\Delta isobars and nuclear saturation

isobars and nuclear saturation

A. Ekström Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden    G. Hagen Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA    T. D. Morris Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA    T. Papenbrock Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA    P. D. Schwartz Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

We construct a nuclear interaction in chiral effective field theory with explicit inclusion of the -isobar degree of freedom at all orders up to next-to-next-to-leading order (NNLO). We use pion-nucleon () low-energy constants (LECs) from a Roy-Steiner analysis of scattering data, optimize the LECs in the contact potentials up to NNLO to reproduce low-energy nucleon-nucleon scattering phase shifts, and constrain the three-nucleon interaction at NNLO to reproduce the binding energy and point-proton radius of He. For heavier nuclei we use the coupled-cluster method to compute binding energies, radii, and neutron skins. We find that radii and binding energies are much improved for interactions with explict inclusion of , while -less interactions produce nuclei that are not bound with respect to breakup into particles. The saturation of nuclear matter is significantly improved, and its symmetry energy is consistent with empirical estimates.

21.30.-x, 21.10.-k, 21.45.-v, 21.60.De
thanks: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. (http://energy.gov/downloads/doe-public-access-plan).

I Introduction

In recent years, ab initio calculation of atomic nuclei with predictive power have advanced from light Kamada et al. (2001); Pieper and Wiringa (2001); Navrátil et al. (2009); Barrett et al. (2013) to medium-mass nuclei Hagen et al. (2014a); Lähde et al. (2014); Hagen et al. (2016); Hergert et al. (2016); Hagen et al. (2016). Such calculations are only as good as their input, i.e. nucleon-nucleon () and three-nucleon () interactions, therefore the quest for more accurate and more precise nuclear potentials is an ongoing endeavor at the forefront of research Epelbaum et al. (2000, 2002); Entem and Machleidt (2003); Shirokov et al. (2004); Hebeler et al. (2011); Ekström et al. (2013); Entem et al. (2015); Epelbaum et al. (2015a); Ekström et al. (2015); Lynn et al. (2016); Carlsson et al. (2016). Here, potentials from chiral effective field theory (EFT) – based on long-ranged pion exchanges and short-ranged contact interactions – play a dominant role Epelbaum et al. (2009); Machleidt and Entem (2011), because they are expected to deliver accuracy (via fit to data) and precision (via increasingly higher orders in the power counting). As it turns out, however, state-of-the-art EFT potentials that are accurate for the lightest nuclei with masses vary considerably in their saturation point for nuclear matter Hebeler et al. (2011) and in their binding energy for heavier nuclei Binder et al. (2014); Carlsson et al. (2016); Simonis et al. (2017).

This sensitivity of the saturation point to the details of the EFT interaction is not well understood Elhatisari et al. (2016) and also puzzling from an EFT perspective. A practical approach to this dilemma consists of constraining EFT potentials to reproduce experimentally determined binding energies and charge radii of nuclei as heavy as oxygen Ekström et al. (2015). In this work, we will follow a different approach and explicitly include the isobar , abbreviated in the following, as a low-energy degree of freedom in addition to pions () and nucleons (). We recall that the - mass-splitting  293 MeV is roughly twice the pion mass ( MeV) and well below the expected breakdown scale of EFT potentials Epelbaum et al. (2009); Machleidt and Entem (2011). Furthermore, the also couples strongly to the system. For these reasons, the early chiral interactions van Kolck (1994); Ordóñez et al. (1994, 1996) included the degree of freedom. Indeed, van Kolck as well as Bernard et al. showed that the low-energy constants (LECs) of the interaction in a -less EFT receive a substantial contribution via resonance saturation. As nuclear interactions from EFT with and without ’s have a similar structure otherwise, only little effort was invested in producing quantitative -full EFT potentials. We refer the reader to the reviews Epelbaum et al. (2009); Machleidt and Entem (2011) for extensive discussions of this topic.

Recently, Piarulli et al. produced minimally non-local EFT potentials at next-to-next-to-next-to leading order (NLO), with ’s included up to next-to-next-to leading order (NNLO), using values for the subleading LECs from Ref. Krebs et al. (2007). Dropping the non-local terms led to the local potentials of Ref. Piarulli et al. (2016). Two different approaches augmented these local potentials with forces up to NNLO. The corresponding diagrams of the force, some diagrams, and the most relevant LECs are shown in Fig. 1. Logoteta et al. adjusted the LECs and of the short-ranged terms to reproduce the saturation point of nuclear matter. However, they did not report results for few-nucleon systems. In contrast, Piarulli et al. adjusted and to reproduce properties of nuclear systems with mass number . Their quantum Monte Carlo calculations yielded accurate results for spectra of light nuclei up to C. We note that the potentials by Logoteta et al. and Piarulli et al. employ values for and that differ in signs and magnitudes.

Figure 1: (Color online) Schematic figure of relevant diagrams that enter in -full EFT at leading order (LO), next-to-leading order (NLO), and next-to-next-to-leading order (NNLO). The leading and axial couplings are denoted by and , respectively. Note that there are no contributions at LO. At NLO, the contact interactions also remain unchanged. However, the leading-order interaction, i.e. the well-known Fujita-Miyazawa term Fujita and Miyazawa (1957), appears at this order, see also Ref. Epelbaum et al. (2008). The contributions to the interaction at NNLO vanish due to the Pauli principle or are suppressed and demoted to a higher chiral order. Besides the subleading LECs , the diagrams contain two additional LECs; and .

In this paper we present a systematic construction and comparative analysis of non-local -full and -less EFT potentials at LO, NLO, and NNLO, and report results for light- and medium-mass nuclei, and infinite nucleonic matter. We constrain the relevant short-ranged LECs using experimental data from nuclear systems with mass numbers and use LECs determined in a recent high-precision analysis Siemens et al. (2017) based on the Roy-Steiner equations Hoferichter et al. (2016). We do not include any additional contact operators beyond NNLO in Weinberg power counting. We find that the resulting -full potentials yield accurate charge radii and much improved binding energies for medium mass nuclei, and reproduce the saturation point of symmetric nuclear matter within estimated EFT-truncation errors. Furthermore, estimates of the EFT-truncation errors furnish a discussion of the improved convergence rate of the -full EFT expansion compared to the -less theory.

