Cross-Kerr nonlinearity for phonon counting

Cross-Kerr nonlinearity for phonon counting

Abstract

State measurement of a quantum harmonic oscillator is essential in quantum optics and quantum information processing. In a system of trapped ions, we experimentally demonstrate the projective measurement of the state of the ions’ motional mode via an effective cross-Kerr coupling to another motional mode. This coupling is induced by the intrinsic nonlinearity of the Coulomb interaction between the ions. We spectroscopically resolve the frequency shift of the motional sideband of the first mode due to presence of single phonons in the second mode and use it to reconstruct the phonon number distribution of the second mode.

pacs:
37.10.Ty, 05.45.Xt, 03.67.Lx

The quantum harmonic oscillator is one of the foundational models in physics which describes, among many other systems, the mode of the electromagnetic field and the motion of trapped particles. A rich toolbox of methods exists to characterize its quantum state. In optics such methods include homodyning Lvovsky et al. (2001), photon counting Mandel and Wolf (1995) and photon number resolving detection Miller et al. (2003); Kardynał et al. (2008). In a trapped-ion system the motion of ions is usually probed by coupling it to the ion’s internal state via a motional sideband transition, which enables reconstruction of phonon number distribution Meekhof et al. (1996); Leibfried et al. (1996); Shen et al. (2014); An et al. (2015); Um et al. (2016) or measurement of the parity of the motional state Ding et al. (2015). However most of the methods to determine the motional state are destructive in nature and the state of the oscillator after measurement does not correspond to its outcome.

An ideal projective measurement should leave the quantum system immediately after measurement in the state defined by the measurement outcome. Such measurements have been performed by utilizing the nonlinear dispersive interaction between the oscillator and another quantum system such as Rydberg atoms Bertet et al. (2002); Guerlin et al. (2007), superconducting circuits Sun et al. (2014); Heeres et al. (2015) or electron motion in a Penning trap Peil and Gabrielse (1999). An example of such an interaction in the context of a projective measurement of the Fock state Milburn and Walls (1983); Imoto et al. (1985); Munro et al. (2005) is the cross-Kerr nonlinear coupling between two different quantum oscillators. This coupling is described by the Hamiltonian , where , are the number operators and () and () are the annihilation (creation) operators for the oscillators. Such an interaction enables the implementation of quantum gates Chuang and Yamamoto (1995), entanglement distillation Duan et al. (2000) and the preparation of nonclassical states Paternostro et al. (2003).

However, several difficulties arise in the practical implementation of the cross-Kerr nonlinearity. In optics, the interaction between the photons is usually weak Venkataraman et al. (2013) and difficult to control. In addition, locality and causality arguments preclude large conditional phase shifts for traveling single photon wave packets  Shapiro (2006); Shapiro and Razavi (2007); Gea-Banacloche (2010); Fan et al. (2013). One way of overcoming these limitations was recently demonstrated by mapping one of the photons to an atomic excitation  Beck et al. (2016); Tiarks et al. (2016); Liu et al. (2016). Other similar schemes have also been proposed Brod and Combes (2016).

In our approach we simulate the cross-Kerr interaction in quantum optics in a system of trapped ions. The anharmonicity of the Coulomb interaction induces a strong nonlinear interaction between the motional modes Marquet et al. (2003). In the dispersive regime, where no energy exchange between the modes is possible, this coupling manifests itself as a shift of the frequency of the motional mode that is proportional to the number of phonons in another motional mode and can be described by an effective cross-Kerr interaction Nie et al. (2009). The motional modes of the ions are localized and therefore not subject to the no-go theorems mentioned above.

A small shift (about 20 Hz/phonon) of this origin was first observed in Roos et al. (2008) using a Ramsey type experiment. In this Letter, we demonstrate an order of magnitude larger conditional shift on the order of 300 Hz/phonon. Such a large shift together with the long coherence time of the motional mode allows us to spectroscopically resolve distinct peaks in the sideband spectrum of the motional mode for different Fock states and perform projective measurements of another motional mode in the Fock basis.

