Exploring Cosmic Origins with CORE : Extragalactic Sources in Cosmic Microwave Background Maps

Exploring Cosmic Origins with CORE : Extragalactic Sources in Cosmic Microwave Background Maps

[    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [    [

We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE , that has been submitted in response to ESA’s call for a Medium-size mission opportunity as the successor of the Planck satellite. Even though the effective telescope size will be somewhat smaller than that of Planck, CORE will have a considerably better angular resolution at its highest frequencies, since, in contrast with Planck, it will be diffraction limited at all frequencies. The improved resolution implies a considerable decrease of the source confusion, i.e. substantially fainter detection limits. In particular, CORE will detect thousands of strongly lensed high- galaxies distributed over the full sky. The extreme brightness of these galaxies will make it possible to study them, via follow-up observations, in extraordinary detail. Also, the CORE resolution matches the typical sizes of high- galaxy proto-clusters much better than the Planck resolution, resulting in a much higher detection efficiency; these objects will be caught in an evolutionary phase beyond the reach of surveys in other wavebands. Furthermore, CORE will provide unique information on the evolution of the star formation in virialized groups and clusters of galaxies up to the highest possible redshifts. Finally, thanks to its very high sensitivity, CORE will detect the polarized emission of thousands of radio sources and, for the first time, of dusty galaxies, at mm and sub-mm wavelengths, respectively.

1]G. De Zotti,11footnotetext: Corresponding author. 2]J. González-Nuevo, 3]M. Lopez-Caniego, 4]M. Negrello, 5]J. Greenslade, 6]C. Hernández-Monteagudo, 7]J. Delabrouille, 8]Z.-Y. Cai, 25,79]M. Bonato, 9,10]A. Achúcarro, 4]P. Ade, 74]R. Allison, 48,49]M. Ashdown, 11,12,13]M. Ballardini, 14]A. J. Banday, 7]R. Banerji, 7]J.G. Bartlett, 15,16,1]N. Bartolo, 18,79]S. Basak, 19,20]M. Bersanelli, 21]M. Biesiada, 22,23,45]M. Bilicki, 24]A. Bonaldi, 2]L. Bonavera, 26,27]J. Borrill, 28] F. Bouchet, 58] F. Boulanger, 29]T. Brinckmann, 7]M. Bucher, 12,30,13]C. Burigana, 35,85]A. Buzzelli, 68]M. Calvo, 32]C. S. Carvalho, 77]M. G. Castellano, 17, 49, 74]A. Challinor, 24]J. Chluba, 5]D.L. Clements, 33]S. Clesse, 34]S. Colafrancesco, 77]I. Colantoni, 35,36]A. Coppolecchia, 78]M. Crook, 35]G. D’Alessandro, 35,36]P. de Bernardis, 31,85]G. de Gasperis, 37]J.M. Diego, 28,38]E. Di Valentino, 39]J. Errard, 5,81]S. M. Feeney, 37]R. Fernández-Cobos, 40]S. Ferraro, 12,13]F. Finelli, 41]F. Forastieri, 28]S. Galli, 42,43]R.T. Génova-Santos, 44]M. Gerbino, 46,47]S. Grandis, 46,47]S. Hagstotz, 75]S. Hanany, 48,49]W. Handley, 24]C. Hervias-Caimapo, 78]M. Hills, 28]E. Hivon, 51,52]K. Kiiveri, 26]T. Kisner, 82]T. Kitching, 53]M. Kunz, 51,52]H. Kurki-Suonio, 54]G. Lagache, 35]L. Lamagna, 48,49]A. Lasenby, 41]M. Lattanzi, 55]A. Le Brun, 56]J. Lesgourgues, 83]A. Lewis, 15,16,1]M. Liguori, 51,52]V. Lindholm, 31]G. Luzzi, 58]B. Maffei, 30,12]N. Mandolesi, 37]E. Martinez-Gonzalez, 57]C.J.A.P. Martins, 35,36]S. Masi, 59]M. Massardi, 76]D. McCarthy, 35,36]A. Melchiorri, 60]J.-B. Melin, 30,41,12]D. Molinari, 68]A. Monfardini, 30,41]P. Natoli, 61]A. Notari, 35,36]A. Paiella, 12,13]D. Paoletti, 62]R.B. Partridge, 7]G. Patanchon, 7]M. Piat, 4]G. Pisano, 30,41]L. Polastri, 63,64]G. Polenta, 65]A. Pollo, 66,56]V. Poulin, 67,84]M. Quartin, 24]M. Remazeilles, 80]M. Roman, 86]G. Rossi, 69]B. F. Roukema, 42,43]J.-A. Rubiño-Martín, 35,36]L. Salvati, 70]D. Scott, 71]S. Serjeant, 7]A. Tartari, 2,12]L. Toffolatti, 19,20]M. Tomasi, 76]N. Trappe, 68]S. Triqueneaux, 12,30,13]T. Trombetti, 53]M. Tucci, 4]C. Tucker, 51,52]J. Väliviita, 50]R. van de Weygaert, 72]B. Van Tent, 73]V. Vennin, 37]P. Vielva, 31,85]N. Vittorio, 75]K. Young, 87,88]M. Zannoni, ]for the CORE collaboration

