Demographics of Bulges

Demographics of Bulge Types within 11 Mpc and Implications for Galaxy Evolution

Abstract

We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc volume using Spitzer 3.6 m and HST data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of  M. Classical bulges and elliptical galaxies account for 1/4, and disks for 3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above  M. Galaxies with pseudobulges dominate at - M. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.

Subject headings:
galaxies: bulges — galaxies: formation — galaxies: evolution — galaxies: structure — galaxies: fundamental parameters
3

1. Introduction

Hierarchical galaxy evolution models (e.g. White & Rees, 1978; Cole et al., 1994) rely on the assumption that bulge-to-total ratios increase directly, and exclusively, from merging (reviewed in Baugh, 2006). This has been justified by the ability of simulations of mergers to reproduce properties of ellipticals (e.g. Cox et al., 2006; Naab et al., 2006), and the extrapolation motivated by observations of notable galaxies (e.g. M 31) that bulges are similar to ellipticals.

Yet, there is a dichotomy in the properties of bulges and possibly in their formation mechanisms. Some bulges are similar to elliptical galaxies (classical bulges), other bulges resemble disks (pseudobulges; for reviews see Kormendy & Kennicutt, 2004; Combes, 2009). Cursory analysis suggests that simulations producing bulge-disk galaxies (e.g. Governato et al., 2009) are likely not making pseudobulges.

Many authors propose that disk-like bulges form through internal secular evolution of the disk (for reviews see Kormendy & Kennicutt, 2004; Athanassoula, 2005). Fisher & Drory (2008) and Fisher & Drory (2010) show that pseudobulges have Sérsic index and do not follow projections of the fundamental plane of elliptical galaxies, adding evidence that pseudobulges are physically different from classical bulges (which have ) and ellipticals. Fisher et al. (2009) find that pseudobulges typically have high enough star formation rates (SFR) to have built their stellar mass within the typical lifetime of a disk. Furthermore, correlations between bulge and disk properties such as stellar age (Peletier & Balcells, 1996) and radial size (Fisher & Drory, 2008) may result from a formative link between pseudobulges and their surrounding disk. Indeed, Fisher & Drory (2010) find that the only property that correlates with the half-light radius of pseudobulges is the outer disk scale length.

Heller et al. (2007) show that significant gaseous inflow occurs across the central kpc during bar lifetimes. Bureau & Freeman (1999) show evidence that boxy/peanut shaped bulges are the result of bar-buckling in disks. Boxy bulges are found in over 40% of edge on galaxies Lütticke et al. (2000), thus implying that a significant number of bulges may owe their origin to disk phenomena. We caution that secular evolution and accretion/merging are not mutually exclusive (Bournaud & Combes, 2002). Fisher & Drory (2010) find that some pseudobulges (% of their sample) could house a small classical bulge, and still maintain a low Sérsic index.

How common are pseudobulges? Drory & Fisher (2007) find that classical bulges are exclusively found in red-sequence galaxies, and imply that pseudobulges are at least as common as blue, Sa-Sc galaxies. Kormendy et al. (2010) find that in the local 8 Mpc, 11 of 19 galaxies with  km s show no evidence for a classical bulge; however, this is a small sample that does not allow to study the mass dependence of the frequency of pseudobulges. Weinzirl et al. (2009) show that traditional semi-analytic models of galaxy formation cannot account for the observed number of small bulges. This discrepancy may be a manifestation of the bulge dichotomy, since pseudobulges are more likely to be in low galaxies (Fisher et al., 2009). However, many pseudobulges have (Fisher & Drory, 2008, 2010).

In this letter, we study the abundance of pseudobulges and classical bulges in the local universe. We determine bulge-types on a sample including all non-edge-on galaxies having within 11 Mpc () and estimate the dependence of pseudobulge frequency on galaxy mass and SFR.

2. Methods

We select a representative volume-limited sample of non-edge-on () galaxies within 11 Mpc from the Kennicutt et al. (2008) survey, complete for spirals to  mag (corresponding to ). We require Galactic latitude . We take values from de Vaucouleurs et al. (1991) and HyperLEDA4 in order of preference. Since the Kennicutt et al. (2008) sample does not cover early-type galaxies, we add these from Tonry et al. (2001), Tully & Fisher (1988), and HyperLEDA using the same magnitude and Galactic latitude cuts. Because bulge diagnosis is not reliable on edge-on galaxies, we exclude disks with inclination greater than 80°. This selection may overemphasize the number of E-galaxies by 10% as they are not flattened. We adopt distances from Kennicutt et al. (2008) augmenting missing data from Tonry et al. (2001), Tully et al. (2009), and Tully & Fisher (1988). Magnitudes and colors are corrected for extinction (Schlegel et al., 1998) and galaxy inclination in the usual manner. The final sample contains 320 galaxies. The full sample and measured quantities are listed in Table 1.

We decompose the major-axis near-IR surface brightness (SB) profile of 97 bright ( mag) and non Sm/Irr galaxies at 3.6 m (2MASS -band for 6 galaxies) into a Sérsic-function bulge and exponential outer disk. Non-exponential disk components (e.g. bars and rings) are masked. Most of our decompositions are taken from Fisher & Drory (2010). This analysis has been used in many publications including Fisher & Drory (2008); Kormendy et al. (2009); Fisher & Drory (2010). The Sérsic index, is used to diagnose bulges into pseudo- () and classical () bulges (see Fisher & Drory, 2008 for a discussion). For those bulges with we supplement bulge identification with nuclear morphology from HST images. Ellipticals are assigned . Galaxies in which the decomposition yields are assigned and are called “bulgeless”. We determine total luminosity by integrating the near-IR SB profile and convert to stellar mass using RC3 color as described in Fisher et al. (2009), following Bell & de Jong (2001). Seven bright galaxies have no recorded and for these we substitute the average color of their Hubble type.

We assume that the 223 faint ( mag) or Sm/Irr galaxies in our sample are bulgeless. Most have no usable near-IR data; we therefore use in conjunction with to determine stellar mass. 123 do not have a measurement of and we again use the mean color of their Hubble type instead. For a handful of galaxies we test this against masses determined from near-IR flux, finding good agreement.

Available means of measuring SFR in our sample include GALEX FUV luminosity, H luminosity, and 24 m dust emission; linear combination of either H or UV (unobscured light) with 24 m (extincted light) being most robust.

In galaxies fainter than  mag, Lee et al. (2009) find that the UV SFR is systematically higher than that from other tracers, possibly due to differences in the stellar IMF. Therefore, we calculate the SFR from H and FUV according to Kennicutt (1998) and take the higher of the two values.

