Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with the High Energy Stereoscopic System

Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with the High Energy Stereoscopic System

H.E.S.S. Collaboration    A. Abramowski Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    F. Acero Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    F. Aharonian Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland National Academy of Sciences of the Republic of Armenia, Yerevan    A.G. Akhperjanian Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia National Academy of Sciences of the Republic of Armenia, Yerevan    G. Anton Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    S. Balenderan University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    A. Balzer Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    A. Barnacka Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    Y. Becherini APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France, Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    J. Becker Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany    K. Bernlöhr Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    E. Birsin Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    J. Biteau Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    A. Bochow Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    C. Boisson LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France    J. Bolmont LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    P. Bordas Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany    J. Brucker Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    F. Brun Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    P. Brun CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    T. Bulik Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland    S. Carrigan Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    S. Casanova Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    M. Cerruti LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France    P.M. Chadwick University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    A. Charbonnier LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    R.C.G. Chaves CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    A. Cheesebrough University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    G. Cologna Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    J. Conrad Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, SE-10691 Stockholm, Sweden    C. Couturier LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    M. Dalton Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany Université Bordeaux 1, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan, 33175 Gradignan, France Funded by contract ERC-StG-259391 from the European Community,    M.K. Daniel University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    I.D. Davids University of Namibia, Department of Physics, Private Bag 13301, Windhoek, Namibia    B. Degrange Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    C. Deil Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    H.J. Dickinson Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, SE-10691 Stockholm, Sweden    A. Djannati-Ataï APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    W. Domainko Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    L.O’C. Drury Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland    G. Dubus UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France    K. Dutson Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom    J. Dyks Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland    M. Dyrda Instytut Fizyki Ja̧drowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland    K. Egberts Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria    P. Eger Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    P. Espigat APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    L. Fallon Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland    C. Farnier Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, SE-10691 Stockholm, Sweden    S. Fegan Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    F. Feinstein Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    M.V. Fernandes Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    D. Fernandez Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    A. Fiasson Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    G. Fontaine Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    A. Förster Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    M. Füßling Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    M. Gajdus Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    Y.A. Gallant Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    T. Garrigoux LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    H. Gast Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    L. Gérard APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    B. Giebels Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    J.F. Glicenstein CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    B. Glück Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    D. Göring Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    M.-H. Grondin Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    S. Häffner Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    J.D. Hague Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    J. Hahn Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    D. Hampf Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    J.  Harris University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    M. Hauser Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    S. Heinz Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    G. Heinzelmann Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    G. Henri UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France    G. Hermann Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    A. Hillert Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    J.A. Hinton Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom    W. Hofmann Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    P. Hofverberg Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    M. Holler Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    D. Horns Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    A. Jacholkowska LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    O.C. de Jager Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa    C. Jahn Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    M. Jamrozy Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland    I. Jung Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    M.A. Kastendieck Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    K. Katarzyński Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland    U. Katz Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    S. Kaufmann Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    B. Khélifi Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    D. Klochkov Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany    W. Kluźniak Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland    T. Kneiske Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    Nu. Komin Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    K. Kosack CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    R. Kossakowski Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    F. Krayzel Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    H. Laffon Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    G. Lamanna Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    J.