Prepared for submission to JCAP

Exploring Cosmic Origins with CORE : Extragalactic Sources in Cosmic Microwave Background Maps

  • INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

  • Departamento de Física, Universidad de Oviedo, C. Calvo Sotelo s/n, 33007 Oviedo, Spain

  • European Space Agency, ESAC, Planck Science Office, Camino bajo del Castillo, s/n, Urbanización Villafranca del Castillo, Villanueva de la Cañada, Madrid, Spain

  • School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK

  • Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

  • Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan, 1, planta 2, E-44001, Teruel, Spain

  • APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

  • CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China

  • Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA, Leiden, The Netherlands

  • Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48040 Bilbao, Spain

  • DIFA, Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat, 6/2, I-40127 Bologna, Italy

  • INAF/IASF Bologna, via Gobetti 101, I-40129 Bologna, Italy

  • INFN, Sezione di Bologna, Via Irnerio 46, I-40127 Bologna, Italy

  • Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4, France, and CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France

  • DIFA, Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova, Via Marzolo 8, I-35131, Padova, Italy

  • INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

  • DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

  • Department of Physics, Amrita School of Arts & Sciences, Amritapuri, Amrita Vishwa Vidyapeetham, Amrita University, Kerala 690525 India

  • Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy

  • INAF–IASF, Via Bassini 15, I-20133 Milano, Italy

  • Department of Astrophysics and Cosmology, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

  • Leiden Observatory, Leiden University, P.O. Box 9513 NL-2300 RA Leiden, The Netherlands

  • Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Lubuska 2, 65-265 Zielona Góra, Poland

  • Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy,
    The University of Manchester, Oxford Road, Manchester M13 9PL, UK

  • Department of Physics & Astronomy, Tufts University, 574 Boston Avenue, Medford, MA, USA

  • Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.

  • Space Sciences Laboratory, University of California, Berkeley, California, U.S.A.

  • Institut d’Astrophysique de Paris (UMR7095: CNRS & UPMC-Sorbonne Universities), F-75014, Paris, France

  • Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

  • Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara, Italy

  • Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Roma, Italy

  • Institute of Astrophysics and Space Sciences, University of Lisbon, Tapada da Ajuda, 1349-018 Lisbon, Portugal

  • Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany

  • School of Physics, Wits University, Johannesburg, South Africa

  • Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy

  • INFN, Sezione di Roma 1, Roma, Italy

  • Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, 39005 Santander, Spain

  • Sorbonne Universités, Institut Lagrange de Paris (ILP), F-75014, Paris, France

  • Institut Lagrange, LPNHE, place Jussieu 4, 75005 Paris, France.

  • Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720, USA

  • INFN, Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy

  • Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, La Laguna, Tenerife, Spain

  • Departamento de Astrofísica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206 Spain

  • The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

  • National Centre for Nuclear Research, Astrophysics Division, P.O. Box 447, PL-90-950 Lodz, Poland

  • Faculty of Physics, Ludwig-Maximilians Universität, Scheinerstrasse 1, D-81679 Munich, Germany

  • Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany

  • Astrophysics Group, Cavendish Laboratory, Cambridge, CB3 0HE, UK

  • Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, UK

  • Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV, Groningen, the Netherlands

  • Department of Physics, Gustaf Hällströmin katu 2a, University of Helsinki, Helsinki, Finland

  • Helsinki Institute of Physics, Gustaf Hällströmin katu 2, University of Helsinki, Helsinki, Finland

  • Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ansermet, CH–1211 Genève 4, Switzerland

  • Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France

  • Laboratoire AIM, IRFU/Service d’Astrophysique – CEA/DRF – CNRS – Université Paris Diderot, Bât. 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

  • Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

  • Centro de Astrofísica da Universidade do Porto and IA-Porto, Rua das Estrelas, 4150-762 Porto, Portugal

  • Institut d’Astrophysique Spatiale, CNRS, UMR 8617, Université Paris-Sud 11, Bâtiment 121, 91405 Orsay, France

  • INAF, Osservatorio di Radioastronomia, Via Gobetti 101, I-40129, Bologna

  • CEA Saclay, DRF/Irfu/SPP, 91191 Gif-sur-Yvette Cedex, France

  • Departamento de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos, Universitat de Barcelona, Martíi Franquès 1, 08028 Barcelona, Spain

  • Department of Physics and Astronomy, Haverford College, Haverford, PA, USA 19041

  • Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma, Italy

  • INAF - Osservatorio Astronomico di Roma, via di Frascati 33, Monte Porzio Catone, Italy

  • National Center for Nuclear Research, ul. Hoża 69, 00-681 Warsaw, Poland, and The Astronomical Observatory of the Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland

  • LAPTh, Université Savoie Mont Blanc & CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex, France

  • Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, Brazil

  • Institut Néel, CNRS and Université Grenoble Alpes, F-38042 Grenoble, France

  • Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Grudziadzka 5, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland

  • Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T1Z1

  • School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

  • Laboratoire de Physique Théorique (UMR 8627), CNRS, Université Paris-Sud, Université Paris Saclay, Bâtiment 210, 91405 Orsay Cedex, France

  • Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, United Kingdom

  • Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

  • School of Physics and Astronomy and Minnesota Institute for Astrophysics, University of Minnesota/Twin Cities, USA

  • Department of Experimental Physics, Maynooth University, Maynooth, Co. Kildare, W23 F2H6, Ireland

  • Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, I-00156 Roma, Italy

  • STFC - RAL Space - Rutherford Appleton Laboratory, OX11 0QX Harwell Oxford, UK

  • SISSA, Via Bonomea 265, 34136, Trieste, Italy

  • Laboratoire de Physique Nucléaire et des Hautes Énergies (LPNHE), Université Pierre et Marie Curie, Paris, France

  • Center for Computational Astrophysics, 160 5th Avenue, New York, NY 10010, USA

  • Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK

  • Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK

  • Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antônio 43, 20080-090, Rio de Janeiro, Brazil

  • Sezione INFN Roma 2, Via della Ricerca Scientifica 1, I-00133, Roma, Italy

  • Department of Astronomy and Space Science, Sejong University, Seoul 143-747, Korea

  • Dipartimento di Fisica, Università di Milano Bicocca, Milano, Italy

  • INFN, Sezione di Milano Bicocca, Milano, Italy

E-mail: gianfranco.dezotti@oapd.inaf.it

Keywords: cosmology: observations – surveys – submillimeter: galaxies – radio continuum: general – galaxies: evolution

1 Introduction

Although not specifically designed for the observation of extragalactic sources, space-borne experiments aimed at investigating the Cosmic Microwave Background (CMB) have the potential to bring breakthroughs also in this field. An investigation of the impact on studies of extragalactic sources of the project named the Cosmic Origins Explorer plus (COrE), submitted in response to ESA’s call for the 4th Medium-size mission (M4) opportunity, was carried out by Ref. [DeZotti2015]. Various options were considered, with effective telescope sizes of m, m and 2 m, and a frequency range from 60 to 1200 GHz. A proposal for ESA’s 5th Medium-size mission (M5) is envisaging an instrument (named CORE ) with a baseline telescope size of 1.2 m and 19 frequency channels, distributed over the 60–600 GHz frequency range. A decrease or an increase of the telescope size to 1 m and to 1.5 m, respectively, were also considered. These options will be referred to as CORE 100 and CORE 150. For the CORE 150 configuration we will also consider the added value of an extension of the frequency range to 800 GHz.

