Dynamics of a magnetic skyrmionium in an anisotropy gradient

Dynamics of a magnetic skyrmionium in an anisotropy gradient

Chengkun Song Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Chendong Jin Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Yunxu Ma Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Jinshuai Wang Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Haiyan Xia Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Jianbo Wang Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China Key Laboratory for Special Function Materials and Structural Design of the of Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China    Qingfang Liu liuqf@lzu.edu.edu Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, People’s Republic of China
July 2, 2019
Abstract

Magnetic skyrmionium is a novel magnetization configuration with zero skyrmion number, which is composed by two skyrmions with opposite skyrmion number. Here, we study the dynamics of skyrmionium under an anisotropy gradient. We find that the skyrmionium can be efficiently driven by an anisotropy gradient with moving straightly along the direction of gradient. The skyrmion Hall angle for skyrmionium is close to zero which is much smaller than that of skyrmion. while the speed is much larger. We also demonstrate that the skyrmionium motion depends on the damping cofficient, and the skyrmionium stabilization in the motion can be modulated by narrowing the width of the nanowire. Our work shows a efficient driven method for skyrmionium, which may be promising in the application of skyrmionium based racetrack memory.

pacs:

Recently, magnetization configurations, such as droplets, Mohseni et al. (2013) domain walls (DW), Parkin et al. (2008); Tatara and Kohno (2004) skyrmions Fert et al. (2013); Nagaosa and Tokura (2013) and skyrmioniums Zhang et al. (2016, 2018); Li et al. (2018), have attracted considerable attentions in the application of spintronic devices as information carriers. As topological protected magnetic structures, skyrmions are quite small in size and can be driven by spin transfer torque (STT) and spin Hall effect (SHE), Sampaio et al. (2013); Jiang et al. (2015); Yu et al. (2012); Everschor et al. (2012) the current density is significantly lower than that moving a magnetic DW. Since they have been theoretically predicted and experimently discovered in magnetic materials MnSi, Pappas et al. (2009); Neubauer et al. (2009) lots of researches are focused on the generation and manipulation of skyrmions. Lin (2016); Zhou and Ezawa (2014); Liu et al. (2015) They have been promised potential applications in next-generation memory and spintronic devices, such racetrack memory, Fert et al. (2017); Sampaio et al. (2013); Song et al. (2017) spin transfer nano oscillators (STNOs), Zhang et al. (2015a); Garcia-Sanchez et al. (2016) logic devices, Zhang et al. (2015b) neuromorphology devices Prychynenko et al. (2018); Huang et al. (2017) and so on.

Skyrmion Hall effect is an important obstacle for the manipulation in confined magnetic geometries, which is induced by Magnus force acted on skyrmion. Jiang et al. (2017); Litzius et al. (2017) For skyrmions with topological number of , the deflection and corresponding skyrmion Hall angle are in opposite directions. Skyrmionium is a skyrmion-like magnetization configuration with a topological number Zhang et al. (2018, 2016) It can be viewed as a composed structure nested by a skyrmion with and a skyrmion with . This intriguing characteristic makes skyrmionium as a promising information carrier for spintronic devices, where the dynamics are significantly different from those of skyrmions. The generation and stablization of skyrmionium have been theoretically proposed in the system with Dzyaloshinskii-Moriya interaction (DMI) Bogdanov and Hubert (1999); Beg et al. (2015) or the gradient of curvature. Pylypovskyi et al. (2018) It has been experimently verified in ferromagnetic thin film and ferromagnetic topological insulator heterostructure. Finazzi et al. (2013); Zhang et al. (2018) Recent investigations are focused on the skyrmionium manipulation, which can be driven by magnetic field, Komineas and Papanicolaou (2015) spin transfer torque Zhang et al. (2016) and spin waves, Li et al. (2018) and the skyrmion Hall effect is limited for skyrmionium. However, a more energy efficient driving method is needed and the dynamics of skyrmioniums under anisotropy gradient still remain unexplored.

