Effect of strong magnetic field on competing order parameters in twoflavor dense quark matter
Abstract
We study the effect of strong magnetic field on competing chiral and diquark order parameters in a regime of moderately dense quark matter. The interdependence of the chiral and diquark condensates through nonperturbative quark mass and strong coupling effects is analyzed in a twoflavor NambuJonaLasinio (NJL) model. In the weak magnetic field limit, our results agree qualitatively with earlier zerofield studies in the literature that find a critical coupling ratio below which chiral or superconducting order parameters appear almost exclusively. Above the critical ratio, there exists a significant mixed broken phase region where both gaps are nonzero. However, a strong magnetic field G disrupts this mixed broken phase region and changes a smooth crossover found in the weakfield case to a firstorder transition for both gaps at almost the same critical density. Our results suggest that in the twoflavor approximation to moderately dense quark matter, strong magnetic field enhances the possibility of a mixed phase at high density, with implications for the structure, energetics and vibrational spectrum of neutron stars.
pacs:
26.60.c, 24.85.+p, 97.60.JdI Introduction
The existence of deconfined quark matter in the dense interior of a neutron star is an interesting question that has spurred research in several new directions in nuclear astrophysics. On the theoretical side, it has been realized that cold and dense quark matter must be in a superconductor/superfluid state Barrois:1977xd (); Bailin:1983bm (); Iwasaki:1994ij (); Alford:1997zt (); Rapp:1997zu (); Alford:2007xm () with many possible intervening phases Alford:1998mk (); Huang:2001yw (); Mishra:2004gw (); Steiner:2002gx (); Neumann:2002jm (); Shovkovy:2003uu (); Schmitt:2004hg (); Rajagopal:2006ig () between a few times nuclear matter density to asymptotically high density, where quarks and gluons interact weakly. The observational impact of these phases on neutron star properties can be varied and dramatic Alcock:1986hz (); Glendenning:1997fy (); Page:2002bj (); Jaikumar:2002vg (); Reddy:2002xc (); Jaikumar:2005hy (); Berdermann:2016mwt (); Jaikumar:2008kh (). Therefore, it is of interest to situate theoretical ideas and advances in our understanding of dense quark matter in the context of neutron stars, which serve as unique astrophysical laboratories for such efforts. The phase structures of hot quark matter have been probed in experiments such as in heavyion collisions at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC). It is estimated in Refs. Kharzeev:2007jp (); Skokov:2009qp (); Voronyuk:2011jd () that the magnetic field originating from offcentral nucleonnucleon collisions at these colliders can be as large as G. On the astrophysical side, the strength of the magnetic field in some magnetars is of the order G Paczynski:1992zz (), while in the core of such objects, magnetic field might reach up to G. Therefore, it is not surprising that many recent works have stressed the role of strong magnetic fields on hot or dense quark matter Mandal:2012fq (); Allen:2013lda (); Sinha:2013dfa (); Denke:2013gha (); Grunfeld:2014qfa (); Chatterjee:2014qsa (); Allen:2015qxa (); Denke:2015kga (); Mandal:2016dzg ().
At very high density (i.e. where is the baryon chemical potential and is the scale of quantum chromodynamics) and for number of flavors , the preferred pairing pattern is a flavor and color democratic one termed as the colorflavorlocked (CFL) phase Alford:1998mk (). This idealized phase, while it displays the essentially novel features of the color superconducting state, is unlikely to apply to the bulk of the neutron star matter, since even ten times nuclear matter saturation density () only corresponds to a quark chemical potential MeV. At these densities, quark mass and strong coupling effects can be important, and must be treated nonperturbatively. It is reasonable to think that the strange quark current mass, being much larger than that of the up and down quarks, inhibits pairing of strange quarks with light quarks. For the purpose of this work, we therefore adopt the scenario of quark matter in the twoflavor superconducting phase, which breaks the color symmetry to , leaving light quarks of one color (say “3”) and all colors of the strange quark unpaired. Although this phase initially appeared to be disfavored in compact stars Alford:2002kj (); Aguilera:2004ag () once constraints of neutrality were imposed within a perturbative approach to quark masses, the NJL model where masses are treated dynamically still allows for the 2SC phase. Since the issue is not settled, we proceed by adopting the NJL model which best highlights the competition between the chiral and diquark condensates in a straightforward way. Also, our results will be qualitatively true for the 2SC+s phase Steiner:2002gx (); Mishra:2004gw (), which can be studied similarly by simply embedding the strange quark, which is inert with respect to pairing, in the enlarged threeflavor space. The additional complications of compact star constraints have been examined before Fayazbakhsh:2010gc (); Mandal:2012fq (); Mandal:2016dzg (), and do not change the main qualitative conclusions of the present work, namely, that strong magnetic field alters the competition between the chiral and diquark order parameters from the weakfield case.