-P. Lenain Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    D. Lennarz Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    T. Lohse Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    A. Lopatin Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    C.-C. Lu Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    V. Marandon Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    A. Marcowith Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    J. Masbou Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    G. Maurin Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    N. Maxted School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia    M. Mayer Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    T.J.L. McComb University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    M.C. Medina CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    J. Méhault Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France Université Bordeaux 1, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan, 33175 Gradignan, France Funded by contract ERC-StG-259391 from the European Community,    U. Menzler Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany    R. Moderski Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland    M. Mohamed Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    E. Moulin CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    C.L. Naumann LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    M. Naumann-Godo CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    M. de Naurois Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau, France    D. Nedbal Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic    N. Nguyen Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    B. Nicholas School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia    J. Niemiec Instytut Fizyki Ja̧drowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland    S.J. Nolan University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    S. Ohm School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, UKDepartment of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    E. de Oña Wilhelmi Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    B. Opitz Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    M. Ostrowski Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland    I. Oya Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    M. Panter Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    M. Paz Arribas Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    N.W. Pekeur Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa    G. Pelletier UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France    J. Perez Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria    P.-O. Petrucci UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041, France    B. Peyaud CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    S. Pita APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    G. Pühlhofer Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany    M. Punch APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    A. Quirrenbach Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    M. Raue Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    A. Reimer Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria    O. Reimer Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria    M. Renaud Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    R. de los Reyes Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    F. Rieger Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    J. Ripken Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, SE-10691 Stockholm, Sweden    L. Rob Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic    S. Rosier-Lees Laboratoire d’Annecy-le-Vieux de Physique des Particules, Université de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France    G. Rowell School of Chemistry & Physics, University of Adelaide, Adelaide 5005, Australia    B. Rudak Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland    C.B. Rulten University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    V. Sahakian Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia National Academy of Sciences of the Republic of Armenia, Yerevan    D.A. Sanchez Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    A. Santangelo Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany    R. Schlickeiser Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany    A. Schulz Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    U. Schwanke Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    S. Schwarzburg Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany    S. Schwemmer Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    F. Sheidaei APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France, Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa    J.L. Skilton Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    H. Sol LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France    G. Spengler Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    Ł. Stawarz Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland    R. Steenkamp University of Namibia, Department of Physics, Private Bag 13301, Windhoek, Namibia    C. Stegmann Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    F. Stinzing Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    K. Stycz Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    I. Sushch Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany    A. Szostek Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland    J.-P. Tavernet LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    R. Terrier APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France,    M. Tluczykont Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany    K. Valerius Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany    C. van Eldik Universität Erlangen-Nürnberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    G. Vasileiadis Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    C. Venter Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa    A. Viana CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex, France    P. Vincent LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5, France    H.J. Völk Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    F. Volpe Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany    S. Vorobiov Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    M. Vorster Unit for Space Physics, North-West University, Potchefstroom 2520, South Africa    S.J. Wagner Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany    M. Ward University of Durham, Department of Physics, South Road, Durham DH1 3LE, U.K.    R. White Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom    A. Wierzcholska Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland    M. Zacharias Institut für Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universität Bochum, D 44780 Bochum, Germany    A. Zajczyk Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France    A.A. Zdziarski Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland    A. Zech LUTH, Observatoire de Paris, CNRS, Université Paris Diderot, 5 Place Jules Janssen, 92190 Meudon, France    H.-S. Zechlin Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
Received 27/06/2012; accepted 06/08/2012
Key Words.:
gamma rays: general – pulsars: individual: PSR J05376910 – supernova remnants: individual: N 157B – Magellanic Clouds
offprints: Nukri Komin (komin@lapp.in2p3.fr)