In this paper, we investigate the dynamics of a skrmionium under an anisotropy gradient as compared to skyrmions with opposite topological number . We also study the effect of damping constant. It is found that the skyrmionium can be efficiently driven along the direction of anisotropy gradient without deflection, and the moving velocity is obviously higher than that of skyrmions. Moreover, we show that the skyrmionium stabilization can be modulated by narrowing the nanowire width.

Micromagnetic simulations have been performed using Mumax3 code.Vansteenkiste et al. (2014) The time-dependent magnetization dynamics is given by the Landau-Lifshitz-Gilbert equation

(1)

where is the unit vector of the magnetization, is the saturation magnetization. and are gyromagnetic ratio and the Gilbert damping, respectively. is the effective field including the Heisenberg exchange field with exchange stiffness , perpendicular magnetic anisotropy field with anisotropy coefficient , and interfacial DMI field characterized by DMI constant . The ferromagnetic film size is 512 nm 512 nm 0.6 nm, the mesh size is 2 nm 2 nm 0.6 nm. The model parameters are adopted as follows: , , . The Gilbert damping varies from 0.01 to 0.3 and DMI strength .

Figure 1: Schematic of a VCMA gradient induced skyrmionium motion. A skyrmionium with positive polarity is located in a ferromagnetic thin film, and the inset shows the spatial distribution of the magnetization (the normalized represented by red color is positive and blue negative). The direction of anisotropy is along -axis.

We consider that an electrode layer and a wedged insulating dielectric layer are fabricated on the top of the ferromagnetic layer, a constant linear anisotropy gradient is generated along the -axis of system, as shown in Fig. 1. The maximum (High ) and minimum (Low ) magnetic anisotropy are displayed at the edge of the film. Inset shows the magnetization configuration of a skrmionium located in the ferromagnetic film, where the red and blue colors represent positive and negative -component of magnetization, respectively. The anisotropy distribution along -axis is , in which represents the anisotropy gradient, those values with High and Low are depicted in Table. 1.

High Low
Table 1: Values of High and Low corresponding to the linear anisotropy gradient along -axis.

Fig. 2 depicts the skyrmionium radius ( and ) as a function of and . The results show that the size increases with increasing and decreasing . Four different magnetization states appear, which are single domain, skyrmion, skyrmionium and labyrinth domain. According to Table. 1 and Fig. 2, the anisotropy variation along -axis has a weak influence on skrmionium size change in the motion,thus we assume that the skyrmionium magnetization profile performs a translation without deformation.

Figure 2: Phase diagram of skyrmionium radius (a) and (b) as a function of and . Four corresponding magnetization states are represented by (c) Single domain, (d) skyrmion, (e) skyrmionium and (f) labyrinth domain. and are defined in (e). The skyrmion radius for state (d) are simultaneously depicted in (a) and (b).

First, we consider a skyrmionium placed in the ferromagnetic layer, which moves under anisotropy gradient. To describe the skyrmionium dynamics under anisotropy gradient, we use the model in the framework of the Thiele equation, Thiele (1973) which treated the skyrmionium as a rigid particle,

(2)

where is the velocity of skyrmion, is the gyromagnetic coupling vector. is the skyrmion number. For skyrmionium with , the corresponding . is the dissipative force tensor, where with . is the driving force from the anisotropy gradient along -axis described as

(3)

The force due to boundary effect is not considered for that the skyrmionium is far from the edge of the sample. As the anisotropy gradient is only applied along -axis, , we obtain

(4)

where and are the moving velocity in and directions. Thus

(5)

which depicts that the skyrmionium motion is along the direction of anisotropy gradient -axis, the velocity is proportinal to and inversely proportional to .

While for skyrmion with , , the skyrmion velocity and are expressed asShen et al. (2018)

(6)

thus the skyrmion velocity . Clearly, the skyrmionium velocity is larger than the skyrmion velocity with the same magnetic parameters. The moving directions for them are quite different. The skyrmion Hall angle is defined as

(7)

which is for skyrmionium, and for skyrmion. Depending on the sign of and the Magnus force acted on, skyrmions with opposite skyrmion number moves with opposite skyrmion Hall angle. As the skyrmionium is composed of two skyrmions with opposite skyrmion numbers ( and ). The total effective force acting on skyrmionium can be treated as the combination forces from two skyrmions, where the transverse force is zero.