Ii Optimization of interactions

To isolate the effects of the isobar in the description of the saturation properties of nucleonic matter we compare our results with -less EFT potentials at LO, NLO, and NNLO. Other than the inclusion of the -isobar, the -full and the -less interactions are constructed following identical optimization protocols. For the description of the interaction we build on work van Kolck (1994); Hemmert et al. (1998); Kaiser et al. (1998); Krebs et al. (2007); Epelbaum et al. (2008) and treat the - mass difference as an additional small scale. A power-counting for this approach is provided by the so-called small-scale expansion Hemmert et al. (1998). This is identical to the conventional heavy-baryon formulation of EFT which is already used for including the nucleon mass-scale without any isobars. The -less pion-exchanges in the sector up to NNLO are given in Ref. Entem et al. (2015). The expressions for the contact potentials at LO and NLO are given in e.g. Ref. Machleidt and Entem (2011), and the contributions to the leading and sub-leading -exchanges in the potential are from Ref. Krebs et al. (2007). Charge-independence breaking terms are included in the LO contact LECs as well as the one-pion exchange. Following Ref. Long and Lensky (2011) we remove all contributions that are proportional to the subleading coupling by renormalizing the axial coupling and the subleading couplings . We follow Siemens et al. and use , , and the central Roy-Steiner values of the LECs for the -full and -less potentials up to third order. We recall that -less EFT potentials often employ LECs with values that differ from what is found in scattering, because the absence of ’s strongly renormalize the couplings in the three-nucleon sector Pandharipande et al. (2005). The -full theory is more consistent in this regard and the ’s appear to be more natural in size.

The expressions for the three-nucleon diagrams at NNLO are from Ref. Epelbaum et al. (2002). The NLO -force in the -full theory is given by the well-known Fujita-Miyazawa term Fujita and Miyazawa (1957). This topology is identical in structure to the -less -exchange interaction when using the resonance-saturation values for the relevant LECs

To construct quantitative -full EFT potentials we need to determine the numerical values of the LECs in the LO and NLO contact potentials and the and terms in the interaction at NNLO. To optimize the contact LECs we use a Levenberg-Marquardt algorithm with machine-precise derivatives from automatic differentiation Carlsson et al. (2016). The objective function for the LO and NLO contact LECs consists of the sum of squared differences between the theoretical partial-wave scattering phase shifts and the corresponding values from the the Granada analysis Pérez et al. (2013) up to 200 MeV scattering energy in the laboratory system. At LO, we only use phase shifts up to 1 MeV. The neutron-neutron LEC is constrained to reproduce the effective range expansion in the channel. At NNLO we use the same optimization algorithm to find the and LECs that simultaneously reproduce the binding energy and point-proton radius of He. Although correlated, these observables provide enough information to identify a unique minimum in the - plane that is sufficient for the purpose of comparing the effects in nuclei and nucleonic matter due to the isobar. An extended regression analysis or Bayesian inference approach including additional data from many-nucleon systems or three-nucleon scattering would generate interactions for use in detailed analyses of atomic nuclei or model selection. In this work we focus on the effects of the -isobar in nucleonic matter.

To regulate the the interactions we use the usual non-local regulators

in the and interactions, resepectively. Here, and denote the Jacobi momenta in the two-body system and spectator nucleon, respectively, and is the momentum cutoff. The non-local regulator acts multiplicative, i.e.

LEC LO(450) NLO(450) NNLO(450) LO(500) NLO(500) NNLO(500)
Table 1: Numerical values of the LECs for -full EFT potentials with a momentum cutoff MeV at LO, NLO, and NNLO. The LECs are taken from the Roy-Steiner analysis in Ref. Siemens et al. (2017), and for consistency we use , , and MeV.
LEC LO(450) NLO(450) NNLO(450) LO(500) NLO(500) NNLO(500)
Table 2: Numerical values of the LECs for -less EFT potentials with a momentum cutoff MeV at LO, NLO, and NNLO. The LECs are taken from the Roy-Steiner analysis in Ref. Siemens et al. (2017), and for consistency we use , and MeV

To explore the sensitivity of the results with respect to changes in the cutoff we employ two common choices, namely  MeV and  MeV. To regularize the -exchanges in conjunction with non-local regulation we use the standard spectral-function regularization (SFR) Epelbaum et al. (2005) with a cutoff MeV throughout. It should also be pointed out that recent work, e.g. Refs. Valderrama and Arriola (2009); Pavon Valderrama and Ruiz Arriola (2011); Epelbaum et al. (2015b), indicates that a carefully selected local regulation of the long-ranged -exchanges render SFR redundant and yields an improved analytical structure of the scattering amplitude. However, the overall existence of such scheme dependencies Dyhdalo et al. (2016) will persist as long as the chiral interactions cannot be order-by-order renormalized, see e.g Ref. Hoppe et al. (2017) for a recent analysis. The numerical values of the employed LECs and the optimized short-ranged LECs for the -less as well as the -full potentials are given in Tables 1 and 2. For the masses of the pions , proton, neutron, nucleon (), and we use the following values (in MeV): , , , , , and , respectively.

The statistical error from the Roy-Steiner analysis of the scattering data, documented in Ref. Siemens et al. (2017), as well as uncertainties due to the fit of the contact potentials, are not considered any further in this work. When contrasted with the much larger systematic uncertainties due to the truncation of the EFT, such statistical errors presently play a lesser role Carlsson et al. (2016); Ekström et al. (2015); Pérez et al. (2015). It is important to note that although the LECs are extracted from data using a high-precision Roy-Steiner analysis, the corresponding LECs in the -full sector are less precise due to the large uncertainty in the underlying determination of .

