
203 56671.05549 7.22 0.33 13.10 0.75 3140.00 10.00 3.41 0.08 0.70 0.06 4.3 70
203 56674.05859 7.13 0.28 13.63 0.65 3140.00 10.00 3.42 0.06 0.85 0.06 3.9 70
203 56563.49856 7.97 0.48 15.21 1.03 3140.00 10.00 3.42 0.10 0.56 0.08 2.3 50
203 56607.32096 7.72 0.37 14.13 0.78 3130.00 10.00 3.45 0.06 0.77 0.06 3.1 70
203 56561.31439 7.78 0.29 14.86 0.58 3130.00 10.00 3.41 0.06 0.54 0.05 5.2 80
203 56236.22732 6.97 0.39 13.44 0.81 3140.00 10.00 3.41 0.07 0.84 0.07 5.8 90
203 56315.22693 6.95 0.28 12.76 0.61 3130.00 10.00 3.45 0.06 0.77 0.05 6.0 90
204 56671.05549 7.93 0.33 21.84 0.64 3580.00 30.00 3.81 0.06 0.10 0.03 2.9 50
204 56674.05859 7.88 0.27 21.44 0.52 3570.00 20.00 3.77 0.04 0.15 0.02 2.7 60
204 56563.49856 7.17 0.58 22.66 0.96 3650.00 30.00 3.84 0.08 0.17 0.04 2.2 40
204 56607.32096 7.43 0.38 21.31 0.63 3560.00 20.00 3.78 0.05 0.12 0.03 2.3 50
204 56561.31439 7.74 0.34 22.28 0.66 3560.00 20.00 3.73 0.05 0.12 0.03 4.0 70
204 56236.22732 7.29 0.50 21.59 0.96 3570.00 30.00 3.78 0.07 0.12 0.04 5.3 60
204 56315.22693 7.77 0.27 21.06 0.52 3620.00 30.00 3.78 0.05 0.18 0.02 3.8 70

Note. – Table 2 will be published electronically. Fit parameters are the effective temperature (), the veiling (), the rotational velocity (), the surface gravity () and the radial velocity () of the star.

Table 2Fit parameters for all observed APOGEE Spectra in NGC 1333
\capstarttrue
\capstartfalse
ObjID sin log absJ nobs ngoodaaNumber of spectra meeting the quality criteria given in the text. varbbBinary flag indicating if the source has a significantly variable radial velocity as defined in the text (1 for variable, 0 for non-variable).
[km s] [km s] [K] [log cm s] [mag]
1 -27.80 0.43 92.94 0.68 6100 20 3.69 0.02 0.15 0.01 2.10 7 4 0
2 9.75 0.10 6.23 0.60 3540 10 3.98 0.03 0.11 0.01 4.50 7 6 0
4 -9.85 2.79 81.74 4.13 6570 30 3.38 0.07 0.33 0.05 3.60 7 6 0
5 3 0 0
8 3 0 0
10 9.38 0.27 27.81 0.45 3320 10 3.90 0.04 0.17 0.02 5.60 7 7 0
11 8.39 0.26 53.68 0.40 3760 10 3.64 0.02 0.12 0.01 3.20 7 6 0
12 9.29 0.09 11.94 0.26 3900 10 4.21 0.02 0.13 0.01 4.00 7 7 0
13 3 0 0
17 2 0 0
18 9.79 0.95 23.02 1.70 3270 30 3.77 0.13 0.22 0.07 4.10 7 2 0
19 9.81 0.68 58.26 1.06 4250 20 3.68 0.04 0.50 0.03 2.60 4 4 0
20 6.82 0.46 24.65 0.65 3030 20 2.81 0.05 0.29 0.05 3.40 1 1 0
22 7.88 0.57 17.79 1.12 2710 30 3.58 0.18 0.10 0.05 6.10 7 3 0
23 7.77 0.34 26.70 0.52 3440 20 3.27 0.05 0.19 0.02 3.20 1 1 0
24 3 0 0
25 3 0 0
28 6.29 0.47 21.24 0.88 3340 10 3.69 0.08 0.38 0.05 4.50 5 5 0
29 8.30 0.36 17.62 0.70 2880 20 3.77 0.14 0.02 0.03 4.30 1 1 0
33 11.07 0.67 34.42 1.17 3670 20 3.84 0.07 0.15 0.03 3.20 2 2 0