We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N 157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N 157B is associated with PSR J05376910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of  and a normalisation at 1 TeV of . A leptonic multi-wavelength model shows that an energy of about is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsar’s spin-down luminosity, , is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsar’s favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsar’s birth period is estimated to be shorter than 10 ms.

1 Introduction

In recent years, many Galactic pulsar wind nebulae (PWNe) have been discovered to be gamma-ray emitters (for a review, see e.g. de Oña Wilhelmi 2011). It was predicted by Aharonian et al. (1997) that the gamma-ray luminosity of these nebulae is connected to the spin-down power , i.e. the loss rate of rotational energy of the pulsar, and that pulsars with (with being the distance to the pulsar) power nebulae that are detectable in gamma rays. On the basis of the Galactic Plane Survey carried out by H.E.S.S. (\al@GPS,GPS2,GPS3; \al@GPS,GPS2,GPS3; \al@GPS,GPS2,GPS3) , Carrigan et al. (2008) suggested that pulsars with a spin-down power of may be correlated with nebulae detectable by H.E.S.S.

The most energetic pulsar known is PSR J05376910, with a spin-down power of (Marshall et al. 1998; Manchester et al. 2005). PSR J05376910 is also one the most distant pulsars known to date: located in the LMC, it has an estimated distance of  kpc (Macri et al. 2006). This pulsar is the compact central object of the supernova remnant (SNR) N 157B (also called LHA 120-N 157B, SNR B0538691, or NGC 2060). N 157B has been observed extensively in X-rays (Wang & Gotthelf 1998; Wang et al. 2001; Chen et al. 2006). N 157B is a Crab-like SNR (Gotthelf & Wang 1996): the emission from N 157B is dominated by synchrotron radiation from the PWN, which shows a bar-like feature surrounding the pulsar representing the reverse shock of a toroidal wind from the pulsar as well as a long tail of diffuse emission of about in the north-west direction from the bar (Wang et al. 2001; Chen et al. 2006) (see also Fig. 1b). Chen et al. (2006) show that faint thermal emission with a diameter of about is observed from the supernova ejecta and, unlike shell-type or composite SNRs, no emission from the supernova forward shock is detected. The supernova ejecta apparently expand into the low-density interior of the superbubble formed by the stellar association LH 99 (Chen et al. 2006). The characteristic age of the pulsar is about 5000 years (Marshall et al. 1998), which is consistent with estimates of the SNR’s age (Wang & Gotthelf 1998). Large-scale diffuse emission from the general direction of N 157B was discovered with the Fermi satellite (Abdo et al. 2010), which was interpreted as emission from massive star-forming regions. No significant emission, in addition to the diffuse emission, has been detected from N 157B.

Despite its extreme distance, PSR J05376910 has a large enough spin-down flux of to power a nebula detectable with H.E.S.S.

2 High Energy Stereoscopic System observations and results

Figure 1: Gamma-ray and X-ray view of N 157B. a) Image of the TeV gamma-ray excess obtained with H.E.S.S. The image was smoothed with the instrument’s point-spread function, which is shown in the inset. The green contour lines denote 6, 9, and 12 statistical significances. The black box outlines the region shown in the X-ray image. b) Image of the X-ray flux in the energy band from 0.8 keV to 8 keV (Chandra ACIS-S, observation n2783, 48.2 ks dead-time corrected exposure). The data were smoothed with a Gaussian of and the exposure map was computed with an assumed spectral index of 2.3, which is the average index of the nebula. The colour coding represents the X-ray flux in photons cm s ; for better visibility, it is clipped at at the lower end and saturates at . The white contour lines denote regions of 68%, 95%, and 99% confidence for the position of the gamma-ray source HESS J0537691. The position of the pulsar PSR J05376910 is indicated by a black cross. The green cross marks the best-fit position and the systematic uncertainty in the pointing of the H.E.S.S. telescopes.

The High Energy Stereoscopic System (H.E.S.S.) (Aharonian et al. 2006a) is a system of four Imaging Cherenkov Telescopes, located in the Khomas Highland of Namibia at an altitude of 1800 m. The H.E.S.S. telescope array’s location in the southern hemisphere is ideal for observing the Magellanic Clouds. Furthermore, H.E.S.S. is sensitive to gamma rays at energies above 100  GeV up to several 10 TeV. The arrival direction of individual gamma rays can be reconstructed with an angular resolution of higher than , and their energy is estimated with an relative uncertainty of 15%.

The region containing N 157B was observed with H.E.S.S., the data presented having been recorded from 2004 to 2009, with a dead-time corrected exposure of 46 hours after data quality selection. The observations were carried out at large zenith angles (with a mean of ) leading to an elevated energy threshold of about 600 GeV. The data were analysed using Model analysis with standard cuts (de Naurois & Rolland 2009), where the camera images are compared with simulations using a log-likelihood minimisation. The remaining background was estimated from both rings around each sky position to generate the gamma-ray image and spatial analysis (ring background, Berge et al. 2007) and test regions with similar offsets from the camera centre for the spectral analysis (reflected background, Berge et al. 2007).

Figure 1a shows a gamma-ray excess image of N 157B. The image was smoothed with the H.E.S.S. point-spread function, where 68% of the events were contained in a circle with a radius of . The significance was calculated from the counts in a circular integration region with a radius of around each sky bin. Fitting a point-like source folded with the instrument’s point spread function results in a best-fit position of the source of RA = , Dec = , equinox J2000, with a statistical uncertainty of in each direction; the source is hence labelled HESS J0537691. With the H.E.S.S. standard pointing correction, point-like sources can be localised with a systematic uncertainty of per axis (Acero et al. 2010). Figure 1b shows an X-ray image of the supernova remnant and its central PWN with overlaid confidence contours of the gamma-ray source position. The best-fit position is consistent with the pulsar position; the slight offset from the pulsar along the tail of the PWN is not significant ( of the combined statistical and systematic error).

