Improved limits for Higgs-portal dark matter from LHC searches

Improved limits for Higgs-portal dark matter from LHC searches

Martin Hoferichter Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550, USA    Philipp Klos Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany    Javier Menéndez Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan    Achim Schwenk Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
Abstract

Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the Standard Model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parameterized in a single quantity . We evaluate using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as , show that the uncertainty of the Higgs–nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.

95.35.+d, 14.80.Ly, 12.39.Fe
pacs:
Dark matter, WIMPs, chiral Lagrangians
preprint: INT-PUB-17-031

I Introduction

After the initial discovery of a new particle by the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) in 2012 Aad:2012tfa (); Chatrchyan:2012xdj (), its mass has been further constrained to sub-GeV accuracy,  Aad:2015zhl (), and so far neither studies of its spin and parity Khachatryan:2014kca (); Aad:2015mxa () nor its branching fractions Khachatryan:2016vau () have revealed significant deviations from the Standard Model (SM) prediction for the Higgs boson . An interesting consequence is that events with large missing transverse momentum would be expected if the Higgs boson decayed to long-lived non-SM states that do not leave a signature in the detector, so-called invisible Higgs decays. The absence of such observations sets limits on the invisible decay channels Aad:2014iia (); Chatrchyan:2014tja (); Aad:2014wza (); Aad:2015uga (); Aad:2015txa (); Aad:2015pla (); Khachatryan:2016whc (), which provide stringent constraints on beyond-SM physics.

One particular example concerns Higgs-portal models for dark matter, see, e.g., Kanemura:2010sh (); Djouadi:2011aa (); Djouadi:2012zc (); Beniwal:2015sdl (), in which the dark-matter candidate , a weakly interacting massive particle (WIMP), interacts with the SM fields via exchange of the Higgs boson. With the nature of dark matter still a major puzzle, the quest to understand its composition is being vigorously pursued, besides collider signatures, in direct-detection experiments looking for the WIMP scattering off atomic nuclei, as well as indirect searches Baudis:2016qwx (). As long as the WIMP mass fulfills , limits on the invisible decay width of the Higgs boson are in a one-to-one correspondence with direct-detection limits on the WIMP–nucleon cross section , provided the nuclear physics input is sufficiently under control.

Such comparison relies on the coupling of the Higgs boson to a single nucleon, which proceeds via the nucleon matrix elements for the scalar current

(1)

for the light quarks (with quark masses and nucleon mass ), as well as through heavy-quark loops coupling to gluon fields, see Fig. 1. Integrating out the heavy quarks at leading order in the strong coupling constant leads to an effective coupling Shifman:1978zn ()

(2)

to describe the Higgs–nucleon interaction. Both recent LHC analyses constraining Higgs-portal dark matter from invisible Higgs decays Aad:2015pla (); Khachatryan:2016whc () use a central value  Young:2009zb () with variations covering (motivated by Toussaint:2009pz (), see Djouadi:2011aa (); see also Sage:2015wfa ()). Given recent progress in lattice-QCD calculations Durr:2015dna (); Yang:2015uis (); Abdel-Rehim:2016won (); Bali:2016lvx () and pion–nucleon () phenomenology Alarcon:2011zs (); Hoferichter:2015dsa (); Hoferichter:2016ocj (); RuizdeElvira:2017stg (), this large range in no longer reflects the current knowledge of the scalar couplings of the nucleon. Consequently, the limits for derived from the searches for invisible Higgs decays can be significantly improved. In the first part of this paper, we provide a more detailed assessment of the current situation, including corrections to Eq. (2) regarding isospin violation and higher orders in for the heavy-quark loops.