Since the analysis by Ref.[DeZotti2015] was completed, considerable relevant new data have become available and more detailed studies have been carried out, motivating an update for the 5th Medium-size mission (M5) proposal. In particular, most analyses of the Planck data have now been published, giving much clearer predictions for the capabilities of next generation CMB experiments.

The plan of the paper is the following. In Sect. LABEL:sec:counts_intens we present a new assessment of the expected counts of the various classes of extragalactic sources in total intensity. In Sect. LABEL:sect:protocluster we highlight the CORE potential for detecting galaxy proto-clusters during their early evolutionary phase when they did not yet possess the hot intergalactic medium allowing detection via their X-ray emission and/or the Sunyaev-Zeldovich (SZ) effect. As shown in Sect. LABEL:sect:cluster, CORE will also provide unique information on the evolution of the star-formation rate (SFR) in virialized clusters. Section LABEL:sect:CIB deals with the information provided by CORE surveys on the Cosmic Infrared Background (CIB), while the effect of bright sub-mm lines on the power spectra measured in different frequency intervals and the possibility of counts being estimated in lines are considered in Sect. LABEL:sect:lines. In Sect. LABEL:sect:counts_pol we discuss counts in polarized flux density and report the results of new simulations aimed at determining the CORE detection limits in polarization, showing that CORE will provide a real breakthrough in this field. Our main conclusions are summarized in Sect. LABEL:sec:conclusions.

Throughout this paper we adopt the fiducial CDM cosmology with the best-fit values of the parameters derived from Planck CMB power spectra, in combination with lensing reconstruction and external data: ; ; and [Planck_parameters2015].

This work is part of a series of papers that present the science achievable by the CORE space mission. The performance requirements and the mission concept are described in [Delabrouille2017]. The instrument is described in [deBernardis2017]. Reference [Ashdown2017] explores systematic effects that may represent a threat to the measurement accuracy. Reference [Remazeilles2017] discusses polarised foregrounds and the -mode component separation. The constraints on cosmological parameters and fundamental physics that can be derived from CORE measurements are discussed in [DiValentino2016] while the constraints on inflationary models are discussed in [Finelli2016]. References [Bartlett2017] and [Melin2017] deal large-scale structure and cluster science, respectively, while [Burigana2017] addresses the effect on the CMB of the observer’s peculiar motion.

\adl@mkpreaml\@addtopreamble\@arstrut\@preamble \adl@mkpreamc\@addtopreamble\@arstrut\@preamble \adl@mkpreamc\@addtopreamble\@arstrut\@preamble \adl@mkpreamc\@addtopreamble\@arstrut\@preamble \adl@mkpreamc\@addtopreamble\@arstrut\@preamble
60 197.9 147.1 94.4 55.3
70 200.1 149.5 94.8 55.3
80 197.1 148.1 92.7 53.9
90 190.5 144.2 89.1 51.6
100 182.0 138.7 84.8 49.0
115 169.5 130.7 78.6 45.2
130 156.7 122.2 72.5 41.7
145 144.7 114.0 66.9 38.4
160 131.8 105.3 61.0 35.1
175 119.2 96.6 55.2 31.9
195 104.9 86.9 49.0 28.8
220 91.6 78.1 43.8 26.4
255 80.7 70.9 41.1 26.0
295 81.0 73.1 44.1 29.1
340 90.5 83.2 51.5 34.9
390 104.5 97.1 60.7 41.6
450 121.8 113.7 71.3 49.3
520 140.7 131.5 82.5 57.6
600 150.5 139.8 90.4 63.5
Table 1: Estimated CORE detection limits, (mJy), for 4 effective telescope sizes. The values of were derived from the simulations described in Ref. [DeZotti2015] and refer to regions of low Galactic emission.
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description