In a circular region with a radius of around the pulsar position, 395 gamma-ray candidate events were found. A total number of 3152 events were found in a background region with an area that is larger by a factor of 18.62. The corresponding gamma-ray excess is 226 events with a statistical significance of  (calculated using formula (17) of Li & Ma 1983). The photon spectrum between 600 GeV and 12 TeV of the gamma-ray excess can be described by a pure power-law, , with a normalisation at 1 TeV of  and a photon index of , which corresponds to an energy flux between 1 TeV and 10 TeV of  or 2% of the energy flux of the Crab Nebula (Aharonian et al. 2006a). The gamma-ray luminosity between 1 TeV and 10 TeV for a distance of  kpc is . This result was derived from data accumulated over 4 years during the summer rainy seasons with varying atmospheric conditions. From the analysis of different subsets of the data, a systematic uncertainty of 30% in the flux and 0.3 in the photon index is estimated111These uncertainties are specific to this data set and should not be used for any other H.E.S.S. result..

3 Discussion

The observed gamma-ray luminosity between 1 TeV and 10 TeV of the PWN corresponds to ( of the spin-down power of the pulsar, a value typical of young PWNe (for a review see e.g. de Oña Wilhelmi 2011). Pulsar wind nebulae are very efficient in producing TeV gamma rays via the inverse Compton (IC) up-scattering of lower-energy photons by relativistic electrons222The term electrons refers to electrons and positrons.. This makes them not only the most abundant source type among the TeV emitters in the Milky Way, but also with HESS J0537691 the first extragalactic TeV source that is unrelated to a galaxy or an active galactic nucleus. N 157B can be detected at such a large distance not only due to the high spin-down power of the pulsar but the strong infrared photon-fields from nearby sources serving as additional targets for the IC scattering.

Figure 2 shows the spectral energy distribution (SED) of N 157B. It exhibits synchrotron emission that has been detected at radio wavelengths (see Lazendic et al. 2000, and references therein) and in X-rays (Chen et al. 2006; Dennerl et al. 2001), as well as TeV gamma-ray emission from IC scattering. In addition to the cosmic microwave background (CMB), far infrared photons from the OB association LH 99 and the nearby star-forming region 30 Doradus are important targets for IC scattering. Using observations from Spitzer (Indebetouw et al. 2009), the infrared photon fields are modelled as black-body radiation with a temperature of 80 K and an energy density of for LH 99, and a temperature of 88 K and an energy density of for 30 Doradus. These are only upper limits to the infrared fields, as the (unprojected) distances of N 157B to these objects are unknown.