In addition, the standard decomposition (2) does not reflect that atomic nuclei are strongly interacting many-nucleon systems, so that not only the one-body (single-nucleon) matrix elements enter. As first pointed out in Prezeau:2003sv (), corrections to this picture from two-body currents, where the Higgs couples to a pion exchanged between two nucleons, can become important. Such corrections are conveniently addressed within chiral effective field theory (EFT) Epelbaum:2008ga (); Machleidt:2011zz (), an expansion around the chiral limit of QCD in terms of momenta and quark masses, as successfully demonstrated in previous applications to WIMP–nucleus scattering Cirigliano:2012pq (); Menendez:2012tm (); Klos:2013rwa (); Baudis:2013bba (); Cirigliano:2013zta (); Hoferichter:2015ipa (); Hoferichter:2016nvd (); Korber:2017ery () (related work using chiral EFT for WIMP–nucleon interactions Hoferichter:2015ipa () is restricted to the coupling to a single nucleon Bishara:2016hek (); Bishara:2017pfq () or focuses on the calculation of the nuclear states based on chiral EFT forces Gazda:2016mrp ()). In this work, we extend previous calculations limited to xenon Hoferichter:2016nvd () to a broad range of target nuclei and show that the corrections from the coupling to two nucleons are largely coherent and can thus be absorbed into a redefinition of the single-nucleon . The combination of the one- and two-body contributions to then allows us to compare the limits on Higgs-portal models from collider and direct-detection experiments using state-of-the-art nuclear physics input.

Figure 1: Higgs-mediated interaction of the WIMP with the light quarks (left) and the gluon field by closing a heavy-quark loop (right).

Ii Scalar couplings of the nucleon

The evaluation of the quark-level operators from Fig. 1 between nucleon states requires knowledge of the scalar couplings defined in Eq. (1). To arrive at Eq. (2), the couplings of the heavy quarks are eliminated in favor of the light quarks’ according to the following procedure Shifman:1978zn (): at , the QCD trace anomaly for active degrees of freedom reads

(3)

with gluon field-strength tensor . Integrating out the heavy quarks then yields for each flavor

(4)

so that

(5)

and Eq. (2) follows.

Modifications of the leading result (2) arise from two sources: isospin-breaking and perturbative corrections. For - and -quarks the dominant isospin-breaking effects cancel in the sum , with remaining effects of the size Crivellin:2013ipa ()

(6)

where denotes the portion of the proton–neutron mass difference proportional to . In a nucleus, this would lead to a relative correction

(7)

where / refer to proton/neutron number, , and we have inserted values for a typical Xe isotope. Thus, isospin-violating effects in are small Crivellin:2015bva () and will be neglected in the following. The perturbative corrections have been worked out in detail in Hill:2014yxa (). Here, we use the full result for the quark

(8)

as well as the correction for .

Ref.
Durr:2015dna ()
Yang:2015uis ()
Abdel-Rehim:2016won ()
Bali:2016lvx ()
Hoferichter:2015dsa ()
Table 1: Lattice results Durr:2015dna (); Yang:2015uis (); Abdel-Rehim:2016won (); Bali:2016lvx () for the scalar couplings of the nucleon (in units of ), for the lightest quarks compared to the result from scattering Hoferichter:2015dsa (). and refer to Eqs. (5) and (2), respectively, while quantities with a hat include higher-order perturbative corrections as described in the main text. Statistical and systematic lattice errors have been added in quadrature.

In this way, we are left with the determination of the scalar couplings of the light quarks in the isospin limit. In general, these couplings cannot be measured in experiment due to the absence of a scalar source, leaving lattice QCD as the only viable option. However, an important exception concerns the scalar couplings of - and -quarks, which the Cheng–Dashen low-energy theorem Cheng:1970mx (); Brown:1971pn () relates to the scattering amplitude, offering a unique opportunity to test the results of lattice-QCD calculations with experiment. More precisely, the low-energy theorem allows one to extract the -term from the isoscalar amplitude evaluated at a particular kinematic point in the subthreshold region. The required analytic continuation can be performed in a stable manner using constraints from analyticity and unitarity in the form of Roy–Steiner equations Hoferichter:2015dsa (); Ditsche:2012fv (); Hoferichter:2012wf (); Hoferichter:2015tha (); Hoferichter:2015hva (); Hoferichter:2016duk (); Siemens:2016jwj (), with the result that ultimately the value of is fully determined by the amplitude at threshold, i.e. the scattering lengths. These, in turn, are known to high accuracy from measurements in pionic atoms Gotta:2008zza (); Strauch:2010vu (); Hennebach:2014lsa (); Baru:2010xn (); Baru:2011bw (). The result  Hoferichter:2015dsa () agrees with calculations based on chiral perturbation theory, once the low-energy constants are extracted from a phase-shift solution consistent with the pionic-atom scattering lengths Alarcon:2011zs ().