Figure 3: Skyrmionium velocity (Red points) and (Blue points) as a function of , where and . The inset is skyrmion Hall angle for skyrmionium with varying .

Based on the analytical model, we carried out the simulation of the motion of skyrmionium. The simulated skyrmionium velocity and as a function of damping constant are shown in Fig. 3. A Inverse function relationship of related to is observed as predicted, the corresponding is about zero. Inset in Fig. 3 shows the simulated results of . It is worth noted that the skyrmionium size increases moving from high area to low area. While in our system, when we set the DMI strength and , the skyrmionium magnetization profile only exhibits small differeces between in the region of high and low , and the change of skyrmionium size is negligible, as previously shown in Fig. 2 and Table. 1.

Figure 4: (a) Velocities of Skyrmionium ( and ) as a function of anisotropy gradient with . (b) Trajectories of skyrmionium and skyrmion () driven by anisotropy gradient along -direction with . The dots denote the skyrmion and skyrmionium center. Insets are the snapshots of skyrmion with , skyrmionium with and skyrmion with (from top to bottom). (c) Skyrmion Hall angle () as a function of anisotropy gradient with and . (d) Comparasion of velocities of skyrmion with and skyrmionium with induced by anisotropy gradient.

In order to further investigate the skyrmionium dynamics driven by anisotropy gradient, we investigate its motion under different , and compare with the dynamics of skyrmion with , as shown in Fig. 4. The results depicted in Fig. 4(a) show that a larger anisotropy gradient will create a larger driving force which in turn lead a higher velocity for skyrmionium, the velocities of are linearly proportional to . However, is close to zero. These results are in consist with the analytical results in Eq. 5. Fig. 4 (b) shows the trajectories of skyrmionium and skyrmions () at the damping parameter , where the anisotropy gradient is fixed as . The skyrmionium straightly moves along the direction without transverse motion. While for skyrmions, their motions exhibit a deflection towards the and directions for and , respectively. The transverse shift of skyrmion is referred as skyrmion Hall effect, which is similar to the skyrmion motion driven by current. A topological Magnus force will act on skyrmion when skyrmion is moving, which is perpendicular to the velocity of skyrmion. The directions of Magnus force depends on sign of the skyrmion number , which are opposite for and . As the skyrmionium can be viewed as a hybrid of skyrmion with opposite , the Magnus force acted on skyrmionium is cancelled out, thus the skyrmionium can moves in a straight trajectory.

Figure. 4 (c) shows the skyrmion Hall angle as a function of anisotropy gradient for and . The skyrmionium moves straightly driven by anisotropy gradient and . Moreover, the skyrmion Hall angle for skyrmionium is independent of damping constant. However, skyrmion with and exhibit a large skyrmion Hall angle . For skyrmion with (upper inset), with , and it decreases to with . While for skyrmion with (lower inset), is and for and , respectively. By comparing the simulated results of skyrmionium and skyrmion velocities at certain values of for (Fig. 4 (d)), where , it is found that the skyrmionium velocity is much larger than that of skyrmion. It is worth mentioning that only of skyrmionium and of skyrmions are depicted to demonstrate the moving directions of skyrmions in Fig. 4, for that for skyrmionium and for skyrmions are quite small.

Figure 5: Comparasion of skyrmionium motion driven by anisotropy gradient in nanowires with different width, nm (left column) and nm (right column), the anisotropy gradient is , respectively. The white dashed lines indicate the center position along direction.