Our objective in this paper is a numerical study of the competition between the chiral and diquark condensates at moderately large and large magnetic field using the NJL model, similar in some respects to previous works Huang:2001yw (); Schwarz:1999dj (); Buballa:2001gj (); Mishra:2004gw (); Mishra:2003nr (), which treat the quark mass nonperturbatively. Instantonbased calculations and randommatrix methods have also been employed in studying the interplay of condensates Berges:1998rc (); Carter:1999xb (); Vanderheyden:1999xp (). In essence, smearing of the Fermi surface by diquark pairing can affect the onset of chiral symmetry restoration, which happens at , where is the constituent quark mass scale Chen:2008zr (). Since appears also in the (NambuGorkov) quark propagators in the gap equations, a coupled analysis of chiral and diquark condensates is required. This was done for the twoflavor case with a common chemical potential in Huang:2001yw (), but for zero magnetic field. We use a selfconsistent approach to calculate the condensates from the coupled gap equations, and find small quantitative (but not qualitative) differences from the results of Huang et. al. Huang:2001yw () for zero magnetic field. This small difference is most likely attributed to a difference in numerical procedures in solving the gap equations. We also address the physics of chiral and diquark condensates affected by large inmedium magnetic field that are generated by circulating currents in the core of a neutron or hybrid star. Magnetic field in the interior of neutron stars may be as large as G, pushing the limits of structural stability of the star Bocquet:1995je (); Broderick:2001qw (). There is no Meissner effect for the rotated photon, which has only a small gluonic component, therefore, magnetic flux is hardly screened Alford:1999pb (), implying that studies of magnetic effects in color superconductivity are highly relevant. Note that the rotated gluonic field, which has a very small photonic component, is essentially screened due to the 2SC phase. Including the magnetic interaction of the quarks with the external field leads to qualitatively different features in the competition between the two condensates, and this is the main result of our work.
In Section II, we state the NJL model Lagrangian for the 2SC quark matter. In Section III, we recast the partition function and thermodynamic potential in terms of interpolating bosonic variables. In Section IV, we obtain the gap equations for the chiral and diquark order parameters by minimizing the thermodynamic potential (we work at zero temperature throughout since typical temperature in stars, ). In Section V, we discuss our numerical results for the coupled evolution of the condensates as functions of a single ratio of couplings, chemical potential and magnetic field before concluding in Section VI.
Ii Lagrangian for 2SC quark matter
The Lagrangian density for two quark flavors () applicable to the scalar and pseudoscalar mesons and scalar diquarks is
(1)  
where is a Dirac spinor which is a doublet (where ) in flavor space and triplet (where ) in color space. The chargeconjugated fields are defined as and with chargeconjugation matrix . The components of the are the Pauli matrices in flavor space and, and are the antisymmetric matrices in flavor and color spaces respectively. The common quark chemical potential is denoted as ^{1}^{1}1For simplicity we assume a common chemical potential for all quarks. In an actual neutron star containing some fraction of charge neutral 2SC or 2SC+s quark matter in equilibrium, additional chemical potentials for electric charge and color charges must be introduced in the NJL model. Furthermore, there can be more than one diquark condensate and in general Mishra:2004gw (). and is the current quark mass matrix in the flavor basis. We take the exact isospin symmetry limit, . The and gauge fields are denoted by and respectively. Here, is the electromagnetic charge of an electron and is the coupling constant. The electromagnetic charge matrix for quark is defined as with (in unit of ). The couplings of the scalar and diquark channels are denoted as and respectively. In general, one can extend the NJL Lagrangian considered in Eq. 1 by including vector and t’ Hooft interaction terms which can significantly affect the equation of state of the compact stars with superconducting quark core Klahn:2006iw (); Bonanno:2011ch (). In this paper, our main aim is to investigate the competition between chiral and diquark condensates and therefore, we do not consider other interactions in our analysis.
We introduce auxiliary bosonic fields to bosonize the fourfermion interactions in Lagrangian (1) via a HubbardStratonovich (HS) transformation. The bosonic fields are
(2) 
and after the HS transformation, the bosonized Lagrangian density becomes
(3)  
where . We set in our analysis, which excludes the possibility of pion condensation for simplicity Andersen:2007qv (). Order parameters for chiral symmetry breaking and color superconductivity in the 2SC phase are represented by nonvanishing vacuum expectation values (VEVs) for and . The diquark condensates of and quarks carry a net electromagnetic charge, implying that there is a Meissner effect for ordinary magnetism, while a linear combination of the photon and gluon leads to a “rotated” massless field which is identified as the inmedium photon. We can write the Lagrangian in terms of rotated quantities using the following identity,
(4) 
In the r.h.s. of the Eq. (4) all quantities are rotated. In space in units of the rotated charge of an electron the rotated charge matrix is
(5) 
The other diagonal generator plays no role here because the degeneracy of color and ensures that there is no long range gluon field. We take a constant rotated background magnetic field along axis. The gapped 2SC phase is neutral, requiring a neutralizing background of strange quarks and/or electrons. The strange quark mass is assumed to be large enough at the moderate densities under consideration so that strange quarks do not play any dynamical role in the analysis.
Iii Thermodynamic potential
The partition function in the presence of an external magnetic field in the mean field approximation is given by
(6) 
where is the normalization factor, is the inverse of the temperature , is the external magnetic field and is the Lagrangian density in terms of the rotated quantities. The full partition function can be written as a product of three parts, . Here, serves as a constant multiplicative factor, denotes the contribution for quarks with color “1” and “2” and is for quarks with color “3”. These three parts can be expressed as
(7)  
(8)  
(9) 
The kinetic operators now read where and we use the notation . In space in units of the rotated charge matrix is given by . Here, and are unit matrix on color and flavor spaces respectively. In our case, this translates to charges and . With quarks as inert background, we also have and . Imposing the charge neutrality and equilibrium conditions is known to stress the pairing and lead to gluon condensation and a strong gluomagnetic field Ferrer:2006ie (). The role of such effects has been studied in Mandal:2012fq (), but here our focus is on the interdependence of the condensates and their response to the strong magnetic field.