Unfortunately, these results from phenomenology are in tension with the most advanced lattice calculations Durr:2015dna (); Yang:2015uis (); Abdel-Rehim:2016won (); Bali:2016lvx (), see Table 1. These results correspond to (nearly) physical quark masses, thereby eliminating a major source of systematic uncertainty in earlier calculations, but finite-volume corrections, discretization effects, and excited-state contamination may not be under sufficient control yet. It has also been suggested that the tension could be due to deficient input for the scattering lengths in the phenomenological analysis, which could again be checked on the lattice Hoferichter:2016ocj (), but the fact that low-energy scattering data corroborate the pionic-atom values makes this explanation appear unlikely RuizdeElvira:2017stg ().

For a similar cross check of lattice results with phenomenology would need to rely on relations, but the slow convergence of the expansion prohibits a meaningful, quantitative test. Table 1 also lists the heavy-quark couplings as well as the resulting values for with and without perturbative corrections, which prove to be only of moderate size. In particular, the direct determination of from Abdel-Rehim:2016won () is consistent with the perturbative calculation.

To combine the results of Table 1 into a single value for , we perform a naive average of the four lattice values, take as the mean between lattice and phenomenology with an error sufficiently large to cover both, and increase the error in to be able to accommodate a similar potential bias as for . We include the perturbative corrections, but add an additional error , about half the shift observed in Table 1 when adding the higher-order terms. Altogether, this leads to the one-body (1b) contribution

(9)

Iii Two-body currents

Figure 2: Two-body contributions to WIMP–nucleus scattering. Solid/dashed lines refer to nucleons/pions, the crosses to the coupling of the external current.

The spin-independent limits on derived from direct-detection experiments, see, e.g., Angloher:2015ewa (); Agnese:2015nto (); Agnes:2015ftt (); Amole:2016pye (); Armengaud:2016cvl (); Tan:2016zwf (); Akerib:2016vxi (); Aprile:2017iyp (), assume a simple relation with the differential WIMP–nucleus cross section

(10)

where is the momentum transfer, the relative velocity, and a nuclear form factor normalized to . This decomposition ignores subleading corrections, such as isospin violation or two-body effects, which in general all come with an independent nuclear form factor Hoferichter:2016nvd (). For the special case of Higgs-mediated WIMP–nucleus scattering, isospin-breaking corrections are small, see Eq. (7). In contrast, the leading effect of two-body currents is expected to be coherent (scaling with ), so that it can be included as an effective shift in . This contribution is crucial to ensure consistency: direct-detection limits on convert limits on the WIMP–nucleus rate to an effective WIMP–nucleon cross section based on Eq. (10), effectively subsuming the coupling to two nucleons. The cross section derived from limits on invisible Higgs decays needs to be consistent with this convention, and thus has to include the two-nucleon effects as well. Note that if the nuclear structure factors used in the interpretation of the direct-detection experiments accounted for two-body contributions (as is the case for the recent spin-dependent limits Aprile:2013doa (); Uchida:2014cnn (); Fu:2016ega (); Akerib:2017kat ()), the resulting WIMP–nucleon cross section could be interpreted as a true one-body quantity, and then the transition from collider limits would not require adding a two-body correction.

Figure 3: Exclusion limits for scalar (blue), fermion (red), and vector (green) Higgs-portal WIMPs. The gray-shaded bands refer to the range from the most recent ATLAS Aad:2015pla () and CMS Khachatryan:2016whc () analyses, the dashed lines to the central value considered therein, and the colored bands to our improved limits using Eq. (14). For comparison, we show the direct-detection limits from SuperCDMS Agnese:2015nto (), PandaX-II Tan:2016zwf (), LUX Akerib:2016vxi (), and XENON1T Aprile:2017iyp ().