To provide a crude estimate of the EFT-truncation uncertainty we follow Refs. Epelbaum et al. (2015a); Furnstahl et al. (2015) and write the EFT expansion for an observable as . Here is the scale of the observable, given e.g. by the LO prediction, are dimensionless expansion coefficients (with in Weinberg power counting), and is the ratio of the typical momentum and the breakdown momentum . The application of Bayes theorem with boundless and uniform prior distribution of the expansion coefficients leads to an expression for the truncation error at order NjLO (: LO, : NLO, : NNLO) according to


see Eq. (36) of Ref. Furnstahl et al. (2015). This estimate is in semi-quantitative agreement with a Bayesian uncertainty quantification of the truncation error. The uncertainty at LO is further constrained to at least the size of the contribution of the higher chiral orders. For the breakdown scale , we start from Ref. Epelbaum et al. (2015a) but use a more conservative estimate of  MeV. We also estimate the typical momentum-scale for bound state observables as , and employ (the Fermi momentum) for infinite nucleonic matter, whereas for scattering we extract the momentum scale . We disregard detailed numerical factors in the various possible definitions of the relevant momentum scales for bound states since the estimate in Eq. (1) is only valid up to factors of order unity.

In Figs. 23, and  4 we compare the quality of the scattering phase shifts of the -full and -less interactions with cutoff MeV. The results for the peripheral waves agree well with published interactions that were analyzed in the Born approximation Krebs et al. (2007). The dashed lines show the -less results, order by order from red to green to blue. The full lines show the -full results, and we remind the reader that LO is not affected by the (see Fig. 1).

Figure 2: (Color online) Neutron-proton scattering phase shifts for the contact partial waves using the -full and -less EFT potentials with non-local cutoff MeV. All phases are compared to the results from the Granada phase shift analysis Pérez et al. (2013). The bands correspond to the order-by-order EFT truncation error in the -full approach, as described in the main text.
Figure 3: (Color online) Neutron-proton scattering phase shifts for selected peripheral partial waves using the -full and -less EFT potentials with non-local cutoff MeV. All phases are compared to the results from the Granada phase shift analysis Pérez et al. (2013). The bands correspond to the order-by-order EFT truncation error in the -full approach, as described in the main text.
Figure 4: (Color online) Proton-proton scattering phase shifts for the contact and selected peripheral partial waves using the -full and -less EFT potentials with non-local cutoff MeV. All phases are compared to the results from the Granada phase shift analysis Pérez et al. (2013). The bands correspond to the order-by-order EFT truncation error in the -full approach, as described in the main text.

Clearly, in several partial waves the -full EFT interactions exhibit a faster order-by-order convergence than the corresponding -less formulations. Somewhat surprisingly, the NNLO results at higher scattering energies, in particular for S and selected peripheral waves, such as D, are slightly less accurate than the corresponding -less order. A more involved optimization strategy, such as Bayesian parameter estimation, could further illuminate this point. Nevertheless, the Granada phase shifts fall on the envelope of the estimated truncation errors and the results therefore seem reasonable. Although not shown, the computed phase shifts for the MeV interactions are very similar and exhibit the same features.

Tables 3 and  4 summarize our results for selected bound-state observables in nuclei computed with a Jacobi-coordinate version Navrátil et al. (2000) of the no-core shell model (NCSM) Navrátil et al. (2009); Barrett et al. (2013). All calculations are converged in 41 and 21 major oscillator shells with  MeV for and , respectively. The charge radius and binding energy of He were used to constrain the LECs and of the short-ranged three-nucleon force whereas the NCSM results for nuclei are predictions. At NNLO, all results except the binding energy of H, agree with the experimental values within the estimated EFT-truncation errors. The computed point-proton radii were transformed to charge radii using a standard expression, see e.g. Ref. Ekström et al. (2015).

LO(450) NLO(450) NLO(450) NNLO(450) NNLO(450) Exp.
Table 3: Binding energies () in MeV, charge radii () in fm, for H and He at LO, NLO, and NNLO with MeV, with and without the -isobar and compared to experiment. For the ground state of H we also present the quadrupole moment () in e fm and the -state probability () in %. Experimental charge radii are from Ref. Angeli and Marinova (2013). Estimates of the EFT truncation-errors are given in parenthesis, and at LO we report the truncation error belonging to the -full expansion.
LO(500) NLO(500) NLO(500) NNLO(500) NNLO(500) Exp.
Table 4: Binding energies () in MeV, charge radii () in fm, for H and He at LO, NLO, and NNLO with  MeV, with and without the -isobar and compared to experiment. For the ground state of H we also present the quadrupole moment () in e fm and the -state probability () in %. Experimental charge radii are from Ref. Angeli and Marinova (2013). Estimates of the EFT truncation-errors given in the parenthesis, and at LO we report the truncation error belonging to the -full expansion.

Iii Predictions for medium mass nuclei and nucleonic matter

In this Section we present results for selected finite nuclei and infinite nucleonic matter. For nucleonic matter we present results for both -less and -full interactions, while for finite nuclei we limit the discussion to the -full interactions since the -less interactions produce nuclei that are not bound with respect to breakup into -particles. The computed binding energies and radii of finite nuclei are consistent with our results for the saturation point in symmetric nuclear matter.

iii.1 Finite nuclei

The many-body calculations for finite nuclei are performed with the coupled-cluster (CC) method Kümmel et al. (1978); Bishop (1991); Bartlett and Musiał (2007); Hagen et al. (2014a). We employ the translationally invariant Hamiltonian


Here, denotes the total kinetic energy and the kinetic energy of the center of mass. As the Hamiltonian (2) does not reference the center-of-mass coordinate, the ground-state wave function is a product of an intrinsic and a Gaussian center-of-mass wave function Hagen et al. (2009, 2010); Jansen (2013); Morris et al. (2015); Hergert et al. (2016). The CC method yields a similarity transformed Hamiltonian whose ground state is the product state corresponding to a closed-shell nucleus. In the coupled-cluster singles and doubles (CCSD) approximation, typically accounting for about 90% of the correlation energy, the ground-state is orthogonal to all 1-particle–1-hole (-) and - excitations. In addition to the CCSD approximation we include leading-order - excitations perturbatively by employing the -CCSD(T) method Taube and Bartlett (2008); Hagen et al. (2010); Binder et al. (2013). This approximation typically captures about 99% of the correlation energy. We employ a model space of 15 oscillator shells with  MeV, and a cutoff for the maximum excitation energy of three nucleons interacting via the three-nucleon potential . This potential enters the CC calculations in the normal-ordered two-body approximation Hagen et al. (2007); Roth et al. (2012) in the Hartree-Fock basis.