Evaluation of the partition function and the thermodynamic potential, (where is the volume of the system) is facilitated by introducing eightcomponent NambuGorkov spinors for each color and flavor of quark, leading to
(10)  
where and are the quark propagators and inverse of the propagators are given by
(11) 
with . The determinant computation is simplified by reexpressing the charges in terms of charge projectors in the colorflavor basis, following techniques applied for the CFL phase Noronha:2007wg (). The colorflavor structure of the condensates can be unraveled for the determinant computation by introducing energy projectors Huang:2001yw () and moving to momentum space, whereby we find
(12) 
where with and . The energy is defined as , if then else . The sum over denotes the discrete sum over the Matsubara frequencies, labels the Landau levels in the magnetic field which is taken in the direction.
Iv Gap Equations and Solution
Using the following identity we can perform the discrete summation over the Matsubara frequencies
(13) 
Then we go over to the 3momentum continuum using the replacement , where is the thermal volume of the system. Finally, the zerofield thermodynamic potential can be expressed as,
(14) 
In presence of a quantizing magnetic field, discrete Landau levels suggest the following replacement
(15) 
where is the degeneracy factor of the th Landau level (all levels are doubly degenerate except the zeroth level). The thermodynamic potential in presence of magnetic field is given by
(16)  
In either case, we can now solve the gap equations obtained by minimizing the (zerotemperature) thermodynamic potential obtained in presence of magnetic field.
(17) 
Since the above equations involve integrals that diverge in the ultraviolet region, we must regularize in order to obtain physically meaningful results. We choose to regulate these functions using a sharp cutoff (step function in ), which is common in effective theories such as the NJL model Schwarz:1999dj (); Buballa:2001gj (), although one may also employ a smooth regulator Alford:1998mk (); Noronha:2007wg () without changing the results qualitatively for fields that are not too large ^{2}^{2}2For example, a smooth cutoff was employed in Noronha:2007wg () to demonstrate the DeHaas Van Alphen oscillations in the gap parameter at very large magnetic field.. The momentum cutoff restrict the number of completely occupied Landau levels which can be determined as follows
(18) 
We use the fact that to compute . For magnetic field GeV ( G, conversion to Gauss is given by G), is of the order of 50 and the discrete summation over Landau levels becomes almost continuous. In that case, we recover the results of the zero magnetic field case as described in the next section. For fixed values of the free parameters, we were able to solve the chiral and diquark gap equations selfconsistently, for as well as large . Before discussing our numerical results, we note the origin of the interdependence of the condensates. The chiral gap equation contains only which is determined by vacuum physics, but also depends indirectly on (a free parameter) through , which is itself dependent on the constituent . Our numerical results can be understood as a consequence of this coupling and the fact that a large magnetic field stresses the pair (same charge, opposite spins implies antialigned magnetic moments) while strengthening the pair (opposite charge and opposite spins implies aligned magnetic moments).
V Numerical analysis
In order to investigate the competition between the chiral and the diquark condensates, in this section, we solve the two coupled gap equations (17) numerically. These gap equations involve integrals that have diverging behavior in the highenergy region (this is an artifact of the nonrenormalizable nature of the NJL model). Therefore, to obtain physically meaningful behavior, one has to regularize the diverging integrals by introducing some cutoff scale . A sharp cutoff function sometimes leads to unphysical oscillations in thermodynamical quantities of interest, and especially for a system with discrete Landau levels. A novel regularization procedure called “Magnetic Field Independent Regularization” (MFIR) scheme Menezes:2008qt (); Allen:2015paa () can remove the unphysical oscillations completely even if a sharp cutoff function is used within MFIR. To reduce the unphysical behavior, it is very common in literature to use various smooth cutoff functions although they cannot completely remove the spurious oscillations. Here, we list a few of them:

FermiDirac type Fukushima:2007fc (): where is a smoothness parameter.

WoodsSaxon type Fayazbakhsh:2010gc (): where is a smoothness parameter.

Lorenzian type Frasca:2011zn (): where is a positive integer.
where , with for and for . Cutoff functions become smoother for larger values of , or in case of the Lorenzian type of regulator. We have checked our numerical results for different cutoff schemes like sharp cutoff (Heaviside step function) and various smooth cutoff parameterizations as mentioned above and found that our main results are almost insensitive for different cutoff schemes. We therefore, use a smooth FermiDirac type of regulator with throughout numerical analysis.