We trap three Yb ions in a standard linear rf-Paul trap Ding et al. (2015, 2014) with the single ion secular frequencies kHz. The axial trapping frequency is fixed and the radial trapping frequencies can be fine tuned by adjusting the offset voltages applied to the trap electrodes. Two of the ions are optically pumped to a metastable long-lived state and remain dark throughout the experiment. We employ standard optical pumping and resonance fluorescence techniques Olmschenk et al. (2007) to initialize and detect the internal and states of the remaining bright ion.

Three Raman beams are used to address all nine motional modes along all three principal axes of the trap for sideband cooling, motional state preparation and detection. The Raman beams are produced by a frequency-doubled mode-locked Ti:Sapphire laser Hayes et al. (2010) with a repetition rate of 76.20 MHz and total power of around 250 mW at wavelength 374 nm. To ensure that all the motional modes can be addressed by the Raman lasers, the bright ion is always positioned at the edge of the crystal (see Fig.1(a)). To achieve this, around of the collected photons is sent to an EM-CCD camera for constant monitoring of the position of the bright ion. If the ion jumps to the center of the crystal, for example, due to collisions with background gas, we melt and re-crystallize the ions by briefly interrupting the RF signal sent to the trap for a few microseconds to return the bright ion to the side of the crystal Ding (2015).

Due to anharmonicity of the Coulomb interaction between the ions, the axial “breathing” mode with eigenvector and frequency is coupled to the radial “zigzag” mode with eigenvector and frequency (see Fig.1(a)) Marquet et al. (2003). Near the resonance condition

(1)

by applying the rotating wave approximation and neglecting other off-resonant modes, we obtain the Hamiltonian that describes this coupling Marquet et al. (2003); Ding et al. (2015)

(2)

where () and () are the annihilation (creation) operators for the axial and radial motional modes respectively, is the coupling strength between the modes, is the equilibrium distance between neighboring ions, and is the mass of one ion. Without the coupling term , the system consists of two independent harmonic oscillators and its spectrum comprises a series of degenerate manifolds of states. The corresponding energy level diagram is plotted in Fig.1(a). These “bare” energy eigenstates are coupled by the term , which leads to coherent energy exchange between motional modes when the resonance condition Eq.(1) is satisfied, and the avoided crossing of the eigenenergies near the resonance Ding et al. (2015).

To verify this, both motional modes are initialized to ground state with detuning  kHz. After adding one phonon to the axial mode by applying a pulse on the motional blue sideband transition, we adjust the voltages applied to the electrodes to bring the detuning to zero in around 25 , and let the system evolve for time . We then return the detuning back to its initial value and detect motional excitation by mapping it to the ion internal state. The results of our measurements are shown in the Fig.1(a). We observe oscillations between the single phonon state in the axial mode and the two phonon state in the radial mode , with frequency kHz in good agreement with theoretical prediction kHz.

Figure 1: (a) Energy diagram of the “bare” motional eigenstates at resonance condition Eq.(1). The plot on the right shows the coherent energy exchange between the axial and radial modes after we initialize the system in the state . The blue (red) dots are the probability for the system to be in the state () and the blue (red) line is the corresponding fit. (b-e) Probability to find the bright ion in the state as a function of Raman detuning and two-mode detuning . Raman detuning is scanned around the first order (b,c) and the second order (d,e) motional blue sideband of the axial mode. The duration of Raman pulse is chosen to match the pulse of the corresponding blue sideband at large . Solid lines show the eigenen-energies of the Hamiltonian Eq.(2).

To observe the avoided crossing, we start with both motional modes in the ground state and then measure the motional blue sideband of the axial mode in the vicinity of the resonance condition Eq.(1). The coupling mixes the axial and radial modes, such that all the eigenstates of the Hamiltonian Eq.(2) have non-zero components along the axial direction and manifest themselves in the axial sideband scan near . Fig.1(b) shows the avoided crossing between the and eigenstates of the “bare” Hamiltonian when the two mode detuning is scanned across the resonance. The avoided crossing between the eigenstates and shown in Fig. 1(c) is measured by preparing the motional modes in the initial state before scanning the axial motional sideband. As expected, we observe a factor of larger splitting. The sideband spectrum in the vicinity of the second order motional sideband reveals avoided crossings between manifolds of three states (, , ) and (, , ) as shown in Fig.1(d) and (e) respectively. Similarly, the splitting is larger in the latter case.