There is no evidence of extended emission beyond the angular resolution of H.E.S.S., thus the synchrotron and IC emission regions cannot be separated spatially. Hence, a simple one-zone model is assumed, where only a single electron population is responsible for both the synchrotron and IC emission. An electron spectrum following a broken power-law with two breaks and covering the energy band from  eV to  eV is adopted. The low energy break is an intrinsic break of the injection spectrum proposed by Venter & de Jager (2007); the high energy break arises from the cooling of the particles. It is assumed that the cooling break appears at the energy where the synchrotron loss time (which depends on the magnetic field) is equal to the age of the remnant (which is assumed to be 5000 years). A low-energy spectral index of is used to reproduce the radio spectrum, and a spectral index of above the cooling break is consistent with both the X-ray and TeV data. Assuming that the cooling steepens the spectral index by one (Kardashev 1962), the uncooled high-energy spectral index is . This model, which is represented by the green lines in Figure 2, requires an intrinsic break at  GeV and a magnetic field of G, the corresponding cooling break being at  TeV. Assuming a distance of 48 kpc, the total energy stored in electrons is . In a second, more conservative model, any assumptions about the age and cooling of the particles are abandoned to minimise the total energy stored in electrons. The intrinsic break is set to 7 GeV, the lowest energy still being compatible with the radio data, and the cooling break is set to 4.22 TeV, the highest energy being compatible with the TeV data points. These prerequisites require an uncooled high-energy spectral index of and a low-energy spectral index of to reproduce the radio data. This model is represented by the red lines in Fig. 2; it requires a magnetic field of G and the total energy is only 50% of the energy in the first model. The uncertainty in the distance measurement adds an error of 15% to the estimate of . Major uncertainties in the estimation of lie in the uncertainties in the gamma-ray spectrum. Varying the TeV flux by 30% while fixing the radio and X-ray points changes the total energy by 25%. The total energy content cannot be determined from the radio and X-ray data alone, since the strength of the synchrotron emission is governed by the a priori unknown magnetic field. Using the observed TeV spectrum presented here, it is possible to derive the magnetic field in the PWN and thus the energy content in electrons in the PWN. In a hadronic scenario, gamma-ray emission is produced in the decay of mesons produced by inelastic interactions of accelerated protons with ambient material. The observed TeV emission can be described by the emission of a proton population following a power-law with an index 2 and an exponential cut-off at 23 TeV (blue, long-dashed line in Fig. 2). The total energy in this proton population is . An ambient density of at least would be necessary to produce this emission by a single supernova. That the SNR is expected to expand into the low-density interior of a superbubble makes this scenario unlikely.

As proposed by de Jager (2008), can be used to estimate the birth period of the pulsar. PSR J05376910 is relatively young, its characteristic age being shorter than the cooling time of most of the electrons. Particles have survived since the earliest epoch when the pulsar’s spin was close to its birth period. Therefore, can be related to the pulsar’s birth and current period by the calorimetric expression

(1)
(2)
(3)

where is the birth period of the pulsar, is the current period of (Marshall et al. 1998), denotes the conversion efficiency of spin-down power into accelerated electrons, and is the relative average energy-loss rate, which takes into account the energy already radiated by the particles during earlier epochs and adiabatic losses of the energy. For the pulsar’s moment of inertia, the canonical value of is adopted (Lattimer & Prakash 2001); the moment of inertia could be higher owing to variations in the pulsar mass between 1.4 solar masses () and 2.5 as proposed by Belczynski & Taam (2008). Models indicate that can be as low as 0.3 (Schöck et al. 2010, for MSH 15-52) or as high as 0.7 (de Jager et al. 2008, for G21.50.9). Magnetohydrodynamical simulations (de Jager et al. 2009) show that the adiabatic energy loss is around . Further radiation losses during earlier epochs of the nebula reduce to less than 0.5. Choosing 0.7 and 0.5 for and , respectively, shows that the birth period must have been shorter than 10 ms. Using the conservative model, the birth period increases by 23%. This result is consistent with earlier estimations of the pulsar’s birth period, Marshall et al. (1998) estimated the birth period by comparing the pulsar’s characteristic age with the age of the SNR for different braking indices, for SNR ages of more than 4000 years the birth period is shorter than 10 ms for a large range of braking indices. From the extrapolation of glitch data, Marshall et al. (2004) derive a pulsar period of 11 ms 5000 years ago. In the present paper, for the first time the birth period of a pulsar is obtained directly using a calorimetric technique, which depends on neither the glitch history nor the braking index and is — for the conservative model — completely independent of the age of the remnant.

This result confirms that PSR J05376910 has with a birth period of shorter than about 10 ms, the shortest birth period ever derived for a pulsar. These short rotation periods are only known for millisecond pulsars that have been spun up after their birth by a companion star. Simulations show that pulsar birth periods can be related to some parameters of the progenitor stars. Heger et al. (2005) show that more massive progenitor stars produce heavier and more rapidly rotating pulsars: stars of 15, 20 and 35 are required to produce pulsars with 11 ms, 7 ms and 3 ms, respectively. This is consistent with an earlier estimate of the PSR J05376910 progenitor mass of 20-35 based on the comparison of the observed metal abundances in the supernova ejecta of SNR N 157B with supernova models (Chen et al. 2006). Such massive stars are close to the threshold for the formation of black holes in the supernova explosion. Fryer (1999) show, for instance, that 25 is roughly the limit for black hole formation. On the other hand, Ott et al. (2006) show that the pulsar’s birth period is rather unrelated to the progenitor’s mass but roughly linearly dependent on the initial central iron-core spin. Birth periods of shorter than 10 ms require initial iron-core periods of shorter than about 8 s. A very massive and/or rapidly spinning progenitor star therefore appears to be required to produce a neutron star with a birth period as short as 10 ms.