34 7.37 0.21 16.78 0.40 3170 10 3.12 0.03 0.74 0.04 2.50 3 2 1
35 7.80 1.14 24.99 2.08 3090 40 3.68 0.22 0.15 0.09 5.80 1 1 0
37 8.36 0.10 15.92 0.26 4310 10 4.34 0.02 0.31 0.01 3.10 7 6 0
39 7.80 1.06 26.03 1.69 2600 40 3.05 0.22 0.00 0.02 5.90 1 1 0
40 7.61 0.14 13.08 0.37 3620 10 3.87 0.03 0.23 0.02 4.10 5 5 0
41 6.72 1.37 25.02 2.59 2940 40 3.92 0.25 0.08 0.08 6.30 2 1 0
42 9.85 0.47 15.63 1.14 3740 40 3.82 0.09 0.31 0.04 2.70 4 2 0
43 7.50 0.58 15.52 1.03 3050 20 3.75 0.19 0.07 0.05 5.00 1 1 0
44 8.92 0.23 10.74 0.68 3750 20 3.83 0.05 0.62 0.04 3.10 1 1 0
48 8.13 0.38 14.09 0.91 3690 20 3.82 0.08 0.23 0.04 4.10 1 1 0
50 8.43 0.71 18.12 1.45 2780 80 3.43 0.56 0.01 0.07 5.80 1 1 0
51 8.16 0.59 9.79 1.84 3500 40 3.83 0.14 0.20 0.08 3.30 1 1 0
52 8.36 0.32 17.62 0.79 4130 30 4.27 0.06 0.89 0.03 2.70 1 1 0
56 9.08 0.30 7.94 1.26 3900 30 4.05 0.08 0.35 0.04 3.60 1 1 0
58 -309.02 41.27 463.52 77.24 3010 400 -0.27 0.75 0.33 0.37 6.10 1 1 0
59 5 0 0
60 7.40 0.30 17.89 0.70 3460 20 3.86 0.06 0.10 0.03 3.90 1 1 0
61 7.38 0.40 10.11 1.11 3310 10 3.96 0.09 0.32 0.05 4.80 1 1 0
62 6.13 0.86 22.20 1.23 3920 30 3.96 0.07 0.00 0.00 4.60 1 1 0
63 9.83 0.18 16.43 0.44 4170 10 4.26 0.04 0.13 0.01 2.50 7 7 0
65 2 0 0
66 98.00 28.27 78.82 32.89 3660 460 3.58 0.95 2.20 1.65 3.30 1 1 0
71 8.69 0.70 20.01 1.61 4540 100 4.32 0.15 0.26 0.06 0.40 1 1 0
74 4.98 3.28 23.09 9.04 3820 110 5.35 0.33 3.07 0.50 3.70 1 1 0
76 8.71 0.30 21.43 0.67 4020 10 4.26 0.05 0.12 0.02 4.70 2 2 0
77 7.34 1.01 42.77 1.57 3120 10 3.49 0.09 0.11 0.05 5.00 1 1 0
78 10.91 1.53 16.31 3.37 3560 110 3.52 0.26 0.19 0.13 3.00 1 1 0
79 3 0 0
81 -226.61 1542.90 587.08 1292.89 2660 950 2.01 4.50 0.17 12.00 5.30 1 1 0
86 -1.14 0.32 10.65 1.07 3770 30 4.70 0.10 0.15 0.03 5.80 3 3 0
87 8.13 0.76 18.41 1.90 3570 30 3.89 0.11 1.30 0.13 4.80 2 2 0
91 3 0 0
93 2 0 0
94 8.82 0.56 33.07 1.07 4660 60 4.42 0.09 0.57 0.04 2.40 3 2 0
96 8.75 2.45 41.99 3.91 2960 40 3.69 0.26 0.01 0.05 6.20 1 1 0
97 9.26 0.29 34.15 0.52 3720 10 3.71 0.03 0.29 0.02 3.40 7 7 0
105 -47.24 366.32 483.26 606.64 4470 940 2.14 0.95 0.06 1.64 4.00 1 1 0
110 5.48 1.96 70.13 3.22 4010 50 3.33 0.09 0.45 0.07 1.50 1 1 0
111 3 0 0
116 9.28 0.61 30.23 1.04 3930 20 4.00 0.06 0.25 0.03 2.80 1 1 0
118 9.07 0.69 19.61 1.41 3190 30 3.96 0.15 0.24 0.05 4.50 6 3 0
122 10.34 6.34 37.45 8.95 3430 170 3.46 0.56 0.93 0.51 3.60 1 1 0
125 -244.15 95.44 249.68 101.23 4500 370 2.03 0.40 0.02 0.22 10.10 1 1 0
127 7 0 0
128 9.57 6.44 529.40 15.76 7000 0 3.85 0.04 0.18 0.03 1.20 1 1 0
130 7.24 0.57 69.18 0.76 5660 30 3.77 0.05 0.28 0.02 -0.60 3 1 0
131 9.47 1.85 15.71 3.73 3120 50 3.62 0.41 0.32 0.21 5.30 1 1 0