One can fix various NJL model parameters – the bare quark mass , the momentum cutoff and the scalar coupling constant by fitting the pion properties in vacuum viz. the pion mass MeV, the pion decay constant MeV and the constituent quark mass GeV. Similarly, one can fix the diquark coupling constant by fitting the scalar diquark mass ( MeV) to obtain vacuum baryon mass of the order of MeV Ebert:1991pz (). There are some factors that can, in principle, alter those model parameters e.g. strength of the external magnetic field, temperature, choice of the cutoff functions etc. Assuming that those factors have only small effects on the parameters and expecting that our numerical results would not change qualitatively, we fix the parameters in the isospin symmetric limit as follows (a discussion of the parameter choice can be found in Ref. Buballa:2003qv ())
(19) 
where is a free parameter. Although Fierz transforming one gluon exchange implies for and fitting the vacuum baryon mass gives Ebert:1991pz (), the underlying interaction at moderate density is bound to be more complicated, therefore we choose to vary the coupling strength of the diquark channel to investigate the competition between the condensates.
We investigate the behavior of the chiral and diquark gaps along the chemical potential direction in presence of magnetic field for different magnitudes of the coupling ratio () at zero temperature. Before we discuss the influence of diquark gap on the chiral phase transition, we first demonstrate the behavior of the chiral gap for case (equivalently ) for different magnitudes of . The choice of is made to see the effects of the inclusion of different Landau levels in the system. In Table 1, we show the values of and and the corresponding values of the transition magnetic field . For example, if , then the number of fully occupied Landau level, . In Fig. 1, we show as functions of in absence of diquark gap for different choices of . In Figs. (a)a and (b)b, we show the in absence of magnetic field () and in the weak magnetic field limit ( GeV or equivalently G) respectively. One can see that these two figures look almost identical. The reason is that the number of completely occupied Landau levels, becomes very large (e.g. for GeV) in the weak magnetic field limit, making the discrete Landau level summation quasicontinuous. As we increase the magnetic field, noticeable deviations appear in the behavior of the chiral gap as seen in Figs. (c)c to (f)f.
Int  (GeV)  Int  (GeV) 
1  0.213  1  0.427 
2  0.107  2  0.213 
3  0.071  3  0.142 
4  0.053  4  0.107 
5  0.043  5  0.085 
From Fig. 1, it is clear that we get multiple solutions to the chiral gap equation for a small range of around the chiral phase transition region. For example, we get three solutions to the chiral gap equation for a narrow window of for zero or weak magnetic field ( G) cases. These three solutions correspond to the stable, metastable and unstable branches of the system. In Fig (a)a, we plot the values of corresponding to the three solutions obtained in the small window. The value of the gap for which is the lowest corresponds to the stable solution at any given density. The critical chemical potential (where the chiral and the diquark phase transitions occur) is the point where the first derivative of (and the gaps) behave discontinuously. The location of gives the transition point from the stable region to the metastable region of the system. This can easily be identified by looking at the behavior of as shown in Fig. (a)a. We follow this method to locate the first order phase transition point. In Fig. (b)b, we plot as a function of . We observe that oscillates with with dips whenever takes an integer value, following the Shubnikov de Haasvan Alphen effect. Similar oscillations in the density of states and various thermodynamic quantities are observed in metals in presence of magnetic field at very low temperature. The magnitude of oscillations becomes more pronounced as we increase the magnetic field. If GeV ( G), only the zeroth Landau level is completely occupied as evident from Table 1.
We observe multiple intermediate transitions (from Fig. (c)c to Fig. (d)d) due to the filling of successive Landau levels, and for a particular , sometimes there are two stable solutions at different densities for the same pressure. Similar multiple solutions of the gaps has been observed in the context of magnetizedNJL model with repulsive vector interactions Denke:2013gha (). Comparing the values of at for very strong magnetic field, one finds that increases with . This is the magnetic catalysis effect Klimenko:1990rh (); Klimenko:1991he (); Gusynin:1994re (); Gusynin:1994xp (). It is also interesting to note that with increasing magnetic fields, the spread of the metastable region (the window where we have multiple solutions) becomes wider. For example, the spread of the metastable regions for GeV is about 0.22 GeV and for GeV is about 0.12 GeV. These findings suggest the possibility of multiple phases with different values of dynamical mass in the presence of inhomogeneous magnetic fields, which we postpone to a future investigation. It is important to mention that the multiple solutions observed in chiral condensate as function of chemical potential would disappear when plotted as function of baryon density defined as (see e.g. Section 4.2 in Ref. Schwarz:2003 ()).
In Fig. 3, we show and as functions of for different in presence of strong magnetic field. In Huang:2001yw (), the competition of chiral and diquark gaps without any magnetic field was discussed in great detail. We observe that increases with the increase of . For example, GeV for GeV and GeV for GeV. In Huang:2001yw (), it was shown that with the increase of , the first order transition of the chiral and diquark gaps becomes crossover through a secondorder phase transition. When a strong magnetic field is present, we find that the crossover becomes a first order transition. This is an important finding of this work, which has several implication for neutron star physics as discussed in the conclusion. The critical chemical potential is almost same for both the chiral and diquark phase transition, but takes on smaller values as we increase for a fixed (as shown in Fig. 3).