The leading two-body diagrams in chiral EFT are shown in Fig. 2. In the derivation, the couplings to the scalar current and the trace anomaly lead to two different responses Hoferichter:2016nvd (). For the scalar case, diagram is suppressed by two orders because there is no scalar source in the leading chiral Lagrangian, while the subleading Lagrangian does not produce a single-pion vertex. The validity of the underlying chiral EFT counting could be checked by comparing to nuclear -terms from lattice QCD, see Beane:2013kca () for such a calculation at heavy pion masses. Similarly, diagram requires an insertion of the quark-mass matrix, which also suppresses this contribution by two orders in the chiral counting. This leaves only the coupling to the pion in flight in diagram . For , diagram also enters, diagram is again only next-to-next-to-leading order, but there is a leading-order contribution to diagram , which was not included in Hoferichter:2016nvd ().

The terms in diagram are directly related to the contact operators that enter in the potential. Indeed, one can show that combining them with parts of diagram , they yield the leading potential  Hoferichter:2017 (). Taken together with momentum-dependent one-body corrections at the same order, which can be identified with the kinetic-energy operator , one finds a combined contribution for the response proportional to

(11)

where is the binding energy of the nucleus represented by , obtained from interactions only. This adds to the remaining parts from diagram (both the scalar and responses) to an effective two-body shift in  Hoferichter:2016nvd (); Hoferichter:2017 ()

(12)

where refers to the nuclear structure factor for the scalar current Hoferichter:2016nvd (), in the same normalization where in Eq. (10).

We have evaluated the two-body contribution in harmonic-oscillator states using the occupation numbers that result from a large-scale shell-model diagonalization with state-of-the-art nuclear interactions (see Hoferichter:2016nvd (); Hoferichter:2017 () for details) for a wide range of nuclei that includes all stable xenon, argon, germanium, and silicon isotopes. We observe a robust coherence proportional to of the two-nucleon structure factors, leading to

(13)

where the two terms correspond to those in Eq. (12), and in each term the first uncertainty is from the variation over the different isotopes. For the binding-energy term, we take the experimental energy, corrected for the Coulomb contribution following Duflo:1995ep (). This effectively includes higher-order terms, e.g., due to interactions. For the first term in Eq. (12), the second uncertainty is due to the truncation in the chiral expansion and from the use of the harmonic-oscillator model to evaluate . We have taken this uncertainty significantly larger than that naively estimated by the chiral expansion to account for possible cancellations of different contributions, as would be manifest between kinetic and potential energies. We have also estimated the uncertainty in the many-body calculation by using the occupation numbers corresponding to two nuclear interactions, and the effect is less than .

Numerically, we observe a partial cancellation between the two terms, to the effect that the size of the two-body corrections is reduced from the expected few-percent level to below . Combined with the Higgs coupling to a single nucleon, we find

(14)

which is our final result.

Iv Impact on LHC exclusion limits

The relation between limits for the branching fraction of invisible Higgs decays and depends on the nature of the Higgs portal. For instance, for a scalar, vector, or fermion portal , , , respectively, with Higgs doublet and scalar, vector, or fermion fields , , , one finds

(15)

where , , and , , is the Higgs vacuum expectation value, and , with  Heinemeyer:2013tqa (). For details we refer to Djouadi:2011aa ().

The consequences of the improved coupling are illustrated in Fig. 3, which is inspired by analogous figures in the most recent ATLAS Aad:2015pla () and CMS Khachatryan:2016whc () studies. For definiteness, we adopt the CMS limit (at confidence level). Even on a logarithmic scale the impact due to the improved nuclear physics input used is striking. Only a narrow band remains in the previously considered parameter space, tightening considerably the limits that result from experimental searches. Our results highlight that a careful determination of the nuclear physics related to the dark matter interactions is key for a correct determination of the limits that searches for invisible Higgs decays impose on Higgs-portal models for dark matter.