A larger anisotropy gradient is necessary to increase skyrmionium velocity, while it induces a significant change of skyrmionium size, which limits the application in racetrack memory. The skyrmionium deformation with moving in nanowire under a larger anisotropy at is indicated in Fig. 5. When the skyrmionium moves in a nanowire with width nm, its magnetization profile keeps unchanged in a small anisotropy gradient with . When the anisotropy gradient increases to , the skyrmionium magnetization profile only exhibits a slight change with a small transverse shift for inner part, and the outer part elongates along direction. While for , the transverse shift of inner part and the elongation of outer part for skyrmionium is more significant. Two nested skyrmions experience the Magnus force when the skyrmionium is moving, which are in opposite directions ( and ). In a large anisotropy gradient, the Magnus force acted on two skyrmions increases with increasing speed. Thus, the skyrmionium stabilization is perturbed with the inner and outer skyrmion moving toward and directions, respectively. The competetion between these two effect induces the skyrmion deformation in the large anisotropy. As depicted in the left corner of Fig. 5, a skyrmionium with negative polarity moves with a deformation that exhibits a slight change with a small transverse shift along direction for inner part, which is opposite to that shown in the right corner of Fig. 5.

With decreasing the width of nanowire to 100 nm, the skyrmionium size for initial state reduces compared to the skyrmionium in the nanowire with nm. In different anisotropy gradients, the skyrmionium magnetization profiles keep stable, and a small deformation appear in a larger anisotropy gradient . The Magnus force acted on inner and outer part of skyrmionium is compensated by the edge of nanowire, and the deformation is limited comparing to the case of nm. It is found that the boundary confinment of the nanowire plays an important role to stabilize skyrmionium. Many methods have been proposed to confining the skyrmion in the racetrack and increasing moving speed, such as modifying magnetic parameters (magnetic anisotropy, DMI), Mulkers et al. (2017); Upadhyaya et al. (2015) using curbed nanowire. Purnama et al. (2015) By modification the boundary effect of skyrmionium based racetrack, the stabilizaiton and moving speed can be enhanced.

In summary, we have studied the skyrmionium motion in an anisotropy gradient. We find that the skyrmionium moves straightly along the direction of anisotropy gradient, and the velocity increases linearly with which is much larger than that of magnetic skyrmion. Moreover, we find that a larger anisotropy gradient induces deformation of skyrmionium. By narrowing the nanowire and enhancing the boundary confinment, the skyrmionium deformation can be limited with a large motion speed. Our results may be useful in the application of energy efficient skyrmionium based spintronic devices.

This work is supported by National Natural Science Fund of China (Grants No. 11574121 and No. 51771086)