To asses the impact of the -isobar in finite nuclei we calculated the binding energies and charge radii for He, O, and Ca order-by-order, i.e. at LO, NLO, and NNLO. Figure 5 shows the results using the -full interactions with a momentum cutoff MeV. The ground-state energies are , , and  MeV and , , and  MeV at LO, NLO, and NNLO, respectively. The charge radii are , , and  fm and , , and  fm at LO, NLO, and NNLO, respectively. Before we analyze the results, we estimate the systematic uncertainties due to the truncation of the EFT. Again we follow Refs. Epelbaum et al. (2015a); Binder et al. (2016), use Eq. (1) and set the momentum scale for our low-energy observables. The predicted charge radii are accurate at each order within uncertainties. Already at NLO, which is independent of the sub-leading -exchange LECs , we obtain an accurate description of both radii and binding energies of He, O and Ca. At NNLO, the charge radii also exhibit a first sign of convergence in terms of the chiral expansion. Binding energies exhibit a nearly identical order-by-order increase in precision but somewhat underbind nuclei at NNLO. These results demonstrate that the -isobar can play an important role also in low-energy nuclear structure and nuclear saturation Hebeler et al. (2011); Ekström et al. (2015).

The degree of freedom also impacts the stability of nclei with respect to breakup into alpha particles. At LO, O and Ca are not stable with respect to alpha emission. Similar results were observed in pionless EFT Stetcu et al. (2007); Contessi et al. (2017); Bansal et al. (2017) and nuclear lattice EFT Elhatisari et al. (2016). However, the modifies the -exchanges between nucleons, and we observe that the -full interactions at NLO and NNLO yield nuclei that are stable with respect to alpha emission. This is in stark contrast to results we obtained here using the -less NLO and NNLO interactions at cutoff  MeV, and to those of Ref. Carlsson et al. (2016).

Figure 5: (Color online) Ground-state energy (negative of binding energy) per nucleon and charge radii for selected nuclei computed with coupled cluster theory and the -full potential ( MeV). For each nucleus, from left to right: LO (red triangle), NLO (green square), and NNLO (blue circle). The black bars are data. Vertical bars estimate uncertainties from the order-by-order EFT truncation errors (LO), (NLO), and (NNLO). At NLO and NNLO we estimate a conservative 95% confidence interval, i.e . See the text for details.

Table 5 summarizes binding energies, radii, and also the neutron skins of nuclei with closed subshells up to Ca. Note that the lack of a spin-orbit (LS) force at LO results in energy-degeneracies that hamper CC calculations of non LS-closed nuclei. Therefore, we can obtain EFT truncation-errors only for O and Ca using Eq. (1). For Ca we predict a neutron skin of  fm at NLO and NNLO, consistent with the recent ranges - fm and - fm from Ref. Birkhan et al. (2017) and Ref. Hagen et al. (2016), respectively.

NLO NNLO Exp. Wang et al. (2012) NLO NNLO Exp. Angeli and Marinova (2013) NLO NNLO NLO NNLO NLO NNLO
Table 5: Binding energies (E) (in MeV), charge radii (in fm), proton point radii (in fm), neutron point radii (in fm), and neutron skin (in fm) for He, O, and Ca at NLO and NNLO, and compared to experiment.

Figure 6 shows the charge form-factor at NLO and NNLO, compared to NNLO Ekström et al. (2015) and data. The charge form-factor is obtained by a Fourier transform of the intrinsic charge density Giraud (2008); Hagen et al. (2016), and agrees with data for momentum transfers up to about  fm. Also for this quantity, the NLO results indicate an improved convergence of chiral expansion compared to the -less formulation.

Figure 6: (Color online) Elastic charge form factor of Ca from NNLO (gray dash-dotted), NLO (green dashed), and NNLO (blue solid line) compared to experimental data (black).

We also computed spectra of various nuclei. These explorations exhibited mixed results: While the low-lying states in O were in good agreement with data, O is bound at NNLO with respect to O by about 0.5MeV, and the state in O is too low. We believe that these shortcomings should not distract from the main results reported in this work: accurate saturation properties at NLO in the -full EFT. We speculate that finer details such as spectra will require us to go to higher order in the interaction (as was done, e.g., in Ref. Piarulli et al. (2017) by including NLO contacts), or to vary the -full couplings within their somewhat more generous uncertainty limits due to the rather poorly known coupling , or to also use data of heavier nuclei in the optimization of the interaction. The interactions constructed in this work serve as excellent starting points for such endeavors.

iii.2 Nucleonic matter

We turn to the CC calculations of nuclear matter using -full and -less interactions up to NNLO. We follow Ref. Hagen et al. (2014b) and employ a Hamiltonian . The basis is a discrete lattice in momentum space corresponding to periodic boundary conditions in a cubic box of length in position space, and the discrete lattice momenta are given by , with , and . We used as the maximum number of lattice points. The CC calculations were carried out at the doubles excitation level (-) with perturbative triples (-) corrections [CCD(T)]. Due to translational invariance, there are no - excitations. We use “closed-shell” lattice configurations with 66 neutrons for neutron matter, and 132 nucleons for symmetric nuclear matter. These nucleon numbers exhibit only small finite-size effects Gandolfi et al. (2009); Hagen et al. (2014b). The CCD(T) calculations were performed with the normal-ordered two-body approximation for the interaction Hagen et al. (2007); Roth et al. (2012), i.e. the three-nucleon force enters the normal-ordered Hamiltonian as 0-body, 1-body and 2-body interactions; summing over 3, 2, and 1 particles in the reference state, respectively. All results are well converged for at all considered densities, i.e.  fm To gauge the quality of the normal-ordered two-body approximation, we also included the “residual” interaction (i.e. those that generate - excitations when acting on the reference) in perturbation theory. We found that the residual contribution is negligible for neutron matter, and small (0.2-0.3 MeV per nucleon) in symmetric nuclear matter. This suggests that the normal-ordered two-body approximation for the three-nucleon force is sufficiently precise for the -full interactions considered in this work.