For 78 of the 97 bright galaxies, we measure the total SFR and the SFR within the central 1 kpc by linearly combining the 24 m and GALEX FUV data (Leroy et al., 2008; Fisher et al., 2009), , where and are constants calibrated against Kennicutt et al. (2009). The 19 remaining galaxies lack GALEX data. For 6 of these, we measure SFR by linearly combining 24 m with total H luminosity of Kennicutt et al. (2008), , according to Kennicutt et al. (2009). The SFR of the central 1 kpc is measured with 24 m alone as following Calzetti et al (2007). Four galaxies have data at 24 m only; for these we follow Fisher et al. (2009). One galaxy has only H and one has only UV data; there we use the single band flux ( or ) following Kennicutt (1998) and we cannot measure the luminosity of the central kpc. Finally, 7 of the bright galaxies have no data available for measuring SFR. The method applied to calculate SFR for each galaxy is noted in Table 1.

Uncertainties in stellar mass and SFR are dominated by the scatter in the calibration of measured fluxes to physical quantities. The calibration error for stellar mass is 0.12 dex for near-IR flux and 0.16 dex for . The calibration error for SFR is roughly 15% for data combining H+24 m and FUV+24 m, and is closer to 20% for data using FUV or H.

3. Results

Before discussing our results, we call attention to the environmental bias inherent in studying galaxies in the local 11-Mpc volume due to the low density of that region (reviewed in Peebles & Nusser, 2010). For comparison, Kormendy et al. (2009) finds that 2/3 of all stellar mass in the Virgo cluster is in elliptical galaxies alone.

Bulge number statistics: Galaxies with either a pseudobulge or no bulge are the most common among bright galaxies. Restricting ourselves to galaxies more massive than  M, we find that only 1710% are galaxies with an observed classical bulge (including elliptical galaxies), 4512% are galaxies with pseudobulges, 3512% are are disk galaxies with , and under 3% are galaxies currently undergoing major merging (NGC 4490, NGC 1487, NGC 2537). Quoted errors are Poisson uncertainties. Dwarf and Irregular galaxies comprise 70% of all galaxies having stellar mass lower than  M within 11 Mpc. However, they only account for 2% of the stellar mass in the same volume.

Star formation in bulge-disk galaxies: 61% of the star formation (SF) in the local 11 Mpc is in galaxies with pseudobulges. A non-negligible 13% of the total SF in our volume occurs in the central kpc of bulge-disk galaxies. Fig. 1 shows the distribution of SFR surface densities () of entire galaxies and the central kpc of bulge-disk galaxies. It is clear that high in the central kpc of bulge-disk galaxies is extremely common when compared to global SFR densities. In our sample, we find that 469% of galaxies with bulge-to-total ratios in the range have M yrkpc; only 339% of entire galaxies have M yrkpc inside the optical radius. In the bulge sample, 11 bulges do not have data to determine the SFR. If these have low SFR, the fraction of bulges with high decreases to 3510%.

Figure 1.— The distribution of SFR density kpc for bulges (black line). For comparison, we also show the SFR density of entire galaxies ((total); grey shaded region).

Stellar masses: Fig. 2 shows the stellar-mass distribution of galaxies with pseudobulges, classical bulges and ellipticals (combined), bulgeless galaxies, and the whole sample. Bulgeless galaxies tend to be lower in mass, and dominate the distribution up to  M. Pseudobulges dominate intermediate mass range from, to  M. Classical bulges tend to be in more massive galaxies. Galaxies with either a pseudobulge or no bulge combine to account for 5612% of the stellar mass of galaxies within 11 Mpc. Finally, we calculate the total mass in classical bulges by using the from the bulge-disk decompositions. These values should be treated as estimates, since they assume the same for both the bulge and disk, hence likely underestimating the classical bulge mass. Classical bulges and E galaxies account for 1/4 of the stellar mass in the local 11 Mpc, disks account for of the stellar mass.

4. Discussion

We show that galaxies with pseudobulges are the most common type of bright galaxy in the local 11 Mpc volume. The set of galaxies including pseudobulge and bulgeless galaxies account for just over 1/2 of the mass in stars in the local volume. Roughly of new stars are made in galaxies with pseudobulges. Whether counting by number, mass, or by present-day star formation, the dominant mode of galaxy evolution in the present day local universe is that which occurs in galaxies without classical bulges. These results are therefore in agreement with the observed correlation of bulge type with galaxy properties such as color (Drory & Fisher, 2007).

We find that classical bulges and elliptical galaxies combined account for 1/4 of the stellar mass within 11 Mpc. Therefore, 3/4 of the stellar mass in the local 11 Mpc is in disks (combining all mass in pseudobulges, disks around classical bulges and pseudobulges, and bulgeless galaxies). Recall that in cluster environments, 2/3 of the stellar mass is in elliptical galaxies alone (Kormendy et al., 2009). Thus the process driving the distribution of bulge types appears to be a strong function of environment.

Figure 2.— The distribution of galaxy stellar mass in galaxies with pseudobulges (blue line), elliptical galaxies and galaxies with classical bulges (short-dashed line), bulgeless galaxies (green long-dashed line) and the full sample (grey shaded region). Note the full range of stellar masses in our sample is not shown.

We show that in the majority of bulge-disk galaxies, the central kpc has high SFR surface density (compared to the SFR density for entire galaxies). If a merger drives enhanced SFR for 1 Gyr (Cox et al., 2008), and if fewer than 10% of giant galaxies experience merging each Gyr (e.g. Jogee et al., 2009), then episodic SF can not account for the frequency of enhanced SF observed in our sample, and thus the SF in the centers of (pseudo)bulges is not likely episodic or merger driven. The frequency of enhanced SF in bulges is thus further evidence that bulges are generating new stars through long term, non-episodic processes.

Finally, in Fig. 3, we estimate the relative frequency of classical bulges (including elliptical galaxies), pseudobulges, all bulges, and galaxies with no bulge within 11 Mpc as a function of galaxy stellar mass. To account for the possibility of composite systems, we estimate an upper bound for the frequency of classical bulges: we include all those bulges that satisfy the criteria to be called classical and elliptical galaxies, add all galaxies presently in strong interactions (NGC 4490, NGC 1487, NGC 2537 & NGC 5194A & B), and we estimate the possible number of galaxies with composite (pseudo+classical) bulges. Fisher & Drory (2010) find that models of bulges in which the total bulge light is composed of a high and low Sérsic index component are not inconsistent with decompositions of real bright low-specific-SFR pseudobulges. Consistent with these results, we select all pseudobulges with stellar mass  M and specific SFR  Gyr as candidate composite bulges. For the interacting galaxies we make the assumption that a merger will result in an elliptical and thus .

Fig. 3 shows that the frequency of pseudobulges and classical bulges in the local universe is strongly dependent on galaxy mass. Pure disk galaxies and those galaxies with pseudobulges are the most common type of galaxy for stellar mass  M. Elliptical galaxies and galaxies with classical bulges are the majority of galaxies with  M. However, since galaxies with  M only make up 4% of bright galaxies in the local volume, galaxies with pseudobulges and those with no bulge remain the dominant type of bright galaxy by number. Dynamical evidence suggest that the Milky Way (not included in the sample) does not contain a classical bulge (Shen et al., 2010), its stellar mass places it right at the transition,  M. Therefore, the massive galaxies in the Local Group comprise a pseudobulge galaxy (Milky Way), a classical bulge galaxy (M 31), and a bulgeless disk galaxy (M 33).