Alternatively, the pulsar could be part of a binary system that has been spun up by its companion star, a scenario typically assumed for millisecond pulsars. A very massive and rapidly rotating star at a distance of about from PSR J05376910 has been identified (Dufton et al. 2011). It was proposed that both objects were part of a binary system where mass was transferred from the pulsar’s progenitor to its companion and that both stars experienced radial velocity kicks in the supernova explosion. Nonetheless, in this scenario, the general picture of a very massive star producing a rapidly spinning neutron star remains unchanged.

Figure 2: Spectral energy distribution of N 157B. The data shown are radio emission (Lazendic et al. 2000, blue triangles), non-thermal X-rays (Chen et al. 2006, blue band), and TeV gamma rays (H.E.S.S., this work, black circles). The green, thick lines represent the model with a cooling break depending on the magnetic field and the age of the remnant. The red, thin lines denote the conservative model that minimises the energy content of electrons. The blue, long-dashed line represents a hadronic scenario.

4 Conclusions

Our principal conclusions are as follows:

  1. Gamma-ray emission from the PWN in N 157B was discovered with H.E.S.S. observations. The energy flux between 1 TeV and 10 TeV is . Located in the LMC at a distance of 48 kpc, this is the most distant PWN ever detected in gamma rays and is the first individual stellar extragalactic TeV gamma-ray source. The PWN is powered by the most energetic pulsar known: PSR J05376910.

  2. The TeV photon spectrum, in connection with radio and X-ray measurements, can be described with a one-zone leptonic model. From this model, the total energy stored in electrons in the nebula can be estimated to be .

  3. For the pulsar to provide this energy from its rotational energy loss, the pulsar’s birth period must have been shorter than about 10 ms. This is the shortest birth period ever inferred for a pulsar. In an alternative scenario, the pulsar might have been spun up by a companion star in a binary system.

  4. Assuming a direct connection between the pulsar’s birth period and the mass of the progenitor star, the progenitor must have had a mass of at least 15 . This is close to the limit for black hole formation. The pulsar PSR J05376910 is therefore at the upper mass limit for neutron star production.

Acknowledgements.
The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H.E.S.S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the German Research Foundation (DFG), the French Ministry for Research, the CNRS-IN2P3 and the Astroparticle Interdisciplinary Programme of the CNRS, the U.K. Science and Technology Facilities Council (STFC), the IPNP of the Charles University, the Czech Science Foundation, the Polish Ministry of Science and Higher Education, the South African Department of Science and Technology and National Research Foundation, and by the University of Namibia. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and in Namibia in the construction and operation of the equipment.