Figure 2: (a) Full frequency scan of the axial blue sideband when the system is prepared in Fock states (blue) and (green). For the state , the reduced height of the main peak and residual population detected in the states with are due to imperfections of the state preparation that, according to the fit, populates the state with probability , and leaves significant populations , and in the states and . Preparation of state populates other Fock states with the probability . (b) Measured position of the axial motional sideband for the Fock states to prepared in the radial mode. Axial mode is initially prepared in the vacuum state . Only part of the data around the largest peak is shown for each state. (c) Calculated shift of the axial sideband frequency as a function of detuning for different states ( to ). (d) Calculated and measured shift of the axial sideband frequency as a function of the number of phonons added to the radial mode for detuning  kHz.

When the axial and radial modes are far detuned from each other, i.e., , the coupling manifests itself as frequency shifts of the modes. In this limit, the shift of the axial mode is proportional to the number of phonons in the radial mode. In our experiment this shift deviates from a linear relation due to finite value of . However, exact diagonalization of the Hamiltonian Eq.(2) confirms that the frequency shift is still a monotonous function of the radial phonon number , as shown in Fig.2(c). In the following, we employ this effect to implement the projective measurement of the radial motional state in the Fock basis.

To prepare the Fock state in the radial mode we start from the ground state of motion and apply a series of -pulses on and sideband transitions followed by optical pumping to reinitialize the ion back to the state Ding et al. (2015); Meekhof et al. (1996). We set the detuning  kHz and Raman beams power such that the time taken to apply a pulse for the first order axial blue sideband transition is  ms. This ensures that the transform limited width of the axial sideband peak is smaller than the axial sideband shift due to the presence of a single phonon in the radial mode. The axial blue sidebands for different Fock states with to in the radial mode are presented in Fig.2(b).

The central frequency of the axial sideband is determined by fitting the peaks with , where , is the Rabi frequency of the transition, , is the detuning of the driving frequency from the resonance, is the phonon detection efficiency, describes the state detection background contribution and is the number of phonons in the radial mode. The observed frequency shifts are on the order of 300 Hz / phonon and are in good agreement with the theoretical predictions calculated by diagonalization of the Hamiltonian Eq.(2), as shown in Fig.2(c-d). The peaks are clearly separated from each other, which makes it possible to efficiently detect the phonon number distribution for the radial mode.

Figure 3: Top row: frequency scans of axial blue sideband for the coherent state (a), thermal state (b) and squeezed vacuum state (c). Resolved peaks are clearly visible. Solid red bars indicate the expected probability to have phonons for a given quantum state. Here state parameters were obtained from an independent calibration. Green lines shows the fit of the experimental data for the corresponding state. Bottom row: reconstructions of phonon number distribution for the squeezed Fock state (d), squeezed thermal states (e) and (f) are obtained by the projective measurement as described in the text. The state parameters extracted from the fit of the experimental data (green) are in reasonable agreement with the independent calibration of the preparation procedure (red). The errors correspond to statistical uncertainties.

Such measurements for the coherent, thermal and squeezed states are shown in Fig.3(a-c). To prepare the coherent state , we first initialize the bright ion in the state and then apply an optical dipole force modulated at the mode frequency  Ding et al. (2015, 2014). The thermal state is prepared by applying a few (18 in the case shown in Fig.3(b)) coherent displacement pulses with duration 100 , each with a random phase. The resulting random walk in phase space leads to a thermal state Loudon (2000), where is the mean phonon number. The squeezed vacuum state , where is a squeezing operator and is a squeezing parameter, is prepared by modulating the optical dipole force at twice the mode frequency  Meekhof et al. (1996).

The height of each peak in the measured axial sideband spectra is proportional to the corresponding phonon population. To determine the state parameters, the data shown in Fig. 3 are fitted with , while allowing parameters , or to vary. Here is the expected phonon number distribution for the corresponding state. The results are in good agreement with independent calibrations of the preparation procedures. This fitting procedure also determines the efficiency of the single shot measurement , i.e. probability to detect the ion in the state given the Fock state was prepared and measured. This efficiency is limited mostly by fast fluctuations of the Raman laser power and pointing stability of the laser beams.