The simulation of the evolution of galaxies in a CDM-universe by Croft et al. (2009) provides a good model for comparison. As is normally the case, in this simulation is only increased through the merging process. They find that in massive galaxies ( M) located in low density environments (i.e. field galaxies), 40-50% are bulge-dominated (¿80%). In the local 11 Mpc only 235% of galaxies contain classical bulges at any bulge-to-total ratio (including ellipticals and ongoing mergers), and only 5% have ¿80%. If we assume that the simulation in Croft et al. (2009) only produces classical bulges, then the number of classical bulges in the local universe is much smaller than in a typical galaxy evolution simulation.

Figure 3.— The relative number of galaxies with classical bulges and elliptical galaxies (red lines), galaxies containing pseudobulges (blue line), all disk-bulge galaxies (black dashed line), and bulgeless galaxies (black dotted line) as a function of galaxy stellar mass.

Recently, Hopkins et al. (2009b) show that if is a function of both merger mass-ratio and gas fraction in the progenitive merger, then the distribution of for all galaxies is recovered. However, this agreement relies entirely on the interpretation of pseudobulges as merger products (contrary to observational evidence). In our sample, the fraction of classical-bulge light in galaxies less massive than  M is very low, . If pseudobulges are not merger products, but rather disk components, then models continue to produce too much mass in bulges.

We conclude that pseudobulges and internal bulge growth through SF is present in the majority of giant disk galaxies in the local 11 Mpc volume. If we make the assumption that pseudobulges are not direct merger products, then the number of pseudobulges poses a challenge for models of galaxy evolution. Given that very old stellar populations are commonly observed in spiral galaxies (MacArthur et al., 2009), holding off disk galaxy formation until lower redshifts does not appear to be the solution. The problem is that, as we understand them now, mergers in recent epochs are likely to increase and heat the disk thereby reducing the secular inward flow of gas in disks, and possibly destroying a pre-existing pseudobulge in a disk galaxy. Therefore, either the merging process does not disrupt disks as easily as simple calculations suggest (see Hopkins et al., 2009a; Moster et al., 2010), or there are fewer galaxy mergers in recent epochs in the universe than simulations suggest.