Figure 7: (Color online) Energy per nucleon (in MeV) of symmetric nuclear matter (upper row) and pure neutron matter (lower row) up to third order in EFT without (left column) and with (right column) explicit inclusion of the -isobar in EFT. All interaction employ a momentum cutoff  MeV. Shaded areas indicate the estimated EFT-truncation errors, and the (square) diamond marks the saturation point in symmetric nuclear matter for (NLO) NNLO. The black rectangle indicates the region MeV and fm.
Figure 8: (Color online) The symmetry energy as a function of the density for NLO (green), and NNLO (blue) with -full interaction at cutoff of 450 MeV, with uncertainties shown as shaded areas.

In Fig. 7 we compare the results for the energy per nucleon at different densities in symmetric nuclear matter and pure neutron matter using -full and -less interactions with a momentum cutoff 450 MeV at LO, NLO, and NNLO. The saturation points in symmetric matter at NLO and NNLO shift towards considerably more realistic values upon inclusion of the . This observation is consistent with our results for finite nuclei. For the EFT truncation uncertainty we use Eq. 1, a relevant momentum scale , and the breakdown momentum  MeV. The uncertainties also make the accelerated convergence and consistency of the -full expansion more apparent. We note that our breakdown scale is rather conservative. For  MeV the truncation-error bands of the -full and -less NNLO(450) interactions no longer overlap in the region of the empirical saturation density. We also note that nuclear matter does not saturate at LO in the range of densities we studied, and we remind the reader once more that the does not enter at this chiral order.

Figure 8 shows the difference between the equations of state for neutron matter and symmetric nuclear matter for the  MeV cutoff. At the saturation density (), indicated as vertical lines for the different orders, this yields the symmetry energy (). Our results are  fm,  MeV, and  MeV at NLO, and  fm,  MeV, and  MeV at NNLO. The estimated EFT truncation error for is very small at NNLO because its central value and lower and upper bounds have essentially the same saturation point. The estimated EFT truncation error for is the maximum difference between the energies per particle in neutron matter and symmetric nuclear matter, at the saturation point. This uncertainty also decreases with increasing order. Finally, the estimated uncertainty in the slope () of the symmetry energy is taken from the ranges of slopes of at its upper and lower values. It is large even at NNLO and reflects that the slope in neutron matter exhibits a greater variance at NNLO than at NLO, see Fig. 7. We note that our predictions for the symmetry energy and its density derivative at NLO and NNLO are consistent with the recent estimates of Ref. Tsang et al. (2012); Tews et al. (2016).

Iv Summary

We presented results for selected finite nuclei and infinite nucleonic matter using optimized interactions from EFT with explicit -isobar degree-of-freedom. We optimized both -full and -less interactions order-by-order in the power counting up to NNLO, for two different cutoffs, and with LECs from a recent Roy-Steiner analysis of scattering. The contact potentials up to NNLO were adjusted to phase shifts, while the short-ranged parts of the interactions were constrained by energy and radius data on He. We emphasize that the only differences between the -full and -less interactions are due to the explicit inclusion of the isobar. In a detailed comparison, we found that radii in nuclei up to Ca are accurate within EFT-truncation error estimates, and that binding energies – while improving order-by-order in precision – somewhat underbind heavier nuclei. The saturation point in nuclear matter is consistent with data within EFT error estimates. Our results also show that the inclusion of -isobars in the nuclear interaction can address the long-standing problem regarding nuclear saturation. This work therefore provides a valuable starting point for constructing more refined -full EFT interactions, also at higher chiral orders, with improved uncertainty estimates.

We would like to thank Hermann Krebs for valuable discussions and input on the manuscript, Kai Hebeler for providing us with matrix elements in Jacobi coordinates for the three-nucleon interaction, and Gustav Jansen for providing us with the code that transforms three-nucleon matrix elements to the laboratory system. This material is based upon work supported by the Swedish Research Council under Grant No. 2015- 00225, and the Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DEFG02-96ER40963 (University of Tennessee), DE-SC0008499 and DE-SC0018223 (NUCLEI SciDAC collaboration), and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725, and used computational resources of the National Center for Computational Sciences, the National Institute for Computational Sciences, the Swedish National Infrastructure for Computing (SNIC).