References

  • Mohseni et al. (2013) S. M. Mohseni, S. Sani, J. Persson, T. A. Nguyen, S. Chung, Y. Pogoryelov, P. Muduli, E. Iacocca, A. Eklund, R. Dumas, et al., Science 339, 1295 (2013).
  • Parkin et al. (2008) S. S. Parkin, M. Hayashi,  and L. Thomas, Science 320, 190 (2008).
  • Tatara and Kohno (2004) G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004).
  • Fert et al. (2013) A. Fert, V. Cros,  and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013).
  • Nagaosa and Tokura (2013) N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
  • Zhang et al. (2016) X. Zhang, J. Xia, Y. Zhou, D. Wang, X. Liu, W. Zhao,  and M. Ezawa, Phys. Rev. B 94, 094420 (2016).
  • Zhang et al. (2018) S. Zhang, F. Kronast, G. van der Laan,  and T. Hesjedal, Nano Lett. 18, 1057 (2018).
  • Li et al. (2018) S. Li, J. Xia, X. Zhang, M. Ezawa, W. Kang, X. Liu, Y. Zhou,  and W. Zhao, Appl. Phys. Lett. 112, 142404 (2018).
  • Sampaio et al. (2013) J. Sampaio, V. Cros, S. Rohart, A. Thiaville,  and A. Fert, Nat. Nanotechnol. 8, 839 (2013).
  • Jiang et al. (2015) W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, et al., Science 349, 283 (2015).
  • Yu et al. (2012) X. Yu, N. Kanazawa, W. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose,  and Y. Tokura, Nat. Commun. 3, 988 (2012).
  • Everschor et al. (2012) K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer, C. Pfleiderer,  and A. Rosch, Phys. Rev. B 86, 054432 (2012).
  • Pappas et al. (2009) C. Pappas, E. Lelievre-Berna, P. Falus, P. Bentley, E. Moskvin, S. Grigoriev, P. Fouquet,  and B. Farago, Phys. Rev. Lett. 102, 197202 (2009).
  • Neubauer et al. (2009) A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. Niklowitz,  and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).
  • Lin (2016) S.-Z. Lin, Phys. Rev. B 94, 020402 (2016).
  • Zhou and Ezawa (2014) Y. Zhou and M. Ezawa, Nat. Commun. 5, 4652 (2014).
  • Liu et al. (2015) Y. Liu, G. Yin, J. Zang, J. Shi,  and R. K. Lake, Appl. Phys. Lett. 107, 152411 (2015).
  • Fert et al. (2017) A. Fert, N. Reyren,  and V. Cros, Nat. Rev. Mater. 2, 17031 (2017).
  • Song et al. (2017) C. Song, C. Jin, J. Wang, H. Xia, J. Wang,  and Q. Liu, Appl. Phys. Lett. 111, 192413 (2017).
  • Zhang et al. (2015a) S. Zhang, J. Wang, Q. Zheng, Q. Zhu, X. Liu, S. Chen, C. Jin, Q. Liu, C. Jia,  and D. Xue, New J. Phys. 17, 023061 (2015a).
  • Garcia-Sanchez et al. (2016) F. Garcia-Sanchez, J. Sampaio, N. Reyren, V. Cros,  and J. Kim, New J. Phys. 18, 075011 (2016).
  • Zhang et al. (2015b) X. Zhang, Y. Zhou, M. Ezawa, G. Zhao,  and W. Zhao, Sci. Rep. 5, 11369 (2015b).
  • Prychynenko et al. (2018) D. Prychynenko, M. Sitte, K. Litzius, B. Krüger, G. Bourianoff, M. Kläui, J. Sinova,  and K. Everschor-Sitte, Phys. Rev. Appl. 9, 014034 (2018).
  • Huang et al. (2017) Y. Huang, W. Kang, X. Zhang, Y. Zhou,  and W. Zhao, Nanotechnology 28, 08LT02 (2017).
  • Jiang et al. (2017) W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. B. Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang, et al., Nat. Phys. 13, 162 (2017).
  • Litzius et al. (2017) K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster, et al., Nat. Phys. 13, 170 (2017).
  • Bogdanov and Hubert (1999) A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 195, 182 (1999).
  • Beg et al. (2015) M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden, M.-A. Bisotti, M. Albert, D. Chernyshenko, O. Hovorka, R. L. Stamps, et al., Sci. Rep. 5, 17137 (2015).
  • Pylypovskyi et al. (2018) O. V. Pylypovskyi, D. Makarov, V. P. Kravchuk, Y. Gaididei, A. Saxena,  and D. D. Sheka, Phys. Rev. Appl. 10, 064057 (2018).
  • Finazzi et al. (2013) M. Finazzi, M. Savoini, A. Khorsand, A. Tsukamoto, A. Itoh, L. Duo, A. Kirilyuk, T. Rasing,  and M. Ezawa, Phys. Rev. Lett. 110, 177205 (2013).
  • Komineas and Papanicolaou (2015) S. Komineas and N. Papanicolaou, Phys. Rev. B 92, 064412 (2015).
  • Vansteenkiste et al. (2014) A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez,  and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).
  • Thiele (1973) A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
  • Shen et al. (2018) L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov, X. Liu,  and Y. Zhou, Phys. Rev. B 98, 134448 (2018).
  • Mulkers et al. (2017) J. Mulkers, B. Van Waeyenberge,  and M. V. Milošević, Phys. Rev. B 95, 144401 (2017).
  • Upadhyaya et al. (2015) P. Upadhyaya, G. Yu, P. K. Amiri,  and K. L. Wang, Phys. Rev. B 92, 134411 (2015).
  • Purnama et al. (2015) I. Purnama, W. L. Gan, D. W. Wong,  and W. S. Lew, Sci. Rep. 5, 10620 (2015).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
368579
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description