DBF acknowledges support from University of Maryland, as well as J Kormendy and the University of Texas at Austin. ND and DBF thank the Max-Planck Society for support during this project. We also wish to thank Shardha Jogee, Karl Gebhardt, Neal Evans, John Kormendy and Ralf Bender for their helpful comments and support during the writing of this work. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. DBF acknowledges support by the National Science Foundation under grant AST 06-07490. Some of the data presented in this paper were obtained from the Multi-mission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.
Galaxy Category T Dist. M log(M) log() SFR B/T Sérsic log()
Name 5 (Mpc) (mag) (M) (M yr) Method index (M yr)
NGC6744 C 4 9.4 -21.2 10.36 -0.27 UV,24 0.15 3.2 1.1 -2.33
NGC0224 C 3 0.8 -21.2 10.62 -1.85 24 0.48 2.1 0.5 -2.04
NGC5194 P6 4 8.0 -21.2 10.93 0.35 UV,24 0.11 0.5 0.3 -0.83
NGC4594 C 1 9.3 -21.1 10.96 -0.70 UV,24 0.51 6.2 0.6 -1.51
NGC4258 C7 4 8.0 -21.0 10.49 0.11 2.8 0.6
NGC4490 M 7 8.0 -20.9 10.14 -0.36 UV,24 1.00
NGC3627 P 3 10.1 -20.9 10.54 0.05 UV,24 0.10 1.4 0.7 -0.91
NGC2903 P 4 8.9 -20.9 10.29 0.04 UV,24 0.10 0.5 0.1 -0.39
NGC0253 P 5 3.2 -20.9 10.62 0.22 UV,24 0.05 1.5 0.6 -0.20
NGC5457 P 6 6.7 -20.8 10.24 0.33 UV,24 0.02 1.5 1.8 -1.51
NGC5236 P 5 4.5 -20.7 10.22 0.20 UV,24 0.09 0.4 0.1 -0.15
NGC3031 C 2 3.6 -20.7 10.66 -0.85 UV,24 0.37 3.9 0.5 -1.67
NGC4826 C8 2 7.5 -20.6 10.56 -0.48 UV,24 0.29 3.6 0.7 -0.72
NGC1291 C 0 9.4 -20.5 10.98 -0.34 UV,24 0.47 2.7 0.8 -0.92
NGC5055 P 4 7.5 -20.5 10.48 -0.10 UV,24 0.19 1.3 1.4 -1.19
NGC3368 P 2 10.5 -20.4 10.49 -0.69 UV,24 0.26 1.6 0.4 -1.39
NGC4559 nb/d 6 9.7 -20.3 10.34 -0.15 UV,24 0.00
NGC3521 C 4 8.0 -20.3 10.51 -0.13 UV,24 0.12 2.6 1.6 -1.20
NGC3556 P9 6 10.4 -20.1 10.23 0.21 2.1 1.1
NGC3034 nb/d 7 3.5 -20.1 10.04 -0.03 Ha 0.00
NGC3621 P10 7 6.6 -20.0 10.37 -0.40 UV,24 0.01 2.8 1.0 -1.54
NGC0925 P 7 9.2 -20.0 9.53 -0.45 UV,24 0.07 0.7 0.6 -1.47
NGC3379 E -5 10.5 -20.0 11.18 -1.53 UV,24 1.00
NGC0628 P 5 7.3 -20.0 9.87 -0.35 UV,24 0.08 1.6 0.3 -1.76
NGC3351 P 3 10.0 -19.9 10.29 -0.16 UV,24 0.16 1.5 0.4 -0.45
NGC4736 P 2 4.7 -19.8 10.27 -0.59 UV,24 0.36 1.3 0.4 -0.99
NGC3623 P 1 7.3 -19.7 10.95 -0.86 UV,24 0.16 1.8 0.8 -2.15
NGC3675 P 3 10.6 -19.6 10.32 -0.53 UV,24 0.14 1.6 1.3 -1.23
NGC4096 P 5 8.3 -19.6 10.12 -0.75 UV,24 0.08 0.8 0.4 -1.57
NGC2403 P 6 3.2 -19.4 9.43 -0.65 UV,24 0.07 0.7 0.7 -1.85
NGC5195 P11 2 8.0 -19.3 10.46 -0.50 Ha,24 0.29 1.6 0.3 -0.49
NGC4236 P 8 4.5 -19.2 9.27 -1.00 UV,24 0.01 1.9 0.8 -2.40
NGC0247 nb/d 7 3.7 -19.2 8.59 -0.71 UV,24 0.00
NGC6684 C -2 10.9 -19.2 10.13 -1.55 24 0.38 3.5 0.8 -0.49
NGC1512 P 1 9.6 -19.2 9.93 -0.84 UV,24 0.28 1.8 1.2 -1.38
NGC7713 P 7 9.3 -19.1 9.63 -0.50 Ha,24 0.01 1.1 1.9 -1.65
NGC1313 nb/d 7 4.2 -19.1 9.49 -0.46 UV,24 0.00
NGC0672 nb/d 6 7.2 -18.9 9.05 -1.11 UV,24 0.00
NGC3377 E -5 9.3 -18.9 10.47 -2.15 UV,24 1.00
NGC0598 P 6 0.8 -18.9 9.21 -0.91 UV,24 0.03 1.4 2.3 -1.84
NGC5068 nb/d 6 6.2 -18.9 9.11 -0.89 UV,24 0.00
NGC3486 P 5 8.2 -18.8 9.42 -0.58 UV,24 0.10 1.6 1.1 -2.04
NGC3344 C 4 6.6 -18.8 9.51 -0.71 UV,24 0.08 2.3 0.6 -1.59
NGC7793 P 7 3.9 -18.8 9.83 -0.60 UV,24 0.02 1.1 0.8 -1.77
NGC3412 C -2 10.4 -18.8 9.92 -2.15 UV,24 0.39 2.6 0.6 -2.39
NGC6503 P 6 5.3 -18.7 9.46 -1.07 UV,24 0.01 1.0 1.5 -1.65
IC5332 P 7 9.5 -18.7 9.91 -0.37 Ha,24 0.04 1.3 0.6 -2.12
NGC1744 nb/d 6 7.7 -18.7 9.43 -0.92 UV,24 0.00
NGC4314 P12 1 9.7 -18.6 9.85 -1.16 UV,24 0.22 3.1 0.9 -1.22
NGC4605 nb/d 5 5.5 -18.6 9.24 -0.87 UV,24 0.00
NGC4618 P 8 7.8 -18.6 9.68 -0.86 UV,24 0.04 1.4 1.8 -1.90
NGC1058 P 5 9.2 -18.6 9.21 -0.82 UV,24 0.03 1.5 0.7 -1.79
NGC1156 nb/d 10 7.8 -18.6 8.92 -0.37 UV 0.00
NGC1637 P 5 8.9 -18.5 9.53 -0.48 24 0.06 1.1 0.4 -0.68
NGC2787 C 0 7.5 -18.3 10.43 -1.74 UV,24 0.58 2.6 0.5 -1.87
NGC3239 nb/d 9 8.3 -18.3 9.25 -0.51 Ha 0.00
UGCA90 P 7 10.4 -18.3 9.43 -0.53 UV 0.04 0.9 0.9
NGC0024 nb/d 5 8.1 -18.2 9.73 -1.10 UV,24 0.00
NGC4448 P 2 9.7 -18.2 9.84 -1.28 UV,24 0.17 1.2 0.9 -1.82
NGC0045 nb/d 8 7.1 -18.2 9.94 -0.44 UV,24 0.00