References

  • Abdo et al. (2010) Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, A&A, 512, A7+
  • Acero, F. et al. (HESS collaboration) (2010) Acero, F. et al. (HESS collaboration). 2010, MNRAS, 402, 1877
  • Aharonian et al. (1997) Aharonian, F. A., Atoyan, A. M., & Kifune, T. 1997, MNRAS, 291, 162
  • Aharonian, F. et al. (HESS collaboration) (2005) Aharonian, F. et al. (HESS collaboration). 2005, Science, 307, 1938
  • Aharonian, F. et al. (HESS collaboration) (2006a) Aharonian, F. et al. (HESS collaboration). 2006a, A&A, 457, 899
  • Aharonian, F. et al. (HESS collaboration) (2006b) Aharonian, F. et al. (HESS collaboration). 2006b, ApJ, 636, 777
  • Belczynski & Taam (2008) Belczynski, K. & Taam, R. E. 2008, ApJ, 685, 400
  • Berge et al. (2007) Berge, D., Funk, S., & Hinton, J. 2007, A&A, 466, 1219
  • Carrigan et al. (2008) Carrigan, S., Hinton, J. A., Hofmann, W., et al. 2008, in International Cosmic Ray Conference, Vol. 2, 659–662
  • Chen et al. (2006) Chen, Y., Wang, Q. D., Gotthelf, E. V., et al. 2006, ApJ, 651, 237
  • de Jager (2008) de Jager, O. C. 2008, ApJ, 678, L113
  • de Jager et al. (2008) de Jager, O. C., Ferreira, S. E. S., & Djannati-Ataï, A. 2008, in AIP Conference Series, ed. F. A. Aharonian, W. Hofmann, & F. Rieger, Vol. 1085, 199–202
  • de Jager et al. (2009) de Jager, O. C., Ferreira, S. E. S., Djannati-Ataï, A., et al. 2009, ArXiv e-prints, 0906.2644
  • de Naurois & Rolland (2009) de Naurois, M. & Rolland, L. 2009, Astroparticle Physics, 32, 231
  • de Oña Wilhelmi (2011) de Oña Wilhelmi, E. 2011, in High-Energy Emission from Pulsars and their Systems, ed. D. F. Torres & N. Rea, 435–452
  • Dennerl et al. (2001) Dennerl, K., Haberl, F., Aschenbach, B., et al. 2001, A&A, 365, L202
  • Dufton et al. (2011) Dufton, P. L., Dunstall, P. R., Evans, C. J., et al. 2011, ApJ, 743, L22
  • Fryer (1999) Fryer, C. L. 1999, ApJ, 522, 413
  • Gast et al. (2012) Gast, H., Brun, F., Carrigan, S., et al. 2012, ArXiv e-prints
  • Gotthelf & Wang (1996) Gotthelf, E. V. & Wang, Q. D. 1996, in Roentgenstrahlung from the Universe, ed. H. U. Zimmermann, J. Trümper, & H. Yorke, 255–256
  • Heger et al. (2005) Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
  • Indebetouw et al. (2009) Indebetouw, R., de Messières, G. E., Madden, S., et al. 2009, ApJ, 694, 84
  • Kardashev (1962) Kardashev, N. S. 1962, AZh, 39, 393
  • Lattimer & Prakash (2001) Lattimer, J. M. & Prakash, M. 2001, ApJ, 550, 426
  • Lazendic et al. (2000) Lazendic, J. S., Dickel, J. R., Haynes, R. F., Jones, P. A., & White, G. L. 2000, ApJ, 540, 808
  • Li & Ma (1983) Li, T. & Ma, Y. 1983, ApJ, 272, 317
  • Macri et al. (2006) Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ, 652, 1133
  • Manchester et al. (2005) Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993
  • Marshall et al. (2004) Marshall, F. E., Gotthelf, E. V., Middleditch, J., Wang, Q. D., & Zhang, W. 2004, ApJ, 603, 682
  • Marshall et al. (1998) Marshall, F. E., Gotthelf, E. V., Zhang, W., Middleditch, J., & Wang, Q. D. 1998, ApJ, 499, L179+
  • Ott et al. (2006) Ott, C. D., Burrows, A., Thompson, T. A., Livne, E., & Walder, R. 2006, ApJS, 164, 130
  • Schöck et al. (2010) Schöck, F. M., Büsching, I., de Jager, O. C., Eger, P., & Vorster, M. J. 2010, A&A, 515, A109+
  • Venter & de Jager (2007) Venter, C. & de Jager, O. C. 2007, in WE-Heraeus Seminar on Neutron Stars and Pulsars 40 years after the Discovery, ed. W. Becker & H. H. Huang, 40–+
  • Wang & Gotthelf (1998) Wang, Q. D. & Gotthelf, E. V. 1998, ApJ, 494, 623
  • Wang et al. (2001) Wang, Q. D., Gotthelf, E. V., Chu, Y.-H., & Dickel, J. R. 2001, ApJ, 559, 275
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
230221
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description