Since the positions of the axial blue sideband as a function of the radial phonon number are known (Fig. 2(d)), we can perform the projective measurement of a radial mode state and determine whether it is in the Fock state with phonons in a single shot. This is achieved by applying a pulse at frequency followed by fluorescence detection of the ion internal state. If no light is detected, the initial state of the radial mode is projected to a state by a projector  Ding et al. (2015). If fluorescence is detected, the mode is determined to be in Fock state . Our experiment deviates from ideal projective measurement because, in the latter case, fluorescence of the ion destroys its motional state. However, since the outcome of the measurement is known, this state can, in principle, be prepared again Monroe (2011).

The procedure described above is performed on squeezed thermal and squeezed Fock states. These states are prepared by applying the squeezing operation to the thermal and Fock states, respectively. The results are shown in Fig.3(d-f). The parameters and obtained from the fit of the experimental data agree well with the expected values.

Some discrepancies between the measurements in Fig.2, Fig.3 and the expected values can be attributed to the infidelities of motional state preparation, imperfect driving of the axial sideband transition and detection of the ion internal state, decoherence of ion motion during the measurement Ding et al. (2015), as well as residual mixing of “bare” eigenstates due to the coupling for the given two-mode detuning .

The results demonstrated in this letter may be of use in quantum information processing with continuous variables Krastanov et al. (2015); Holland et al. (2015) and qubits Chuang and Yamamoto (1995); Duan et al. (2000), preparation of nonclassical states of motion Paternostro et al. (2003) via projective measurements Sun et al. (2014), serve as a fast alternative method to extract the phonon number distribution Meekhof et al. (1996); Leibfried et al. (1996), fully reconstruct the quantum state Deleglise et al. (2008); Sun et al. (2014) and shed light on the cross-Kerr coupling problem in quantum optics Shapiro (2006); Shapiro and Razavi (2007); Gea-Banacloche (2010); Fan et al. (2013).

Acknowledgements.
We thank Jiang Liang and Atac Imamoglu for helpful discussions and Brenda Chng for help with the manuscript preparation. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore and the Ministry of Education, Singapore under the Research Centers of Excellence program and Education Academic Research Fund Tier 2 (Grant No. MOE2016-T2-1-141).