NGC5474 nb/d 6 7.2 -18.2 9.31 -0.52 UV 0.00
NGC6689 P 6 9.8 -18.2 9.64 -1.03 Ha,24 0.04 1.2 1.0 -1.32
NGC0949 P 4 9.2 -18.1 9.18 0.00 0.20 1.6 1.2
NGC6673 P -1 10.9 -18.1 10.05 0.29 1.1 0.8
NGC0300 nb/d 7 2.0 -18.1 9.20 -0.98 UV,24 0.00
NGC4242 nb/d 8 7.4 -18.1 10.14 -1.24 UV,24 0.00
LMC nb/d 9 0.1 -18.1 9.20 -0.61 Ha 0.00
NGC4136 P 5 9.7 -18.0 9.01 -1.04 UV,24 0.02 1.8 1.5 -2.19
UGCA114 nb/d 7 9.8 -17.9 9.60 -0.41 UV 0.00
NGC5585 P 7 5.7 -17.8 9.28 -1.09 UV,24 0.05 0.9 0.3 -2.06
NGC1796 nb/d 5 10.3 -17.8 9.43 -0.49 Ha,24 0.00
NGC4245 P 0 9.7 -17.8 10.21 -1.76 UV,24 0.21 1.0 0.6 -1.96
NGC2976 nb/d 5 3.6 -17.7 9.53 -1.40 UV,24 0.00
NGC3077 nb/d 6 3.8 -17.7 9.65 -1.12 Ha 0.00
NGC4534 nb/d 8 10.8 -17.7 9.02 -0.66 UV 0.00
NGC5102 C -3 3.4 -17.6 9.25 0.37 3.5 0.9
NGC5253 nb/d 10 3.2 -17.6 8.87 -0.76 Ha 0.00
NGC0959 nb/d 8 9.2 -17.6 9.38 -1.34 UV,24 0.00
NGC1487 M 7 9.1 -17.5 9.39 -0.81 UV,24 1.00
NGC5949 nb/d 4 8.5 -17.4 9.61 -1.51 UV,24 0.00
NGC2552 nb/d 9 7.7 -17.4 9.25 -1.52 UV,24 0.00
IC4710 nb/d 9 7.7 -17.4 9.27 -1.24 UV,24 0.00
NGC4214 P 9 2.9 -17.4 8.97 -0.96 UV,24 0.01 1.4 1.1 -1.20
NGC2500 P 7 7.6 -17.4 9.42 -1.22 UV,24 0.02 1.7 1.5 -2.13
NGC4941 P 2 6.4 -17.4 9.33 -1.25 UV,24 0.16 1.9 0.7 -1.65
NGC3593 P 0 6.5 -17.3 9.70 -0.86 UV,24 0.51 0.8 0.2 -0.94
NGC4485 nb/d 10 7.1 -17.3 8.76 -0.66 UV 0.00
NGC3274 nb/d 8 9.5 -17.3 8.94 -1.13 UV,24 0.00
NGC4020 nb/d 7 9.7 -17.3 9.32 -1.45 UV,24 0.00
ESO305-G009 nb/d 8 10.9 -17.2 8.39 0.00
NGC3738 nb/d 10 4.9 -17.2 8.62 -1.46 UV,24 0.00
NGC2537 M 8 6.9 -17.2 9.27 -1.37 UV,24 1.00 -1.66
UGCA212 nb/d 8 10.1 -17.2 9.31 0.00
NGC3125 nb/d 10 10.8 -17.1 8.95 -0.43 Ha 0.00
NGC5204 nb/d 9 4.7 -17.0 8.93 -1.20 UV,24 0.00
UGCA103 P 9 10.4 -17.0 9.06 -2.65 Ha 0.05 0.6 0.5
NGC5408 nb/d 10 4.8 -17.0 9.10 -0.97 Ha 0.00
UGCA106 nb/d 9 9.8 -17.0 9.09 -1.17 UV,24 0.00
NGC4625 nb/d 9 8.7 -17.0 9.05 -1.21 UV,24 0.00
NGC2337 nb/d 10 7.9 -17.0 8.58 -1.04 Ha 0.00
NGC0855 P -1 9.7 -17.0 9.50 -1.59 UV,24 0.33 1.2 0.2 -1.68
ESO383-G087 nb/d 8 3.5 -16.9 8.86 -1.47 Ha 0.00
UGC04305 nb/d 10 3.4 -16.9 8.78 -0.84 UV 0.00
SMC nb/d 9 0.1 -16.8 8.81 -1.43 Ha 0.00
NGC1800 nb/d 9 8.2 -16.7 8.71 -1.04 UV 0.00
UGC07490 nb/d 9 8.4 -16.7 8.97 -1.61 Ha,24 0.00
ESO435-G016 nb/d 3 9.1 -16.7 9.37 -1.12 UV 0.00
ESO158-G003 nb/d 9 10.0 -16.7 8.65 Ha 0.00
NGC0404 C -1 3.3 -16.6 9.53 -1.99 UV,24 0.16 3.4 1.0 -2.07
NGC3299 nb/d 8 10.4 -16.6 9.54 -1.83 UV,24 0.00
UGC05151 nb/d 10 10.7 -16.6 8.45 -1.30 Ha 0.00
UGC07690 nb/d 10 7.7 -16.5 8.74 -1.50 UV,24 0.00
UGC07690 nb/d 10 7.7 -16.5 8.74 -1.19 UV 0.00
NGC1510 P -1 9.8 -16.5 8.86 -1.20 UV,24 0.42
NGC5608 nb/d 10 10.2 -16.5 7.93 -1.08 UV 0.00
ESO364-G?029 nb/d 10 7.4 -16.5 8.09 -1.60 Ha 0.00
IC5152 nb/d 10 2.0 -16.5 8.59 -1.46 UV 0.00
ESO306-G013 nb/d 3 10.8 -16.4 9.24 0.00
IC4870 nb/d 10 9.9 -16.4 8.18 -0.89 UV 0.00
NGC4288 nb/d 7 7.7 -16.4 8.75 -1.42 UV,24 0.00
IC5256 nb/d 8 10.8 -16.4 8.06 0.00
NGC7518 P 1 10.0 -16.4 9.25 0.16
UGC05451 nb/d 10 8.7 -16.3 7.76 -1.52 UV 0.00
UGC02023 nb/d 10 9.2 -16.3 8.96 -1.14 UV 0.00
UGC09660 nb/d 4 10.2 -16.3 7.97 -1.36 UV 0.00
MCG-05-13-004 nb/d 9 6.6 -16.3 8.46 0.00
NGC4248 nb/d 3 7.2 -16.2 9.20 -2.15 UV,24 0.00
UGC07698 nb/d 10 6.1 -16.2 8.56 -1.36 UV 0.00
UGC00891 nb/d 9 10.8 -16.2 8.74 -1.66 UV 0.00
NGC4204 nb/d 8 10.4 -16.2 9.07 -1.21 UV,24 0.00
NGC0221 E -5 0.8 -16.2 10.02 -1.58 UV,24 1.00 2.8 0.3
NGC5264 nb/d 9 4.5 -16.2 8.74 -1.66 UV 0.00
UGC10736 nb/d 8 9.8 -16.1 7.86 -1.51 UV 0.00
ESO483-G013 nb/d -1 10.4 -16.1 8.16 -1.28 UV 0.00
UGC01865 nb/d 9 9.2 -16.1 8.61 -1.56 UV 0.00
UGC08201 nb/d 10 4.6 -16.0 8.32 -1.56 UV 0.00
NGC4707 nb/d 9 7.4 -16.0 8.87 -1.33 UV 0.00
UGC08188 nb/d 9 4.5 -16.0 8.38 -1.21 UV 0.00
UGC07608 nb/d 10 7.8 -16.0 8.21 -1.18 UV 0.00
MCG-03-34-002 nb/d 4 10.2 -16.0 8.35 0.00
NGC1522 nb/d 10 9.3 -15.9 8.00 -1.11 UV 0.00
UGC05829 nb/d 10 7.9 -15.9 8.17 -0.86 UV 0.00
UGC08313 nb/d 5 8.7 -15.9 7.67 -1.61 UV 0.00
UGC01176 nb/d 10 9.0 -15.9 8.79 -1.34 UV 0.00
NGC4080 nb/d 10 6.9 -15.9 7.69 -1.59 UV 0.00
UGC02259 nb/d 8 9.2 -15.9 8.01 -1.34 Ha 0.00