  • Kamada et al. (2001) H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura, K. Varga, Y. Suzuki, M. Viviani, A. Kievsky, S. Rosati, J. Carlson, Steven C. Pieper, R. B. Wiringa, P. Navrátil, B. R. Barrett, N. Barnea, W. Leidemann,  and G. Orlandini, “Benchmark test calculation of a four-nucleon bound state,” Phys. Rev. C 64, 044001 (2001).
  • Pieper and Wiringa (2001) S. C. Pieper and R. B. Wiringa, “Quantum Monte Carlo calculations of light nuclei,” Ann. Rev. Nucl. Part. Sci. 51, 53–90 (2001).
  • Navrátil et al. (2009) P. Navrátil, S. Quaglioni, I. Stetcu,  and B. R. Barrett, “Recent developments in no-core shell-model calculations,” J. Phys. G: Nucl. Part. Phys. 36, 083101 (2009).
  • Barrett et al. (2013) Bruce R. Barrett, Petr Navrátil,  and James P. Vary, “Ab initio no core shell model,” Prog. Part. Nucl. Phys. 69, 131 – 181 (2013).
  • Hagen et al. (2014a) G. Hagen, T. Papenbrock, M. Hjorth-Jensen,  and D. J. Dean, “Coupled-cluster computations of atomic nuclei,” Rep. Prog. Phys. 77, 096302 (2014a).
  • Lähde et al. (2014) T. A. Lähde, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner,  and G. Rupak, “Lattice effective field theory for medium-mass nuclei,” Phys. Lett. B 732, 110 – 115 (2014).
  • Hagen et al. (2016) G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W. Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea, B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M. Miorelli, G. Orlandini, A. Schwenk,  and J. Simonis, “Neutron and weak-charge distributions of the Ca nucleus,” Nature Physics 12, 186 (2016).
  • Hergert et al. (2016) H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk,  and K. Tsukiyama, “The in-medium similarity renormalization group: A novel ab initio method for nuclei,” Phys. Rep. 621, 165 – 222 (2016).
  • Hagen et al. (2016) G. Hagen, G. R. Jansen,  and T. Papenbrock, “Structure of from first-principles computations,” Phys. Rev. Lett. 117, 172501 (2016).
  • Epelbaum et al. (2000) E. Epelbaum, W. Glöckle,  and U.-G. Meißner, “Nuclear forces from chiral lagrangians using the method of unitary transformation ii: The two-nucleon system,” Nucl. Phys. A 671, 295 – 331 (2000).
  • Epelbaum et al. (2002) E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner,  and H. Witała, “Three-nucleon forces from chiral effective field theory,” Phys. Rev. C 66, 064001 (2002).
  • Entem and Machleidt (2003) D. R. Entem and R. Machleidt, “Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory,” Phys. Rev. C 68, 041001 (2003).
  • Shirokov et al. (2004) A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary,  and T. A. Weber, ‘‘Nucleon-nucleon interaction in the -matrix inverse scattering approach and few-nucleon systems,” Phys. Rev. C 70, 044005 (2004).
  • Hebeler et al. (2011) K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga,  and A. Schwenk, “Improved nuclear matter calculations from chiral low-momentum interactions,” Phys. Rev. C 83, 031301 (2011).
  • Ekström et al. (2013) A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T. Papenbrock, J. Sarich,  and S. M. Wild, “Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order,” Phys. Rev. Lett. 110, 192502 (2013).
  • Entem et al. (2015) D. R. Entem, N. Kaiser, R. Machleidt,  and Y. Nosyk, ‘‘Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory,” Phys. Rev. C 91, 014002 (2015).
  • Epelbaum et al. (2015a) E. Epelbaum, H. Krebs,  and U.-G. Meißner, “Precision nucleon-nucleon potential at fifth order in the chiral expansion,” Phys. Rev. Lett. 115, 122301 (2015a).
  • Ekström et al. (2015) A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T. Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen, P. Navrátil,  and W. Nazarewicz, “Accurate nuclear radii and binding energies from a chiral interaction,” Phys. Rev. C 91, 051301 (2015).
  • Lynn et al. (2016) J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E. Schmidt,  and A. Schwenk, ‘‘Chiral three-nucleon interactions in light nuclei, neutron- scattering, and neutron matter,” Phys. Rev. Lett. 116, 062501 (2016).
  • Carlsson et al. (2016) B. D. Carlsson, A. Ekström, C. Forssén, D. Fahlin Strömberg, G. R. Jansen, O. Lilja, M. Lindby, B. A. Mattsson,  and K. A. Wendt, “Uncertainty analysis and order-by-order optimization of chiral nuclear interactions,” Phys. Rev. X 6, 011019 (2016).
  • Epelbaum et al. (2009) E. Epelbaum, H.-W. Hammer,  and U.-G. Meißner, “Modern theory of nuclear forces,” Rev. Mod. Phys. 81, 1773–1825 (2009).
  • Machleidt and Entem (2011) R. Machleidt and D. R. Entem, “Chiral effective field theory and nuclear forces,” Phys. Rep. 503, 1 – 75 (2011).
  • Binder et al. (2014) S. Binder, J. Langhammer, A. Calci,  and R. Roth, “Ab initio path to heavy nuclei,” Phys. Lett. B 736, 119 – 123 (2014).
  • Simonis et al. (2017) J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt,  and A. Schwenk, “Saturation with chiral interactions and consequences for finite nuclei,” Phys. Rev. C 96, 014303 (2017).
  • Elhatisari et al. (2016) Serdar Elhatisari, Ning Li, Alexander Rokash, Jose Manuel Alarcón, Dechuan Du, Nico Klein, Bing-nan Lu, Ulf-G. Meißner, Evgeny Epelbaum, Hermann Krebs, Timo A. Lähde, Dean Lee,  and Gautam Rupak, “Nuclear binding near a quantum phase transition,” Phys. Rev. Lett. 117, 132501 (2016).