References

  1. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,  and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, U.K., 1995).
  3. A. J. Miller, S. W. Nam, J. M. Martinis,  and A. V. Sergienko, Appl. Phys. Lett. 83, 791 (2003).
  4. B. E. Kardynał, Z. L. Yuan,  and A. J. Shields, Nature Photonics 2, 425 (2008).
  5. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano,  and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).
  6. D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano,  and D. J. Wineland, Phys. Rev. Lett. 77, 4281 (1996).
  7. C. Shen, Z. Zhang,  and L.-M. Duan, Phys. Rev. Lett. 112, 050504 (2014).
  8. S. An, J.-N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.-Q. Yin, H. T. Quan,  and K. Kim, Nature Physics 11, 193 (2015).
  9. M. Um, J. Zhang, D. Lv, Y. Lu, S. An, J.-N. Zhang, H. Nha, M. S. Kim,  and K. Kim, Nature Communications 7, 11410 (2016).
  10. S. Ding, G. Maslennikov, R. Hablützel, H. Loh,  and D. Matsukevich, arXiv:1512.01670  (2015).
  11. P. Bertet, A. Auffeves, P. Maioli, S. Osnaghi, T. Meunier, M. Brune, J. M. Raimond,  and S. Haroche, Phys. Rev. Lett. 89, 200402 (2002).
  12. C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond,  and S. Haroche, Nature 448, 889 (2007).
  13. L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H. Devoret,  and R. J. Schoelkopf, Nature 511, 444 (2014).
  14. R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang,  and R. J. Schoelkopf, Phys. Rev. Lett. 115, 137002 (2015).
  15. S. Peil and G. Gabrielse, Phys. Rev. Lett. 83, 1287 (1999).
  16. G. J. Milburn and D. F. Walls, Phys. Rev. A 28, 2065 (1983).
  17. N. Imoto, H. A. Haus,  and Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).
  18. W. J. Munro, K. Nemoto, R. G. Beausoleil,  and T. P. Spiller, Phys. Rev. A 71, 033819 (2005).
  19. I. L. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489 (1995).
  20. L.-M. Duan, G. Giedke, J. I. Cirac,  and P. Zoller, Phys. Rev. Lett. 84, 4002 (2000).
  21. M. Paternostro, M. S. Kim,  and B. S. Ham, Phys. Rev. A 67, 023811 (2003).
  22. V. Venkataraman, K. Saha,  and A. L. Gaeta, Nature Photonics 7, 138 (2013).
  23. J. H. Shapiro, Phys. Rev. A 73, 062305 (2006).
  24. J. H. Shapiro and M. Razavi, New Journal of Physics 9, 16 (2007).
  25. J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010).
  26. B. Fan, A. F. Kockum, J. Combes, G. Johansson, I.-c. Hoi, C. M. Wilson, P. Delsing, G. J. Milburn,  and T. M. Stace, Phys. Rev. Lett. 110, 053601 (2013).
  27. K. M. Beck, M. Hosseini, Y. Duan,  and V. Vuletič, Proc. Natl. Acad. Sci. 113, 9740 (2016).
  28. D. Tiarks, S. Schmidt, G. Rempe,  and S. Dürr, Sci. Adv. 2, e1600036 (2016).
  29. Z.-Y. Liu, Y.-H. Chen, Y.-C. Chen, H.-Y. Lo, P.-J. Tsai, I. A. Yu, Y.-C. Chen,  and Y.-F. Chen, Phys. Rev. Lett. 117, 203601 (2016).
  30. D. J. Brod and J. Combes, Phys. Rev. Lett. 117, 080502 (2016).
  31. C. Marquet, F. Schmidt-Kaler,  and D. James, Applied Physics B 76, 199 (2003).
  32. X. Nie, C. F. Roos,  and D. James, Physics Letters A 373, 422 (2009).
  33. C. F. Roos, T. Monz, K. Kim, M. Riebe, H. Häffner, D. F. V. James,  and R. Blatt, Phys. Rev. A 77, 040302 (2008).
  34. S. Ding, H. Loh, R. Hablutzel, M. Gao, G. Maslennikov,  and D. Matsukevich, Phys. Rev. Lett. 113, 073002 (2014).
  35. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz,  and C. Monroe, Phys. Rev. A 76, 052314 (2007).
  36. D. Hayes, D. N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olmschenk, W. Campbell, J. Mizrahi, C. Senko,  and C. Monroe, Phys. Rev. Lett. 104, 140501 (2010).
  37. S. Ding, Control of trapped-ion motion for molecular spectroscopy and quantum information processing, Ph.D. thesis, National University of Singapore (2015).
  38. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, Oxford, U.K., 2000).
  39. C. Monroe, Physics Today 64, 8 (2011).
  40. S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf,  and L. Jiang, Phys. Rev. A 92, 040303 (2015).
  41. E. T. Holland, B. Vlastakis, R. W. Heeres, M. J. Reagor, U. Vool, Z. Leghtas, L. Frunzio, G. Kirchmair, M. H. Devoret, M. Mirrahimi,  and R. J. Schoelkopf, Phys. Rev. Lett. 115, 180501 (2015).
  42. S. Deleglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond,  and S. Haroche, Nature 455, 510 (2008).
Comments 0
Request Comment
You are adding the first comment!
How to quickly get a good reply:
  • Give credit where it’s due by listing out the positive aspects of a paper before getting into which changes should be made.
  • Be specific in your critique, and provide supporting evidence with appropriate references to substantiate general statements.
  • Your comment should inspire ideas to flow and help the author improves the paper.

The better we are at sharing our knowledge with each other, the faster we move forward.
""
The feedback must be of minimum 40 characters and the title a minimum of 5 characters
   
Add comment
Cancel
Loading ...
133152
This is a comment super asjknd jkasnjk adsnkj
Upvote
Downvote
""
The feedback must be of minumum 40 characters
The feedback must be of minumum 40 characters
Submit
Cancel

You are asking your first question!
How to quickly get a good answer:
  • Keep your question short and to the point
  • Check for grammar or spelling errors.
  • Phrase it like a question
Test
Test description