ESO119-G016 nb/d 10 9.8 -15.8 7.80 -1.52 UV 0.00
NGC1705 nb/d 10 5.1 -15.8 7.93 -0.98 UV 0.00
NGC1592 nb/d 10 10.6 -15.8 7.83 3.00 Ha 0.00
ESO435-IG020 nb/d 10 9.0 -15.8 8.41 -1.01 Ha 0.00
ESO486-G021 nb/d 2 8.9 -15.7 7.79 -1.38 UV 0.00
UGC07774 nb/d 7 7.4 -15.7 7.65 -1.84 UV 0.00
UGC06161 nb/d 8 10.3 -15.7 7.64 -1.23 UV 0.00
ESO324-G024 nb/d 10 3.7 -15.7 8.55 -1.71 UV 0.00
ESO409-IG015 nb/d 6 10.4 -15.6 7.62 -1.33 Ha 0.00
UGC05889 nb/d 9 9.3 -15.6 8.68 -2.11 Ha 0.00
UGC04426 nb/d 10 10.3 -15.6 8.27 -1.68 UV 0.00
UGC07639 nb/d 10 8.0 -15.6 7.74 -1.73 UV 0.00
UGC04787 nb/d 8 6.5 -15.6 7.37 -1.86 UV 0.00
UGC05672 nb/d 5 6.3 -15.5 7.44 -2.20 UV 0.00
ESO245-G005 nb/d 10 4.4 -15.5 9.00 -1.24 UV 0.00
UGC01104 nb/d 9 7.5 -15.5 8.03 -1.59 UV 0.00
UGC07719 nb/d 8 9.4 -15.5 7.52 -1.60 UV 0.00
UGC01056 nb/d 10 10.3 -15.5 8.11 -1.73 Ha 0.00
ESO302-G014 nb/d 10 9.6 -15.5 7.29 -1.48 UV 0.00
UGC09405 nb/d 10 8.0 -15.5 8.09 -2.04 UV 0.00
UGC06457 nb/d 10 10.2 -15.4 7.61 -1.73 UV 0.00
NGC5477 nb/d 9 7.7 -15.4 7.88 -1.38 UV 0.00
ISZ399 nb/d 10 9.0 -15.4 7.88 -1.50 Ha 0.00
ESO059-G001 nb/d 10 4.6 -15.3 8.67 -2.19 Ha 0.00
UGC07267 nb/d 8 7.3 -15.3 7.35 -1.99 UV 0.00
UGC05923 nb/d 0 7.2 -15.3 7.69 -2.05 UV 0.00
ESO383-G091 nb/d 7 3.6 -15.3 8.01 -3.12 Ha 0.00
NGC4068 nb/d 10 4.3 -15.2 7.67 -1.87 Ha 0.00
ESO381-G020 nb/d 10 5.4 -15.2 7.76 -1.70 UV 0.00
UGC04115 nb/d 10 7.7 -15.2 7.40 -1.63 UV 0.00
UGC01561 nb/d 10 10.5 -15.2 7.81 -1.44 UV 0.00
ESO377-G003 nb/d 4 9.2 -15.2 7.83 0.00
UGC09497 nb/d 6 10.0 -15.1 7.42 -1.67 UV 0.00
UGC12713 nb/d 0 7.7 -15.1 8.09 -1.92 UV 0.00
UGC07949 nb/d 10 9.9 -15.1 7.41 -1.59 UV 0.00
ESO149-G003 nb/d 10 6.4 -15.1 7.36 -1.79 UV 0.00
IC4247 nb/d 2 5.0 -15.1 7.80 -2.13 UV 0.00
CGCG262-028 nb/d 5 6.9 -15.1 7.95 -1.64 UV 0.00
UGC05692 nb/d 9 4.0 -15.1 8.52 -2.31 UV 0.00
UGC03860 nb/d 10 7.8 -15.0 7.93 -1.79 UV 0.00
UGC06900 nb/d 10 7.5 -15.0 8.64 -2.11 UV 0.00
UGCA319 nb/d 9 7.4 -15.0 8.03 -2.03 UV 0.00
IC2782 nb/d 8 9.7 -15.0 7.50 0.00
UGC07271 nb/d 7 7.8 -15.0 7.21 -1.95 UV 0.00
UGC05456 nb/d 5 3.8 -15.0 8.00 -1.92 UV 0.00
UGC03966 nb/d 10 6.8 -15.0 8.18 -1.76 UV 0.00
UGC07866 nb/d 10 4.6 -14.9 7.73 -1.66 UV 0.00
SBS1331+493 nb/d 10 9.3 -14.9 6.76 -1.85 Ha 0.00
UGC00695 nb/d 6 10.2 -14.9 7.46 -1.74 UV 0.00
UGC02014 nb/d 10 9.2 -14.9 7.72 -2.38 UV 0.00
ESO104-G044 nb/d 9 8.4 -14.9 7.57 -1.75 Ha 0.00
NGC5238 nb/d 8 5.2 -14.9 7.51 -1.77 UV 0.00
UGC04998 nb/d 10 10.5 -14.9 8.16 -1.89 UV 0.00
NGC5229 nb/d 7 5.1 -14.9 8.18 -1.94 UV 0.00
UGC07916 nb/d 10 8.2 -14.9 7.34 -1.60 UV 0.00
UGCA153 nb/d 10 6.5 -14.9 7.84 -2.05 UV 0.00
UGCA298 nb/d -1 10.3 -14.9 7.15 0.00
UGC07599 nb/d 8 6.9 -14.9 7.85 -1.89 UV 0.00
UGC09893 nb/d 7 10.9 -14.9 7.28 -1.71 UV 0.00
ESO249-G036 nb/d 10 9.6 -14.8 7.05 -1.64 UV 0.00
UGC05453 nb/d 10 9.3 -14.8 7.29 -2.80 Ha 0.00
UGC05288 nb/d 8 6.8 -14.8 7.65 -1.76 UV 0.00
UGC05139 nb/d 10 3.8 -14.8 7.56 -1.81 UV 0.00
ESO104-G022 nb/d 10 8.7 -14.8 7.96 -1.82 Ha 0.00
KUG1004+392 nb/d 10 7.8 -14.8 7.10 -1.88 UV 0.00
UGC07577 nb/d 10 2.7 -14.8 8.00 -2.19 UV 0.00
UGC02716 nb/d 8 6.2 -14.7 8.67 -1.97 UV 0.00
UGC05740 nb/d 9 9.3 -14.7 7.29 -1.55 UV 0.00
UGC07678 nb/d 6 9.3 -14.7 6.88 -1.37 UV 0.00
UGC03817 nb/d 10 8.6 -14.7 8.05 -2.05 Ha 0.00
UGC07559 nb/d 10 4.9 -14.7 7.65 -1.79 UV 0.00
UGC09992 nb/d 10 8.6 -14.7 7.70 -1.84 UV 0.00
UGC07950 nb/d 10 7.9 -14.6 7.20 -1.48 UV 0.00
CGCG217-018 nb/d 10 8.2 -14.6 7.14 -1.89 UV 0.00
UGC07242 nb/d 6 5.4 -14.6 7.26 0.00
ESO325-G011 nb/d 10 3.4 -14.6 7.88 -1.91 Ha 0.00
UGC09211 nb/d 10 10.7 -14.6 7.75 -1.39 UV 0.00
MCG-04-02-003 nb/d 9 9.8 -14.6 7.20 -2.20 Ha 0.00
ESO252-IG001 nb/d 99 6.0 -14.5 7.62 -2.42 Ha 0.00
UGC05797 nb/d 10 6.8 -14.5 7.24 -2.14 UV 0.00
UGCA281 nb/d 10 5.7 -14.5 6.82 -1.41 Ha 0.00
UGC05423 nb/d 10 5.3 -14.4 7.75 -2.33 UV 0.00
UGC05373 nb/d 10 1.4 -14.4 7.90 -2.29 UV 0.00
UGC05427 nb/d 8 7.1 -14.3 6.90 -1.92 UV 0.00
UGC06102 nb/d 10 8.5 -14.3 7.22 -1.89 UV 0.00
ESO553-G046 nb/d 1 5.0 -14.3 7.39 0.00
KUG1413+573 nb/d 10 7.4 -14.3 7.03 -2.32 UV 0.00