In the weak (or zero) magnetic field limit, appears at a smaller with increasing and rises smoothly from zero, until it becomes discontinuous at . At , the chiral gap also changes discontinuously, with the jumps in the gaps decreasing with increasing . For instance, in Table 2 we see the jump in the chiral gap () decreases from 0.250 GeV to 0.133 GeV as we increase from 0.75 to 1.05. The corresponding jumps in diquark gap () decreases from 0.077 GeV to 0.066 GeV. This picture does not change qualitatively until we go above a critical value . As long as , the jumps in the gaps and remain nonzero but decrease as moves towards . In other words, the metastable region in as shown in Fig. (a)a shrinks with increasing . At the metastable and unstable regions vanish completely. This qualifies it to be a second order phase transition. Above , the gaps and are smoothly varying resulting in a smooth crossover. However, there always exists a pseudotransition point () around which fluctuations/variations of the condensates (i.e. derivatives of and w.r.t. ) are sharply peaked. The width of these peaked distributions broaden with further increase of , and moves to the left with increasing . These results for agree qualitatively with the zero field results of Huang:2001yw () with minor quantitative differences at less than a few percent level. The region where the condensates coexist was termed by them as the “mixed broken phase”, since both chiral and (global) color symmetries are broken here. While it should not be confused with a genuine mixed phase, since the free energy admits a unique solution to the gap equations in this regime, it is clear that the width of this overlap region increases with increasing .
GeV  
(GeV)  (GeV)  (GeV)  Nature  (GeV)  (GeV)  (GeV)  Nature  
0.75  0.250  0.077  0.332  First order  0.227  0.084  0.323  First order 
1.05  0.133  0.063  0.295  First order  0.214  0.074  0.301  First order 
1.09  0  0  0.289  Second order  0.198  0.066  0.297  First order 
1.15  Smooth  Smooth  0.280  Crossover  0.185  0.051  0.295  First order 
1.25  Smooth  Smooth  0.255  Crossover  0.122  0.038  0.284  First order 
The competition between the condensates is driven by the strong magnetic field, which in the case of is a stress, since the chiral condensate involves quark spinors of opposite spin and same charge. On the other hand, the diquark condensate, with opposite spin and charge, is strengthened by the strong magnetic field. Thus, we expect a strengthening of the competition between the two condensates, resulting in a qualitative change from the zerofield case. With increasing , similar to the case, and decrease and the transition is first order in nature. The dramatic effect we observe is that the mixed broken phase for large at is no longer present in case of strong magnetic field case and the crossover region is replaced by a firstorder transition. Specifically, in Table 2, we see for , a smooth crossover in the case at GeV becomes a first order transition with GeV and GeV at GeV for GeV. The simultaneous appearance of the discontinuity in the gaps for large magnetic field case, at almost the same where both the condensates have their most rapid variation in the case, is a physical feature and is also cutoff insensitive. We have checked that magnetic field G does not notably alter the competition between the condensates from the zero magnetic field case.
Vi Conclusions
We study the effects of a strong homogeneous magnetic field on the chiral and diquark condensates in a twoflavor superconductor using the NJL model. We implement a selfconsistent scheme to determine the condensates, by numerically iterating the coupled (integral) equations for the chiral and superconducting gaps. We obtain results for the nature of the competition between these condensates in two cases, at weak magnetic field limit where our results are qualitatively same as zero magnetic field results Huang:2001yw () and at strong magnetic field, where we find the competition between the gaps increases strongly causing a discontinuity in the gaps and disrupting the “mixed broken phase”. This is a result of the modified free energy of the quarks in the condensate when subjected to a strong magnetic field. For magnetic fields as large as G, the antialigned magnetic moments of the quarks in the chiral condensate change the smooth crossover of the chiral transition to a sharp first order transition. The diquark gap also becomes discontinuous at this point. For magnetic fields G, there is no significant effect of the magnetic field on the competition between the condensates and zerofield results apply.
These findings can impact the physics of hybrid stars (neutron stars with quark matter) or strange quark stars in several ways. Firstly, the structure of neutron stars is strongly affected by a firstorder phase transition, with the possibility of a third family of compact stars in addition to neutron stars and white dwarfs Ayriyan:2015kit () that is separated from conventional neutron stars by a radius gap of a few km. We can speculate that strange stars or hybrid stars with superconducting quark cores inside them belong to this third family. Since we find that a strong magnetic field increases the likelihood of a firstorder phase transition and hence a mixed phase, magnetars could also possibly belong to this category of compact stars since they permit quark nucleation Kroff:2014qxa () and carry large interior magnetic fields which modify their massradius relationship Orsaria:2010xx (). Secondly, it was pointed out in Mandal:2012fq () that for large values of the local magnetic field and in the small density window of the metastable region, it is possible to realize domains or nuggets of superconducting regions with different values for the gap. Charge neutrality can also disrupt the mixed broken phase, but the oscillations of the chiral gap remain, leading to nucleation of chirally restored droplets. Such kinds of nucleation and domain formation will release latent heat that might be very large owing to the large value of the magnetic field, serving as an internal engine for possible energetic events on the surface of the neutron star Zdunik:2007dy (); Mallick:2012zq (). Such internal mechanisms are unlikely to occur in a pure neutron star without a quark core. Thirdly, strong magnetic fields and quark cores affect the radial and nonradial oscillation modes of neutron stars, which could be a discriminating feature in the gravitational wave signal from vibrating neutron stars. The frequency of the fundamental radial mode shows a kink at the density characterizing the onset of the mixed phase, and the frequencies depend on the magnetic field Panda:2015zxa (). Nonradial modes such as modes can probe the density discontinuity arising as a result of the phase transition in neutron stars Miniutti:2002bh () or strange quark stars Sotani:2001bb (), although the effect of magnetic fields in this context is as yet unexplored. Another important aspect of rotating compact stars are the modes Andersson:1997xt (), which could be responsible for spinning down neutron stars or strange quark stars from their Kepler frequency down to the observed values seen in lowmass Xray binaries. The effects of a strong magnetic field on the mode driven spin down of neutron stars have been studied in Huang:2009ue (); Staff:2011zn (), while modes in crystalline quark matter are discussed in Knippel:2009st (). The evenparity counterpart for the modes, which include nonradial oscillation modes such as the  and modes have also been explored for the case of strange quark stars in Sotani:2003zc (); Flores:2013yqa (). Our findings give additional motivation to the study of such interesting effects associated with a firstorder transition in neutron stars with strong magnetic fields, and a systematic study of these effects in the new era of gravitational waves and neutron star observations may finally reveal the presence of quark matter in the core of neutron stars.