  • van Kolck (1994) U. van Kolck, “Few-nucleon forces from chiral Lagrangians,” Phys. Rev. C 49, 2932–2941 (1994).
  • Ordóñez et al. (1994) C. Ordóñez, L. Ray,  and U. van Kolck, “Nucleon-nucleon potential from an effective chiral lagrangian,” Phys. Rev. Lett. 72, 1982–1985 (1994).
  • Ordóñez et al. (1996) C. Ordóñez, L. Ray,  and U. van Kolck, “Two-nucleon potential from chiral lagrangians,” Phys. Rev. C 53, 2086–2105 (1996).
  • Bernard et al. (1997) V. Bernard, N. Kaiser,  and U.-G. Meißner, “Aspects of chiral pion-nucleon physics,” Nucl. Phys. A 615, 483 – 500 (1997).
  • Piarulli et al. (2015) M. Piarulli, L. Girlanda, R. Schiavilla, R. Navarro Pérez, J. E. Amaro,  and E. Ruiz Arriola, “Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including resonances,” Phys. Rev. C 91, 024003 (2015).
  • Krebs et al. (2007) H. Krebs, E. Epelbaum,  and U. G. Meißner, “Nuclear forces with excitations up to next-to-next-to-leading order, part i: Peripheral nucleon-nucleon waves,” Eur. Phys. J. A 32, 127–137 (2007).
  • Piarulli et al. (2016) M. Piarulli, L. Girlanda, R. Schiavilla, A. Kievsky, A. Lovato, L. E. Marcucci, Steven C. Pieper, M. Viviani,  and R. B. Wiringa, “Local chiral potentials with -intermediate states and the structure of light nuclei,” Phys. Rev. C 94, 054007 (2016).
  • Logoteta et al. (2016) Domenico Logoteta, Ignazio Bombaci,  and Alejandro Kievsky, ‘‘Nuclear matter properties from local chiral interactions with isobar intermediate states,” Phys. Rev. C 94, 064001 (2016).
  • Piarulli et al. (2017) M. Piarulli, A. Baroni, L. Girlanda, A. Kievsky, A. Lovato, E. Lusk, L. E. Marcucci, S. C. Pieper, R. Schiavilla, M. Viviani,  and R. B. Wiringa, “Light-nuclei spectra from chiral dynamics,” ArXiv e-prints  (2017)arXiv:1707.02883 [nucl-th] .
  • Fujita and Miyazawa (1957) Jun-ichi Fujita and Hironari Miyazawa, “Pion theory of three-body forces,” Progress of Theoretical Physics 17, 360–365 (1957).
  • Epelbaum et al. (2008) E. Epelbaum, H. Krebs,  and U.-G. Meißner, “-excitations and the three-nucleon force,” Nucl. Phys. A 806, 65 – 78 (2008).
  • Siemens et al. (2017) D. Siemens, J. Ruiz de Elvira, E. Epelbaum, M. Hoferichter, H. Krebs, B. Kubis,  and U.-G. Meißner, “Reconciling threshold and subthreshold expansions for pion-nucleon scattering,” Phys. Letts. B 770, 27 – 34 (2017).
  • Hoferichter et al. (2016) M. Hoferichter, J. Ruiz de Elvira, B. Kubis,  and U.-G. Meißner, ‘‘Roy-steiner-equation analysis of pion-nucleon scattering,” Phys. Rept. 625, 1 – 88 (2016).
  • Hemmert et al. (1998) T. R. Hemmert, B. R. Holstein,  and J. Kambor, “Heavy baryon chiral perturbation theory with light deltas,” J. Phys. G: Nucl. Part. Phys. 24, 1831 (1998).
  • Kaiser et al. (1998) N. Kaiser, S. Gerstendörfer,  and W. Weise, ‘‘Peripheral nn-scattering: role of delta-excitation, correlated two-pion and vector meson exchange,” Nucl. Phys. A 637, 395 – 420 (1998).
  • Long and Lensky (2011) Bingwei Long and Vadim Lensky, “Heavy-particle formalism with foldy-wouthuysen representation,” Phys. Rev. C 83, 045206 (2011).
  • Pandharipande et al. (2005) V. R. Pandharipande, D. R. Phillips,  and U. van Kolck, “ effects in pion-nucleon scattering and the strength of the two-pion-exchange three-nucleon interaction,” Phys. Rev. C 71, 064002 (2005).
  • Pérez et al. (2013) R. Navarro Pérez, J. E. Amaro,  and E. Ruiz Arriola, “Coarse-grained potential analysis of neutron-proton and proton-proton scattering below the pion production threshold,” Phys. Rev. C 88, 064002 (2013).
  • Epelbaum et al. (2005) E. Epelbaum, W. Glöckle,  and Ulf-G. Meißner, “The two-nucleon system at next-to-next-to-next-to-leading order,” Nuclear Physics A 747, 362 – 424 (2005).
  • Valderrama and Arriola (2009) M. Pavón Valderrama and E. Ruiz Arriola, “Renormalization of chiral two-pion exchange interactions with excitations: Central phases and the deuteron,” Phys. Rev. C 79, 044001 (2009).
  • Pavon Valderrama and Ruiz Arriola (2011) M. Pavon Valderrama and E. Ruiz Arriola, “Renormalization of chiral two-pion exchange interactions with excitations: Correlations in the partial-wave expansion,” Phys. Rev. C 83, 044002 (2011).
  • Epelbaum et al. (2015b) E. Epelbaum, H. Krebs,  and U. G. Meißner, “Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order,” The European Physical Journal A 51, 53 (2015b).
  • Dyhdalo et al. (2016) A. Dyhdalo, R. J. Furnstahl, K. Hebeler,  and I. Tews, “Regulator artifacts in uniform matter for chiral interactions,” Phys. Rev. C 94, 034001 (2016).
  • Hoppe et al. (2017) J. Hoppe, C. Drischler, R. J. Furnstahl, K. Hebeler,  and A. Schwenk, “Weinberg eigenvalues for chiral nucleon-nucleon interactions,” Phys. Rev. C 96, 054002 (2017).
  • Ekström et al. (2015) A. Ekström, B. D. Carlsson, K. A. Wendt, C. Forssén, M. Hjorth Jensen, R. Machleidt,  and S. M. Wild, “Statistical uncertainties of a chiral interaction at next-to-next-to leading order,” J. Phys. G 42, 034003 (2015).
  • Pérez et al. (2015) R. Navarro Pérez, J. E. Amaro,  and E. Ruiz Arriola, “Low-energy chiral two-pion exchange potential with statistical uncertainties,” Phys. Rev. C 91, 054002 (2015).