UGC00685 nb/d 9 4.7 -14.3 7.62 -2.19 UV 0.00
UGC05076 nb/d 10 8.3 -14.3 7.15 -2.91 Ha 0.00
ESO140-G019 nb/d 10 10.8 -14.3 7.63 -1.75 Ha 0.00
UGC05918 nb/d 10 7.4 -14.3 7.67 -1.95 UV 0.00
UGC08024 nb/d 10 4.3 -14.3 7.52 -1.81 UV 0.00
UGC08683 nb/d 10 9.6 -14.3 7.00 -1.57 UV 0.00
UGC00668 nb/d 10 0.7 -14.2 8.00 -2.09 UV 0.00
ESO238-G005 nb/d 10 8.9 -14.2 7.01 -1.81 UV 0.00
NGC6789 nb/d 10 3.6 -14.2 7.36 -2.43 Ha 0.00
IC4316 nb/d 10 4.4 -14.2 7.89 0.00
MRK36 nb/d 10 7.8 -14.1 7.09 -1.43 Ha 0.00
UGC09240 nb/d 10 2.8 -14.1 7.46 -2.24 UV 0.00
ESO300-G016 nb/d 10 7.8 -14.1 7.01 -2.28 UV 0.00
UGC06541 nb/d 10 3.9 -14.1 7.36 -2.08 Ha 0.00
NGC4190 nb/d 10 3.5 -14.0 7.08 -1.99 UV 0.00
AM0704-582 nb/d 9 4.9 -14.0 7.62 -2.23 Ha 0.00
UGC02684 nb/d 10 6.5 -13.9 8.12 -2.19 UV 0.00
ESO473-G024 nb/d 10 8.0 -13.9 6.98 -2.05 UV 0.00
IC2787 nb/d 6 7.7 -13.9 6.87 -4.84 Ha 0.00
MCG+07-26-012 nb/d 6 6.4 -13.9 6.72 -3.07 Ha 0.00
ESO348-G009 nb/d 10 8.6 -13.9 6.88 -1.77 UV 0.00
AM0605-341 nb/d 10 7.0 -13.9 7.38 -1.98 Ha 0.00
UGC07007 nb/d 9 10.1 -13.8 6.93 -1.90 UV 0.00
UGC05336 nb/d 10 3.7 -13.8 7.51 -1.99 UV 0.00
UGCA290 nb/d 10 6.7 -13.8 6.86 -1.83 UV 0.00
IC0559 nb/d 5 4.9 -13.8 7.03 -2.37 UV 0.00
ESO444-G084 nb/d 10 4.6 -13.7 7.20 -2.21 UV 0.00
MCG+07-26-011 nb/d 8 6.0 -13.7 6.64 -2.76 Ha 0.00
UGC08245 nb/d 10 3.6 -13.7 6.89 -2.60 UV 0.00
UGC07605 nb/d 10 4.4 -13.7 6.92 -2.16 UV 0.00
ESO384-G016 nb/d 10 4.5 -13.7 7.36 -4.66 Ha 0.00
UGC05917 nb/d 10 10.3 -13.7 7.17 -1.74 UV 0.00
MRK475 nb/d 10 9.0 -13.7 7.16 -1.62 Ha 0.00
UGC10669 nb/d 10 9.2 -13.7 6.99 -2.53 UV 0.00
UGC08638 nb/d 10 4.3 -13.6 6.67 -2.25 UV 0.00
UGC06456 nb/d 10 4.3 -13.6 6.75 -1.92 UV 0.00
SextansA nb/d 10 1.3 -13.6 7.52 -1.92 UV 0.00
UGC07584 nb/d 9 7.3 -13.6 6.84 -2.22 UV 0.00
CGCG035-007 nb/d 5 5.2 -13.5 7.51 -2.51 UV 0.00
UGC12894 nb/d 10 8.2 -13.5 7.63 0.00
UGC04459 nb/d 10 3.6 -13.4 7.21 -2.16 Ha 0.00
NGC3741 nb/d 10 3.2 -13.4 6.89 -2.23 Ha 0.00
UGC08651 nb/d 10 3.0 -13.4 6.63 -2.42 UV 0.00
NGC4163 nb/d 10 3.0 -13.3 6.99 -2.34 UV 0.00
UGC08308 nb/d 10 4.2 -13.2 6.52 -2.42 UV 0.00
KUG1207+367 nb/d 10 4.5 -13.1 6.76 -2.71 UV 0.00
UGC07356 nb/d 10 6.7 -13.1 6.88 0.00
LSBCD564-08 nb/d 10 8.7 -13.1 6.71 -4.43 Ha 0.00
UGC08508 nb/d 10 2.7 -13.1 7.11 -2.77 Ha 0.00
UGC04483 nb/d 10 3.2 -13.0 6.68 -2.41 UV 0.00
LSBCD565-06 nb/d 10 9.1 -13.0 6.88 -4.79 Ha 0.00
KDG61 nb/d 8 3.6 -12.9 8.08 -3.21 UV 0.00
AndIV nb/d 10 6.1 -12.9 6.93 -2.52 UV 0.00
LEDA166137 nb/d 10 6.0 -12.9 6.42 -2.41 UV 0.00
UGC08055 nb/d 10 6.6 -12.9 6.45 -2.17 UV 0.00
BTS76 nb/d 10 6.0 -12.9 6.58 -3.63 UV 0.00
UGC05209 nb/d 10 6.4 -12.8 6.59 -2.76 UV 0.00
UGCA438 nb/d 10 2.2 -12.8 6.25 -2.57 UV 0.00
LEDA100404 nb/d 9 6.8 -12.7 6.73 -4.92 Ha 0.00
UGC07298 nb/d 10 4.2 -12.7 6.45 0.00
UGC09128 nb/d 10 2.2 -12.7 6.66 -2.98 UV 0.00
KKH34 nb/d 10 4.6 -12.6 8.54 -3.95 Ha 0.00
UGC08091 nb/d 10 2.1 -12.6 6.68 -2.58 UV 0.00
CGCG269-049 nb/d 10 3.2 -12.4 6.54 -2.80 UV 0.00
UGC08833 nb/d 10 3.2 -12.4 6.35 -2.75 UV 0.00
UGC05428 nb/d 10 3.5 -12.4 7.42 -4.58 Ha 0.00
UGC08215 nb/d 10 4.6 -12.4 6.28 -2.88 UV 0.00
LSBCF573-01 nb/d 10 7.2 -12.4 6.35 -4.69 Ha 0.00
LSBCD634-03 nb/d 10 9.5 -12.1 6.60 -4.45 Ha 0.00
SDSSJ0825+3532 nb/d 10 9.3 -12.0 6.66 -2.25 Ha 0.00
ESO349-G031 nb/d 10 3.2 -12.0 6.14 -5.10 Ha 0.00
KKH37 nb/d 10 3.4 -12.0 6.70 -3.10 UV 0.00
UGCA276 nb/d 10 3.2 -11.9 6.17 0.00
UGC12613 nb/d 10 0.8 -11.9 7.60 -3.49 UV 0.00
UKS1424-460 nb/d 10 3.6 -11.8 6.51 -3.59 Ha 0.00
UGCA292 nb/d 10 3.1 -11.8 6.04 -2.76 UV 0.00
DDO210 nb/d 10 0.9 -11.6 6.26 -3.80 UV 0.00
UGC05364 nb/d 10 0.7 -11.6 6.48 -3.28 UV 0.00
UGC05272b nb/d 10 7.1 -11.6 6.45 -2.80 UV 0.00
UGCA20 nb/d 10 9.0 -11.4 7.56 -1.77 UV 0.00
KDG73 nb/d 10 3.7 -11.0 5.69 -5.47 Ha 0.00
LEDA166115 nb/d -1 4.5 -9.8 6.36 -5.41 Ha 0.00
ESO245-G007 nb/d 10 0.4 -9.7 6.36 0.00
BK3N nb/d 10 4.0 -9.6 5.75 -5.46 Ha 0.00
M81dwA nb/d 10 3.6 -9.2 5.47 -5.20 Ha 0.00
KKR03 nb/d 10 2.1 -8.9 6.59 -5.68 Ha 0.00
LGS3 nb/d 99 0.6 -7.9 5.94 -6.90 Ha 0.00
LeoT nb/d 10 0.4 -6.9 4.57 -5.92 Ha 0.00
Table 1Sample Data