133 31.02 6.47 251.07 9.05 5950 60 4.01 0.09 0.17 0.04 4.10 7 7 0
136 4 0 0
137 7.85 1.18 20.54 2.04 2620 50 3.82 0.50 0.00 0.02 5.60 1 1 0
138 8.33 1.48 21.13 2.53 3100 40 3.69 0.29 0.23 0.13 5.00 1 1 0
140 25.41 75.87 2.09 184.63 1900 1030 5.25 4.16 3.34 9.86 6.40 1 1 0
145 6.32 0.55 22.76 0.84 2970 20 3.88 0.13 0.01 0.02 5.70 3 3 0
152 3 0 0
158 2 0 0
159 8.47 0.30 20.61 0.65 3490 10 4.06 0.05 0.20 0.02 4.10 3 3 0
160 6.86 0.10 19.86 0.19 3310 0 3.79 0.02 0.17 0.01 4.20 7 7 0
162 3 0 0
163 3 0 0
167 8.07 0.17 13.49 0.42 3900 10 4.07 0.03 0.33 0.02 4.20 1 1 0
168 25.95 2.91 478.22 7.25 7000 0 3.99 0.02 0.70 0.02 0.90 3 3 1
171 8.13 0.69 33.74 1.39 4650 80 4.62 0.11 0.88 0.06 2.50 7 6 0
173 10.31 6.16 31.65 9.85 2960 150 4.00 1.04 0.23 0.35 5.80 1 1 0
174 7.54 0.26 17.94 0.49 3070 10 3.59 0.06 0.04 0.02 5.20 5 3 0
175 6.73 0.40 46.92 0.76 4200 10 4.38 0.03 1.02 0.02 3.10 7 6 1
176 1.22 3.27 121.79 4.23 3330 30 4.06 0.14 0.18 0.05 4.70 1 1 0
178 6.59 0.17 12.33 0.43 3120 10 3.51 0.04 0.34 0.03 5.00 2 2 0
179 6.78 0.36 14.67 0.83 3120 10 3.73 0.11 0.23 0.05 5.80 2 2 0
180 7.56 0.23 14.69 0.56 3690 10 3.98 0.04 0.01 0.00 4.60 4 4 1
181 9.05 0.76 26.63 1.16 3240 30 3.93 0.08 0.13 0.04 5.70 3 2 0
182 2 0 0
183 7 0 0
185 8.84 0.42 36.87 0.96 5250 50 4.81 0.07 0.55 0.04 2.30 2 2 0
186 7.25 0.22 14.94 0.50 3950 10 4.13 0.04 0.23 0.02 3.30 3 2 0
188 7.14 0.27 27.96 0.44 2610 10 2.93 0.03 0.00 0.00 6.20 7 7 0
189 6.85 0.11 9.52 0.41 4150 10 4.32 0.03 0.10 0.01 4.10 5 5 0
190 8.61 0.12 14.61 0.28 3310 0 3.78 0.03 0.18 0.01 4.50 7 7 1
191 7.01 0.13 9.53 0.42 3310 10 3.62 0.04 0.26 0.02 4.80 2 2 0
192 8.12 0.76 16.30 1.63 2930 30 4.11 0.19 0.03 0.06 6.30 2 1 0
193 5.82 0.27 19.73 0.49 3090 10 3.61 0.05 0.52 0.03 4.90 7 7 0
195 8.64 0.39 16.61 0.79 3190 20 3.96 0.08 0.23 0.03 5.90 5 4 0
197 7.26 0.08 9.84 0.26 3460 10 3.98 0.02 0.14 0.01 4.80 7 7 0
198 17.05 0.17 7.64 0.68 6710 30 5.22 0.04 0.11 0.02 2.80 7 7 0
199 7.60 0.59 21.58 1.06 2600 30 3.71 0.19 0.04 0.03 7.00 7 3 0
201 6.79 0.26 31.32 0.42 3120 10 3.96 0.03 0.10 0.01 5.30 7 6 0
202 2.99 1.16 9.78 4.00 3390 60 4.74 0.39 0.54 0.15 7.50 3 1 0
203 7.32 0.12 13.80 0.27 3140 0 3.43 0.03 0.71 0.02 4.40 7 7 0
204 7.71 0.13 21.60 0.24 3580 10 3.77 0.02 0.14 0.01 4.80 7 7 0

Note. – Table 3 will be published electronically. Fit parameters are the effective temperature (), the veiling (), the rotational velocity (), the surface gravity () and the radial velocity () of the star.

Table 3Average parameters for all stars in NGC 1333
\capstarttrue
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
186214
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description