  • Furnstahl et al. (2015) R. J. Furnstahl, N. Klco, D. R. Phillips,  and S. Wesolowski, “Quantifying truncation errors in effective field theory,” Phys. Rev. C 92, 024005 (2015).
  • Navrátil et al. (2000) P. Navrátil, G. P. Kamuntavičius,  and B. R. Barrett, “Few-nucleon systems in a translationally invariant harmonic oscillator basis,” Phys. Rev. C 61, 044001 (2000).
  • Angeli and Marinova (2013) I. Angeli and K.P. Marinova, “Table of experimental nuclear ground state charge radii: An update,” At. Data Nucl. Data Tables 99, 69 – 95 (2013).
  • Kümmel et al. (1978) H. Kümmel, K. H. Lührmann,  and J. G. Zabolitzky, “Many-fermion theory in (or coupled cluster) form,” Phys. Rep. 36, 1 – 63 (1978).
  • Bishop (1991) R. F. Bishop, “An overview of coupled cluster theory and its applications in physics,” Theor. Chim. Acta 80, 95–148 (1991).
  • Bartlett and Musiał (2007) R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Rev. Mod. Phys. 79, 291–352 (2007).
  • Hagen et al. (2009) G. Hagen, T. Papenbrock,  and D. J. Dean, “Solution of the center-of-mass problem in nuclear structure calculations,” Phys. Rev. Lett. 103, 062503 (2009).
  • Hagen et al. (2010) G. Hagen, T. Papenbrock, D. J. Dean,  and M. Hjorth-Jensen, “Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions,” Phys. Rev. C 82, 034330 (2010).
  • Jansen (2013) G. R. Jansen, “Spherical coupled-cluster theory for open-shell nuclei,” Phys. Rev. C 88, 024305 (2013).
  • Morris et al. (2015) T. D. Morris, N. M. Parzuchowski,  and S. K. Bogner, “Magnus expansion and in-medium similarity renormalization group,” Phys. Rev. C 92, 034331 (2015).
  • Taube and Bartlett (2008) A. G. Taube and R. J. Bartlett, “Improving upon ccsd(t): Lambda ccsd(t). i. potential energy surfaces,” J. Chem. Phys. 128, 044110 (2008).
  • Binder et al. (2013) S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil,  and R. Roth, ‘‘Extension of coupled-cluster theory with a noniterative treatment of connected triply excited clusters to three-body hamiltonians,” Phys. Rev. C 88, 054319 (2013).
  • Hagen et al. (2007) G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A. Nogga, M. Włoch,  and P. Piecuch, “Coupled-cluster theory for three-body Hamiltonians,” Phys. Rev. C 76, 034302 (2007).
  • Roth et al. (2012) R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer,  and P. Navrátil, “Medium-Mass Nuclei with Normal-Ordered Chiral Interactions,” Phys. Rev. Lett. 109, 052501 (2012).
  • Binder et al. (2016) S. Binder, A. Calci, E. Epelbaum, R. J. Furnstahl, J. Golak, K. Hebeler, H. Kamada, H. Krebs, J. Langhammer, S. Liebig, P. Maris, Ulf-G. Meißner, D. Minossi, A. Nogga, H. Potter, R. Roth, R. Skibiński, K. Topolnicki, J. P. Vary,  and H. Witała (LENPIC Collaboration), “Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces,” Phys. Rev. C 93, 044002 (2016).
  • Stetcu et al. (2007) I. Stetcu, B. R. Barrett,  and U. van Kolck, “No-core shell model in an effective-field-theory framework,” Phys. Lett. B 653, 358 – 362 (2007).
  • Contessi et al. (2017) L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,  and U. van Kolck, “Ground-state properties of 4he and 16o extrapolated from lattice qcd with pionless eft,” Physics Letters B 772, 839 – 848 (2017).
  • Bansal et al. (2017) S. Bansal, A. Binder, A. Ekström, G. Hagen, G. R. Jansen,  and T. Papenbrock, “Pion-less effective field theory for atomic nuclei and lattice nuclei,” ArXiv e-prints  (2017)arXiv:1712.10246 [nucl-th] .
  • Birkhan et al. (2017) J. Birkhan, M. Miorelli, S. Bacca, S. Bassauer, C. A. Bertulani, G. Hagen, H. Matsubara, P. von Neumann-Cosel, T. Papenbrock, N. Pietralla, V. Yu. Ponomarev, A. Richter, A. Schwenk,  and A. Tamii, “Electric dipole polarizability of and implications for the neutron skin,” Phys. Rev. Lett. 118, 252501 (2017).
  • Wang et al. (2012) M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu,  and B. Pfeiffer, “The AME2012 atomic mass evaluation,” Chin. Phys. C 36, 1603 (2012).
  • Giraud (2008) B. G. Giraud, “Density functionals in the laboratory frame,” Phys. Rev. C 77, 014311 (2008).
  • Hagen et al. (2014b) G. Hagen, T. Papenbrock, A. Ekström, K. A. Wendt, G. Baardsen, S. Gandolfi, M. Hjorth-Jensen,  and C. J. Horowitz, “Coupled-cluster calculations of nucleonic matter,” Phys. Rev. C 89, 014319 (2014b).
  • Gandolfi et al. (2009) S. Gandolfi, A. Yu. Illarionov, K. E. Schmidt, F. Pederiva,  and S. Fantoni, “Quantum monte carlo calculation of the equation of state of neutron matter,” Phys. Rev. C 79, 054005 (2009).
  • Tsang et al. (2012) M. B. Tsang, J. R. Stone, F. Camera, P. Danielewicz, S. Gandolfi, K. Hebeler, C. J. Horowitz, Jenny Lee, W. G. Lynch, Z. Kohley, R. Lemmon, P. Möller, T. Murakami, S. Riordan, X. Roca-Maza, F. Sammarruca, A. W. Steiner, I. Vidaña,  and S. J. Yennello, “Constraints on the symmetry energy and neutron skins from experiments and theory,” Phys. Rev. C 86, 015803 (2012).
  • Tews et al. (2016) I. Tews, J. M. Lattimer, A. Ohnishi,  and E. E. Kolomeitsev, “Symmetry Parameter Constraints From A Lower Bound On The Neutron-Matter Energy,” ArXiv e-prints  (2016), arXiv:1611.07133 [nucl-th] .
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
Add comment
Loading ...
This is a comment super asjknd jkasnjk adsnkj
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test description