Footnotes

  1. affiliation: Department of Astronomy, The University of Texas at Austin,
    1 University Station C1400, Austin, Texas 78712
  2. affiliation: Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
  3. slugcomment: Submitted to ApJL
  4. http://leda.univ-lyon1.fr/
  5. E – Elliptical Galaxy; C – Classical bulge; P – Pseudobulge; nb/d – no bulge/dwarf; M – advanced stage merger
  6. NGC 5194 & NGC 5195 are currently interacting.
  7. Categorized as classical bulge due to Sérsic index despite nuclear morphology
  8. Categorized as classical bulge due to Sérsic index despite nuclear morphology
  9. Morphology strongly indicates pseudobulge, despite high Sérsic index
  10. Morphology strongly indicates pseudobulge, despite high Sérsic index
  11. NGC 5194 & NGC 5195 are currently interacting.
  12. Morphology strongly indicates pseudobulge, despite high Sérsic index

References

  1. Athanassoula, E. 2005, MNRAS, 358, 1477
  2. Baugh, C. M. 2006, Reports on Progress in Physics, 69, 3101
  3. Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212
  4. Bournaud, F., & Combes, F. 2002, A&A, 392, 83
  5. Bureau, M., & Freeman, K. C. 1999, AJ, 118, 126
  6. Calzetti et al. 2007, ApJ, 666, 870
  7. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781
  8. Combes, F. 2009, ArXiv e-prints
  9. Cox, T. J., Jonsson, P., Primack, J. R., & Somerville, R. S. 2006, MNRAS, 373, 1013
  10. Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R., & Dekel, A. 2008, MNRAS, 384, 386
  11. Croft, R. A. C., Di Matteo, T., Springel, V., & Hernquist, L. 2009, MNRAS, 400, 43
  12. de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Jr., H. G., Buta, R. J., Paturel, G., & Fouque, P. 1991, Third Reference Catalogue of Bright Galaxies (Volume 1-3, XII, 2069 pp. 7 figs..  Springer-Verlag Berlin Heidelberg New York)
  13. Drory, N., & Fisher, D. B. 2007, ApJ, 664, 640
  14. Fisher, D. B., & Drory, N. 2008, AJ, 136, 773
  15. —. 2010, ApJ, 716, 942
  16. Fisher, D. B., Drory, N., & Fabricius, M. H. 2009, ApJ, 697, 630
  17. Governato, F., Brook, C. B., Brooks, A. M., Mayer, L., Willman, B., Jonsson, P., Stilp, A. M., Pope, L., Christensen, C., Wadsley, J., & Quinn, T. 2009, MNRAS, 398, 312
  18. Heller, C. H., Shlosman, I., & Athanassoula, E. 2007, ApJ, 671, 226
  19. Hopkins, P. F., Cox, T. J., Younger, J. D., & Hernquist, L. 2009a, ApJ, 691, 1168
  20. Hopkins, P. F., Somerville, R. S., Cox, T. J., Hernquist, L., Jogee, S., Kereš, D., Ma, C., Robertson, B., & Stewart, K. 2009b, MNRAS, 397, 802
  21. Jogee et al. 2009, ApJ, 697, 1971
  22. Kennicutt, R. C., Hao, C., Calzetti, D., Moustakas, J., Dale, D. A., Bendo, G., Engelbracht, C. W., Johnson, B. D., & Lee, J. C. 2009, ApJ, 703, 1672
  23. Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189
  24. Kennicutt, Jr., R. C., Lee, J. C., Funes, José G., S. J., Sakai, S., & Akiyama, S. 2008, ApJS, 178, 247
  25. Kormendy, J., Drory, N., Bender, R., & Cornell, M. E. 2010, ApJ, 723, 54
  26. Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216
  27. Kormendy, J., & Kennicutt, R. C. 2004, ARA&A, 42, 603
  28. Lee, J. C., Gil de Paz, A., Tremonti, C., Kennicutt, R. C., Salim, S., Bothwell, M., Calzetti, D., Dalcanton, J., Dale, D., Engelbracht, C., Funes, S. J. J. G., Johnson, B., Sakai, S., Skillman, E., van Zee, L., Walter, F., & Weisz, D. 2009, ApJ, 706, 599
  29. Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782
  30. Lütticke, R., Dettmar, R., & Pohlen, M. 2000, A&AS, 145, 405
  31. MacArthur, L. A., González, J. J., & Courteau, S. 2009, MNRAS, 395, 28
  32. Moster, B. P., Macciò, A. V., Somerville, R. S., Johansson, P. H., & Naab, T. 2010, MNRAS, 403, 1009
  33. Naab, T., Khochfar, S., & Burkert, A. 2006, ApJ, 636, L81
  34. Peebles, P. J. E., & Nusser, A. 2010, ArXiv e-prints
  35. Peletier, R. F., & Balcells, M. 1996, AJ, 111, 2238
  36. Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
  37. Shen, J., Rich, R. M., Kormendy, J., Howard, C. D., De Propris, R., & Kunder, A. 2010, ApJ, 720, L72
  38. Tonry, J. L., Dressler, A., Blakeslee, J. P., Ajhar, E. A., Fletcher, A. B., Luppino, G. A., Metzger, M. R., & Moore, C. B. 2001, ApJ, 546, 681
  39. Tully, R. B., & Fisher, J. R. 1988, Catalog of Nearby Galaxies (Catalog of Nearby Galaxies, by R. Brent Tully and J. Richard Fisher, pp. 224. ISBN 0521352991. Cambridge, UK: Cambridge University Press, April 1988.)
  40. Tully, R. B., Rizzi, L., Shaya, E. J., Courtois, H. M., Makarov, D. I., & Jacobs, B. A. 2009, AJ, 138, 323
  41. Weinzirl, T., Jogee, S., Khochfar, S., Burkert, A., & Kormendy, J. 2009, ApJ, 696, 411
  42. White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
100993
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
Edit
-  
Unpublish
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel
Comments 0
""
The feedback must be of minumum 40 characters
Add comment
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question