Acknowledgments
T.M. is supported by funding from the Carl Trygger Foundation under contract CTS14:206 and the Swedish Research Council under contract 62120115107. P.J. is supported by the National Science Foundation under Grant No. PHY 1608959.
References
 (1) Bertrand C. Barrois. Superconducting Quark Matter. Nucl. Phys., B129:390–396, 1977.
 (2) D. Bailin and A. Love. Superfluidity and Superconductivity in Relativistic Fermion Systems. Phys. Rept., 107:325, 1984.
 (3) M. Iwasaki and T. Iwado. Superconductivity in the quark matter. Phys. Lett., B350:163–168, 1995.
 (4) Mark G. Alford, Krishna Rajagopal, and Frank Wilczek. QCD at finite baryon density: Nucleon droplets and color superconductivity. Phys. Lett., B422:247–256, 1998.
 (5) R. Rapp, Thomas SchÃ¤fer, Edward V. Shuryak, and M. Velkovsky. Diquark Bose condensates in high density matter and instantons. Phys. Rev. Lett., 81:53–56, 1998.
 (6) Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, and Thomas SchÃ¤fer. Color superconductivity in dense quark matter. Rev. Mod. Phys., 80:1455–1515, 2008.
 (7) Mark G. Alford, Krishna Rajagopal, and Frank Wilczek. Color flavor locking and chiral symmetry breaking in high density QCD. Nucl. Phys., B537:443–458, 1999.
 (8) Mei Huang, Pengfei Zhuang, and Weiqin Chao. Massive quark propagator and competition between chiral and diquark condensate. Phys. Rev., D65:076012, 2002.
 (9) Amruta Mishra and Hiranmaya Mishra. Color superconducting 2SC+s quark matter and gapless modes at finite temperatures. Phys. Rev., D71:074023, 2005.
 (10) Andrew W. Steiner, Sanjay Reddy, and Madappa Prakash. Color neutral superconducting quark matter. Phys. Rev., D66:094007, 2002.
 (11) F. Neumann, M. Buballa, and M. Oertel. Mixed phases of color superconducting quark matter. Nucl. Phys., A714:481–501, 2003.
 (12) Igor Shovkovy and Mei Huang. Gapless two flavor color superconductor. Phys. Lett., B564:205, 2003.
 (13) Andreas Schmitt. Spinone color superconductivity in cold and dense quark matter. PhD thesis, Frankfurt U., 2004.
 (14) Krishna Rajagopal and Rishi Sharma. The Crystallography of ThreeFlavor Quark Matter. Phys. Rev., D74:094019, 2006.
 (15) Charles Alcock, Edward Farhi, and Angela Olinto. Strange stars. Astrophys. J., 310:261–272, 1986.
 (16) Norman K. Glendenning, S. Pei, and F. Weber. Signal of quark deconfinement in the timing structure of pulsar spindown. Phys. Rev. Lett., 79:1603–1606, 1997.
 (17) Dany Page and Vladimir V. Usov. Thermal evolution and light curves of young bare strange stars. Phys. Rev. Lett., 89:131101, 2002.
 (18) Prashanth Jaikumar, Madappa Prakash, and Thomas SchÃ¤fer. Neutrino emission from Goldstone modes in dense quark matter. Phys. Rev., D66:063003, 2002.
 (19) Sanjay Reddy, Mariusz Sadzikowski, and Motoi Tachibana. Neutrino rates in color flavor locked quark matter. Nucl. Phys., A714:337–351, 2003.
 (20) Prashanth Jaikumar, Craig D. Roberts, and Armen Sedrakian. Direct Urca neutrino rate in colour superconducting quark matter. Phys. Rev., C73:042801, 2006.
 (21) J. Berdermann, D. Blaschke, T. Fischer, and A. Kachanovich. Neutrino emissivities and bulk viscosity in neutral twoflavor quark matter. Phys. Rev., D94(12):123010, 2016.
 (22) Prashanth Jaikumar, Gautam Rupak, and Andrew W. Steiner. Viscous damping of rmode oscillations in compact stars with quark matter. Phys. Rev., D78:123007, 2008.
 (23) Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J. Warringa. The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’. Nucl. Phys., A803:227–253, 2008.
 (24) V. Skokov, A. Yu. Illarionov, and V. Toneev. Estimate of the magnetic field strength in heavyion collisions. Int. J. Mod. Phys., A24:5925–5932, 2009.