In summary, we have evaluated the Higgs–nucleon coupling, , using state-of-the-art phenomenological and lattice-QCD calculations, and including the coupling of the Higgs to two nucleons as predicted by chiral EFT. Our result, , reduces dramatically the uncertainty in the excluded region derived from experiment. This highlights that the nuclear physics input is key to fully exploiting the consequences of experimental searches, and that it needs to be treated consistently in limits from collider experiments and direct detection.

Acknowledgments

Acknowledgements.
We thank Hans-Werner Hammer, David B. Kaplan, and Jordy de Vries for valuable discussions. Financial support by the DOE (Grant No. DE-FG02-00ER41132), the DFG (Grant SFB 1245), the ERC (Grant No. 307986 STRONGINT), MEXT (Priority Issue on Post-K computer), and JICFuS is gratefully acknowledged. AS thanks the INT for its hospitality during the completion of this work.

References

  • (1) G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214 [hep-ex]].
  • (2) S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]].
  • (3) G. Aad et al. [ATLAS and CMS Collaborations], Phys. Rev. Lett. 114, 191803 (2015) [arXiv:1503.07589 [hep-ex]].
  • (4) V. Khachatryan et al. [CMS Collaboration], Phys. Rev. D 92, 012004 (2015) [arXiv:1411.3441 [hep-ex]].
  • (5) G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75, 476 (2015) Erratum: [Eur. Phys. J. C 76, 152 (2016)] [arXiv:1506.05669 [hep-ex]].
  • (6) G. Aad et al. [ATLAS and CMS Collaborations], JHEP 1608, 045 (2016) [arXiv:1606.02266 [hep-ex]].
  • (7) G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 112, 201802 (2014) [arXiv:1402.3244 [hep-ex]].
  • (8) S. Chatrchyan et al. [CMS Collaboration], Eur. Phys. J. C 74, 2980 (2014) [arXiv:1404.1344 [hep-ex]].
  • (9) G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75, 79 (2015) [arXiv:1410.5404 [hep-ex]].
  • (10) G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 75, 337 (2015) [arXiv:1504.04324 [hep-ex]].
  • (11) G. Aad et al. [ATLAS Collaboration], JHEP 1601, 172 (2016) [arXiv:1508.07869 [hep-ex]].
  • (12) G. Aad et al. [ATLAS Collaboration], JHEP 1511, 206 (2015) [arXiv:1509.00672 [hep-ex]].
  • (13) V. Khachatryan et al. [CMS Collaboration], JHEP 1702, 135 (2017) [arXiv:1610.09218 [hep-ex]].
  • (14) S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Phys. Rev. D 82, 055026 (2010) [arXiv:1005.5651 [hep-ph]].
  • (15) A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Phys. Lett. B 709, 65 (2012) [arXiv:1112.3299 [hep-ph]].
  • (16) A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Eur. Phys. J. C 73, 2455 (2013) [arXiv:1205.3169 [hep-ph]].
  • (17) A. Beniwal, F. Rajec, C. Savage, P. Scott, C. Weniger, M. White and A. G. Williams, Phys. Rev. D 93, 115016 (2016) [arXiv:1512.06458 [hep-ph]].
  • (18) L. Baudis, J. Phys. G 43, 044001 (2016).
  • (19) M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Phys. Lett. 78B, 443 (1978).
  • (20) R. D. Young and A. W. Thomas, Phys. Rev. D 81, 014503 (2010) [arXiv:0901.3310 [hep-lat]].
  • (21) D. Toussaint et al. [MILC Collaboration], Phys. Rev. Lett. 103, 122002 (2009) [arXiv:0905.2432 [hep-lat]].
