Distortion of Neutron Stars
With a Toroidal Magnetic Field

J. FRIEBEN and L. REZZOLLA Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
D-14476 Golm, Germany

Models of rotating relativistic stars with a toroidal magnetic field have been computed for a sample of eight equations of state of cold dense matter. Non-rotating models admit important levels of magnetization and quadrupole distortion accompanied by a seemingly unlimited growth in size. Rotating models reach the mass-shedding limit at smaller angular velocities than in the non-magnetized case according to the larger circumferential equatorial radius induced by the magnetic field. Moreover, they can be classified as prolate–prolate, oblate–prolate, or oblate–oblate with respect to surface deformation and quadrupole distortion. Simple expressions for surface and quadrupole deformation are provided that are valid up to magnetar field strengths and rapid rotation.

gravitational waves; magnetars; neutron stars.

1 Introduction

Neutron stars with a strong toroidal magnetic field have attracted increasing interest as the magnetically induced distortion of their matter distribution may lead to the quasi-periodic emission of gravitational waves [Cutler2002, Bonazzola1996], for example, in the case of low-mass X-ray binaries (LMXBs). Moreover, strong magnetic fields are believed to power the electromagnetic activity of magnetars, which subsume both anomalous X-ray pulsars (AXPs) and soft-gamma repeaters (SGRs) [Duncan1992, Thompson1996]. Models of relativistic stars with a toroidal magnetic field can be obtained within the standard formalism for stationary and axisymmetric relativistic stars [Bonazzola1993], since the electromagnetic stress–energy tensor then satisfies the same compatibility condition [Oron2002] as the stress–energy tensor of an unmagnetized perfect fluid in purely rotational motion. Based on this finding, numerical models of relativistic stars with a toroidal magnetic field have emerged [Kiuchi2008, Frieben2012] whereas the poloidal case was already studied a long time ago [Bocquet1995].

2 Method and results

The neutron star matter is modeled as a perfectly-conducting perfect fluid at zero temperature, described by a one-parameter equation of state (EOS). For stationary and axisymmetric models in rigid rotation as considered hereafter, the general-relativistic line element in spherical coordinates can be chosen as


with gravitational potentials , , , and that are functions of alone. The toroidal magnetic field must then ensure that the Lorentz force is the gradient of a scalar potential, which is the case for , where is the proper energy density of the fluid, is the fluid pressure, and is the magnetization parameter. The field and matter equations are derived from the perfect-fluid case [Bonazzola1993] by taking into account additional magnetic source terms, expressed in terms of , and the magnetic potential , supplemented by the above relation for and the EOS.

The numerical models have been computed by means of a multidomain and surface-adaptive pseudo-spectral code for stationary and axisymmetric relativistic stars from the lorene111http://www.lorene.obspm.fr package, extended to the case of the toroidal magnetic field specified above, and employing its standard sample of nuclear matter EOSs.







Figure 1: (a) Solution space restricted to magnetized and rotating Pol2 EOS models between the non-magnetized limit and the maximum field strength limit. Three distinct classes depending on the relative strength of magnetic and centrifugal forces can be distinguished. (b) Distortion coefficients for the surface deformation and for the quadrupole distortion obtained by perturbing non-magnetized and non-rotating models with a gravitational mass of . In addition, coefficients for a Newtonian model Pol2N10 with , built upon a polytropic EOS, and its relativistic counterpart Pol2R10 are shown. The grey-shaded bands correspond to models of increasing circumferential radius with a gravitational mass of , built with a sequence of polytropic EOSs of increasing polytropic constant .

All models built with a certain EOS have the same rest mass corresponding to a gravitational mass of in the non-rotating and non-magnetized case. For the polytropic Pol2 EOS, defined by with the polytropic exponent and the rest-mass density , the adopted polytropic constant (in units in which ) implies a circumferential radius of .

Non-rotating models have been obtained up to large values of (limited only by computational resources) for all EOSs, and the surface deformation , computed from the equatorial coordinate radius and the polar coordinate radius , as well as the quadrupole distortion , obtained from Thorne’s quadrupole moment and the moment of inertia , attain considerable negative values as the magnetization is increased. The dimensions of the star even appear to grow without bounds. In turn, the volume-averaged magnetic field strength always falls off after attaining a maximum value of several .

The solution space of magnetized and rotating models, parametrized by and , has been determined for the Pol2 EOS. Its lower part up to the maximum field strength limit, beyond which decreases, is schematically shown in \freffig1 (a). Since the curves of vanishing surface deformation, , and of vanishing quadrupole distortion, , are different, the models can be divided into three classes for which surface deformation and quadrupole distortion are (1) both prolate, (2) oblate and prolate, or (3) both oblate, depending on the relative strength of magnetic and centrifugal forces. In the rotating case, the mass-shedding limit of a magnetized star is reduced with increasing magnetization in agreement with the condition of geodesic motion at the stellar equator since the circumferential equatorial radius is enlarged by the toroidal magnetic field.

Magnetic field strengths and angular velocities of all known magnetars are small enough that can be well approximated by a linear function of and , , with the distortion coefficients and shown in \freffig1 (b), adopting normalized variables and . An estimate for the type II superconducting case[Lander2012] is then given by below the second critical magnetic field strength . Likewise, can be computed by using and instead of and . The Newtonian model Pol2N10 with and its relativistic counterpart Pol2R10 demonstrate that relativistic effects strongly attenuate both the surface deformation induced by the toroidal magnetic field and the quadrupole deformation in general. In contrast, the rotational surface deformation is only slightly reduced since the centrifugal force is more effective at larger distances from the rotation axis where relativistic effects have already weakened.


This work was supported in part by the DFG grant SFB/Transregio 7. JF gratefully acknowledges financial support from the Daimler und Benz Stiftung.


Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description