 (25) V. Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya, V. P. Konchakovski, and S. A. Voloshin. (Electro)Magnetic field evolution in relativistic heavyion collisions. Phys. Rev., C83:054911, 2011.
 (26) Bohdan Paczynski. GB 790305 as a very strongly magnetized neutron star. Acta Astron., 42:145–153, 1992.
 (27) Tanumoy Mandal and Prashanth Jaikumar. Neutrality of a magnetized twoflavor quark superconductor. Phys. Rev., C87:045208, 2013.
 (28) Pablo G. Allen and Norberto N. Scoccola. Quark matter under strong magnetic fields in SU(2) NJLtype models: parameter dependence of the cold dense matter phase diagram. Phys. Rev., D88:094005, 2013.
 (29) Monika Sinha, XuGuang Huang, and Armen Sedrakian. Strange quark matter in strong magnetic fields within a confining model. Phys. Rev., D88(2):025008, 2013.
 (30) Robson Z. Denke and Marcus Benghi Pinto. Influence of a repulsive vector coupling in magnetized quark matter. Phys. Rev., D88(5):056008, 2013.
 (31) A. G. Grunfeld, D. P. Menezes, M. B. Pinto, and N. N. Scoccola. Phase structure of cold magnetized quark matter within the SU(3) NJL model. Phys. Rev., D90(4):044024, 2014.
 (32) Debarati Chatterjee, Thomas Elghozi, Jerome Novak, and Micaela Oertel. Consistent neutron star models with magnetic field dependent equations of state. Mon. Not. Roy. Astron. Soc., 447:3785, 2015.
 (33) Pablo G. Allen, Valeria P. Pagura, and Norberto N. Scoccola. Cold magnetized quark matter phase diagram within a generalized SU(2) NJL model. Phys. Rev., D91(11):114024, 2015.
 (34) Robson Z. Denke and Marcus Benghi Pinto. Coexistence of Multiple Phases in Magnetized Quark Matter with Vector Repulsion. 2015.
 (35) Tanumoy Mandal and Prashanth Jaikumar. Effect of temperature and magnetic field on twoflavor superconducting quark matter. Phys. Rev., D94(7):074016, 2016.
 (36) Mark Alford and Krishna Rajagopal. Absence of two flavor color superconductivity in compact stars. JHEP, 06:031, 2002.
 (37) D. N. Aguilera, D. Blaschke, and H. Grigorian. How robust is a 2SC quark matter phase under compact star constraints? Nucl. Phys., A757:527–542, 2005.
 (38) Sh. Fayazbakhsh and N. Sadooghi. Color neutral 2SC phase of cold and dense quark matter in the presence of constant magnetic fields. Phys. Rev., D82:045010, 2010.
 (39) T. M. Schwarz, S. P. Klevansky, and G. Papp. The Phase diagram and bulk thermodynamical quantities in the NJL model at finite temperature and density. Phys. Rev., C60:055205, 1999.
 (40) M. Buballa and M. Oertel. Color flavor unlocking and phase diagram with selfconsistently determined strange quark masses. Nucl. Phys., A703:770–784, 2002.
 (41) Amruta Mishra and Hiranmaya Mishra. Chiral symmetry breaking, color superconductivity and color neutral quark matter: A Variational approach. Phys. Rev., D69:014014, 2004.
 (42) Juergen Berges and Krishna Rajagopal. Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature. Nucl. Phys., B538:215–232, 1999.
 (43) Gregory W. Carter and Dmitri Diakonov. Chiral symmetry breaking and color superconductivity in the instanton picture. In Understanding deconfinement in QCD: Proceedings, International Workshop, Trento, Italy, 113 Mar 1999, 1999.
 (44) Benoit Vanderheyden and A. D. Jackson. A Random matrix model for color superconductivity at zero chemical potential. Phys. Rev., D61:076004, 2000.
 (45) Huan Chen, Wei Yuan, Lei Chang, YuXin Liu, Thomas Klahn, and Craig D. Roberts. Chemical potential and the gap equation. Phys. Rev., D78:116015, 2008.
 (46) M. Bocquet, S. Bonazzola, E. Gourgoulhon, and J. Novak. Rotating neutron star models with magnetic field. Astron. Astrophys., 301:757, 1995.
 (47) A. E. Broderick, M. Prakash, and J. M. Lattimer. Effects of strong magnetic fields in strange baryonic matter. Phys. Lett., B531:167–174, 2002.
 (48) Mark G. Alford, Juergen Berges, and Krishna Rajagopal. Magnetic fields within color superconducting neutron star cores. Nucl. Phys., B571:269–284, 2000.
 (49) T. Klahn, D. Blaschke, F. Sandin, C. Fuchs, A. Faessler, H. Grigorian, G. Ropke, and J. Trumper. Modern compact star observations and the quark matter equation of state. Phys. Lett., B654:170–176, 2007.
 (50) Luca Bonanno and Armen Sedrakian. Composition and stability of hybrid stars with hyperons and quark colorsuperconductivity. Astron. Astrophys., 539:A16, 2012.
 (51) Jens O. Andersen and Lars Kyllingstad. Pion Condensation in a twoflavor NJL model: the role of charge neutrality. J. Phys., G37:015003, 2009.