  • (22) F. S. Sage and R. Dick, Astropart. Phys. 71, 31 (2015).
  • (23) S. Dürr et al., Phys. Rev. Lett. 116, 172001 (2016) [arXiv:1510.08013 [hep-lat]].
  • (24) Y. B. Yang et al. [QCD Collaboration], Phys. Rev. D 94, 054503 (2016) [arXiv:1511.09089 [hep-lat]].
  • (25) A. Abdel-Rehim et al. [ETM Collaboration], Phys. Rev. Lett. 116, 252001 (2016) [arXiv:1601.01624 [hep-lat]].
  • (26) G. S. Bali et al. [RQCD Collaboration], Phys. Rev. D 93, 094504 (2016) [arXiv:1603.00827 [hep-lat]].
  • (27) J. M. Alarcón, J. Martin Camalich and J. A. Oller, Phys. Rev. D 85, 051503 (2012) [arXiv:1110.3797 [hep-ph]].
  • (28) M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rev. Lett. 115, 092301 (2015) [arXiv:1506.04142 [hep-ph]].
  • (29) M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Lett. B 760, 74 (2016) [arXiv:1602.07688 [hep-lat]].
  • (30) J. Ruiz de Elvira, M. Hoferichter, B. Kubis and U.-G. Meißner, arXiv:1706.01465 [hep-ph].
  • (31) G. Prézeau, A. Kurylov, M. Kamionkowski and P. Vogel, Phys. Rev. Lett. 91, 231301 (2003) [astro-ph/0309115].
  • (32) E. Epelbaum, H.-W. Hammer and U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009) [arXiv:0811.1338 [nucl-th]].
  • (33) R. Machleidt and D. R. Entem, Phys. Rept. 503, 1 (2011) [arXiv:1105.2919 [nucl-th]].
  • (34) V. Cirigliano, M. L. Graesser and G. Ovanesyan, JHEP 1210, 025 (2012) [arXiv:1205.2695 [hep-ph]].
  • (35) J. Menéndez, D. Gazit and A. Schwenk, Phys. Rev. D 86, 103511 (2012) [arXiv:1208.1094 [astro-ph.CO]].
  • (36) P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Phys. Rev. D 88, 083516 (2013) Erratum: [Phys. Rev. D 89, 029901 (2014)] [arXiv:1304.7684 [nucl-th]].
  • (37) L. Baudis, G. Kessler, P. Klos, R. F. Lang, J. Menéndez, S. Reichard and A. Schwenk, Phys. Rev. D 88, 115014 (2013) [arXiv:1309.0825 [astro-ph.CO]].
  • (38) V. Cirigliano, M. L. Graesser, G. Ovanesyan and I. M. Shoemaker, Phys. Lett. B 739, 293 (2014) [arXiv:1311.5886 [hep-ph]].
  • (39) M. Hoferichter, P. Klos and A. Schwenk, Phys. Lett. B 746, 410 (2015) [arXiv:1503.04811 [hep-ph]].
  • (40) M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Phys. Rev. D 94, 063505 (2016) [arXiv:1605.08043 [hep-ph]].
  • (41) C. Körber, A. Nogga and J. de Vries, Phys. Rev. C 96, 035805 (2017) [arXiv:1704.01150 [hep-ph]].
  • (42) F. Bishara, J. Brod, B. Grinstein and J. Zupan, JCAP 1702, 009 (2017) [arXiv:1611.00368 [hep-ph]].
  • (43) F. Bishara, J. Brod, B. Grinstein and J. Zupan, arXiv:1707.06998 [hep-ph].
  • (44) D. Gazda, R. Catena and C. Forssén, Phys. Rev. D 95, 103011 (2017) [arXiv:1612.09165 [hep-ph]].
  • (45) A. Crivellin, M. Hoferichter and M. Procura, Phys. Rev. D 89, 054021 (2014) [arXiv:1312.4951 [hep-ph]].
  • (46) A. Crivellin, M. Hoferichter, M. Procura and L. C. Tunstall, JHEP 1507, 129 (2015) [arXiv:1503.03478 [hep-ph]].
  • (47) R. J. Hill and M. P. Solon, Phys. Rev. D 91, 043505 (2015) [arXiv:1409.8290 [hep-ph]].
  • (48) T. P. Cheng and R. F. Dashen, Phys. Rev. Lett. 26, 594 (1971).
  • (49) L. S. Brown, W. J. Pardee and R. D. Peccei, Phys. Rev. D 4, 2801 (1971).
  • (50) C. Ditsche, M. Hoferichter, B. Kubis and U.-G. Meißner, JHEP 1206, 043 (2012) [arXiv:1203.4758 [hep-ph]].
  • (51) M. Hoferichter, C. Ditsche, B. Kubis and U.-G. Meißner, JHEP 1206, 063 (2012) [arXiv:1204.6251 [hep-ph]].
  • (52) M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rev. Lett. 115, 192301 (2015) [arXiv:1507.07552 [nucl-th]].
  • (53) M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meißner, Phys. Rept. 625, 1 (2016) [arXiv:1510.06039 [hep-ph]].
  • (54) M. Hoferichter, B. Kubis, J. Ruiz de Elvira, H.-W. Hammer and U.-G. Meißner, Eur. Phys. J. A 52, 331 (2016) [arXiv:1609.06722 [hep-ph]].
  • (55) D. Siemens, J. Ruiz de Elvira, E. Epelbaum, M. Hoferichter, H. Krebs, B. Kubis and U.-G. Meißner, Phys. Lett. B 770, 27 (2017) [arXiv:1610.08978 [nucl-th]].
  • (56) D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).
  • (57) T. Strauch et al., Eur. Phys. J. A 47, 88 (2011) [arXiv:1011.2415 [nucl-ex]].
  • (58) M. Hennebach et al., Eur. Phys. J. A 50, 190 (2014) [arXiv:1406.6525 [nucl-ex]].
  • (59) V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips, Phys. Lett. B 694, 473 (2011) [arXiv:1003.4444 [nucl-th]].
  • (60) V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga and D. R. Phillips, Nucl. Phys. A 872, 69 (2011) [arXiv:1107.5509 [nucl-th]].
  • (61) G. Angloher et al. [CRESST Collaboration], Eur. Phys. J. C 76, 25 (2016) [arXiv:1509.01515 [astro-ph.CO]].
  • (62) R. Agnese et al. [SuperCDMS Collaboration], Phys. Rev. Lett. 116, 071301 (2016) [arXiv:1509.02448 [astro-ph.CO]].
  • (63) P. Agnes et al. [DarkSide Collaboration], Phys. Rev. D 93, 081101 (2016) [arXiv:1510.00702 [astro-ph.CO]].
  • (64) C. Amole et al. [PICO Collaboration], Phys. Rev. D 93, 061101 (2016) [arXiv:1601.03729 [astro-ph.CO]].
  • (65) E. Armengaud et al. [EDELWEISS Collaboration], JCAP 1605, 019 (2016) [arXiv:1603.05120 [astro-ph.CO]].
  • (66) A. Tan et al. [PandaX-II Collaboration], Phys. Rev. Lett. 117, 121303 (2016) [arXiv:1607.07400 [hep-ex]].
  • (67) D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 118, 021303 (2017) [arXiv:1608.07648 [astro-ph.CO]].
  • (68) E. Aprile et al. [XENON Collaboration], arXiv:1705.06655 [astro-ph.CO].
  • (69) E. Aprile et al. [XENON100 Collaboration], Phys. Rev. Lett. 111, 021301 (2013) [arXiv:1301.6620 [astro-ph.CO]].
  • (70) H. Uchida et al. [XMASS-I Collaboration], PTEP 2014, 063C01 (2014) [arXiv:1401.4737 [astro-ph.CO]].
  • (71) C. Fu et al. [PandaX-II Collaboration], Phys. Rev. Lett. 118, 071301 (2017) [arXiv:1611.06553 [hep-ex]].
  • (72) D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 118, 251302 (2017) [arXiv:1705.03380 [astro-ph.CO]].
  • (73) S. R. Beane, S. D. Cohen, W. Detmold, H.-W. Lin and M. J. Savage, Phys. Rev. D 89, 074505 (2014) [arXiv:1306.6939 [hep-ph]].
  • (74) M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, in preparation.
  • (75) J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995) [nucl-th/9505011].
  • (76) S. Heinemeyer et al. [LHC Higgs Cross Section Working Group], arXiv:1307.1347 [hep-ph].
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
141138
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description