 (52) Efrain J. Ferrer and Vivian de la Incera. Magnetic fields boosted by gluon vortices in color superconductivity. Phys. Rev. Lett., 97:122301, 2006.
 (53) Jorge L. Noronha and Igor A. Shovkovy. Colorflavor locked superconductor in a magnetic field. Phys. Rev., D76:105030, 2007. [Erratum: Phys. Rev.D86,049901(2012)].
 (54) D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Perez Martinez, and C. Providencia. Quark matter under strong magnetic fields in the NambuJonaLasinio Model. Phys. Rev., C79:035807, 2009.
 (55) Pablo G. Allen, Ana G. Grunfeld, and Norberto N. Scoccola. Magnetized color superconducting cold quark matter within the SU(2) NJL model: A novel regularization scheme. Phys. Rev., D92(7):074041, 2015.
 (56) Kenji Fukushima and Harmen J. Warringa. Color superconducting matter in a magnetic field. Phys. Rev. Lett., 100:032007, 2008.
 (57) Marco Frasca and Marco Ruggieri. Magnetic Susceptibility of the Quark Condensate and Polarization from Chiral Models. Phys. Rev., D83:094024, 2011.
 (58) D. Ebert, L. Kaschluhn, and G. Kastelewicz. Effective meson  diquark Lagrangian and mass formulas from the NambuJonaLasinio model. Phys. Lett., B264:420–425, 1991.
 (59) Michael Buballa. NJL model analysis of quark matter at large density. Phys. Rept., 407:205–376, 2005.
 (60) K. G. Klimenko. Threedimensional GrossNeveu model in an external magnetic field. Theor. Math. Phys., 89:1161–1168, 1992. [Teor. Mat. Fiz.89,211(1991)].
 (61) K. G. Klimenko. Threedimensional GrossNeveu model at nonzero temperature and in an external magnetic field. Z. Phys., C54:323–330, 1992.
 (62) V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy. Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2+1)dimensions. Phys. Rev. Lett., 73:3499–3502, 1994. [Erratum: Phys. Rev. Lett.76,1005(1996)].
 (63) V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy. Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)dimensions. Phys. Lett., B349:477–483, 1995.
 (64) Thomas Michael Schwarz. Thermodynamics of the chiral condensate. Dissertation, Technische UniversitÃ¤t MÃ¼nchen, MÃ¼nchen, 2003.
 (65) A. Ayriyan, D. E. AlvarezCastillo, D. Blaschke, and H. Grigorian. Massradius constraints for the neutron star EoS  Bayesian analysis. J. Phys. Conf. Ser., 668(1):012038, 2016.
 (66) D. Kroff and E. S. Fraga. Nucleating quark droplets in the core of magnetars. Phys. Rev., D91(2):025017, 2015.
 (67) M. Orsaria, Ignacio F. RaneaSandoval, and H. Vucetich. Magnetars as Highly Magnetized Quark Stars: an analytical treatment. Astrophys. J., 734:41, 2011.
 (68) J. L. Zdunik, M. Bejger, P. Haensel, and E. Gourgoulhon. Strong firstorder phase transition in a rotating neutron star core and the associated energy release. Astron. Astrophys., 479:515, 2008.
 (69) Ritam Mallick and P. K. Sahu. Phase transitions in neutron star and magnetars and their connection with high energetic bursts in astrophysics. Nucl. Phys., A921:96–113, 2014.
 (70) R. Panda, K. K. Mohanta, and K. Sahu. Radial modes of oscillations of slowly rotating magnetized compact hybrid stars. J. Phys. Conf. Ser., 599(1):012036, 2015.
 (71) G. Miniutti, J. A. Pons, E. Berti, L. Gualtieri, and V. Ferrari. Nonradial oscillation modes as a probe of density discontinuities in neutron stars. Mon. Not. Roy. Astron. Soc., 338:389, 2003.
 (72) Hajime Sotani, Kazuhiro Tominaga, and Keiichi Maeda. Density discontinuity of a neutron star and gravitational waves. Phys. Rev., D65:024010, 2002.
 (73) Nils Andersson. A New class of unstable modes of rotating relativistic stars. Astrophys. J., 502:708–713, 1998.
 (74) XuGuang Huang, Mei Huang, Dirk H. Rischke, and Armen Sedrakian. Anisotropic Hydrodynamics, Bulk Viscosities and RModes of Strange Quark Stars with Strong Magnetic Fields. Phys. Rev., D81:045015, 2010.
 (75) Jan E. Staff, Prashanth Jaikumar, Vincent Chan, and Rachid Ouyed. Spindown of Isolated Neutron Stars: Gravitational Waves or Magnetic Braking? Astrophys. J., 751:24, 2012.
 (76) Bettina Knippel and Armen Sedrakian. Gravitational radiation from crystalline colorsuperconducting hybrid stars. Phys. Rev., D79:083007, 2009.
 (77) Hajime Sotani and Tomohiro Harada. Nonradial oscillations of quark stars. Phys. Rev., D68:024019, 2003.
 (78) C. V. Flores and G. Lugones. Discriminating hadronic and quark stars through gravitational waves of fluid pulsation modes. Class. Quant. Grav., 31:155002, 2014.